SINAMICS S120/S150

List Manual • 10/2008

SINAMICS

SIEMENS

SIEMENS

	Foreword	
SINAMICS	Parameters	
	Function diagrams	
SINAMICS S120/S150	Faults and alarms	3
	Appendix	
List Manual	List of abbreviations	B
	References	
	Index	
Valid for		
Drive Firmware version		
SINAMICS $\quad 2.6$ SP1		

Safety-related information

This manual contains information that must be observed to ensure your personal safety and to prevent property damage. Notices referring to your personal safety are highlighted in the manual by a safety alert symbol; notices referring to property damage only have no safety alert symbol, These notices shown below are graded according to the level of danger:

Danger

indicates that death or serious injury will result if proper precautions are not taken.

Alarm

indicates that death or serious injury may result if proper precautions are not taken.

Caution

with a safety alert symbol, indicates that minor personal injury may result if proper precautions are not taken.

Caution

without a safety alert symbol, indicates that property damage may result if proper precautions are not taken.

Notice

means an undesirable result or state can occur if the corresponding instruction is not followed.
If more than one level of danger exists, the warning notice for the highest level of danger is used. If a warning notice with a safety alert symbol is to indicate physical injury, the same warning may also contain information about damage to property.

Qualified personnel

The associated device/system may only be installed and used in conjunction with this documentation. Only qualified personnel should be allowed to commission and operate the device/system. For the purpose of the safety information in this documentation, a "qualified person" is someone who is authorized to energize, ground, and tag equipment, systems, and circuits in accordance with established safety procedures.

Proper use of Siemens products

Please note the following:

Alarm

Siemens products are only permitted to be used for the applications envisaged in the catalog and in the associated technical documentation. If third-party products and components are used, they must be recommended or approved by Siemens. To ensure proper and safe operation of these products, they must be correctly transported, stored, set up, mounted, installed, commissioned, operated and maintained. The permissible ambient conditions must be met. Information in the associated documentation must be observed.

Trademarks

All names identified by ${ }^{\circledR}$ are registered trademarks of the Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Copyright Siemens AG 2008 All Rights Reserved

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Violation of this rule can lead to claims for damage compensation. All rights reserved, especially for granting patents or for GM registration.

Siemens AG

Industry Sector
P.O. Box 4848

90327 Nuremberg GERMANY

Liability Disclaimer

We have checked that the contents of this document correspond to the hardware and software described. Nevertheless, we cannot assume responsibility for any deviations that may arise. The data in this document is regularly checked and the necessary corrections are included in subsequent editions.

- $\Sigma \iota \varepsilon \mu \varepsilon v \sigma$ АГ 2008

Subject to change without prior notice

Foreword

SINAMICS Documentation

The SINAMICS documentation is organized in 2 parts:

- General documentation/catalogs
- Manufacturer/service documentation

At http://www.siemens.com/motioncontrol/docu information is available on the following topics:

- Ordering documentation

Here you will find the current overview of publications

- Downloading documentation

Links to more information for downloading files from Service \& Support

- Researching documentation online

Information on DOConCD and direct access to the publications in DOConWeb.

- Individually compiling documentation on the basis of Siemens contents with the My Documentation Manager (MDM), refer to
http://www.siemens.com/mdm
The My Documentation Manager offers you a number of features for compiling your own machine documenation
- Training and FAQs

Information on the range of training courses and FAQs (frequently asked questions) are available via the page navigation

Usage phases and their tools/documents (as an example)

Table Foreword-1Usage phases and the available tools/documents

Usage phase	Tools/documents		
Orientation	SINAMICS S Sales Documentation		
Planning/configuration	$\begin{array}{l}\text { SIZER configuration tool } \\ \text { Configuration Manuals, Motors }\end{array}$		
Decision making/ordering	SINAMICS S Catalogs		
Installation/assembly	$\begin{array}{l}\text { - SINAMICS S120 Equipment Manual for Control Units } \\ \text { and Supplementary System Components } \\ \text { - SINAMICS S120 Equipment Manual Power Units } \\ \text { Booksize }\end{array}$		
- SINAMICS S120 Equipment Manual Power Units in			
chassis format		$\}$	- SINAMICS S150 Operating Instructions
:---			

Target group

This documentation is aimed at machine manufacturers, commissioning engineers, and service personnel who use SINAMICS.

Benefits

This documentation contains the comprehensive information about parameters, function diagrams and faults and alarms required to commission and service the system.

This manual should be used in addition to the other manuals and tools provided for the product.

Standard version

The scope of the functionality described in this document can differ from the scope of the functionality of the drive system that is actually supplied.

- Other functions not described in this documentation might be able to be executed in the drive system. However, no claim can be made regarding the availability of these functions when the equipment is first supplied or in the event of servicing.
- Functions can be described in the documentation that are not available in a particular product version of the drive system. The functionality of the supplied drive system should only be taken from the ordering documentation.
- Extensions or changes made by the machine manufacturer must be documented by the machine manufacturer.

For reasons of clarity, this documentation does not contain all of the detailed information on all of the product types. This documentation cannot take into consideration every conceivable type of installation, operation and service/maintenance.

Search tools

The following guides are provided to help you locate information in this manual:

1. Table of contents

- General table of contents for the complete manual (after the preface).
- Table of contents for function diagrams (Chapter 2.1).

2. List of abbreviations
3. References
4. Index

Technical Support

If you have any questions, please contact our hotline:

	Europe/Africa
Phone	$+49(0) 1805050-222$
Fax	$+49(0) 1805050-223$
Internet	http://www.siemens.de/automation/support-request

	America
Phone	+14232622522
Fax	+14232622200
E-mail	techsupport.sea@siemens.com

	Asia/Pacific
Phone	+861064757575
Fax	+861064747474
E-mail	support.asia.automation@siemens.com

Note:

For technical support telephone numbers for different countries, go to:
http://www.siemens.com/automation/service\&support
Calls are subject to charge (e.g. $0.14 € / \mathrm{min}$ on the German landline network). Tariffs of other telephone service providers may vary.

Questions about the Manual

Please send any questions about the technical documentation (e.g. suggestions for improvement, corrections) to the following fax number or E-Mail address:
Fax:
+49 (0) 9131 / 98-2176
E-mail: docu.motioncontrol@siemens.com

A fax form is at the end of this document.

Internet address for SINAMICS

http://www.siemens.com/sinamics

EC declaration of conformity

The EC Declaration of Conformity for the EMC Directive can be obtained from:

- Internet
http://support.automation.siemens.com
Product/Order No.: 15257461
- Branch offices

At the relevant regional office of the I DT MC Business Unit of Siemens AG.

Table of Contents

1 Parameters 1-11
1.1 Overview of parameters 1-12
1.1.1 Explanation of list of parameters 1-12
1.1.2 Numerical ranges of parameters 1-28
1.2 List of parameters 1-30
1.3 Parameters for data sets 1-1148
1.3.1 Parameters for Command Data Sets (CDS) 1-1148
1.3.2 Parameters for Drive Data Sets (DDS) 1-1151
1.3.3 Parameters for Encoder Data Sets (EDS). 1-1162
1.3.4 Parameters for Motor Data Sets (MDS) 1-1164
1.3.5 Parameters for Power unit Data Sets (PDS) 1-1167
2 Function diagrams 2-1169
2.1 Table of Contents 2-1171
2.2 Explanations for the function diagrams 2-1182
2.3 Overviews 2-1187
2.4 CU310 input/output terminals 2-1211
2.5 CU320 input/output terminals 2-1215
2.6 CU_LINK 2-1222
2.7 CX32 input/output terminals 2-1224
2.8 PROFIdrive 2-1228
2.9 Internal control/status words 2-1280
2.10 Sequence control 2-1293
2.11 Braking control 2-1296
2.12 Safety Integrated 2-1301
2.13 Setpoint channel 2-1318
2.14 Setpoint channel not activated 2-1328
2.15 Basic positioner (EPOS) 2-1330
2.16 Position control 2-1346
2.17 Encoder evaluation 2-1351
2.18 Servo control 2-1360
2.19 Vector control 2-1380
2.20 Technology functions 2-1408
2.21 Technology controller 2-1416
2.22 Signals and monitoring functions 2-1420
2.23 Diagnostics 2-1428
2.24 Data sets 2-1434
2.25 Basic Infeed 2-1440
2.26 Smart Infeed 2-1447
2.27 Active Infeed 2-1456
2.28 Terminal Board 30 (TB30) 2-1468
2.29 Communication Board CAN10 (CBC10) 2-1473
2.30 Terminal Module 15 for SINAMICS (TM15DI/DO) 2-1480
2.31 Terminal Module 31 (TM31) 2-1484
2.32 Terminal Module 41 (TM41) 2-1495
2.33 Auxiliaries 2-1509
2.34 Voltage Sensing Module (VSM) 2-1512
2.35 Basic Operator Panel 20 (BOP20) 2-1516
2.36 Braking Module external 2-1518
3 Faults and alarms 3-1521
3.1 Overview of faults and alarms 3-1522
3.1.1 General information about faults and alarms 3-1522
3.1.2 Explanation of the List of Faults and Alarms 3-1527
3.1.3 Numerical ranges of faults and alarms 3-1530
3.2 List of faults and alarms 3-1532
A Appendix A-1911
A. 1 ASCII table (excerpt) A-1912
A. 2 List for motor code/encoder code A-1913
A.2.1 Motor code A-1913
A.2.2 Encoder code A-1939
B List of abbreviations B-1943
C References C-1951
D Index D-1957

Parameters

Content

1.1 Overview of parameters 1-12
1.2 List of parameters 1-30
1.3 Parameters for data sets 1-1148

1.1 Overview of parameters

1.1.1 Explanation of list of parameters

Basic structure of parameter descriptions

The data in the following example has been chosen at random. The table below shows all the information which can be included in the description of a parameter. Some of the information is optional.
The structure of the parameter list (See Section 1.2) is as follows:

Start of example-

pxxxx[0..n]	BICO: Full parameter name / Abbreviated name			
Drive object (function module)	Changeable in: $\mathrm{C} 1(\mathrm{x}), \mathrm{C} 2(\mathrm{x}), \mathrm{U}, \mathrm{T}$	are calculated: CALC_MOD_REG Acces		
	Data type: Unsigned32 / Integer16	Dynamic inde	Function diagram: 2080	
	P group: CI.-Ip. control	Unit Group: 7	Unit selection: p0505	
	Not for motor type: FEM		Expert list: 1	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 10.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Aeff]	
Description:	Text			
Values:	0 : \quad Name and meaning of value 0			
	1: \quad Name and meaning of value 1			
	2: \quad Name and meaning of value 2 etc.			
Recommendation:	Text			
Index:	[0] = Name and meaning of index 0 [1] = Name and meaning of index 1 [2] = Name and meaning of index 2 etc.			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Name and meaning of bit 0	Yes	No	8010
	01 Name and meaning of bit 1	Yes	No	-
	02 Name and meaning of bit 2 etc.	Yes	No	8012
Depends on:				
	See also: pxxxx, rxxxx			
	See also: Fxxxxx, Axxxxx			
Danger:	Warning: Caution:	Safety-related information with a safety alert symbol		
Caution:	Notice:	Safety-related information without a safety alert symbol		
Note:	Information which might be useful.			

pxxxx[0...n] Parameter number

The parameter number consists of a " p " or " r ", followed by the parameter number and the index (optional).

Examples of number representation in the parameter list:

- p... Adjustable parameter (read and write parameter)
- r... Display parameter (read only)
- p0918 Adjustable parameter 918
- p0099[0...3] Adjustable parameter 99, indices 0 to 3
- p1001[0...n] Adjustable parameter 1001, indices 0 to n ($\mathrm{n}=$ configurable)
- r0944 Display parameter 944

Other examples of notation in the documentation:

- p1070[1] Adjustable parameter 1070, index 1
- p2098[1]. 3 Adjustable parameter 2098, index 1 bit 3
- r0945[2](3) Display parameter 945, index 2 of drive object 3
- p0795.4 Adjustable parameter 795, bit 4
- r2129.0... 15 Display parameter 2129 with bit field (maximum 16 bit)

The following applies to adjustable parameters:
The "shipped" parameter value is specified under "Factory setting" with the relevant unit in square parenthesis. The value can be adjusted within the range defined by "Min" and "Max".
The term "linked parameterization" is used in cases where changes to adjustable parameters affect the settings of other parameters.

Linked parameterization can occur, for example, as a result of the following actions or parameters:

- Execute macros p0015, p0700, p1000, p1500
- Set PROFIBUS telegram (BICO interconnection) p0922
- Set component lists
p0230, p0300, p0301, p0400
- Calculate and preset automatically p0112, p0340, p0578, p3900
- Restore factory settings p0970

The following applies to display parameters:
The fields "Min", "Max" and "Factory setting" are specified with a dash "-" and the relevant unit in square parenthesis.

Note:

The parameter list can contain parameters that are not visible in the expert lists of the particular commissioning software (e.g. parameters for trace functions).

BICO: Full parameter name / Abbreviated name

The following abbreviations can be placed in front of the parameter name:

- BI: Binector input

This parameter is used for selecting the source of a digital signal.

- BO: Binector output

This parameter is available as a digital signal for interconnection with other parameters.

- Cl : Connector input

This parameter is used for selecting the source of an analog signal.

- CO: Connector output

This parameter is available as an "analog" signal for interconnection with other parameters.

- CO/BO: Connector/Binector Output

This parameter is available as an "analog" and digital signal for interconnection with other parameters.

Note:

A connector input (CI) cannot be just interconnected with any connector output (CO, signal source).
When interconnecting a connector input using the commissioning software, only the corresponding possible signal sources are listed.

Drive object (function module)

A drive object (DO) is an independent, "self-contained" functional unit which possesses its own parameters and, in some cases, faults and alarms.

When carrying out commissioning using the commissioning software, you can select/deselect additional functions and their parameters by activating/deactivating function modules accordingly.

Note:

References: /FH1/ SINAMICS S120 Function Manual Drive Functions

The parameter list specifies the associated drive object and function module for each individual parameter.

Examples:

- p1070 CI: Main setpoint

SERVO (extended setpoint), VECTOR
The parameter is available only in association with drive object SERVO and the "Extended setpoint channel" function module or with drive object VECTOR irrespective of activated function modules.

- p1055 BI: Jog bit 0

SERVO, VECTOR
The parameter is available in association with drive objects SERVO and VECTOR irrespective of activated function modules, i.e. it is available with every activated function module belonging to the drive object.

A parameter can belong to either one, several, or all drive objects.
The following information relating to "Drive object" and "Function module" can be displayed under the parameter number:

Table 1-1 Data in "Drive object (function module)" field

Drive object (func- tion module)	Type	Meaning
All objects	-	This parameter belongs to all drive objects.
A_INF	10	Active Infeed closed-loop control Closed-loop-controlled, self-commutated infeed/regenerative feed- back unit for generating a constant DC-link voltage.
A_INF (parallel)	-	Active Infeed with "Parallel connection" function module (r0108.15).
A_INF (RKA)	-	Active Infeed with "Cooling system" function module (r0108.28).
A_INF (CBE)	-	Active Infeed with "CBE COMMUNICATION BOARD" function module (r0108.31).
B_INF	30	Basic Infeed closed-loop control Unregulated line infeed unit (without feedback) for rectifying the line voltage of the DC Link.
B_INF (parallel)	-	Basic Infeed with "Parallel connection" function module (r0108.15).
B_INF (RKA)	-	Basic Infeed with "Cooling system" function module (r0108.28).
B_INF (CBE)	-	Basic Infeed with "CBE COMMUNICATION BOARD" function module (r0108.31).
CU	-	Control Unit, all versions.
CU(CAN)	-	Control Unit with "CAN" function module.
CU(COMM BOARD)	-	Control Unit with "COMM BOARD" function module.
CU(PROFINET)	-	Control Unit with "PROFINET" function module.
CU_S	1	Control Unit SINAMICS S (SINAMICS S120/S150).
CU_CX32	-	Controller Extension for boosting the processing performance.
CU_LINK	254	Object for Controller Extension 32 (CX32).
CU_I	-	Control Unit SINAMICS Integrated (SIMOTION D4xx only).
HUB	150	DRIVE-CLiQ Hub Module.

Table 1-1 Data in "Drive object (function module)" field, continued

Drive object (function module)	Type	Meaning
S_INF	20	Smart Infeed control Unregulated line infeed/feedback unit for generating the DC link voltage.
S_INF (parallel)	-	Smart Infeed with "Parallel connection" function module (r0108.15).
S_INF (CBE)	-	Smart Infeed with "CBE COMMUNICATION BOARD" function module (r0108.31).
SERVO	11	Servo drive.
SERVO (extended M_ctrl)	-	Servo drive with "Extended torque control" function module (r0108.1).
SERVO (position ctrl)	-	Servo drive with "Position control" function module (r0108.3).
SERVO (EPOS)	-	Servo drive with "Basic positioner" function module (r0108.4).
SERVO (APC)	-	Servo drive with "Advanced Positioning Control (APC)" function module (r0108.7).
SERVO (extended setpoint)	-	Servo drive with "Extended setpoint channel" function module (r0108.8).
SERVO (Lin)	-	Servo drive with "Linear motor" function module (r0108.12).
SERVO (Safety red)	-	Servo drive with "Safety rotary axis" function module (r0108.13).
SERVO (ext. brake)	-	Servo drive with "Extended braking control" function module (r0108.14)
SERVO (Tech_ctrl)	-	Servo drive with "Technology controller" function module (r0108.16)
SERVO (extended reports)	-	Servo drive with "Extended messages/monitoring functions" function module (r0108.17)
SERVO (RKA)	-	Servo drive with "Cooling system" function module (r0108.28).
SERVO(CAN)	-	Servo drive with "CAN" function module (r0108.29).
SERVO (CBE)	-	Servo drive with "CBE COMMUNICATION BOARD" function module (r0108.31).
TB30	100	Terminal Board 30.
TM15	203	Terminal Module 15 (SIMOTION D4xx only).
TM15DI_DO	204	Terminal Module 15 (for SINAMICS).
TM17	202	Terminal Module 17 (SIMOTION D4xx only).
TM31	200	Terminal Module 31.
TM41	201	Terminal Module 41.

Table 1-1 Data in "Drive object (function module)" field, continued

Drive object (func- tion module)	Type	Meaning
VECTOR	12	Vector drive.
VECTOR (n/M)	-	Vector drive with "Closed-loop speed/torque control" function module (r0108.2).
VECTOR (pos ctrl)	-	Vector drive with "Position control" function module (r0108.3).
VECTOR (EPOS)	-	Vector drive with "Basic positioner" function module (r0108.4).
VECTOR (ext. brake)	-	Vector drive with "Extended brake control" function module (r0108.14).
VECTOR (parallel)	-	Vector drive with "Parallel connection" function module (r0108.15).
VECTOR (Tech_ctrl)	-	Vector drive with "Technology controller" function module (r0108.16).
VECTOR (ext. mess.)	-	Vector drive with "Extended messages/monitoring functions" function module (r0108.17).
VECTOR (RKA)	-	Vector drive with "Cooling system" function module (r0108.28).
VECTOR(CAN)	-	Vector drive with "CAN" function module (r0108.29).
VECTOR (CBE)	-	Vector drive with "CBE COMMUNICATION BOARD" function module (r0108.31).

Note:

The drive object type is used to identify the drive objects in the drive system (e.g. r0107, r0975[1]).

Changeable in

The "-" sign indicates that the parameter can be changed in any object state and that the change will be effective immediately.

The letters "C1(x), C2(x), T, U" ((x): optional) mean that the parameter can be changed only in the specified drive object state and that the change will not take effect until the object switches to another state. This can be one or more states.

The following states may be specified:

- $\mathrm{C} 1(\mathrm{x})$ Device commissioning
C1: Commissioning 1

Converter commissioning is in progress ($\mathrm{p} 0009>0$).
Pulses cannot be enabled.
The parameter can only be changed in the following device commissioning settings ($00009>0$):

- C1: Changeable for all settings p0009>0.
- $\mathrm{C} 1(\mathrm{x})$: Only changeable when p0009 = x .

A modified parameter value does not take effect until converter commissioning mode is exited with p0009 $=0$.

- C2(x) Drive object commissioning C2: Commissioning 2

Drive commissioning is in progress ($\mathrm{p} 0009=0$ and p0010>0).
Pulses cannot be enabled.
The parameter can only be changed in the following drive commissioning settings ($\mathrm{p} 0010>0$):

- C2: Changeable for all settings p0010>0.
- $\quad \mathrm{C} 2(\mathrm{x})$: Only changeable when p0010 $=\mathrm{x}$.

A modified parameter value does not take effect until drive commissioning mode is exited with p0010 $=0$.

- U Operation A: Run

Pulses are enabled.

- T Ready T: Ready to run

The pulses are not enabled and status " $\mathrm{C} 1(\mathrm{x})$ " or " $\mathrm{C} 2(\mathrm{x})$ " is not active.

Note:

Parameter p0009 is CU-specific (belongs to Control Unit).
Parameter p0010 is drive-specific (belongs to each drive object).
The operating status of individual drive objects is displayed in r0002.

Calculated

Specifies whether the parameter is influenced by automatic calculations.
The calculation attribute defines which activities influence the parameter.

The following attributes apply:

- CALC_MOD_ALL
- p0340 = 1
- Project download with commissioning software and send from p0340 $=3$
- CALC_MOD_CON
- p0340 = 1, 3, 4
- CALC_MOD_EQU
- p0340 = 1, 2
- CALC_MOD_LIM_REF
- p0340 = 1, 3, 5
- p0578 = 1
- CALC_MOD_REG
- $\mathrm{p} 0340=1,3$

Note:

For p3900 > 0, also p0340 $=1$ is automatically called.
After p1910 = 1, p0340 $=3$ is automatically called.

Access level

Specifies the access level required to be able to display and change the relevant parameter. The required access level can be set via p0003.

The system uses the following access levels:

1. Standard
2. Advanced
3. Expert
4. Service

Please contact your local Siemens office to obtain the password for parameters with access level 4 (service).
5. Macro (the parameter can only be changed via macro)

Note:

Parameter p0003 is CU-specific (belongs to Control Unit).

Data type

The information on the data type can consist of the following two pieces of information (separated by a slash):

- First information

Data type of the parameter

- Second information (only for binector or connector input)

Data type of the signal source to be interconnected (binector/connector output).
The possible data types of parameters are as follows:

- I8 Integer8 8-bit integer
- I16 Integer16 16-bit integer
- I32 Integer32 32-bit integer
- U8 Unsigned8 8 bits without sign
- U16 Unsigned16 16 bits without sign
- U32 Unsigned32 32 bits without sign
- Float FloatingPoint32 32-bit floating point number

Depending on the data type of the BICO input parameter (signal sink) and BICO output parameter (signal source) the following combinations are possible when creating BICO interconnections:

Table 1-2 Possible combinations of BICO interconnections

	BICO input parameter			
		Cl parameter		BI parameter
BICO output parameter	Unsigned32 1 Integer16	Unsigned32 1 Integer32	Unsigned32 I FloatingPoint32	Unsigned32 I Binary
CO: Unsigned8	x	x	-	-
CO: Unsigned16	X	x	-	-
CO: Integer16	x	x	-	-
CO: Unsigned32	x	x	-	-
CO: Integer32	x	x	-	-
CO: FloatingPoint32	X	x	x^{1}	-
BO: Unsigned8	-	-	-	x
BO: Unsigned16	-	-	-	x
Legend:	x: BICO interconnection permitted			
BICO input parameters with data type "Unsigned32 / FloatingPoint32" can also be interconnected with the following BICO output parameters although these are not of the "FloatingPoint32" data type:CO: r8850, CO: r8860, CO: r2050, CO: r2060				

Table 1-2 Possible combinations of BICO interconnections, continued

	BICO input parameter			
	CI parameter			
BICO output parameter	Unsigned32 I Integer16	Unsigned32 I Integer32	Unsigned32 I FloatingPoint32	Unsigned32 / Binary
BO: Integer16	-	-	-	x
BO: Unsigned32	-	-	-	x
BO: Integer32	-	-	-	x
BO: FloatingPoint32	-	-	-	
Legend:	x: BICO interconnection permitted			
1 Exception:				
BICO input parameters with data type "Unsigned32 / FloatingPoint32" can also be interconnected with the following				
BICO output parameters although these are not of the "FloatingPoint32" data type:				
CO: r8850, CO: r8860, CO: r2050, CO: r2060				

Dynamic index

For parameters with a dynamic index [0...n], the following information is specified here:

- Data set (if this is available).
- Parameter for the number of indices ($\mathrm{n}=$ number -1).

The following information can be contained in this field:

- "CDS, p0170" (Command Data Set, CDS count)

Example:
p1070[0] \rightarrow main setpoint [command data set 0]
p1070[1] \rightarrow main setpoint [command data set 1], etc.

- "DDS, p0180" (Drive Data Set, DDS count)
- "EDS, p0140" (Encoder Data Set, EDS count)
- "MDS, p0130" (Motor Data Set, MDS count)
- "PDS, p0120" (Power unit Data Set, PDS count)
- "p2615" (traversing blocks count)

Note:

Information on the data sets can be taken from the following references:
References: /FH1/ SINAMICS S120 Function Manual Drive Functions Section "Data sets"

Function diagram

The parameter is included in this function diagram. The structure of the parameter function and its interrelationship with other parameters is shown in the specified function diagram.

Example:

Function diagram: 3060.3 3060: Function diagram number
3: Signal path (optional)

P group (refers only to access via BOP (Basic Operator Panel))

Specifies the functional group to which the parameter belongs. The required parameter group can be set via p0004.

Note:

Parameter p0004 is CU-specific (belongs to Control Unit).

Unit, Unit Group and Unit Choice

The standard units of a parameter is specified in square brackets after the values for "Min", "Max" and "Factory setting".
For parameters where the units can be changed over, for "Unit Group" and "Unit Choice" it is specified as to which group this parameter belongs and with which parameter the units can be changed over.

Example:

Unit Group: 7_1, Unit Choice: p0505
The parameter belongs to Unit Group 7_1 and the units can be changed-over using p0505.

Note:

Detailed information on changing-over units can be taken from the following references:

References: /FH1/ SINAMICS S120 Function Manual Drive Functions
References: /BA3/ SINAMICS S150 Operating Instructions
All of the Unit Groups that may occur and the possible Unit Choice is listed below.
Table 1-3 Unit Groups (p0100)

Unit group	Unit Choice for $\mathrm{p0100}=$		Reference quantity for \%
	0	1	
$7 _4$	Nm	lbf ft	-
$8 _4$	N	lbf	-

Table 1-3 Unit Groups (p 0100), continued

Unit group	Unit Choice for p0100=		Reference quantity for \%
$14 _2$	W	HP	-
$14 _6$	kW	HP	-
$25 _1$	kgm^{2}	lb ft ${ }^{2}$	-
$27 _1$	kg	lb	-
$28 _1$	Nm/A	lbf ft/A	-
$29 _1$	N/Arms	lbf/Arms	-
$30 _1$	m	ft	-

Table 1-4 Unit Groups (p0349)

$\left.$| Unit group | Unit Choice for p0349 = | | 2 |
| :---: | :--- | :--- | :---: | | Reference quantity |
| :---: |
| for \% | \right\rvert\, | 1 |
| :---: |

Table 1-5 Unit Groups (p0505)

Unit group	Unit Choice for $\mathrm{p} 0505=$				Reference quantity for \%
	1	2	3	4	
2_1	Hz	\%	Hz	\%	p2000
2_2	kHz	\%	kHz	\%	p2000
3_1	rpm	\%	rpm	\%	p2000
4_1	$\mathrm{m} / \mathrm{min}$	\%	$\mathrm{ft} / \mathrm{min}$	\%	p2000
4_2	$\mathrm{m} / \mathrm{min}$	$\mathrm{m} / \mathrm{min}$	$\mathrm{ft} / \mathrm{min}$	$\mathrm{ft} / \mathrm{min}$	-
5_1	Vrms	\%	Vrms	\%	p2001
5_2	V	\%	V	\%	p2001
5_3	V	\%	V	\%	p2001
6_1	mArms	\%	mArms	\%	p2002
6_2	Aeff	\%	Aeff	\%	p2002
6 -3	mA	\%	mA	\%	p2002
6_4	A	\%	A	\%	p2002
6_5	A	\%	A	\%	p2002
7_1	Nm	\%	lbf ft	\%	p2003

Table 1-5 Unit Groups (p0505), continued

Unit group	Unit Choice for $\mathbf{p} 0505=$				Reference quantity for \%
	1	2	3	4	
7_2	Nm	Nm	lbf ft	lbf ft	-
7_3	Nm	\%	lbf ft	\%	1.0
8_1	N	\%	Ibf	\%	p2003
8_2	N	N	Ibf	Ibf	-
8_3	N	\%	Ibf	\%	1.0
14_1	W	\%	HP	\%	r2004
14_3	W	\%	HP	\%	r2004
14_4	W	\%	HP	\%	r2004
14_5	kW	\%	HP	\%	r2004
14_7	kW	\%	HP	\%	r2004
14_8	kW	\%	HP	\%	r2004
14_9	W	W	HP	HP	-
14_10	kW	kW	HP	HP	-
17_1	Nms/rad	\%	lbf ft s/rad	\%	p2000/p2003
18_1	V/A	\%	V/A	\%	p2002/p2001
19_1	A/V	\%	A/V	\%	p2001/p2002
21_1	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	-
21_2	K	K	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	-
22_1	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{ft} / \mathrm{s}^{2}$	$\mathrm{ft} / \mathrm{s}^{2}$	-
22_2	$\mathrm{m} / \mathrm{s}^{2}$	\%	$\mathrm{ft} / \mathrm{s}^{2}$	\%	p2007
23_1	Vrms s / m	Vrms s / m	Vrms s/ft	Vrms s/ft	-
24_1	Ns/m	Ns/m	lbf s/ft	lbf s/ft	-
24_2	Ns/m	\%	lbf s/ft	\%	p2000/p2003
26_1	$\mathrm{m} / \mathrm{s}^{3}$	$\mathrm{m} / \mathrm{s}^{3}$	$\mathrm{ft} / \mathrm{s}^{3}$	$\mathrm{ft} / \mathrm{s}^{3}$	-
39_1	1/s ${ }^{2}$	\%	$1 / \mathrm{s}^{2}$	\%	p2007

Table 1-6 Unit Group (p0595)

Unit group	Unit Choice for p0595 = Value	
$9 _1$	Unit	Reference quantity for $\%$
p0595 (See Section 1.2).		

Parameter values

Min	Minimum value of the parameter [unit]
Max	Maximum value of the parameter [unit]
Factory setting	Shipped value (default) [unit]
	A different value may be displayed for certain parameters (e.g.p1800) at the initial commissioning stage.
	Reason: The setting of these parameters is determined by the operating environment of the Control Unit (e.g.depending on converter type, macro, Power Module).

Note:

For SINAMICS G150/G130/S150, the macros and their settings are provided in the following documentation:

References: /BAx/ $\quad x=1,2,3$
SINAMICS G150/G130/S150 Operating Instructions

Not for motor type

Specifies for which motor type this parameter has no significance.
ASM: Induction motor
FEM: Separately excited synchronous motor
PEM: Permanently excited synchronous motor
REL: Reluctance motor/SIEMOSYN-Motor

Expert List

Specifies whether this parameter is available in the expert list of the specified drive objects in the commissioning software.

1: Parameter does exist in the expert list.
0 : Parameter does not exist in the expert list.

Notice:

The user shall assume full responsibility for using parameters marked "Expert list: 0 " (Parameter does not exist in the expert list).
These parameters and their functionalities have not been tested and no further user documentation is available for them (e.g. function description). Moreover no support is ensured for these parameters by "Technical Support" (hotline).

Description

Explanation of the function of a parameter.

Values

Lists the possible values of a parameter.

Recommendation

Information about recommended settings.

Index

The name and meaning of each individual index is specified for indexed parameters.

The following applies to the values (min, max, factory setting) of indexed setting parameters:

- Min, Max:

The setting range and unit apply to all indices.

- Factory setting:

When all indices have the same factory setting, index 0 is specified with unit to represent all indices.

When the indices have different factory settings, they are all listed individually with unit.

Bit field

For parameters with bit fields, the following information is provided about each bit:

- Bit number and signal name
- Meaning with signal states 0 and 1
- Function diagram (optional)

The signal is shown on this function diagram.

Dependency

Conditions which need to be fulfilled in connection with this parameter. Also includes special effects which can occur between this parameter and others.

See also: List of other relevant parameters.

Safety-related information

Important information which must be heeded to avoid the risk of physical injury or property damage.
Information which must be observed to avoid problems.
Information which the user or operator may find useful.

The description of this safety-related information can be found at the beginning of this manual (see Safety-related information).

The description of this safety-related information can be found at the beginning of this manual (see Safety-related information).

Caution The description of this safety-related information can be

 found at the beginning of this manual (see Safety-related information).Caution The description of this safety-related information can be found at the beginning of this manual (see Safety-related information).
$\begin{array}{ll}\text { Notice } & \begin{array}{l}\text { The description of this safety-related information can be } \\ \text { found at the beginning of this manual (see Safety-related }\end{array}\end{array}$ information).

Note Information which the user or operator may find useful.

1.1.2 Numerical ranges of parameters

Note:

The following numerical ranges represent an overview for all parameters in SINAMICS.

The parameters for the product described in this List Manual are described in detail in Chapter 1.2.

Parameters are grouped into the following numerical ranges:
Table 1-7 Numerical Ranges of Parameters

Range		Description
of	to	
0000	0099	Operation and visualization
0100	0199	Commissioning
0200	0299	Power unit
0300	0399	Motor
0400	0499	Encoder
0500	0599	Technology and units
0600	0699	Thermal motor monitoring and motor model, maximum current
0700	0799	Command sources and terminals on Control Unit, measuring sockets
0800	0839	CDS, DDS data sets (e.g. switch over, copy)
0840	0879	Sequencer (e.g. source for ON/OFF1)
0880	0899	Control and status words
0900	0999	PROFIBUS/PROFIdrive
1000	1199	Setpoint channel
1200	1299	Functions (e.g. motor holding brake)
1300	1399	V/f control
1400	1799	Closed-loop control
1800	1899	Gating unit
1900	1999	Power unit and motor identification
2000	2099	Communication (PROFIBUS)
2100	2199	Faults and alarms, monitoring functions
2200	2399	Technology controller
2900	2930	Fixed values (e.g. per cent, torque)
3400	3699	Infeed control (Active Line Module)
3800	3899	Friction characteristic

Table 1-7 Numerical Ranges of Parameters, continued

Range		
of	to	
3900	3999	Management parameters
4000	4199	Terminal Boards, Terminal Modules (e.g. TB30, TM31)
4200	4399	Terminal Modules (e.g. TM15, TM17)
6000	6999	SINAMICS GM/SM/GL
7000	7499	Parallel connection of power units
7800	7899	EEPROM read/write parameters
8500	8599	Data and macro management
8600	8799	CAN bus
8800	8899	Communication Board
9300	9399	Safety Integrated
9400	9499	Parameter consistency and storage
9500	9899	Safety Integrated
9900	9949	Topology
9950	9999	Diagnostics (internal)
10000	10099	Safety Integrated
20000	20999	Freie Funktionsblöcke
21000	25999	Drive Control Chart (DCC)

1.2 List of parameters

Product: SINAMICS S120/S150, Version: 2603400, Language: eng
Objects: A_INF, B_INF, CU_CX32, CU_I, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F SL, VECTOR

r0002	Control Unit operating display / CU op_display			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -		Calculated: -	Access level: 1
	Data type: Integer16		Dynamic index: -	Func. diagram: -
	P-Group: -		Units group: -	Unit selection: -
	Not for motor type: -			Expert list: 1
	Min		Max	Factory setting
	0		117	
Description:	Operating display for the Control Unit (CU).			
Value:	0: [00] Operation			
	10: [10] Ready for operation			
	20: [20] Wait for run			
	25: [25] Wait for automatic FW update DRIVE-CLiQ componen			
	31: [31] Commissioning software download active			
	33: [33] Remove topology error / acknowledge			
	34: [34] Exit the commissioning mode			
	35: [35] Carry out first commissioning			
	70: [70] Initialization			
	80: [80] Reset active			
	99: [99] Internal software error			
	101: [101] Specify topology			
	111: [111] Insert drive object			
	112: [112] Delete drive object			
	113: [113] Change drive object number			
	114: [114] Change component number			
	115: [115] Download parameters			
	117: [117] Delete components			
Notice:	For several missing enable signals, the corresponding value with the highest number is displayed.			
r0002	Infeed operating display / INF op_display			
A_INF, S_INF	Can be changed: -		Calculated: -	Access level: 1
	Data type: Integer16		Dynamic index: -	Func. diagram: -
	P-Group: -		Units group: -	Unit selection: -
	Not for motor type: -			Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$		Max_{250}	Factory setting
Description: Value:	Operating display for the infeed.			
	0 : [00] Operation - everything enabled			
	21: [21] Ready for operation - set "Operation enable" = "1" (p0852)			
	31: [31] Rdy for sw on - pre-chrg running (p0857)			
	32: [32] Ready for switching on - set "ON/OFF1" = "0/1" (p0840)			
	35: [35] Switch on inhibit - Carry out first commissioning (p0010)			
	41: [41] Switching on inhibited - set "ON/OFF1" = "0" (p0840)			
	42: [42] Switching on inhibited - set "OC/OFF2" = "1" (p0844, p0845)			
	44: [44] Switch on inhibit - connect 24 V to terminal EP (hardware)			
	45: [45] Switch on inhibit - remove fault cause, acknowledge fault			
	46: [46] Switching on inhibited - exit comm mode (p0009, p0010)			
	60: [60] Infeed de-activated/not operational250:[250] Device signals a topology error			
Dependency:Notice:	Refer to: r0046			
	For several missing enable signals, the corresponding value with the highest number is displayed.			

p0006	BOP operating display mode / BOP op_disp mode		
CU_S, HUB, TB30,	Can be changed: U, T	Calculated: -	Access level: 3
TM15, TM15DI_DO,	Data type: Integer16	Dynamic index: -	Func. diagram: -
TM17, TM31, TM41,	P-Group: -	Units group: -	Unit selection: -
TM54F_SL	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 4 \end{aligned}$	Factory setting 4
Description:	Sets the mode of the operating display for the Basic Operator Panel (BOP) in the operating states "ready for operation" and "operation".		
Value:	4: p0005		
Dependency:	Refer to: p0005		
Note:	Mode 0 ... 3 can only be selected if also r0020, r0021 are available on the drive object.		
p0006	BOP operating display mode / BOP op_disp mode		
A_INF, B_INF,	Can be changed: U, T	Calculated: -	Access level: 3
S_INF, SERVO,	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$	Max 4	Factory setting 4
Description:	Sets the mode of the operating display for the Basic Operator Panel (BOP) in the operating states "ready for operation" and "operation".		
Value:	```Operation --> r0021, otherwise r0020 <--> r0021 Operation --> r0021, otherwise r0020 Operation --> p0005, otherwise p0005 <--> r0020 Operation --> r0002, otherwise r0002 <--> r0020 p0005```		
Dependency:	Refer to: p0005		
Note:	Mode 0 ... 3 can only be selected if also r0020, r0021 are available on the drive object. Mode 4 is available for all drive objects.		
p0007	BOP background lighting / BOP lighting		
CU_S	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \operatorname{Min}_{0} \\ 0[\mathrm{~s}] \end{gathered}$	$\begin{aligned} & \text { Max } \\ & 2000 \text { [s] } \end{aligned}$	Factory setting 0 [s]
Description:	Sets the delay time until the background lighting of the Basic Operator Panel (BOP) is switched off. If no keys are actuated, then the background lighting automatically switches itself off after this time has expired. p0007 = 0: Background lighting is always switched on (factory setting).		
Note:			
p0008	BOP drive object after booting / BOP DO after boot		
CU_S	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$	Factory setting 1
Description:	Sets the required drive object that is active at the Basic Operator Panel (BOP) after booting.		

Note: \quad The value from p0008 initializes the display on the Basic Operator Panel (BOP) at the top left after booting. The drive object Control Unit is selected using the value 1.

$\mathbf{p 0 0 0 9}$
CU_CX32, CU_I,
CU_S

Device commissioning parameter filter / Dev comm par_filt		
Can be changed: C1, T	Calculated: -	Access level: 1
Data type: Integer16	Dynamic index: -	Func. diagram: -
P-Group: -	Units group: -	Unit selection: -
Not for motor type: -		Expert list: 1
Min	Max	Factory setting
0	117	1

Description: Sets the device and basic drive commissioning.
By appropriately setting this parameter, those parameters are filtered that can be written into in the various commissioning steps.

Value:

Note: \quad The drives can only be powered up outside the device commissioning (the inverter enabled). In this case, p0009 must be 0 (Ready) and the individual drive objects must have already gone into operation (p0010).
p0009 = 1: Device configuration
At the first commissioning of the device, after booting, the device is in the "device configuration" state. To start the internal automatic first commissioning of the drive unit, p0009 should be set to 0 (Ready) after the ID for the actual topology (r0098) was transferred into the ID for the target topology (p0099). To do this, it is sufficient to set a single index value of $00099[x]$ the same as r0098[x]. Before the device has been completely commissioned, no other parameter can be changed. After the first commissioning was carried out, in this state, when required, other basic device configuration parameters can be adapted (e.g. the basic sampling time in p0110).
p0009 = 2: Defines the drive type / function module
In this state, the drive object types and/or the function modules can be changed or selected for the individual drive objects. To do this, the drive object type can be set using p0107[0...15] and the function can be set using p0108[0...15] (refer to p0101[0...15]).
p0009 = 3: Drive basis configuration
In this state, after the device has been commissioned for the first time, basic changes can be made for the individual drive objects (e.g. sampling times in p0111, p0112, p0115 and the number of data sets in p0120, p0130, p0140, p0170, p0180).
p0009 = 4: Data set basis configuration
In this state, after the device has been commissioned for the first time, for the individual drive objects changes can be made regarding the assignment of the components (p0121, p0131, p0141, p0151, p0161) to the individual data sets and the assignment of the power unit, motor and encoder to the drive data sets (p0185, ...).
p0009 = 29: Device download
If a download is made using the commissioning software, the device is automatically brought into this state. After the download has been completed, p0009 is automatically set to 0 (ready). It is not possible to manually set p0009 to this value.
p0009 = 30: Parameter reset
In order to bring the complete unit into the "first commissioning" state or to load the parameters saved using p0977, to start, p0009 must be set to this value. p0976 can then be changed to the required value.
p0009 = 50: OEM application configuration
In this state, after the device has been commissioned for the first time, changes can be made for the individual drive objects regarding the activity (p4956) of the OEM applications.
p0009 = 55: OEM application installation
OEM applications can be installed and/or uninstalled in this state.
p0009 = 101: Topology input
In this state, the DRIVE-CLiQ target topology can be entered using p9902 and p9903.
p0009 = 111: Insert drive object
This state allows a new drive object to be inserted using p9911.
p0009 = 112: Delete drive object
This state allows existing drive objects to be deleted using p9912 after the device has been commissioned for the first time.
p0009 = 113: Change drive object number
This state allows the drive object number of existing drive objects to be changed using p9913 after the device has been commissioned for the first time.
p0009 = 114: Change component number
This state allows the component number of existing components to be changed using p9914 after the device has been commissioned for the first time.
p0009 = 115: Parameter download
This state allows the complete device and drive commissioning using the parameter services.
p0009 = 117: Delete component
This state allows components to be deleted using p9917 after the device has been commissioned for the first time.

p0010	Infeed commissioning parameter filter / INF comm par_filt		
A_INF, B_INF,	Can be changed: $\mathrm{C} 2(1)$, T	Calculated: -	Access level: 1
S_INF	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 30 \end{aligned}$	Factory setting 1
Description:	Sets the parameter filter to commission an infeed unit.		
Value:	0: Ready 1: Quick commissioning 2: Power unit commissi 5: Technological applic 29: Download 30: Parameter reset		
Note:	The drive can only be power must be set to 0 . For p3900 not equal to 0 , at Procedure for "Reset param	drive commissionin uick commissioning, to 30 and p0970 to). To realize this, this parameter automatically reset to 0 .
p0010	Drive commissioning parameter filter / Drv comm. par_filt		
SERVO, VECTOR	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: 2800, 2846
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 95 \end{aligned}$	Factory setting 1
Description:	Sets the parameter filter to commission a drive.		
Value:	0: Ready 1: Quick commissioning		

p0010	TM41 commissioning parameter filter / TM41 comm par_filt		
TM41	Can be changed: $\mathrm{C} 2(1)$, T	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 30 \end{aligned}$	Factory setting 0
Description:	Setting this parameter filters-out the parameters that can be written into in the various commissioning steps. For the BOP, this setting also causes the read access operations to be filtered.		
Value:	0: Ready 4: Encoder commission 5: Technological applic 29: Download 30: Parameter reset		
Dependency:	Refer to: p0970		
Note:	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		
p0010	TM17 commissioning parameter filter / TM17 comm par_filt		
TM17	Can be changed: $\mathrm{C} 2(1)$, T	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 30 \end{aligned}$	Factory setting 0
Description:	Sets the parameter filter for commissioning a Terminal Module 17 (TM17). Setting this parameter filters-out the parameters that can be written into in the various commissioning steps. For the BOP, this setting also causes the read access operations to be filtered.		
Value:	0: Ready 29: Download 30: Parameter reset		
Dependency:	Refer to: p0970		
Note:	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		
p0010	TM15 commissioning parameter filter / TM15 comm par_filt		
TM15	Can be changed: $\mathrm{C} 2(1), \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 30 \end{aligned}$	Factory setting 0
Description:	Sets the parameter filter for commissioning a Terminal Module 15 (TM15). Setting this parameter filters-out the parameters that can be written into in the various commissioning steps. For the BOP, this setting also causes the read access operations to be filtered.		
Value:	0: Ready 29: Download 30: Parameter reset		
Dependency:	Refer to: p0970		
Note:	Only the following values ar Procedure for "Reset param	$0=0,30$ to 30 and p0970 to	

p0010	TM15DI/DO commissioning the parameterizing filter / TM15D com par_filt		
TM15DI_DO	Can be changed: $\mathrm{C} 2(1)$, T	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 30 \end{aligned}$	Factory setting 0
Description:	Setting this parameter filters-out the parameters that can be written into in the various commissioning steps. For the BOP, this setting also causes the read access operations to be filtered.		
Value:	0: Ready 29: Download 30: Parameter reset		
Dependency:	Refer to: p0970		
Note:	Only the following values are possible: $00010=0,30$		
	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		
p0010	TM54F commissioning parameter filter / TM54F com par_filt		
TM54F_MA	Can be changed: $\mathrm{C} 2(1)$, T	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: 2847
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 95 \end{aligned}$	Factory setting 0
Description:	Setting this parameter filters-out the parameters that can be written into in the various commissioning steps. For the BOP, this setting also causes the read access operations to be filtered.		
Value:	0: Ready 29: Download 30: Parameter reset 95: Safety Integrated commissioning		
Dependency:	Refer to: p0970		
Note:	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		
p0011	BOP password entry (p0013) / BOP passw ent p13		
CU_S	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	Max 65535	Factory setting 0
Description:	Sets the password for the Basic Operator Panel (BOP). Refer to: p0012, p0013		
Dependency:			

p0015	Macro drive unit / Macro drv unit		
CU_CX32, CU_I,	Can be changed: C1	Calculated: -	Access level: 1
CU_S	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	Max 999999	Factory setting 0
Description:	Runs the appropriate ACX file on the memory card card.		
	The selected ACX file must be located in the following directory: ... /PMACROS/DEVICE/P15/PMxxxxxx.ACX		
	Example:		
	p0015 = 6 --> the file PM000006.ACX is run.		
Dependency:	The ACX file to be run must be created according to the definition for ACX macros and must be saved in the appro priate directory on the memory card.		
	Refer to: p0700, p1000, p1500, r8570		
Note:	The macros in the specified directory are displayed in r8570. r8570 is not in the expert list of the commissioning software.		
	Macros available as standard are described in the technical documentation of the particular product.		

p0015	Macro drive unit / Macro drv unit	
CU_S	Can be changed: C1	Calculated: -
	Data type: Unsigned32	Dynamic index: -
	P-Group: -	Units group: -
	Not for motor type: -	Func. diagram: -
	Min	Max
	0	999999
Description:	Runs the appropriate ACX file on the memory card card.	Expert list: 1
	The selected ACX file must be located in the following directory:	Factory setting

	Example: p0015 = 6 --> the file PM000006.ACX is run.		
Dependency:	The ACX file to be run must be created according to the definition for ACX macros and must be saved in the appropriate directory on the memory card.		
Note:	The macros in the specified directory are displayed in r8570. r8570 is not in the expert list of the commissioning software.		
p0016	Activate BOP user-defined list / BOP list act		
CU_S	Can be changed: C1, U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Setting for activating/de-activating the user-defined list of the BOP If p0016 $=1$, then it is only possible to access parameters in the parameter list (p 0013).		
Value:	0 : BOP user-defined list de-activated 1: BOP user-defined list activated		
Dependency:	Refer to: p0011, p0012, p0013		
Note:	The user-defined list can only be deactivated with p0011 = p0012		
r0018	Control Unit Firmware-Version / CU FW version		
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 1
CU_S	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the firmware version of the Control Unit.		
Dependency:	Refer to: r0128, r0148, r0158, r0197, r0198		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		

r0019.0... 14 CO/BO: Control word BOP / STW BOP
CU_S

Description
Bit field:

Can be changed: -	Calculated: -
Data type: Unsigned16	Dynamic index: -
P-Group: Displays, signals	Units group: -
Not for motor type: -	
Min	Max

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Displays the control word for the Basic Operator Panel (BOP).

Bit	Signal name	1 signal	0 signal	FP
00	ON / OFF (OFF1)	ON	OFF (OFF1)	-
01	No coast-down / coast-down (OFF2)	No coast down	Coast down (OFF2)	-
02	No Quick Stop / Quick Stop (OFF3)	No Quick Stop	Quick Stop (OFF3)	-
07	Acknowledge fault (0 -> 1)	Yes	No	-
13	Motorized potentiometer raise	Yes	No	-
14	Motorized potentiometer lower	Yes	No	-

r0020	Velocity setpoint smoothed / v_set smth		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5020, 6799
	P-Group: Displays, signals	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the currently smoothed velocity setpoint at the input of the velocity controller or V/f characteristic (after the interpolator).		
Dependency:	Refer to: r0060		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as process quantity and may only be used as display quantity.		
	The velocity setpoint is available smoothed (r0020) and unsmoothed (r0060).		
r0020	Speed setpoint smoothed / n_set smth		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5020, 6799
	P-Group: Displays, signals	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the currently smoothed speed setpoint at the input of the speed controller or V/f characteristic (after the interpolator).		
Dependency:	Refer to: r0060		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as process quantity and may only be used as display quantity.		
	The speed setpoint is available smoothed (r0020) and unsmoothed (r0060).		
r0021	CO: Actual velocity smoothed / v_act smooth		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1580, 1680, 4710, 6799
	P-Group: Displays, signals	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the smoothed actual value of the motor velocity.		
Dependency:	Refer to: r0063		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as process quantity and may only be used as display quantity.		
	The value displayed in r0021 is the smoothed value of r0063.		
r0021	CO: Actual speed smoothed / n_act smooth		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1580, 1680, 4710, 6799
	P-Group: Displays, signals	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the smoothed actual value of the motor speed.		

r0025[0...3]	CO: Input voltage smoothed / V_inp smooth		
A_INF, S_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8850, 8950
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description: Index:	Displays the smoothed actual value of the input voltage. [0] = Voltage at input terminals of power unit from line supply model [1] = Voltage at VSM or at input terminals of the line filter [2] = Voltage of the voltage source from the line supply model [3] = Smoothed voltage of voltage source from line supply model		
Dependency:	Refer to: r0072		
Note:	Smoothing time constant = The signals are not suitable The input voltages are avail Re r0025[0]: Pulsed voltage at the line sup depth r0074 and is therefore Re r0025[1]: Absolute voltage at the inpu from the VSM measured va Re r0025[2]: Estimated value for the volta Re r0025[3]: Smoothed display value of	tity and may only b 0025) and unsmoot als of the power un he closed-loop cont line filter or the con 3662 and is therefor source that is calc voltage from r0072	quantities. Iculated from the modulation when the pulses are enabled. VSM. The value is calculated SM is not connected. ge model of the line supply PLL.
r0025	CO: Output voltage smoothed / V_outp smooth		
SERVO, VECTOR	Can be changed: - Data type: FloatingPoint32	Calculated: - Dynamic index:	Access level: 2 Func. diagram: 1690, 5730, 6799
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description: Dependency:	Displays the smoothed output voltage of the power unit. Refer to: r0072		

r0029	Current actual value field-generating smoothed / Id_act smooth
SERVO, VECTOR	Can be changed: - Calculated: - Access level: 3 Data type: FloatingPoint32 Dynamic index: - Func. diagram: 5730, 6799 P-Group: Displays, signals Units group: - Unit selection: - Not for motor type: - Expert list: 1 Min Max Factory setting $-[$ Arms $]$ $-[A r m s]$ $-[$ Arms $]$
Description: Dependency: Note:	Displays the smoothed field-generating actual current. Refer to: r0076 SERVO: Smoothing time constant $=100 \mathrm{~ms}$ VECTOR: Smoothing time constant $=300 \mathrm{~ms}$ The signal is not suitable as process quantity and may only be used as display quantity. The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).
$\overline{\mathrm{r} 0030}$ A_INF, S_INF	Active current actual value smoothed / I_active smooth Can be changed: - Calculated: - Access level: 3 Data type: FloatingPoint32 Dynamic index: - Func. diagram: 8850, 8950 P-Group: Displays, signals Units group: - Unit selection: - Not for motor type: - Expert list: 1 Min Max Factory setting $-[$ Arms $]$ $-[A r m s]$ $-[A r m s]$
Description: Dependency: Note:	Displays the smoothed actual value of the active current components. Refer to: r0078 Smoothing time constant $=300 \mathrm{~ms}$ The signal is not suitable as process quantity and may only be used as display quantity. The active current actual value is available smoothed (r0030) and unsmoothed (r0078).
r0030 SERVO (Lin)	Current actual value force generating smoothed / Iq_act smooth
Description: Dependency: Note:	Displays the smoothed force-generating actual current. Refer to: r0078 SERVO: Smoothing time constant $=100 \mathrm{~ms}$ VECTOR: Smoothing time constant $=300 \mathrm{~ms}$ The signal is not suitable as process quantity and may only be used as display quantity. The following applies for SERVO: The force-generating current actual value is available smoothed (r0030 with 100 ms , r0078[1] with p0045) and unsmoothed (r0078[0]). For VECTOR, the following applies: The torque-generating current actual value is available smoothed (r0030 with 300 ms) and unsmoothed (r0078).

r0030	Current actual value torque-generating smoothed / Iq_act smooth		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5730, 6799
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the smoothed torque-generating actual current.		
Dependency:	Refer to: r0078		
Note:	SERVO: Smoothing time constant $=100 \mathrm{~ms}$		
	VECTOR: Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as process quantity and may only be used as display quantity.		
	The following applies for SERVO:		
	The torque-generating current actual value is available smoothed (r 0030 with $100 \mathrm{~ms}, \mathrm{r} 0078[1]$ with p 0045) and unsmoothed (r0078[0]).		
	For VECTOR, the following applies:		
	The torque-generating current actual value is available smoothed (r0030 with 300 ms) and unsmoothed (r0078).		
r0031	Force actual value sm	ct smooth	
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5730, 6799
	P-Group: Displays, signals	Units group: 8_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[N] \end{aligned}$	Max - [N]	Factory setting - [N]
Description:	Displays the smoothed force setpoint.		
Dependency:	Refer to: r0080		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as process quantity and may only be used as display quantity.		
	The active current actual value is available smoothed (r0031) and unsmoothed (r0080).		

r0031	Actual torque smoothed / M_act smooth		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5730,6799
	P-Group: Displays, signals	Units group: $7 _2$	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min	$-[\mathrm{Nm}]$	Factory setting
	$-[\mathrm{Nm}]$	- [Nm]	
Description:	Displays the smoothed torque actual value.		
Dependency:	Refer to: r0080		
Note:	Smoothing time constant = 100 ms		
	The signal is not suitable as process quantity and may only be used as display quantity.		

r0032	CO: Active power actual value smoothed / P_actv_act smth		
A_INF, S_INF,	Can be changed: -	Calculated: -	Access level: 2
SERVO, VECTOR	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5730, 6799, 8750, 8850, 8950
	P-Group: Displays, signals	Units group: 14_10	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [kW]	Max - [kW]	Factory setting - [kW]
Description:	Displays the smoothed actual value of the active power.		
Dependency:	Refer to: r0082		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
Note:	Meaning for drives:		
	- positive value: power output to the motor shaft		
	- negative value: power fed back to the DC link		
	Meaning for infeeds:		
	- positive value: power drawn from the line supply		
	- negative value: power fed back to the line supply (only for infeed/regenerative feedback capability)		
	For A_INF, B_INF and S_INF the following applies:		
	The active power is available smoothed (r0032 with 300 ms) and unsmoothed (r0082).		
	The following applies for SERVO:		
	The active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]).		
	For VECTOR and VECTORMV, the following applies:		
	The active power is available smoothed (r0032 with 100 ms) and unsmoothed (r0082).		
r0032	CO: Active power actual value smoothed / P_actv_act smth		
B_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5730, 6799, 8750, 8850, 8950
	P-Group: Displays, signals	Units group: 14_10	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [kW]	Max - [kW]	Factory setting - [kW]
Description:	Displays the smoothed actua	tive power.	
Dependency:	Refer to: r0082		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
	For Basic Line Modules of chassis format, the displayed value is invalid as these units do not have any current sensing.		
Note:	Meaning for drives:		
	- positive value: power output to the motor shaft		
	- negative value: power fed back to the DC link		
	Meaning for infeeds:		
	- positive value: power drawn from the line supply		
	- negative value: power fed back to the line supply (only for infeed/regenerative feedback capability)		
	For A_INF, B_INF and S_INF the following applies:		
	The active power is available smoothed (r0032 with 300 ms) and unsmoothed (r0082).		
	The following applies for SERVO:		
	The active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]).		
	For VECTOR and VECTORMV, the following applies:		
	The active power is available smoothed (r0032 with 100 ms) and unsmoothed (r0082).		

Dependency:	The motor utilization is only determined for permanent-magnet synchronous motors and if the I2t motor model is activated.		
	The motor utilization is formed from the ratio between the $12 t$ motor model temperature (minus 40 Kelvin) and the reference value p0605 (motor overtemperature, fault threshold) - 40 Kelvin. If p0605 is reduced, r0034 increases and the motor temperature remains the same.		
	Refer to: p0611, p0612, p0615		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as process quantity and may only be used as display quantity.		
	A value of r0034 $=-200.0 \%$ indicates an invalid display, for example, because the thermal $12 t$ motor model was not activated or was incorrectly parameterized.		
r0035	CO: Temperature input / Temp_input		
A_INF, S_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram:
	P-Group: Displays, signals	Units group: 21_1	Unit selection:
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Max $-\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the temperature currently measured at X21 (booksize) or X41 (chassis).		
	When using an Active Interface Module ($\mathrm{p} 0220=41 \ldots 45$) a bimetallic sensor must be connected up to monitor the temperature. The temperature sensor type is indicated using p0601 and cannot be changed when an Active Interface Module is being used.		
	Temperature within permissible limit values: $\mathrm{r0035}=-50^{\circ} \mathrm{C}$		
	Temperature outside the permissible limit values: $\mathrm{r0035}=-250^{\circ} \mathrm{C}$		
Dependency:	Refer to: A06260, F06261, F06262		
Notice:	The function in r0192.11 must be available in order to obtain a correct display.		
Note:	For r0035 equal to $-200.0^{\circ} \mathrm{C}$, the following applies:		
	- "no sensor" selected in p0601!		
	For r0035 equal to $-300.0^{\circ} \mathrm{C}$, the following applies:		
	- a KTY84 is selected in p0601 but is not connected!		
	- the temperature display is not valid (temperature sensor error)!		
r0035	CO: Motor temperatu		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8017
	P-Group: Displays, signals	Units group: 21_1	Unit selection:
	Not for motor type: -		Expert list: 1
	Min $-\left[{ }^{\circ} \mathrm{C}\right]$	Max $-\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the current temperature in the motor.		
Note:	For r0035 not equal to -200.0 ${ }^{\circ} \mathrm{C}$, the following applies:		
	- this temperature display is valid.		
	- a KTY sensor is connected.		
	- for induction motors, the thermal motor model is activated (p0600 $=0$ or p0601 $=0$).		
	For r0035 equal to $-200.0{ }^{\circ} \mathrm{C}$, the following applies:		
	- this temperature display is not valid (temperature sensor error).		
	- a PTC sensor is connected.		
	- for synchronous motors, the thermal motor model is activated ($\mathrm{p} 0600=0$ or p0601 $=0$).		

r0035	CO: Temperature input / Temp_input		
B_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8750
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $-\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the temperature currently measured at X21 (booksize) or X 41 (chassis).		
	For a BLM with internal Braking Module, a bimetallic sensor must be connected up to monitor the temperature of the braking resistor. The temperature sensor type is indicated using p0601 and cannot be changed for the existing internal Braking Module.		
	Temperature within permissible limit values: $\mathrm{r0035}=-50^{\circ} \mathrm{C}$		
	Temperature outside the permissible limit values: $\mathrm{r0035}=-250^{\circ} \mathrm{C}$		
Dependency:	Refer to: F06907, F06908		
Notice:	The function in r0192.11 must be available in order to obtain a correct display.		
Note:	For r0035 equal to $-200.0^{\circ} \mathrm{C}$, the following applies:		
	For r0035 equal to $-300.0{ }^{\circ} \mathrm{C}$, the following applies:		
	- a KTY84 is selected in p0601 but is not connected!		
	- the temperature display is not valid (temperature sensor error)!		
r0036	Power unit overload 12t / PU overload I2t		
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF, SERVO, } \\ & \text { VECTOR } \end{aligned}$	Can be changed: - Data type: FloatingPoint32	Calculated: -	Access level: 3
		Dynamic index: -	Func. diagram: 8014
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the power unit overload determined using the I2t calculation.		
	A current reference value is defined for the $12 t$ monitoring of the power unit. It represents the current that can be conducted by the power unit without any influence of the switching losses (e.g. the continuously permissible current of the capacitors, inductances, busbars, etc.).		
	If the $12 t$ reference current of the power unit is not exceeded, then an overload (0\%) is not displayed.		
	In the other case, the degree of thermal overload is calculated, whereby 100% results in a trip.		
Dependency:	Refer to: p0290, p0294		
	Refer to: F30005		
r0037[0...1]	Control Unit tempera	mperature	
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 3
CU_S	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $-\left[{ }^{\circ} \mathrm{C}\right]$	Max $-\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting - [$\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the Control Unit temperature.		
	An appropriate message is output when $85^{\circ} \mathrm{C}$ is exceeded.		
Index:	[0] = Control Unit temperature current [1] = Control Unit temperature maximum		
Dependency:	Refer to: A01009		
Note:	The value of -200 indicates that there is no measuring signal.		

Re r0037[0]:
Displays the currently measured Control Unit temperature.
Re r0037[1]:
Displays the highest measured Control Unit temperature. This value is saved on the module in a non-volatile fashion.

r0037[0...19]	CO: Power unit temperatures / PU temperatures		
A_INF, B_INF,	Can be changed: -	Calculated: -	Access level: 3
S_INF, SERVO,	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8014
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -\left[\left[^{\circ} \mathrm{C}\right]\right. \end{aligned}$	Max $-\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting - [$\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the temperatures in the power unit.		
Index:	[0] = Inverter, maximum value		
	[1] = Depletion layer maximum value		
	[2] = Rectifier maximum value		
	[3] = Air intake		
	[4] = Electronics module in the power unit		
	[5] = Inverter 1		
	[6] = Inverter 2		
	[7] = Inverter 3		
	[8] = Inverter 4		
	[9] = Inverter 5		
	[10] = Inverter 6		
	[11] = Rectifier 1		
	[12] = Rectifier 2		
	[13] $=$ Depletion layer 1		
	[14] = Depletion layer 2		
	[15] = Depletion layer 3		
	[16] $=$ Depletion layer 4		
	[17] $=$ Depletion layer 5		
	[18] $=$ Depletion layer 6		
	[19] = Cooling system liquid intake		
Note:	The value of -200 indicates that there is no measuring signal.		
	r0037[0]: Maximum value of the inverter temperatures (r0037[5...10]).		
	r0037[1]: Maximum value of the depletion layer temperatures (r0037[13...18]).		
	r0037[2]: Maximum value of the rectifier temperatures (r0037[11...12]).		
	The maximum value is the temperature of the hottest inverter, depletion layer, or rectifier.		

r0038	Power factor smoothed / Cos phi smooth		
A_INF, S_INF, VEC-	Can be changed: -	Calculated: -	Access level: 3
TOR	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6799, 8850, 8950
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the smoothed actual power factor.		
Note:	Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as process quantity and may only be used as display quantity.		
	Significance for the motor: Motor power factor		
	Significance for the infeed: Power factor at the connection point (p3470, p3471)		

r0046.0... 29	CO/BO: Missing enable sig / Missing enable sig				
B_INF	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32 D		Dynamic index: -	Func. diagram: 8734	
	P-Group: Displays, signals U		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Fac	
	-				
Description:	Displays missing enable signals that are preventing the closed-loop infeed control from being commissioned.				
Bit field:		Signal name	1 signal	0 signal	FP
		OFF1 enable missing	Yes	No	-
		OFF2 enable missing	Yes	No	-
		EP terminals enable missing	Yes	No	-
		OFF1 enable internal missing	Yes	No	-
		OFF2 enable internal missing	Yes	No	-
		Infeed inactive or not operational	Yes	No	-
		Cooling system ready signal missing	Yes	No	-
Dependency:	Refer to: r0002				
Note:	The Bit 0 - the - the Bit 0 - the Bit 1 - the the " Bit 1 - Th sign Bit 2 - the Bit 2 - the	value r0046 $=0$ indicates that all enable si $00=1$ (enable signal missing), if: signal source in p 0840 is a 0 signal. re is a "switching on inhibited" $1=1$ (enable signal missing), if: signal source in p0844 or p0845 is a 0 sig $6=1$ (enable signal missing), if: re is an OFF1 fault response. The system "switching on inhibited" withdrawn with OFF $7=1$ (enable signal missing), if: commissioning mode is selected (p0009 al source (p 0840) is changed. $6=1$ (enable signal missing), if: infeed is inactive ($\mathrm{p} 0105=0$) or is not ope $29=1$ (enable signal missing), if: cooling system ready signal via BI: p0266	signals for the infee gnal. is only enabled if F1 $=0$. > 0 or p0010 > 0) erational (r7850[D 6[1] missing.	moved and OFF2 fau	ged and OFF1
r0046.0.. 31	CO/BO: Missing enable sig / Missing enable sig				
SERVO (Lin)	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 2634	
	P-Group: Displays, signals U		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Displays missing enable signals that are preventing the closed-loop drive control from being commissioned.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		OFF1 enable missing	Yes	No	-
	01	OFF2 enable missing	Yes	No	-
	02	OFF3 enable missing	Yes	No	-
	03	Operation enable missing	Yes	No	-
	04	Armature short-circuit / DC current brake, enable missing	, Yes	No	$\begin{aligned} & 7014, \\ & 7016 \end{aligned}$
	05	STOP2 enable missing	Yes	No	-
	06	STOP1 enable missing	Yes	No	-
	08	EP terminals enable missing	Yes	No	-
	09	Infeed enable missing	Yes	No	-
	10	Ramp-function generator enable missing	Yes	No	-

	11	Ramp-function generator start missing	Yes	No	-
	12	Setpoint enable missing	Yes	No	-
	16	OFF1 enable internal missing	Yes	No	-
	17	OFF2 enable internal missing	Yes	No	-
	18	OFF3 enable internal missing	Yes	No	-
	19	Pulse enable internal missing	Yes	No	-
	20	Armature short-circuit/DC current brake internal enable missing	Yes	No	$\begin{aligned} & 7014, \\ & 7016 \end{aligned}$
	21	STOP2 enable internal missing	Yes	No	-
	22	STOP1 enable internal missing	Yes	No	-
	25	Function bypass active	Yes	No	-
	26	Drive inactive or not operational	Yes	No	-
	27	De-magnetizing not completed	Yes	No	-
	28	Brake open missing	Yes	No	-
	29	Cooling system ready signal missing	Yes	No	-
	30	Velocity controller inhibited	Yes	No	-
	31	Jog setpoint active	Yes	No	-
Dependency:	Refer to: r0002				
Note:	The value r0046 $=0$ indicates that all enable signals for this drive are present.				
	Bit $00=1$ (enable signal missing), if:				
	- the signal source in p0840 is a 0 signal.				
	- there is a "switching on inhibited"				
	Bit $01=1$ (enable signal missing), if:				
	- the signal source in p0844 or p0845 is a 0 signal.				
	Bit $02=1$ (enable signal missing), if:				
	- the signal source in p0848 or p0849 is a 0 signal.				
	Bit $03=1$ (enable signal missing), if:				
	- the signal source in p0852 is a 0 signal.				
	Bit $04=1$ (armature short-circuit active), if:				
	- the signal source in p1230 has a 1 signal				
	Bit 05, Bit 06: Being prepared				
	Bit $08=1$ (enable signal missing), if:				
	- the pulse enable via terminal EP is missing (booksize: X21, chassis: X41).				
	Bit $09=1$ (enable signal missing), if:				
	- the signal source in p0864 is a 0 signal.				
	Bit $10=1$ (enable signal missing), if:				
	- the signal source in p1140 is a 0 signal.				
	Bit $11=1$ (enable signal missing) if the velocity setpoint is frozen, because:				
	- the signal source in p 1141 is a 0 signal.				
	- the velocity setpoint is entered from jogging and the two signal sources for jogging, bit 0 (p 1055) and bit 1 (p1056) have a 1 signal.				
	Bit $12=1$ (enable signal missing), if:				
	- the signal source in p1142 is a 0 signal.				
	- When activating the function module "basic positioner" (r0108.4 = 1), the signal source in p1142 is set to a 0 sig nal.				
	Bit $16=1$ (enable signal missing), if:				
	- there is an OFF1 fault response. The system is only enabled if the fault is removed and was acknowledged and the "switching on inhibited" withdrawn with OFF1 $=0$.				
	Bit $17=1$ (enable signal missing), if:				
	- commissioning mode is selected (p0009 > 0 or p0010 >0).				
	- there is an OFF2 fault response.				
	- the drive is inactive ($\mathrm{p} 0105=0$) or is not operational (r7850[DO-Index]=0).				
	Bit $18=1$ (enable signal missing), if:				
	- OFF3 has still not be completed or an OFF3 fault response is present.				
	Bit $19=1$ (internal pulse enable missing), if:				
		chronization is running between the basic	k cyc	cycl	cycle

Bit $20=1$ (internal armature short-circuit active), if:

- the drive is not in the state "S4: Operation" or "S5x" (refer to function diagram 2610).
- the internal pulse enable is missing (r0046.19 = 0).

Bit 21 = 1 (enable signal missing), if:
The pulses have been enabled and the velocity setpoint has still not been enabled, because:

- the holding brake opening time (p 1216) has still not expired.
- The motor has still not been magnetized (induction motor).

Bit 22: Being prepared
Bit $26=1$ (enable signal missing), if:

- the drive is inactive ($\mathrm{p} 0105=0$) or is not operational (r7850[DO-Index]=0).

Bit $27=1$ (enable signal missing), if:

- de-magnetizing has still not been completed (only for vector).

Bit $28=1$ (enable signal missing), if:

- the holding brake is closed or has still not been opened.

Bit $29=1$ (enable signal missing), if:

- the cooling system ready signal via BI: p0266[1] missing.

Bit $30=1$ (velocity controller inhibited), if one of the following reasons is present:

- A 0 signal is available via $\mathrm{BI}: \mathrm{p} 0856$.
- the function generator with current input is active.
- the measuring function "current controller reference frequency characteristic" is active.
- the pole position identification is active.
- motor data identification is active (only certain steps).

Bit $31=1$ (enable signal missing), if:

- the velocity setpoint from jog 1 or 2 is entered.

r0046.0... 31	CO/BO: Missing enable sig / Missing enable sig				
SERVO, VECTOR	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 2634	
	P-Group: Displays, signals		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-	-	-	-	
Description:	Displays missing enable signals that are preventing the closed-loop drive control from being commissioned.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	OFF1 enable missing	Yes	No	-
	01	OFF2 enable missing	Yes	No	-
	02	OFF3 enable missing	Yes	No	-
	03	Operation enable missing	Yes	No	-
	04	Armature short-circuit / DC current brake enable missing	, Yes	No	$\begin{aligned} & 7014, \\ & 7016 \end{aligned}$
	05	STOP2 enable missing	Yes	No	-
	06	STOP1 enable missing	Yes	No	-
	08	EP terminals enable missing	Yes	No	-
	09	Infeed enable missing	Yes	No	-
	10	Ramp-function generator enable missing	Y Yes	No	-
	11	Ramp-function generator start missing	Yes	No	-
	12	Setpoint enable missing	Yes	No	-
	16	OFF1 enable internal missing	Yes	No	-
	17	OFF2 enable internal missing	Yes	No	-
	18	OFF3 enable internal missing	Yes	No	-
	19	Pulse enable internal missing	Yes	No	
	20	Armature short-circuit/DC current brake internal enable missing	Yes	No	$\begin{aligned} & 7014, \\ & 7016 \end{aligned}$
	21	STOP2 enable internal missing	Yes	No	-
	22	STOP1 enable internal missing	Yes	No	-
	25	Function bypass active	Yes	No	-

26	Drive inactive or not operational	Yes	No
27	De-magnetizing not completed	Yes	No
28	Brake open missing	Yes	No
29	Cooling system ready signal missing	Yes	No
30	Speed controller inhibited	Yes	No
31	Jog setpoint active	Yes	No

Dependency:
Note:

Refer to: r0002
The value r0046 $=0$ indicates that all enable signals for this drive are present.
Bit $00=1$ (enable signal missing), if

- the signal source in p0840 is a 0 signal.
- there is a "switching on inhibited"

Bit $01=1$ (enable signal missing), if:

- the signal source in p0844 or p0845 is a 0 signal.

Bit $02=1$ (enable signal missing), if:

- the signal source in p0848 or p0849 is a 0 signal.

Bit 03 = 1 (enable signal missing), if:

- the signal source in p0852 is a 0 signal.

Bit $04=1$ (armature short-circuit active), if:

- the signal source in p1230 has a 1 signal

Bit 05, Bit 06: Being prepared
Bit 08 = 1 (enable signal missing), if:

- the pulse enable via terminal EP is missing (booksize: X21, chassis: X41).

Bit $09=1$ (enable signal missing), if:

- the signal source in p0864 is a 0 signal.

Bit $10=1$ (enable signal missing), if:

- the signal source in p1140 is a 0 signal.

Bit 11 = 1 (enable signal missing) if the speed setpoint is frozen, because:

- the signal source in p 1141 is a 0 signal.
- the speed setpoint is entered from jogging and the two signal sources for jogging, bit 0 (p1055) and bit 1 (p1056) have a 1 signal.
Bit $12=1$ (enable signal missing), if:
- the signal source in p 1142 is a 0 signal.
- When activating the function module "basic positioner" (r0108.4 = 1), the signal source in p1142 is set to a 0 signal.

Bit $16=1$ (enable signal missing), if:

- there is an OFF1 fault response. The system is only enabled if the fault is removed and was acknowledged and the "switching on inhibited" withdrawn with OFF1 = 0 .
Bit $17=1$ (enable signal missing), if:
- commissioning mode is selected (p0009 > 0 or p0010 > 0).
- there is an OFF2 fault response.
- the drive is inactive ($\mathrm{p} 0105=0$) or is not operational (r 7850 [DO-Index]=0).

Bit $18=1$ (enable signal missing), if:

- OFF3 has still not be completed or an OFF3 fault response is present.

Bit $19=1$ (internal pulse enable missing), if:

- synchronization is running between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle.

Bit $20=1$ (internal armature short-circuit active), if:

- the drive is not in the state "S4: Operation" or "S5x" (refer to function diagram 2610).
- the internal pulse enable is missing (r0046.19 = 0).

r0051.0... 4	CO/BO: Drive Data Set DDS effective / DDS effective			
SERVO, TM41, VECTOR	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -	
	P-Group: Displays, signals	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	$\underline{M i n}$	Max	Factory setting	
Description:	Displays the effective Drive Data Set (DDS).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DDS eff., bit 0	On	Off	-
	01 DDS eff., bit 1	On	Off	-
	02 DDS eff., bit 2	On	Off	-
	03 DDS eff., bit 3	On	Off	-
	04 DDS eff., bit 4	On	Off	-
Dependency:	Refer to: p0820, p0821, p0822, p0823, p0824, r0837			
Note:	The drive data set changeover is suppressed when selecting the motor identification, during the rotating measurement, the encoder calibration and the friction characteristic record.			

r0056.1..15	CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl			
SERVO	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: -	Func	2526
	P-Group: Displays, signals	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min	Max	Fact	
	-	-	-	
Description:	Displays the status word of the closed-loop control.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	01 De-magnetizing completed	Yes	No	-
	04 Magnetizing completed	Yes	No	2701
	08 Field weakening active	Yes	No	-
	14 Vdc_max controller active	Yes	No	-
	15 Vdc_min controller active	Yes	No	-
Note:	Re bit 04:			
	The bit is immediately set after power-on			
	Exception:			
	For an induction motor with brake (except for p1215 = 2), the bit is only set when 60% of the reference flux is reached.			

r0056.0...15	CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 1530,2526
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status word of the closed-loop control.		
Bit field:	Bit Signal name	1 signal	Yes
	00	Initialization completed	Yes
	01	De-magnetizing completed	Yes
	02	Pulse enable present	Yes

	07	Frequency negative	Yes	No	6719	
	08	Field weakening active	Yes	No	-	
	09	Voltage limit active	Yes	No	6714	
	10	Slip limit active	Yes	No	6310	
	11	Frequency limit active	Yes	No	6719	
	12	Current limiting controller voltage output active	Yes	No	-	
	13	Current/torque limiting	Active	Inactive	6060	
	14	Vdc_max controller active	Yes	No	$\begin{aligned} & 6220, \\ & 6320 \end{aligned}$	
	15	Vdc_min controller active	Yes	No	$\begin{aligned} & 6220, \\ & 6320 \end{aligned}$	
r0060	CO: Velocity setpoint before the setpoint filter / v_set before filt					
SERVO (Lin)	Can be changed: - Data type: FloatingPoint32		Calculated: -	Access level: 3		
			Dynamic index: -	Func. diagram: 2701, 2704, 5020		
		oup: Displays, signals	Units group: 4_1	Unit selection: p0505		
		for motor type: -		Expert list: 1		
			Max - [m/min]	Factory setting - [m/min]		
Description:	Displays the current velocity setpoint at the input of the velocity controller or V/f characteristic (after the interpolator).					
Dependency:	Refer to: r0020					
Note:	The velocity setpoint is available smoothed (r0020) and unsmoothed (r0060).					
r0060	CO: Speed setpoint before the setpoint filter / n_set before filt.					
SERVO, VECTOR	Can be changed: - Data type: FloatingPoint32		Calculated: -	Access level: 3		
			Dynamic index: -	Func. diagram: 2701, 2704, 5020, 6030, 6799		
		oup: Displays, signals	Units group: 3_1	Unit selection: p0505		
		for motor type: -		Expert list: 1		
		/min]	Max - [rev/min]	Factory setting - [rev/min]		
Description:	Displays the current speed setpoint at the input of the speed controller or V/f characteristic (after the interpolator). Refer to: r0020					
Dependency:						
Note:	The speed setpoint is available smoothed (r0020) and unsmoothed (r0060).					
r0061	CO: Velocity actual value, motor encoder / v_act mot encoder					
SERVO (Lin)	Can be changed: - Data type: FloatingPoint32		Calculated: -	Access level: 2		
				Func. diagram: 1580, 4710, 4715		
		oup: Displays, signals	Units group: 4_1	Unit selection: p0505		
	Not for motor type: -			Expe		
		min]	Max - [m/min]	Factory setting - [m/min]		
Description:	Displays the velocity sensed by the motor encoder (unsmoothed).					

r0061	CO: Speed actual value motor encoder / n_ist mot. encoder		
SERVO	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1580, 4710, 4715
	P-Group: Displays, signals	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the speed sensed by the motor encoder (unsmoothed).		
r0061[0...1]	CO: Speed actual value motor encoder / n_ist mot. encoder		
VECTOR	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1580, 4710, 4715
	P-Group: Displays, signals	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the speed sensed by the motor encoder (unsmoothed).		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \end{aligned}$		
Note:	Speed from encoder 2 is not displayed for U/f operating modes.		
r0062	CO: Velocity setpoint after the filter / v_set after filter		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1590, 5020, 5030, 5042, 5210
	P-Group: Displays, signals	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the current velocity setpoint after the setpoint filters.		
r0062	CO: Speed setpoint after the filter / n_set after filter		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1590, 1700, 5020, 5030, 5042, 5210, 6030, 6031
	P-Group: Displays, signals	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the current speed setpoint after the setpoint filters.		

A negative sign of the frequency is obtained when the 3 line phases are interchanged therefore designating a negative direction of the rotating field of the 3-phase line supply voltage.

Note: In indices $3 \ldots 5$, the offset currents of the 3 phases, which are added to correct the phase currents, are displayed. The sum of the 3 corrected phase currents is displayed in index 6 .

r0070	CO: Actual DC link voltage / Vdc_act		
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1773, 1774, 1775, 8750, 8850, 8950
	P-Group: Displays, signals	Units group: 5_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[V] \end{aligned}$	$\begin{gathered} \operatorname{Max} \\ -[\mathrm{V}] \end{gathered}$	Factory setting - [V]
Description:	Displays the measured actual value of the DC link voltage.		
Dependency:	Refer to: r0026		
Note:	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		
r0070	CO: Actual DC link voltage / Vdc_act		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5730, 6723, 6724, 6730, 6731, 6799
	P-Group: Displays, signals	Units group: 5_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[V] \end{gathered}$	$\begin{gathered} \text { Max } \\ -[\mathrm{V}] \end{gathered}$	Factory setting - [V]
Description:	Displays the measured actual value of the DC link voltage.		
Dependency:	Refer to: r0026		
Notice:	For SINAMICS S120 AC Drive (AC/AC) the following applies:		
	When measuring a DC link voltage < 200 V , for the Power Module (e.g. PM340) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed.		
Note:	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		
r0071	Maximum output voltage / V_output max		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1710, 6300, 6640, 6722, 6723, 6724, 6725, 6727
	P-Group: Displays, signals	Units group: 5_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the maximum output voltage.		
Dependency:	The maximum output voltage depends on the current DC link voltage (r 0070) and the maximum modulation depth (p 1803).		
Note:	As the (driven) motor load increases, the maximum output voltage drops as a result of the reduction in DC link voltage.		

Dependency: Note:	Refer to: r0029, r0075		
r0076	CO: Current actual v	nerating / Id_ac	
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	$\begin{aligned} & \text { Func. diagram: 1630, 1710, } \\ & 5714,5730,6714,6799 \end{aligned}$
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description: Dependency: Note:	Displays the field-generatin Refer to: r0029 This value is irrelevant for the The field-generating curren	value (Id_act). de. vailable smoothed	oothed (r0076).
r0077	CO: Active current setpoint / Iq_set		
A_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1774, 8940, 8946
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the active current setpoint (lq_set).		
r0077	CO: Current setpoint force-generating / Iq_set		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1630, 1774, 5714, 6710, 6714, 6719
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the torque/force generating current setpoint. This value is irrelevant for the V/f control mode.		
Note:			
r0077	CO: Current setpoint torque-generating / Iq_set		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1630, 1774, 5714, 6710, 6714, 6719
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description: Note:	Displays the torque/force generating current setpoint. This value is irrelevant for the V/f control mode.		

r0078	CO: Active current actual value / lq_act		
A_INF, S_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	$\begin{aligned} & \text { Func. diagram: } 1774,1775 \text {, } \\ & 8850,8946,8950 \end{aligned}$
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the actual value for the active current.		
Dependency:	Refer to: r0030		
Note:	The active current actual value is available smoothed (r0030) and unsmoothed (r0078).		
r0078	CO: Current actual value torque-generating / Iq_act		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1710, 6310, 6714, 6727, 6799
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the torque-generating current actual value (Iq_act).		
Dependency:	Refer to: r0030		
Note:	This value is irrelevant for the V/f control mode.		
	The torque-generating current actual value is available smoothed (r0030 with 300 ms) and unsmoothed (r0078).		

r0078[0...1]	CO: Current actual value force-generating / Iq_act		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1630, 5714, 5730
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the force-generating current actual value (lq_act).		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \end{aligned}$		
Dependency:	Refer to: r0030, p0045		
Note:	These values are irrelevant for the V/f control mode.		
	The force-generating current actual value is available smoothed (r0030 with 100 ms , r0078[1] with p0045) and unsmoothed (r0078[0]).		

r0078[0...1]	CO: Current actual value torque-generating / Iq_act		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1630, 5714, 5730
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the torque-generatin	value (lq_act).	

Index:	$[0]=$ Unsmoothed
	$[1]=$ Smoothed with p0045
Dependency: \quad	Refer to: r0030, p0045
Note:	These values are irrelevant for the V/f control mode.
	The torque-generating current actual value is available smoothed (r0030 with $100 \mathrm{~ms}, \mathrm{rOO} 5[1]$ with p0045) and unsmoothed (r0078[0]).

r0079[0...1] CO: Total force setpoint / F_set total
Data type: FloatingPoint32 Dynamic index: - Func. diagram: 1750, 5610,
P-Group: Displays, signals Units group: 8_1 Unit selection: p0505

Not for motor type: -
Expert list: 1

Min	Max	Factory setting
$-[\mathrm{N}]$	$-[\mathrm{N}]$	$-[\mathrm{N}]$

Displays the force setpoint at the output of the velocity controller (before clock cycle interpolation).
Description: Displays the force setpoint at the output of the velocity controller (before clock cycle interpolation).
Index: [0] = Unsmoothed
[1] = Smoothed with p0045

r0079[0...1]	CO: Torque setpoint total / M_set total		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1750, 5610, 8012
	P-Group: Displays, signals	Units group: 7_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description: Index:	Displays the torque setpoint [0] = Unsmoothed [1] = Smoothed with p0045	the speed controller	le interpolation).

r0079	CO: Torque setpoint total / M_set total		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1700, 1710, 1750, 6030, 6060, 6710, 8012
	P-Group: Displays, signals	Units group: 7_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $-[\mathrm{Nm}]$	Max - [Nm]	Factory setting - [Nm]
Description:	Displays the torque setpoint at the output of the speed controller (before clock cycle interpolation).		
r0080	CO: Force actual value / F_act		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5730
	P-Group: Displays, signals	Units group: 8_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $-[\mathrm{N}]$	$\begin{aligned} & \operatorname{Max} \\ & -[N] \end{aligned}$	Factory setting - [N]
Description:	Displays the actual force value.		
Dependency:	Refer to: r0031		
Note:	The force actual value is available smoothed (r0031) and unsmoothed (r0080).		

r0080	CO: Torque actual value / M_act		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5730
	P-Group: Displays, signals	Units group: 7_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	Displays the actual torque value.		
Dependency:	Refer to: r0031		
Note:	The torque actual value is available smoothed (r0031) and unsmoothed (r0080).		
r0080[0...1]	CO: Torque actual value / M_act		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6714, 6799
	P-Group: Displays, signals	Units group: 7_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -[\mathrm{Nm}] \end{aligned}$	Max - [Nm]	Factory setting - [Nm]
Description:	Displays the actual torque value.		
Index:	$[0]=\text { Unsmoothed }$		
Dependency:	Refer to: r0031		
Note:	The torque actual value is available smoothed (r0031 with 100 ms , r 0080 [1] with p0045) and unsmoothed (r0080[0]).		
r0081	CO: Force utilization / F_utilization		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8012
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the force utilization as a percentage.		
Dependency:	Refer to: r0033		
Note:	The force utilization is available smoothed (r0033) and unsmoothed (r0081).		
	The calculation of the force utilization depends on the selected smoothing time constant (p0045).		
r0081	CO: Torque utilization / M_Utilization		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8012
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the torque utilization as a percentage.		
Dependency:	Refer to: r0033		
Note:	The torque utilization is available smoothed (r0033) and unsmoothed (r0081).		

The torque utilization is obtained from the required torque referred to the torque limit as follows:

- Positive torque: r0081 = ((r0079 + p1532) / (r1538-p1532)) * 100%
- Negative torque: r0081 $=((-r 0079+p 1532) /(-r 1539+p 1532)) * 100 \%$

For SERVO, the following applies:
The calculation of the torque utilization depends on the selected smoothing time constant (p0045).

r0082	CO: Active power actual value / P_act	
A_INF, S_INF	Can be changed: - Calculated: -	Access level: 3
	Data type: FloatingPoint32 Dynamic index: -	Func. diagram: 8750, 8850, 8950
	P-Group: Displays, signals Units group: 14_7	Unit selection: p0505
	Not for motor type: -	Expert list: 1
	Min Max $-[\mathrm{kW}]$ $-[\mathrm{kW}]$	Factory setting - [kW]
Description:	Displays the instantaneous active power.	
Dependency:	Refer to: r0032	
Note:	The active power is available smoothed (r0032) and unsmoothed (r0082).	
	Meaning of value:	
	- positive value: power drawn from the line supply	
	- negative value: power fed back to the line supply	

r0082	CO: Active power actual value / P_act		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8750, 8850, 8950
	P-Group: Displays, signals	Units group: 14_7	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [kW]	Max - [kW]	Factory setting - [kW]
Description:	Displays the instantaneous active power.		
Dependency:	Refer to: r0032		
Notice:	For Basic Line Modules of chassis format, the displayed value is invalid as these units do not have any current sensing.		
Note:	The active power is available smoothed (r0032) and unsmoothed (r0082).		

r0082[0...2]	CO: Active power actual value / P_act		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5730
	P-Group: Displays, signals	Units group: 14_8	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [kW]	Max - [kW]	Factory setting - [kW]
Description:	Displays the instantaneous active power.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \\ & {[2]=\text { Power drawn }} \end{aligned}$		
Dependency:	Refer to: r0032		
Note:	The active power is available	32 with 100 ms , r008	and unsmoothed (r0082

r0084[0...1]	CO: Flux actual value / Flux act val		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6726, 6730, 6731
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the flux actual value.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed }} \end{aligned}$		
Note:	The flux actual value (index 1) In the following cases, the un - in the range of the current m - during the pole position iden - for I/f control. - for a stalled drive.	p1585 is only disp actual value is also	ly-excited synchronous motors.
r0087	CO: Actual power factor / Cos phi act		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6714, 6730, 6732, 6799
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the current active power factor.		
r0088	CO: DC link voltage setpoint / Vdc setpoint		
A_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8940, 8964
	P-Group: Displays, signals	Units group: 5_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -[V] \end{aligned}$	Max - [V]	Factory setting - [V]
Description:	Displays the setpoint for the DC link voltage.		
r0089[0...2]	Actual phase voltage / U_phase act val		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6719
	P-Group: Displays, signals	Units group: 5_3	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[V] \end{gathered}$	$\begin{aligned} & \text { Max } \\ & -[\mathrm{V}] \end{aligned}$	Factory setting - [V]
Description:	Displays the current phase voltage.		
Index:	$\begin{aligned} & {[0]=\text { Phase } \mathrm{U}} \\ & {[1]=\text { Phase } \mathrm{V}} \\ & {[2]=\text { Phase } \mathrm{W}} \end{aligned}$		
Note:	The values are determined from the transistor power-on duration.		

p0092	Clock synchronous operation pre-assignment/check / Clock sync op		
CU_S	Can be changed: C 1 (1)	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Setting to pre-assign/check the sampling times for the internal controller clock cycles for clock-synchronous PROFIBUS operation.		
	The controller clock cycles are set so that clock synchronous PROFIBUS operation is possible. If it is not possible to change the controller clock cycles of the clock-cycle synchronous PROFIBUS operation, then an appropriate message is output.		
	The pre-setting of the controller clock cycles can result in a de-rating of the Motor Module (e.g. p0115[0] = $400 \mu \mathrm{~s}$ --> $375 \mu \mathrm{~s}$).		
	p0092 $=0$:		
	The controller clock cycles are set without any restrictions by the clock-cycle PROFIBUS operation (as for up to version V2.3).		
Dependency:	Refer to: r0110, p0115		
	Refer to: A01223, A01224		
p0092	Clock synchronous operation pre-assignment/check / Clock sync op		
CU_CX32, CU_I	Can be changed: C 1 (1)	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 1
Description:	Setting to pre-assign/check the sampling times for the internal controller clock cycles for clock-synchronous PROFIBUS operation.$\mathrm{p} 0092=1$		
	The controller clock cycles are set so that clock synchronous PROFIBUS operation is possible. If it is not possible to change the controller clock cycles of the clock-cycle synchronous PROFIBUS operation, then an appropriate message is output.		
	The pre-setting of the controller clock cycles can result in a de-rating of the Motor Module (e.g. p0115[0] = 400 $\mu \mathrm{s}$ --> $375 \mu \mathrm{~s}$).		
	p0092 $=0$:		
	The controller clock cycles are set without any restrictions by the clock-cycle PROFIBUS operation (as for up to version V2.3).		
Dependency:	Refer to: r0110, p0115		
	Refer to: A01223, A01224		
r0093	CO: Pole position angle electrically normalized / Pole pos el norm		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $-\left[^{\circ}\right]$	$\underset{-\left[{ }^{\circ}\right]}{\operatorname{Max}}$	Factory setting - [${ }^{\circ}$]
Description:	Displays the normalized electrical pole position angle. Refer to: r0094, p0431, r1778		
Dependency:			

p0097	Select drive object type / Select DO type		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: C1(1)	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Topology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{17}{\underset{17}{\text { Max }}}$	Factory setting 0
Description:	Executes an automatic device configuration.		
	In so doing, p0099, p0107 and p0108 are appropriately set.		
Value:	0 : No selection		
	1: Drive object type S		
	2: Drive object type		
	3: SINAMICS GM (D	MV)	
	4: SINAMICS SM (AF		
	$\begin{array}{ll}\text { 5: } & \text { SINAMICS GL (VEC } \\ \text { 6: } & \text { SINAMICS SL (VEC }\end{array}$		
	12: Drive object type V	ircuit	
	13: Drive object type V	parallel circuit	
	14: Drive object type V	parallel circuit	
	15: Drive object type S		
	16: Drive object type S		
	17: Drive object type		
Dependency:	Refer to: r0098, p0099		
	Refer to: A01330		
Note:	For p0097 = 0, p0099 is automatically set to the factor setting.		
	The setting p0097 = 1 is not possible for chassis-type power units as well as for SINAMICS G or SINAMICS GM. The setting p0097 = 12 is not possible for booksize power units.		

p0100	IEC/NEMA mot stds / IEC/NEMA mot stds		
SERVO	Can be changed: $\mathrm{C} 2(1)$	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: FEM		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Defines whether the motor and drive converter power settings (e.g. rated motor power - p0307) are expressed in [kW] or [hp].		
	Depending on the selection, the rated motor frequency (p0310) is either set to 50 Hz or 60 Hz .		
	The following applies for IEC drives: The power factor (p 0308) should be parameterized.		
	The following applies for NEMA drives: The efficiency (p0309) should be parameterized.		
Value:	0: \quad IEC-Motor (50 Hz , 1: NEMA motor (60 H		
Dependency:	The units of all motor parameters are changed that are involved in the selection of IEC or NEMA (e.g. r0206, p0307, p0316, r0333, r0334, p0341, p0344, r1493, r1969).		
	Refer to: r0206, p0210, p0300, p0304, p0305, p0307, p0308, p0309, p0310, p0311, p0312, p0314, p0320, p0322, p0323, p0335, r0336, r0337, p0338, p1800		
Note:	The parameter can only be changed for vector control (p0107).		
	The parameter value is not reset when the factory setting is restored ($\mathrm{p} 0010=30, \mathrm{p} 0970$).		

p0100	IEC/NEMA mot stds / IEC/NEMA mot stds		
VECTOR	Can be changed: C2(1)	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: FEM		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{1}{\operatorname{Max}}$	Factory setting 0
Description:	Defines whether the motor and drive converter power settings (e.g. rated motor power - p0307) are expressed in [kW] or [hp].		
	Depending on the selection, the rated motor frequency (p0310) is either set to 50 Hz or 60 Hz .		
	The following applies for IEC drives: The power factor (p0308) should be parameterized.		
	The following applies for NEMA drives: The efficiency (p0309) should be parameterized.		
Value:	0 : IEC-Motor ($50 \mathrm{~Hz}, \mathrm{SI}$ units) 1: NEMA motor (60 Hz , US units)		
Dependency:	The units of all motor parameters are changed that are involved in the selection of IEC or NEMA (e.g. r0206, p0307, p0316, r0333, r0334, p0341, p0344, r1493, r1969).		
	Refer to: r0206, p0210, p0300, p0304, p0305, p0307, p0308, p0309, p0310, p0311, p0312, p0314, p0320, p0322, p0323, p0335, r0336, r0337, p0338, p1800		
Note:	The parameter can only be changed for vector control (p0107).		
	The parameter value is not reset when the factory setting is restored ($\mathrm{p} 0010=30, \mathrm{p} 0970$).		
p0101[0...15]	Drive object numbers / DO numbers		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: C 1 (1)	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Topology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 62 \end{aligned}$	Factory setting 0
Description:	The parameter contains the object number via which every drive object can be addressed.		
	The number of an existing drive object is entered into each index.		
	The numbers are automatically assigned once and can no longer be changed as long as the object has not been deleted.		
	In the commissioning software, this object number cannot be entered using the expert list, but is automatically assigned when inserting an object.		
Index:			
	[2] = Drive object number object 2		
	[3] = Drive object number object 3		
	[4] = Drive object number object 4		
	[5] = Drive object number object 5		
	[6] = Drive object number object 6		
	[7] = Drive object number object 7		
	[8] = Drive object number object 8		
	[9] = Drive object number object 9		
	[10] = Drive object number object 10		
	[11] = Drive object number object 11		
	[12] = Drive object number object 12		
	[13] = Drive object number object 13		
	[14] = Drive object number object 14		
	[15] = Drive object number object 15		
Note:	Value $=0$: No drive object is defined.		

p0103[0...15]	Application-specific view / Appl_spec view	
CU_CX32, CU_I,	Can be changed: C1(2)	Calculated: -
CU_S	Data type: Unsigned16	Access level: 2
	P-Group: -	Units group: -
	Not for motor type: -	Max
	Min	Unit selection: -
	0	Expert list: 1

r0103

A_INF, B_INF S INF, SERVO VECTOR

Caution:	It is not permissible to de-activate drive objects with safety functions enabled:
	TM54F can only be de-activated if all of the axes connected to it via P10010 have been de-activated or are not
enabled on the connected safety axes.	
Notice:	The following applies when activating:
	If components are inserted for the first time and the appropriate drive object is activated, then the drive system is
automatically booted. To do this, the pulses of all of the drive objects must be suppressed.	
Note:	Setting a drive object to de-activate principally corresponds to the "parking axis" function. however, here, all of the

r0106 Drive object active/inactive / DO act/inact

A INF, B INF, Can be changed: -
CU_CX32, CU_I, CU LINK, CU S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, VECTOR

	09	Bit 9	On	Off	-
	10	Bit 10	On	Off	-
	11	Bit 11	On	Off	-
	12	Bit 12	On	Off	-
	13	Bit 13	On	Off	-
	14	Bit 14	On	Off	-
	15	Bit 15	On	Off	-
	16	Bit 16	On	Off	-
	17	Bit 17	On	Off	-
	18	Bit 18	On	Off	-
	19	Bit 19	On	Off	-
	20	Bit 20	On	Off	-
	21	Bit 21	On	Off	-
	22	Bit 22	On	Off	-
	23	Bit 23	On	Off	-
	24	Bit 24	On	Off	-
	25	Bit 25	On	Off	-
	26	Bit 26	On	Off	-
	27	Bit 27	On	Off	-
	28	Bit 28	On	Off	-
	29	Bit 29	On	Off	-
	30	Bit 30	On	Off	-
	31	Bit 31	On	Off	-
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.				
r0108	Drive object, function module / DO function module				
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: -	
	P-Group: Closed-loop control		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
			-	-	
Description:	Displays the activated function module for the particular drive object.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	15	Parallel cct. config.	Activated	Not activated	-
	18	Free function blocks	Activated	Not activated	-
	19	Master/Slave	Activated	Not activated	-
		Braking Module external	Activated	Not activated	-
		Fan	Activated	Not activated	-
		Cooling system	Activated	Not activated	-
	31	PROFINET	Activated	Not activated	-
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.				
r0108	Drive object, function module / DO function module				
SERVO, VECTOR	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: -	
	P-Group: Closed-loop control		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Displays the activated function module for the particular drive object.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	01	Extended closed-loop tor	Activated	Not activated	-
	02	Closed-loop speed/torqu	Activated	Not activated	-
	03	Closed-loop position con	Activated	Not activated	-
	04	Basic positioner	Activated	Not activated	-
	07	Advanced Positioning Co	Activated	Not activated	-

	08	Extended setpoint channel	Activated	Not activated	-
	12	Linear motor	Activated	Not activated	-
	13	Safety rotary axis	Activated	Not activated	-
	14	Extended brake control	Activated	Not activated	-
	15	Parallel cct. config.	Activated	Not activated	-
	16	Technology controller	Activated	Not activated	-
	17	Extended signals/monitoring	Activated	Not activated	-
	18	Free function blocks	Activated	Not activated	-
	27	Fan	Activated	Not activated	-
	28	Cooling system	Activated	Not activated	-
	29	CAN	Activated	Not activated	-
	31	PROFINET	Activated	Not activated	-
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.				
r0108	Drive object, function module / DO function module				
$\begin{aligned} & \text { TB30, TM15DI_DO, } \\ & \text { TM31, TM41 } \end{aligned}$	Can be changed: -		Calculated: -	Access le	
	Data type: Unsigned32		Dynamic index: -	Func. diag	
	P-Group: Closed-loop control		Units group: -	Unit selec	
	Not for motor type: -			Expert lis	
	Min		Max	Factory setting	
			-		
Description:	Displays the activated function module for the particular drive object.				
Bit field:	Bit Signal name		1 signal	0 signal	FP
		18 Free function blocks	Activated	Not activated	-
		31 PROFINET	Activated	Not activated	-
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.				
r0110[0...2]	Basic sampling times / t_basis				
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -		Calculated: -	Access level: 3	
	Data type: FloatingPoint32		Dynamic index: -	Func. diagram: -	
	P-Group: Closed-loop control		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min$0.00[\mu \mathrm{~s}]$		$\begin{aligned} & \operatorname{Max} \\ & 10000.00[\mu \mathrm{~s}] \end{aligned}$	Factory setting - [$\mu \mathrm{s}$]	
Description:	Displays the basic sampling times.				
	The sampling times are set using p0112 and p 0115 . The values for the basic sampling times are determined as result of these settings.				
Index:	[0] = Basic sampling time 0				
	[1] = Basic sampling time 1				
	[2] = Basic sampling time 2				
r0111	Basic sampling time selection / t_basis sel				
A_INF, B_INF, CU_CX32, CU_I, CU_LINK, CU_S, HUB, S_INF, SERVO, VECTOR	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Integer16		Dynamic index: -	Func. diagram: -	
	P-Group: Closed-loop control		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$		$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting	
Description:	Displays the selected basic sampling time for this drive object.				
Dependency:	Refer to: r0110				

	SINAMICS S/G, vector drive (p0112 = 1 not for p0092 = 1 and not for PM340):
	p0112 = 2: $250 / 1000 / 2000 / 1000 / 2000 / 4000 / 4000 \mu \mathrm{~s}$
	p0112 = 3: $250 / 1000 / 1000 / 1000 / 2000 / 4000 / 4000 \mu \mathrm{~s}$ (for rated pulse frequency $=2.0,4.0 \mathrm{kHz}$)
	SINAMICS S, vector drive:
	p0112 = 4: $250 / 500 / 1000 / 500 / 1000 / 2000 / 2000 \mu \mathrm{~s}$
	p0112 = 5: $250 / 250 / 1000 / 250 / 1000 / 2000 / 1000 \mu \mathrm{~s}$
Value:	0: Expert
	1: xLow
	2: Low
	3: Standard
	4: High
	5: xHigh
Recommend.:	When changing the sampling times of the current and speed controllers (also refer to p0115), then we recommend that after exiting commissioning (p0009 = 0) the controller settings are re-calculated using p0340 $=4$.
Dependency:	It is prohibited to select a parameter value from p0112 if the associated current controller clock cycle cannot set (e.g. p0112 = 1 is not possible for a vector drive and PM340 power unit).
	Refer to: p0092
Note:	For p0112 $=0$ (expert) the individual sampling times in p0115 can be adjusted.
	p0112 = 1 cannot be set for a power unit type PM340 (refer to r0203) for vector drives.

p0113	Minimum pulse frequency, selection / F_puls min sel		
SERVO	Can be changed: C1 (3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
			Expert list: 1
	Not for motor type: -	Max	Factory setting
	Min	$4.000[\mathrm{kHz}]$	$4.000[\mathrm{kHz}]$

Description: The current controller sampling time ($\mathrm{p} 0115[0]$) is pre-assigned by selecting the minimum pulse frequency.
Dependency: The parameter can only be changed with p0112 = 0 (expert). For isochronous operation (p0092 = 1) the parameter can only be set so that a current controller clock cycle of $125 \mu \mathrm{~s}$ is obtained as an integer number.
The required pulse frequency can be set in p1800 after commissioning ($p 0009=p 0010=0$). Refer to: p0112, r0114, p0115, p1800
Note: \quad The current controller sampling time ($\mathrm{p} 0115[0]$) is set to the inverse value of twice the minimum pulse frequency. For $\mathrm{p} 0113=2.0 \mathrm{kHz}, \mathrm{p} 0115[0]=250 \mu \mathrm{~s}$ is set, for $\mathrm{p} 0113=4.0 \mathrm{kHz}, \mathrm{p} 0115[0]=125 \mu \mathrm{~s}$ is set. The current controller sampling time ($\mathrm{p} 0115[0]$), calculated from the pulse frequency, is set in a grid of $1.25 \mu \mathrm{~s}$.
For a power unit type PM340 (refer to r0203), only the values 2.0 and 4.0 kHz can be set.

p0113	Minimum pulse frequency, selection / F_puls min sel		
VECTOR	Can be changed: C 1 (3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 1.000[\mathrm{kHz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2.000[\mathrm{kHz}] \end{aligned}$	Factory setting 2.000 [kHz]
Description:	The current controller sampling time ($\mathrm{p} 0115[0]$) is pre-assigned by selecting the minimum pulse frequency.		
Dependency:	The parameter can only be changed with p0112 =0 (expert). For isochronous operation (p0092 =1) the parameter can only be set so that a current controller clock cycle of $125 \mu \mathrm{~s}$ is obtained as an integer number.		
	The required pulse frequency can be set in p1800 after commissioning (p0009 = p0010 = 0).		
	Refer to: p0112, r0114, p0115, p1800		
Note:	The current controller sampling time ($\mathrm{p} 0115[0]$) is set to the inverse value of twice the minimum pulse frequency. For p0113 $=1.0 \mathrm{kHz}, \mathrm{p} 0115[0]=500 \mu \mathrm{~s}$ is set, for $\mathrm{p} 0113=2.0 \mathrm{kHz}, \mathrm{p} 0115[0]=250 \mu \mathrm{~s}$ is set. The current controller sampling time ($\mathrm{p} 0115[0]$), calculated from the pulse frequency, is set in a grid of $1.25 \mu \mathrm{~s}$.		

For a power unit type PM340 (refer to r0203), only the values 1.0 and 2.0 kHz can be set. 1.0 kHz can be set in order to achieve a current controller clock cycle of $500 \mu \mathrm{~s}$. However, in this case, the minimum pulse frequency p 1800 is limited to 2 kHz .

r0114[0...9]	Minimum pulse frequency, recommended / F_puls min recom		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underset{-[k H z]}{\operatorname{Min}_{1}}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{kHz}] \end{aligned}$	Factory setting - [kHz]
Description:	Displays the recommended values (indices 0 and 1) for the minimum pulse frequency (p 0113). If the system rejects a change to p0113 because the value to be used lies outside the permitted value range, then instead the recommended value from r0114 can be used.		

[0] = If only the current drive is changed
[1] = If all drives connected to the DRIVE-CLiQ line are changed
[2] $=2$. possible pulse frequency
[3] $=3$. possible pulse frequency
$[4]=4$. possible pulse frequency
$[5]=5$. possible pulse frequency
[6] = 6. possible pulse frequency
$[7]=7$. possible pulse frequency
$[8]=8$. possible pulse frequency
[9] = 9. possible pulse frequency
Dependency: Refer to: p0113
Note: \quad After exiting commissioning ($\mathrm{p} 0009=\mathrm{p} 0010=0$), the pulse frequencies calculated from the sampling time $\mathrm{p} 115[0]$ are displayed in indices 1 to 9 . If additional restrictions do not apply (e.g. due to having selected an output filter), these can be entered into p 1800 . The maximum pulse frequency of the power units was already taken into account in r0114.
A value of 0 kHz does not define a recommended pulse frequency.

p0115[0...0]	Sampling time for supplementary functions / t_sample suppl fct		
CU_CX32, CU_I,	Can be changed: C1(3)	Calculated: -	Access level: 3
CU_S	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mu \mathrm{s}$]	Max 16000.00 [$\mu \mathrm{s}$]	Factory setting 4000.00 [$\mu \mathrm{s}$]
Description:	Sets the basic sampling time for supplementary functions (DCC, free function blocks) on this object. Only setting values that are an integer multiple of 125μ s are permissible.		
Index:	[0] = Basic sampl. time		

p0115[0...0]	Sampling time for supplementary functions / t_sample suppl fct		
TB30, TM15DI_DO,	Can be changed: C1(3)	Calculated: -	Access level: 3
TM31	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mu \mathrm{s}$]	$\begin{aligned} & \operatorname{Max} \\ & 16000.00[\mu \mathrm{~s}] \end{aligned}$	Factory setting 4000.00 [$\mu \mathrm{s}$]
Description:	Sets the sampling times for supplementary functions (DCC, free function blocks) on this object. Only setting values that are an integer multiple of 125μ s are permissible.		
Index:	[0] = Basic sampl. time		
Note:	This parameter only applies to set the sampling times of possible supplementary functions. The sampling times for inputs/outputs must be set in p4099.		

p0115[0...0]	Sampling time for supplementary functions / t_sample suppl fct			
TM41	Can be changed: C1(3)	Calculated: -	Access level: 3	
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -	
	P-Group: Closed-loop control	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	$\operatorname{Min}_{0.00}[\mu \mathrm{~s}]$	Max 16000.00 [$\mu \mathrm{s}$]	Factory setting 4000.00 [$\mu \mathrm{s}$]	
Description:	Sets the sampling times for supplementary functions (DCC, free function blocks) on this object. Only setting values that are an integer multiple of 125μ s are permissible.			
Index:	$[0]=$ Basic sampl. time			
Note:	This parameter only applies to set the sampling times of possible supplementary functions. The sampling times for inputs/outputs or encoder emulation must be set in p4099.			
p0115[0...6]	Sampling times for internal control loops / t_sample int ctrl			
A INF, B_INF, S_INF, SERVO, VECTOR	Can be changed: C1(3)	Calculated: -	Access level: 3	
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -	
	Not for motor type: -		Unit selection: -	
			Expert list: 1	
	Min 0.00 [$\mu \mathrm{s}$]	Max 16000.00 [$\mu \mathrm{s}$]	Factory setting [0] 125.00 [$\mu \mathrm{s}$]	
			[1] 125.00 [$\mu \mathrm{s}$]	
			[2] 125.00 [$\mu \mathrm{s}$]	
			[3] 4000.00 [$\mu \mathrm{s}$]	
			[4] 1000.00 [$\mu \mathrm{s}$]	
			[5] 4000.00 [$\mu \mathrm{s}$]	
			[6] 4000.00 [$\mu \mathrm{s}$]	
Description:	Sets the sampling times for the control loops.			
	The default setting is made using p0112 and can only be individually changed for $\mathrm{p} 0112=0$ (expert).			
Recommend.:	When changing the sampling times of the current and speed controllers (also refer to p0115), then we recommend that after exiting commissioning $(\mathrm{p} 0009=0)$ the controller settings are re-calculated using p0340 $=4$.			
Index:	[0] = Current controller [1] = Speed controller [2] = Flux controller [3] = Setpoint channel [4] = Pos controller [5] = Positioning [6] = Technology controller			
Dependency:	The sampling times can only be separately set if p0112 is 0 (expert). If a sampling time is modified in the expert mode, then all of the sampling times with higher indices are automatically changed in the same ratio as the sampling time itself was changed. Slower time slices are only taken if the calculated sampling time is also permitted. Upper limit is 8 ms .			
	Higher-level controls must be calculated in integral ratios to lower-level controls (e.g. p0115[1] = N * p0115[0]; where N is a whole number). The sampling time of the speed controller $\mathrm{p} 0115[1]$ can have as a maximum a value of 800% of the current controller sampling time p0115[0].			
	For servo drives, the maximum sampling time of the current controller is $250 \mu \mathrm{~s}$ and for vector drives, $500 \mu \mathrm{~s}$. The sampling times for the setpoint channel p0115[3], position controller p0115[4], positioning p0115[5] and the technology controller $\mathrm{p} 0115[6]$ must have at least 2 x the value of the current controller sampling time $\mathrm{p} 0115[0]$.			
	Refer to: r0110, r0111, p0112			
Note:	For function modules that can be activated (e.g. technology controller), the parameters values are pre-assigned. For the Active Line Module (ALM) and Smart Line Module (SLM), the current and DC link voltage controllers operate with the same sampling time. For ALM/SLM the maximum current controller clock cycle is $400 \mu \mathrm{~s}$.			
	For the Basic Line Module (BLM), the DC link voltage measurement operates in the current controller sampling time.			

For BLM booksize, only the current controller sampling time of $250 \mu \mathrm{~s}$ is permitted. For BLM chassis, only the current controller sampling time of $2000 \mu \mathrm{~s}$ is permitted.
For a power unit type PM340 (refer to r0203), only current controller sampling times of $62.5 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 250 \mu \mathrm{~s}$ and $500 \mu \mathrm{~s}$ can be set. The minimum current controller clock cycle for vector drives and the maximum current controller clock cycle for servo drives is 250μ s.
If sampling times in p0115 are individually changed for $\mathrm{p} 0112=0$ (expert) then it must always be observed that the selected sampling times of the setpoint channel p0115[3], position controller p0115[4], positioning p0115[5] and technology controller $\mathrm{p} 0115[6]$ are always greater than or equal to twice the current controller sampling time p0115[0].

p0118	Current controller computing dead time / I_ctrl t_dead		
A_INF, B_INF, S_INF, SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.00}[\mu \mathrm{~s}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00[\mu \mathrm{~s}] \end{aligned}$	Factory setting 0.00 [$\mu \mathrm{s}$]
Description:	This parameter is preset as a function of the current controller sampling time ($\mathrm{p} 0115[0]$) and normally does not have to be changed.		
Dependency:	Refer to: p0117		
	Refer to: A02100		
Note:	For p0118 < $=0.005 \mu \mathrm{~s}$, the current controller output is delayed by a complete current controller clock cycle (p0115[0]).		
p0120	Number of Power unit Data Sets (PDS) / PDS count		
A_INF, B_INF, S_INF, SERVO, TM41, VECTOR	Can be changed: C 1 (3)	Calculated: -	Access level: 2
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 8 \end{aligned}$	Factory setting 1
Description:	Sets the number of Power unit Data Sets (PDS).		
	The value corresponds to the number of power units connected together for a parallel circuit configuration.		
Dependency:	Refer to: p0107, r0107		
Note:	This parameter is only significant for drive objects A_INFEED and VECTOR with a parallel circuit configuration.		
$\overline{p 0121[0 . . . n]}$ A_INF, B_INF, S_INF, SERVO, VECTOR	Power unit component number / PU comp_no		
	Can be changed: C1(4)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 199 \end{aligned}$	Factory setting 0
Description:	The power unit data set is assigned to a power unit using this parameter. This unique component number is assigned when parameterizing the topology. Only component numbers can be entered into this parameter that correspond to a power unit.		
Dependency:	Only component numbers can be entered into this parameter that correspond to a power unit.Refer to: p 0107 , r0107		
Note:	For parallel circuit configurations, the parameter index is assigned to a power unit.		
p0124[0...15]	Detection of main components using LED / Detection LED		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{1}{\operatorname{Max}}$	Factory setting 0
Description:	Detects the main components of the drive object selected via the index.		

p0124[0...n]	Power unit detection via LED / PU detection LED		
A_INF, B_INF,	Can be changed: U, T	Calculated: -	Access level: 2
S_INF, SERVO,	Data type: Unsigned8	Dynamic index: PDS, p0120	Func. diagram: -
VECTOR	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	1	Factory setting
	0	0	
Description:	Detects the power unit assigned to this drive and data set.		
Note:	While p0124 = 1, the READY LED flashes green/orange or red/orange with 2 Hz at the appropriate power unit.		
	For parallel circuit configurations, the parameter index is assigned to a power unit.		

p0125[0...n]	Activate/de-activate power unit components / PU_comp act/de-act		
A_INF, B_INF,	Can be changed: C1(4), T	Calculated: -	Access level: 2
S_INF, SERVO,	Data type: Integer16	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 1
Description:	Setting to activate/de-activate a power unit component.		
Value:	0: De-activate component 1: Activate component 2: Component, de-activate and not present		
Recommend.:	After inserting a component, before activating, first wait for Alarm A01317.		
Dependency:	Refer to: r0126		
	Refer to: A01317		
Caution:	It is not permissible to de-activate drive objects with safety functions enabled.		
Note:	The activation of a compon In this case, it is only possib For units connected in para	if the component was inserte component when the pulses for the power units is de-activated,	he first time. the drive objects a he enable in p7001

r0126[0...n]	Power unit components active/inactive / PU comp act/inact		
A_INF, B_INF,	Can be changed: -	Calculated: -	Access level: 2
S_INF, SERVO,	Data type: Integer16	Dynamic index: PDS, p0120	Func. diagram: -
VECTOR	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	1	Factory setting
	0	-	
Description:	Displays the "active/inactive" state of a power unit component.		
Value:	$0: \quad$ Component inactive		
	$1: \quad$ Component active		
Dependency:	Refer to: $p 0105$, p0125, p0897		

r0127[0...n]	Power unit version EPROM data / PU EPROM version		
A_INF, B_INF,	Can be changed: -	Calculated: -	Access level: 3
S_INF, SERVO,	Data type: Unsigned32	Dynamic index: PDS, p0120	Func. diagram: -
VECTOR	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	Max	Factory setting
	-	-	
Description:	Displays the version of the EPROM data of the power unit.		
Dependency:	Refer to: r0147, r0157		

Note:	For parallel circuit configurations, the parameter index is assigned to a power unit.		
r0128[0...n]	Power unit, firmware	FW version	
A_INF, B_INF, S_INF, SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the firmware version of the power unit.		
Dependency			
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		
	For parallel circuit configurations, the parameter index is assigned to a power unit.		
p0130	Number of Motor Data Sets (MDS) / MDS count		
SERVO, VECTOR	Can be changed: C 1 (3)	Calculated: -	Access level: 2
	Data type: Unsigned8	Dynamic index: -	Func. diagram: 8575
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underset{1}{\operatorname{Min}}$	$\begin{aligned} & \text { Max } \\ & 16 \end{aligned}$	Factory setting 1
Description:	Sets the number of Motor Data Sets (MDS).		
p0131[0...n]	Motor component number / Mot comp_no		
SERVO, VECTOR	Can be changed: C1(4)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 199 \end{aligned}$	Factory setting 0
Description:	The motor data set is assig This unique component nu Only component numbers	ing this parameter. when parameterizing the topology. o this parameter that correspond	motor.
p0139[0...2]	Copy Motor Data Set MDS / Copy MDS		
SERVO, VECTOR	Can be changed: C2(15)	Calculated: -	Access level: 2
	Data type: Unsigned8	Dynamic index: -	Func. diagram: 8575
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{31}{\operatorname{Max}}$	Factory setting 0
Description:	Copying a Motor Data Set (MDS) into another. [0] = Source motor data set [1] = Target motor data set [2] = Start copying		
Index:			
Note:	Procedure:		
	1. In Index 0 , enter which motor data set should be copied.		
	2. In Index 1, enter the motor data set data that is to be copied into.		
	3. Start copying: Set index 2 from 0 to 1 .		
	p0139[2] is automatically set to 0 when copying is completed.		

When copying, p0131 is not taken into account.			
p0140	Number of Encoder Data Sets (EDS) / EDS count		
SERVO, VECTOR	Can be changed: C1(3)	Calculated: -	Access level: 2
	Data type: Unsigned8	Dynamic index: -	Func. diagram: 8570
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 16 \end{aligned}$	Factory setting 1
Description:	Sets the number of Encoder Data Sets (EDS).		
Note:	When parameterizing the drive with "no encoder" there must be at least one encoder data set (p0140 >= 1).		
p0141[0...n]	Encoder interface (Sensor Module) component number / Enc_interf comp_no		
SERVO, VECTOR	Can be changed: C1(4)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: EDS	Func. diagram: 4704, 8570
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 199 \end{aligned}$	Factory setting 0
Description:	This parameter is used to This unique component n Only component numbers	r data set to an encoder when parameterizing the o this parameter that cor	.g. SMC). n encoder evaluation.
Note:	If the encoder evaluation and encoder are integrated (motor with DRIVE-CLiQ), then their component numbers are identical.		
	For an SMC, different component numbers are assigned for the SMC (p0141) and the (actual) encoder (p0142).		
p0142[0...n]	Encoder component number / Encoder comp_no		
SERVO, VECTOR	Can be changed: C 1 (4)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: EDS	Func. diagram: 4704
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 199 \end{aligned}$	Factory setting 0
Description:	This assignment is made using the unique component number that was assigned when parameterizing the topology.		
Note:	If the encoder evaluation and encoder are integrated (motor with DRIVE-CLiQ), then their component numbers are identical.		
p0144[0...n]	Voltage sensing module detection via LED / VSM detection LED		
A_INF, S_INF	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	$\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Detects the Voltage Sensi	module assigned to this	

r0148[0...n]	Voltage Sensing Module firmware version / VSM FW version		
A_INF, S_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the firmware version of the Voltage Sensing Module (VSM).		
Dependency:	Refer to: r0018, r0128, r0158, r0197, r0198		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		
r0148[0...n]	Sensor Module firmware version / SM FW version		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the firmware version of the Sensor Module.		
Dependency:	Refer to: r0018, r0128, r0158, r0197, r0198		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		
p0150	Number of VSM data sets / VSM count		
VECTOR	Can be changed: C1(3)	Calculated: -	Access level: 4
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 1
Description:	Sets the number of VSM data sets		
p0151[0...n]	Voltage Sensing Module component number / VSM comp_no		
VECTOR	Can be changed: C1(4)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 199 \end{aligned}$	Factory setting 0
Description:	The VSM data set is assigned to a VSM evaluation using this parameter.		
p0151[0...1]	DRIVE-CLiQ Hub Module component number / Hub comp_no		
HUB	Can be changed: C 1 (4)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	$\begin{aligned} & \text { Max } \\ & 199 \end{aligned}$	Factory setting 0
Description:	Using this parameter, the data set is assigned to a DRIVE-CLiQ Hub Module.		

This unique component number is assigned when parameterizing the topology.
Only the numbers of components operated as hubs can be entered in these parameters.
[0] = DRIVE-CLiQ node 1
[1] = DRIVE-CLiQ node 2

Note:	Example: The value 1010100 should	V01.01.01.00.	
r0158	DRIVE-CLiQ Hub M	version / Hub	
HUB	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the firmware ve	CLiQ Hub Module.	
r0158	Terminal Module	/ TM FW ver	
TM15, TM15DI_DO,	Can be changed: -	Calculated: -	Access level: 3
TM17, TM31, TM41,	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
TM54F_MA, TM54F SL	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the firmware ve	I Module.	
Dependency:	Refer to: r0018, r0128, r0		
Note:	Example:		
	The value 1010100 shou	V01.01.01.00.	
p0161	Option board, com	/ OptBoard c	
TB30	Can be changed: C1(4)	Calculated: -	Access level: 4
	Data type: Unsigned8	Dynamic index: -	Func. diagram: 9100
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 199 \end{aligned}$	Factory setting 0
Description:	Sets the component num This unique component Only component numbers	ard (e.g. Terminal when parameterizing o this parameter tha	n option board.
p0162	CU-Link slave com	r / CX32 comp	
CU_LINK	Can be changed: C1(4)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Terminals		Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 199 \end{aligned}$	Factory setting 0

p0170	Number of Command Data Sets (CDS) / CDS count		
A_INF, B_INF, S_INF, TM41	Can be changed: C 1 (3)	Calculated: -	Access level: 2
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 1
Description:	Sets the number of Command Data Sets (CDS).		
Note:	It is possible to toggle between command parameters (BICO parameters) using this data set changeover.		
p0170	Number of Command Data Sets (CDS) / CDS count		
SERVO	Can be changed: C1(3)	Calculated: -	Access level: 2
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 1
Description:	Sets the number of Command Data Sets (CDS).		
Note:	It is possible to toggle between command parameters (BICO parameters) using this data set changeover.		
p0170	Number of Command Data Sets (CDS) / CDS count		
VECTOR	Can be changed: C 1 (3)	Calculated: -	Access level: 2
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 4 \end{aligned}$	Factory setting 2
Description:	Sets the number of Command Data Sets (CDS).		
Note:	It is possible to toggle between command parameters (BICO parameters) using this data set changeover.		
p0180	Number of Drive Data Sets (DDS) / DDS count		
SERVO, TM41, VECTOR	Can be changed: C1(3)	Calculated: -	Access level: 2
	Data type: Unsigned8	Dynamic index: -	Func. diagram: 8565
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 32 \end{aligned}$	Factory setting 1
Description:	Sets the number of Drive Data Sets (DDS).		
p0186[0...n]	Motor Data Sets (MDS) number / MDS number		
SERVO, VECTOR	Can be changed: C 1 (4)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: DDS, p0180	Func. diagram: 8575
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 15 \end{aligned}$	Factory setting 0
Description:	Using the parameter, each Drive Data Set (= index) is assigned the associated Motor Data Set (MDS). The parameter value therefore corresponds to the number of the assigned motor data set.		

p0187[0...n]	Encoder 1 encoder data set number / Enc 1 EDS number					
SERVO, VECTOR	Can be changed: C 1 (4)				Access level: 3	
	Data type: Unsigned8		Dynamic index: DDS, p0180		Func. diagram: 1580, 8570	
	P-Group: Data sets		Units group: -		Unit selection: -	
	Not for motor type: -				Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$		Max 99		Fact 99	
Description:	Using the parameter, each Drive Data Set (= index) is assigned the associated Encoder Data Set (EDS) for encoder 1.					
	The parameter value therefore corresponds to the number of the assigned encoder data set. Example:					
	Encoder data set 0 should be assigned to encoder 1 in drive data set 2 .$\text { --> p0187[2] = } 0$					
Note:	A value of 99 means that no encoder has been assigned to this drive data set (not configured).					
p0188[0...n]	Encoder 2 encoder data set number / Enc 2 EDS number					
SERVO, VECTOR	Can be changed: C 1 (4)		Calc	ulated: -	Access level: 3	
	Data type: Unsigned8		Dyn	amic index: DDS, p0180	Func. diagram: 1580, 8570	
	P-Group: Data sets			s group: -	Unit selection: -	
	Not for motor type: -				Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$		$\begin{aligned} & \text { Max } \\ & 99 \end{aligned}$		Factory setting 99	
Description:	Using the parameter, each Drive Data Set (= index) is assigned the associated Encoder Data Set (EDS) for encoder 2.					
	The parameter value therefore corresponds to the number of the assigned encoder data set.					
Note:	A value of 99 means that no encoder has been assigned to this drive data set (not configured).					
p0189[0...n]	Encoder 3 encoder data set number / Enc 3 EDS number					
SERVO, VECTOR	Can be changed: $\mathrm{C} 1(4)$			ulated: -	Access level: 3	
	Data type: Unsigned8		Dyn	amic index: DDS, p0180	Func. diagram: 1580, 8570	
	P-Group: Data sets			s group: -	Unit selection: -	
	Not for motor type: -				Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$		$\begin{aligned} & \text { Max } \\ & 99 \end{aligned}$		Factory setting 99	
Description:	Using the parameter, each Drive Data Set (= index) is assigned the associated Encoder Data Set (EDS) for encoder 3.					
	The parameter value therefore corresponds to the number of the assigned encoder data set.					
Note:	A value of 99 means that no encoder has been assigned to this drive data set (not configured).					
$\begin{aligned} & \hline \mathbf{r 0 1 9 2} \\ & \text { A_INF, B_INF, } \\ & \text { S_INF, SERVO, } \\ & \text { VECTOR } \end{aligned}$	Power unit firmware properties / PU FW property					
	Can be changed: -		Calc	ulated: -	Access level: 3	
	Data type: Unsigned32		Dyn	amic index: -	Func. diagram: -	
	P-Group: Converter		Units group: -		Unit selection: -	
	Not for motor type: -				Expert list: 1	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the properties supported by the power unit firmware.					
Bit field:	Bit000102	Signal name		1 signal	0 signal	FP
		Edge modulation po		Yes	No	-
		Free telegram can b		Yes	No	-
		Smart mode possible	dule	Yes	No	-

r0196[0...254] DRIVE-CLiQ component status / DLQ comp status

CU_CX32, CU_I,	Can be changed: -
CU_S	Data type: Unsigned32
	P-Group: -
	Not for motor type: -

Calculated: -

Dynamic index: -
Units group: -

Max

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Description: Displays the status of DRIVE-CLiQ components.
r0196[0...1]: Not used
r0196[2]: Status of DRIVE-DRIVE-CLiQ components with component number 2
r0196[255]: Status of DRIVE-DRIVE-CLiQ components with component number 255

Note:	Structure of status value: Bits $31 \ldots 8,7,6 \ldots 4,3 \ldots 0$
	Re Bit $31 . . .8$: Reserved
	Re Bit 7: 1: Part of set topology, 0: Only in actual topology
	Re Bit $6 . . .4$: 1: Active, 0: Inactive or parked
	Re Bit 3 ... 0:
	0: Component data not available.
	1: Power-up, acyclic DRIVE-CLiQ communication (LED = orange).
	2: Ready for operation, cyclic DRIVE-CLiQ communication (LED = green).
	3: Warning (LED = green).
	4: Fault (LED = red).
	5: Detection via LED and ready for operation (LED = green/orange).
	6: Detection via LED and alarm (LED = green/orange).
	7: Detection via LED and fault (LED = red/orange).
	8: Downloading firmware (LED = green/red at 0.5 Hz).
	9: Firmware downloading completed, Waiting for POWER ON (LED = green/red at 2.0 Hz).

r0197	Loader 1 version / Loader 1 version		
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 1
CU_S	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the version of loader 1 (first level loader).		
Dependency:	Refer to: r0018, r0128, r0148, r0158, r0198		
Note:	Example:		
	The value 1010100 should be	V01.01.01.00.	

r0198	Loader 2 version / Loader 2 version		
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 3
CU_S	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	-	Factory setting
	-		
Description:	Displays the version of loader 2 (second level loader).		
Dependency:	Refer to: r0018, r0128, r0148, r0158, r0197		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		

p0199[0...24]	Drive object name / DO name		
All objects	Can be changed: C1	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: -	Units group: -
	Not for motor type: -		Max
	Min	65535	Expert list: 1
Description:	0	Freely assignable name for a drive object.	Factory setting
	In the commissioning software, this name cannot be entered using the expert list, but is specified in the configura- tion assistant. The object name can be subsequently modified in the Project Navigator using standard Windows		

p0205	Power unit application / PU application		
VECTOR	Can be changed: $\mathrm{C} 2(1)$	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 7 \end{aligned}$	Factory setting 6
Description:	Overloading the load duty cycles applies under the prerequisite that before and after the overload, the drive converter is operated with its base load current - in this case, a load duty cycle of 300 s is used as basis.		
	For booksize drive units, the following applies:		
	Only the setting p0205 $=0$ can be selected. In this particular case, the base load current has a load duty cycle of 150% for 60 s and 176% for 30 s .		
	For chassis drive units, the following applies:		
	The base load current for a slight overload condition is based on a load duty cycle 110% for 60 s and 150% for 10 s.		
	The base load current for a high overload condition is based on a load duty cycle 150% for 60 s and 160% for 10 s .		
Value:	0 : Load duty cycle with high overload for vector drives		
	1: Load duty cycle with low overload for vector drives		
	6: S1 duty cycle for servo drives (feed drive)		
	7: S6 duty cycle for servo drives (spindle drive)		
Note:	When the parameter is changed, all of the motor parameters and the control mode are pre-assigned according to the selected application. The parameter has not influence when calculating the thermal overload.		
	p0205 can only be changed to the settings that are saved in the power unit EEPROM.		
	Its value is not reset when factory values are restored (see p0010 = 30, p0970).		

r0207[0...4] Rated power unit current / PU PI_rated

A_INF, B_INF,
S_INF, SERVO, VECTOR

Can be changed: -
Data type: FloatingPoint32
P-Group: Converter
Not for motor type: -

Min	Max
$-[$ Arms $]$	$-[$ Arms $]$

Description: Displays the rated power unit power for various load duty cycles.
Index:
[0] = Rating plate
[1] = Load duty cycle with low overload
[2] = Load duty cycle with high overload
[3] = S1 continuous duty cycle

Access level: 2

Func. diagram: 8014
Unit selection: -
Expert list: 1
Factory setting

- [Arms]

Notice:	For p0210 > 415 V for booksize power units with a supply voltage of 3-ph. $380 \ldots 480 \mathrm{~V}$, the smart mode is automatically activated ($p 3400.0=1$). In this case, the smart mode cannot be de-activated. This is because in the voltage controlled mode, the maximum steady-state DC link voltage (p 0280) would be exceeded.
	For booksize power units with supply voltage of 3-ph. $380 \ldots 480 \mathrm{~V}$ AC, the following applies:
	380 V <= p $0210<=400 \mathrm{~V}$--> Pre-assignment, setpoint for the DC link voltage: $\mathrm{p} 3510=600 \mathrm{~V}$
	$401 \mathrm{~V}<=$ p $0210<=415 \mathrm{~V}$--> Pre-assignment, setpoint for the DC link voltage: $\mathrm{p} 3510=625 \mathrm{~V}$
	416 V <= p0210 <= 480 V --> Smart Mode with non-regulated DC link voltage: p3510 $=1.35$ * p0210
Note:	When pre-assigning the setpoint for the DC link voltage (p 3510), the following is generally valid: p3510 = 1.5 * p0210
	The voltage range for the supply voltage depends on the type and the voltage class of the power unit.
	For booksize drive units, the following applies:
	Active Line Module, 400 V unit: $180 \mathrm{~V}<=$ p0210 <= 480 V
	Smart Line Module, 400 V unit: $180 \mathrm{~V}<=\mathrm{p} 0210<=480 \mathrm{~V}$
	For chassis drive units, the following applies:
	Active Line Module, 400 V unit: $180 \mathrm{~V}<=\mathrm{p} 0210<=480 \mathrm{~V}$
	Active Line Module, 690 V unit: $660 \mathrm{~V}<=\mathrm{p} 0210<=690 \mathrm{~V}$
	Active Line Module, 500/690 V unit: $380 \mathrm{~V}<=\mathrm{p} 0210<=690 \mathrm{~V}$
	Smart Line Module, 400 V unit: $380 \mathrm{~V}<=\mathrm{p} 0210<=480 \mathrm{~V}$
	Smart Line Module, 690 V unit: 500 V <= p0210 <= 690 V
p0210	Drive unit line supply voltage / Supply voltage
SERVO, VECTOR	Can be changed: C2(2), T Calculated: - Access level: 3
	Data type: Unsigned16 Dynamic index: - Func. diagram: 6220,6320
	P-Group: Converter Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
	Min Max Factory setting $1[\mathrm{~V}]$ $63000[\mathrm{~V}]$ 600 [V]
Description:	Sets the drive unit supply voltage.
	AC/AC unit: The rms value of the phase-to-phase line supply voltage should be entered.
	DC/AC unit: The rated DC voltage of the connection busbar should be entered.
Dependency:	Set p1254, p1294 (automatic detection of the Vdc switch-on levels) $=0$.
	The switch-in thresholds of the Vdc_max controller are then directly determined using p0210.
Caution:	If the line supply voltage is higher than the entered value, the Vdc controller may be automatically de-activated in some cases to prevent the motor from accelerating. In this case, an appropriate alarm is output.
Note:	Setting ranges for p 0210 as a function of the rated power unit voltage:
	V_rated = 230 V :
	- p0210 = 200 ... 240 V (AC/AC)
	V_rated $=400 \mathrm{~V}$:
	- p0210 = $380 \ldots 480 \mathrm{~V}$ (AC/AC), $510 \ldots 720 \mathrm{~V}$ (DC/AC)
	V_rated $=400 \mathrm{~V}$ (booksize):
	- p0210 = 380 ... 480 V (AC/AC), $510 \ldots 720 \mathrm{~V}, 270 \ldots 360 \mathrm{~V}$ (DC/AC)
	V_rated $=500 \mathrm{~V}$:
	- p0210 = $500 \ldots 600 \mathrm{~V}$ (AC/AC), $675 \ldots 900 \mathrm{~V}$ (DC/AC)
	V_rated $=690 \mathrm{~V}$:
	- p0210 = $660 \ldots 690 \mathrm{~V}$ (AC/AC), $890 . . .1035 \mathrm{~V}$ (DC/AC)
	The pre-charging switch-in threshold for the DC link voltage (Vdc) is calculated from p0210:
	Vdc_pre $=$ p0210 * 0.82 * 1.35 (AC/AC)
	Vdc_pre $=$ p0210 * 0.82 (DC/AC)
	The undervoltage thresholds for the DC link voltage (Vdc) are calculated from p0210 as a function of the rated power unit voltage:
	V_rated $=400 \mathrm{~V}$:
	- V_min $=$ p0210 * 0.78 (AC/AC), p0210 * 0.60 (DC/AC)

	$\begin{aligned} \mathrm{V} \text { _rated } & =500 \mathrm{~V}: \\ -\mathrm{V} \text { _min } & =\mathrm{p} 0210 * 0.76(\mathrm{AC} / \mathrm{AC} \\ \mathrm{V} \text { rated } & =690 \mathrm{~V}: \\ -\mathrm{V} _ \text {min } & =\mathrm{p} 0210 * 0.74(\mathrm{AC} / \mathrm{AC} \end{aligned}$	$57 \text { (DC/AC) }$	
p0210	Drive unit line supply	pply voltage	
B_INF	Can be changed: C2(1)	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8760
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 200 \text { [Vrms] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000 \text { [Vrms] } \end{aligned}$	Factory setting 400 [Vrms]
Description:	Sets the drive unit supply voltage (3-ph. AC).		
Caution:	If the line supply voltage is higher than the entered value, the Vdc controller may be automatically de-activated in some cases to prevent the motor from accelerating. In this case, an appropriate alarm is output.		
Notice:	When connected to 3-ph. 230 V AC (only booksize units) the following must be observed: - the undervoltage and overvoltage limits change (r0296, r0297). - when using the internal braking chopper from the Basic Line Modules (20 or 40 kW) the threshold when the braking chopper becomes active is reduced to 385 V . When using an external braking chopper, it must be ensured that a suitable activation threshold is used.		
Note:	The supply voltage range depe 400 V chassis units: 380 V <= 690 V chassis units: 500 V <= 400 V booksize units can also 400 V booksize units: 180 V < $=$	Itage class of the po V V to 3-ph. 230 V AC: 0 V	
p0211	Rated line freq / Rated		
A_INF, S_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8864, 8964
	P-Group: Closed-loop control		
	Not for motor type: -		Expert list: 1
	Min $10 \text { [Hz] }$	$\begin{aligned} & \operatorname{Max} \\ & 100[\mathrm{~Hz}] \end{aligned}$	Factory setting $50[\mathrm{~Hz}]$
Description:	Sets the rated line frequency for the infeed.		
Dependency:	Refer to: p3409		
Notice:	For p3409 = 1, the following applies:		
	After operation has been enabled, the rated line supply frequency (p 0211) is automatically set to a value of 50 Hz or 60 Hz corresponding to the currently measured frequency. This means that the parameter value of p0211 is, under certain circumstances, changed. For p3409 = 0, the following applies: The system does not change parameter p0211.		

p0220[0...1]	Infeed line filter type / INF line filt type	
A_INF	Can be changed: C2(1) Calculated: -	Access level: 3
	Data type: Integer16 Dynamic index: -	Func. diagram: 8950
	P-Group: Converter Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1
	$\begin{array}{ll} \text { Min } & \text { Max } \\ 0 & 45 \end{array}$	Factory setting 0
Description:	Sets the line filter type for the Active Line Module (ALM).	
	Using the line filter type, filter capacitance (p 0221), filter resistance (p 0222) and inductance (p 0223) and resistance (p 0224) of the reactor are pre-assigned.	
	For an Active Line Module (ALM), the power is automatically selected corresponding to the Active Interface Module (AIM) and the line filter type (p0220) pre-set as follows:	
	- "booksize" format: p0220 $=41$... 45	
	- "chassis" format: p0220 = 10 ... 19	
Value:	0 : \quad No line filter	
	1: Wideband Line Filter booksize 400 V 16 kW (6SL3000-0BE21-6AA0)	
	2: Wideband Line Filter booksize 400 V 36 kW (6SL3000-0BE23-6AA0)	
	3: Wideband Line Filter booksize 400 V 55 kW (6SL3000-0BE25-5AA0)	
	4: Wideband Line Filter booksize 400 V 80 kW (6SL3000-0BE28-0AA0)	
	5: Wideband Line Filter booksize 400 V 120 kW ($6 \mathrm{SL} 3000-0 \mathrm{BE} 31-2 \mathrm{AAO}$)	
	10: AIM F 400 V 132 kW 160 kW (6SL3300-7TE32-6Ax0)	
	11: AIM G 400 V 235 kW (6SL3300-7TE33-8Ax0)	
	12: AIM G 400 V 300 kW (6 SL3300-7TE35-0Ax0)	
	13: AIM H 400 V 380 kW 500 kW ($6 \mathrm{SL} 3300-7 \mathrm{TE} 38-4 \mathrm{Ax0}$)	
	14: AIM J 400 V 630 kW 900 kW (6 SL3300-7TE41-4Ax0)	
	15: AIM F 690 V 150 kW ($6 \mathrm{SL} 3300-7 \mathrm{TH} 31-4 \mathrm{AxO}$)	
	16: AIM G 690 V 330 kW ($6 \mathrm{SL} 3300-7$ TH33-1Ax0)	
	17: AIM H 690 V 560 kW (6 SL3300-7TH35-8Ax0)	
	18: AIM J 690 V 800 kW (6SL3300-7TH37-4Ax0)	
	19: AIM J 690 V 1100 kW 1400 kW ($6 \mathrm{SL} 3300-7$ TH41-3Ax0)	
	31: Basic Line Filter booksize 400 V 16 kW (6SL3000-0BE21-6DA0)	
	32: Basic Line Filter booksize 400 V 36 kW (6SL3000-0BE23-6DA0)	
	33: Basic Line Filter booksize 400 V 55 kW (6SL3000-0BE25-5DA0)	
	34: Basic Line Filter Booksize 400 V 80 kW (6SL3000-0BE28-0DAx)	
	35: Basic Line Filter Booksize 400 V 120 kW (6SL3000-0BE31-2DAx)	
	41: AIM 400 V 16 kW (6SL3100-0BE21-6AB0)	
	42: AIM 400 V 36 kW (6SL3100-0BE23-6ABO)	
	43: AIM 400 V 55 kW (6SL3100-0BE25-5AB0)	
	44: AIM 400 V 80 kW (6SL3100-0BE28-0AB0)	
	45: AIM 400 V 120 kW (6SL3100-0BE31-2ABO)	
Index:	$\begin{aligned} & {[0]=\text { Line filter }} \\ & {[1]=\text { Line filter, optional }} \end{aligned}$	
Notice:	"Booksize" format: When using an Active Interface Module (AIM), it is absolutely necessary that the terminals for the temperature switch between the Active Interface Module (X121.1/2) and the Active Line Module (X21.1/2) are connected.	
Note:	For booksize units, when using an Active Interface Module in p0220[0] it is also possible to use a Basic Filter that is parameterized in p0220[1].	
	The setting of the filter capacitance (p 0221) and filter resistance (p 0222) - derived from $\mathrm{p} 0220[0,1]$ - are required in the closed-loop voltage controlled mode to automatically compensate the filter reactive current.	
	For two power ratings, the same line filter is used for both power ratings.	
	AIM: Active Interface Module	

p0221[0...1]	Infeed filter capacitance / INF C_filter		
A_INF	Can be changed: C2(1)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8950
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mu \mathrm{~F}] \end{aligned}$	Max $100000.00[\mu \mathrm{~F}]$	Factory setting $0.00[\mu \mathrm{~F}]$
Description:	Sets the filter capacitance of the line filter (connected in a delta configuration).		
Index:	[0] = Line filter [1] = Line filter, optional		
Note:	When a Siemens line filter is For a parallel circuit, the val Index 0 refers to the first line Index 1 refers to the optiona	is parameter is auto the capacitance [0]. from p0220[1].	with the correct value.

p0222[0...1]	Infeed filter resistance / INF R_filter		
A_INF	Can be changed: C2(1)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00000 [Ohm]	$\begin{aligned} & \text { Max } \\ & 100.00000[\mathrm{Ohm}] \end{aligned}$	Factory setting 0.00000 [Ohm]
Description: Index:	Sets the filter resistance in [0] = Line filter [1] = Line filter, optional	er capacitance.	
Note:	When a Siemens line filter is For a parallel circuit, the val Index 0 refers to the first line Index 1 refers to the optiona	is parameter is auto o the resistance of [0]. from p0220[1].	with the correct value.

p0223	Infeed inductance between filter and power unit / INF L filter/PU		
A_INF, S_INF	Can be changed: C 2 (1)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8850, 8950
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.001[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.000[\mathrm{mH}] \end{aligned}$	Factory setting $2.100[\mathrm{mH}]$
Description:	Sets the inductance between the filter and power unit.		
Note:	The parameter is automatically pre-assigned depending on the power unit being used and matches the specified Siemens commutating reactors.		

p0224	Infeed resistance between filter and power unit / INF R filter/PU		
A_INF, S_INF	Can be changed: C2(1)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8850,8950
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$0.00000[\mathrm{Ohm}]$	$100.00000[\mathrm{Ohm}]$	0.00100 [Ohm]

Note:	The parameter is automatically pre-assigned depending on the power unit being used and matches the specified Siemens commutating reactors. For a parallel circuit, the value corresponds to the resistance of a power unit.		
p0225	Infeed inductance be	upply and filter	Iter
A_INF, S_INF	Can be changed: $\mathrm{C} 2(1)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8850, 8950
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.001[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.000[\mathrm{mH}] \end{aligned}$	Factory setting 0.001 [mH]
Description:	Sets the inductance between line supply and filter.		
Note:	The value must be, for example, appropriately increased if an additional inductance (reactor or transformer is installed in front of the filter).		
p0226	Infeed resistance between line supply and filter / INF R line/filter		
A_INF, S_INF	Can be changed: C 2 (1)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8850, 8950
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00 \text { [Ohm] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.00[\mathrm{Ohm}] \end{aligned}$	Factory setting 0.00 [Ohm]
Description:	Sets the resistance between the line supply and filter.		
Note:	The value must be, for example, appropriately increased if an additional resistor is installed in front of the filter.		
p0227	Infeed, DC link capacitance, power unit / INF C		
A_INF, S_INF	Can be changed: $\mathrm{C} 2(1)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8850, 8950
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.20[\mathrm{mF}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00[\mathrm{mF}] \end{aligned}$	Factory setting 1.00 [mF]
Description:	Sets the total DC link capacitance.		
Note:	The total DC link capacitance of a DC link group comprises the sum of the sub-capacitances of all motor/infeed modules and the additional DC link capacitors.		
p0230	Drive filter type, motor side / Drv filt type mot		
VECTOR	Can be changed: $\mathrm{C} 2(1,2)$	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 4 \end{aligned}$	Factory setting 0
Description:	Sets the type of the filter at the motor side.		
Value:	0: No filter 1: Motor reactor 2: dv/dt filter 3: Sine-wave filter, Siem 4: Sine-wave filter, third		
Dependency:	The following parameters ar p0230 = 1: --> p0233 (power unit, moto	gg p0230: inductance	

p0234	Power unit sine-wave filter capacitance / PU sine filter C	
VECTOR	Can be changed: C2(2), U, T	Calculated: -
	Data type: FloatingPoint32	Dynamic index: -
	P-Group: Converter	Units group: -
	Not for motor type: -	
	Min	Max
	$0.000[\mu \mathrm{~F}]$	$1000.000[\mu \mathrm{~F}]$
	Enters the capacitance of a sine-wave filter connected at the power unit output.	

Access level: 2
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
$0.000[\mu \mathrm{~F}]$

[^0]| Dependency:
 Note: | The parameter is automatically pre-assigned when selecting a filter via p0230 if a SIEMENS filter is defined for the power unit.
 Refer to: p0230 | | |
| :---: | :---: | :---: | :---: |
| | | | |
| | The parameter value includes the sum of all of the capacitances of a phase connected in series (phase - ground). | | |
| | When exiting the quick commissioning using $\mathrm{p} 3900=1$, the parameter value is set to the value of the defined SIEMENS filter or to zero. For this reason, the parameter value of a third-party filter only has to be entered outside the commissioning phase ($\mathrm{p} 0010=0$). | | |
| p0235 | Number of reactors connected in series / Qty L in series | | |
| VECTOR | Can be changed: $\mathrm{C} 2(1,2)$ | Calculated: - | Access level: 1 |
| | Data type: Unsigned8 | Dynamic index: - | Func. diagram: - |
| | P-Group: Converter | Units group: - | Unit selection: - |
| | Not for motor type: - | | Expert list: 1 |
| | $\underset{1}{\text { Min }}$ | $\underset{3}{\operatorname{Max}}$ | Factory setting 1 |
| Description: | Number of reactors connected at the power unit output. | | |
| Dependency: | Refer to: p0230 | | |
| Caution: | If the number of motor reactors connected in series does not correspond to the parameter value, then this can result in an unfavorable control behavior. | | |
| Note: | The parameter cannot be changed for chassis drive units and for p0230 $=1$. | | |
| p0249 | Power unit cooling type / PU cool type | | |
| S INF, SERVO, VECTOR | Can be changed: C2(1, 2) | Calculated: - | Access level: 4 |
| | Data type: Integer16 | Dynamic index: - | Func. diagram: - |
| | P-Group: Converter | Units group: - | Unit selection: - |
| | Not for motor type: - | | Expert list: 1 |
| | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\underset{1}{\operatorname{Max}}$ | Factory setting 0 |
| Description: | This therefore defines whether for these power units, the internal air cooling is shut down and instead, the "ColdPlate" cooling type is used. | | |
| Value: | 0 : Air cooling int
 1: Cold-Plate | | |
| Note: | For booksize compact power units, there is a 4 at the 5 th position in the Order No. The parameter is irrelevant for all other power unit types. | | |
| p0251[0...n] | Operating hours counter power unit fan / PU fan t_oper | | |
| A_INF, B_INF, SINF, SERVO, VECTOR | Can be changed: T | Calculated: - | Access level: 3 |
| | Data type: Unsigned32 | Dynamic index: PDS, p0120 | Func. diagram: - |
| | P-Group: Modulation | Units group: - | Unit selection: - |
| | Not for motor type: - | | Expert list: 1 |
| | Min
 0 [h] | $\begin{aligned} & \operatorname{Max} \\ & 4294967295[\mathrm{~h}] \end{aligned}$ | Factory setting 0 [h] |
| Description: | Displays the power unit fan operating hours. | | |
| | The number of hours operated can only be reset to 0 in this parameter (e.g. after a fan has been replaced).Refer to: 0252 | | |
| Dependency: | | | |

	$\begin{aligned} & 02 \\ & 03 \end{aligned}$	Acknowledge faults Leakage sensing OK	Acknowledgement No leaked liquid	No acknowledgement Leaked liquid	
p0266[0...7]	BI: Cooling system, feedback signals, signal source / RKA fdbk S_src				
A_INF (Cooling system), B_INF (Cooling system), S_INF (Cooling system), SERVO (Cooling system), VECTOR (Cooling system)		be changed: U, T type: Unsigned32 / Binary roup: Communications for motor type: -	Calculated: - Dynamic index: - Units group: -	Access level: 3 Func. diagram: Unit selection: - Expert list: 1	
	Min		Max	Factory setting 1	
Description: Index:	Sets the signal sources for the feedback signals from the cooling system. [0] = Cooling system powered up [1] = Cooling system ready to be powered up [2] = Cooling system, no alarm present [3] = Cooling system, no fault present [4] = Cooling system, no leaked liquid [5] = Cooling system, liquid flow OK [6] = Cooling system, conductivity < fault threshold [7] = Cooling system, conductivity < alarm threshold				
r0267.0... 7	BO: Cooling system status word / RKA ZSW				
A_INF (Cooling system), B_INF (Cooling system), S_INF (Cooling system), SERVO (Cooling system), VECTOR (Cooling system)		be changed: - type: Unsigned16 roup: Commands for motor type: -	Calculated: - Dynamic index: - Units group: -	Access level: 3 Func. diagram: Unit selection: - Expert list: 1	
	Min		Max	Factory setting	
Description:	Displays the status word of the cooling system.				
Bit field:		Signal name	1 signal	0 signal	FP
		RKA powered up	Yes	No	-
		RKA ready to power up	Yes	No	-
		RKA no alarm present	Yes	No	-
		RKA no fault present	Yes	No	-
		RKA no leaked fluid	Yes	No	-
		RKA liquid flow OK	Yes	No	-
		RKA conductivity, no fault	Yes	No	9974
	07	RKA conductivity, no alarm	Yes	No	9974
Dependency:	Refer to: p0266				
p0278	DC link voltage undervoltage threshold reduction / Vdc V_under red				
SERVO, VECTOR	Can	be changed: T	Calculated: -	Access level: 3	
		type: FloatingPoint32	Dynamic index: -	Func. diagram: -	
		roup: Converter	Units group: -	Unit selection: -	
	$\begin{aligned} & \text { Min } \\ & -80 \end{aligned}$		Max 0 [V]	Factory setting 0 [V]	
Description: Dependency:	Sets Refe Refe	the absolute value by which r to: p0210, r0296 to: F30003	Id to initiate the undervolt	It (F30003) is reduced.	
Notice:	When using a Control Supply Module (CSM) for 24 V supply from the DC link, the minimum continuous DC link voltage may not lie below 430 V . DC link voltages in the range $300 \ldots 430 \mathrm{~V}$ are permissible up to a duration of 1 min .				

p0281	Line supply overvoltage, alarm threshold / V_I_over A thresh		
A_INF, S_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8860, 8960
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $100 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 200 \text { [\%] } \end{aligned}$	Factory setting 110 [\%]
Description:	Sets the alarm threshold for a line supply overvoltage condition. The setting is made as a percentage of the drive unit supply voltage (p 0210).		
Dependency: Note:	If synchronizing voltages are not detected, the line supply voltage is estimated using a model. It is therefore important to ensure that drive unit data is correctly specified.		
p0282	Line supply undervoltage, alarm threshold / V_I_under A thresh		
A_INF, S_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8860, 8960
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 10 [\%]	Max $100 \text { [\%] }$	Factory setting 85 [\%]
Description:	Sets the alarm threshold for a line undervoltage condition. The setting is made as a percentage of the drive unit supply voltage (p 0210).		
Dependency:	Refer to: p0222, p0224, p0225, p0226, p3421, p3422		
Note:	If synchronizing voltages are not detected, the line supply voltage is estimated using a model. It is therefore important to ensure that drive unit data is correctly specified.		
p0283	Line supply undervoltage, shutdown (trip) threshold / V_I_under tr_thrsh		
A_INF, S_INF	Can be changed: $\mathrm{C} 2(1)$, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8860, 8960
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $10 \text { [\%] }$	$\begin{aligned} & \text { Max } \\ & 100 \text { [\%] } \end{aligned}$	Factory setting 75 [\%]
Description:	Sets the shutdown threshold for the line supply undervoltage. The setting is made as a percentage of the drive unit supply voltage (p 0210).		
Dependency:	Refer to: p0282		
Notice:	For booksize Active Line Modules, the following applies:		When operated without Active Interface Module ($\mathrm{p} 220=41 \ldots 45$), the minimum shutdown threshold is 75%.
p0284	Line supply frequency exceeded, alarm threshold / f_I_exc A thresh		
A_INF, S_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8864, 8964
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 100.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$	Factory setting 110.0 [\%]
Description:	Sets the alarm threshold for an excessively high line frequency.		

Dependency:	Set as a percentage of the rated line frequency. Refer to: p0211		
p0285	Line supply frequency undershot, alarm threshold / f_I_under A thresh		
A_INF, S_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8864, 8964
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [\%] } \end{aligned}$	Factory setting 90.0 [\%]
Description:	Sets the alarm threshold for an excessively low line frequency.		
Dependency:	Set as a percentage of the rated line frequency.		
	Refer to: p0211		
p0287[0..1]	Ground fault monitoring thresholds / Grnd flt thresh		
A_INF, S_INF, SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [\%] } \end{aligned}$	Factory setting [0] 6.0 [\%]
			[1] 16.0 [\%]
Description:	Sets the shutdown thresholds for the ground fault monitoring.		
Index:	[0] = Threshold for pulse inhibit [1] = Threshold for pulse enable		
Dependency:	Refer to: F30021		
Note:	De-activating the ground fault monitoring:		
	- Sequence: --> p0287[1] = 0 --> p0287[0] = 0		
	- irrespective of the firmware version of the power unit.		
	Sets the thresholds:		
	- the prerequisite is at least firmware version 2.2 of the power unit.		
r0289	Maximum power unit output current / PU I_outp max		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the current maximum output current of the power unit taking into account de-rating factors.		
p0290	Power unit overload response / PU overld response		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 8014
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 3 \end{aligned}$	Factory setting 0
Description:	Sets the response to a thermal overload condition of the power unit.		

	The following quantities can result in a response to thermal overload: - heat sink temperature (r0037.0) - chip temperature (r0037.1) - power unit overload I2T (r0036) Possible measures to avoid thermal overload: - reduce the output current (closed-loop speed/velocity or torque/force control) or the output frequency (V/f control). - reduce the pulse frequency (only for vector control). A reduction, if parameterized, is always realized after an appropriate alarm is output.
Value:	0 : Reduce output current or output frequency 1: \quad No reduction, shutdown when overload threshold is reached 2: Reduce I_output or f_output and f_pulse (not using I2t) 3: Reduce the pulse frequency (not using I2t)
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only responses can be selected without pulse frequency reduction ($\mathrm{p} 0290=0,1$). If a fault or alarm is present, then r2135.13 or r2135.15 is set. Refer to: r0036, r0037, p0108, r0108, p0230, r2135 Refer to: A05000, A05001, A07805
Caution:	If the thermal overload of the power unit is not sufficiently reduced by the actions taken, the drive is always shut down. This means that the power unit is always protected irrespective of the setting of this parameter.
Note:	The setting p0290 $=0$, 2 is only practical if the load decreases with decreasing speed (e.g. for applications with variable torque such as for pumps and fans). Under overload conditions, the current and torque limit are reduced, and therefore the motor is braked and forbidden speed ranges (e.g. minimum speed p1080 and suppression [skip] speeds p1091 ... p1094) can be passed through. For p0290 $=2$, 3, the $12 t$ overload detection of the power unit does not influence the responses. With servo and vector drives, p290 cannot be modified when identification of motor data is selected.
r0293	CO: Power unit alarm threshold model temperature / PU Tmodel_A_thresh
SERVO, VECTOR	Can be changed: - Calculated: - Access level: 3
	Data type: FloatingPoint32 Dynamic index: - Func. diagram: -
	P-Group: Converter Units group: 21_1 Unit selection: p0505
	Not for motor type: - Expert list: 1
	Min Max Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$ $-\left[{ }^{\circ} \mathrm{C}\right]$ $-\left[{ }^{\mathrm{C}}\right]$
Description: Dependency:	Temperature alarm threshold for the difference from the chip and heat sink temperature in the thermal model. Refer to: r0037 Refer to: F30024
Note:	The parameter is only relevant for chassis power units.
p0294	Power unit alarm with I2t overload / PU I2t alrm thresh
A_INF, S_INF,	Can be changed: U, T Calculated: - Access level: 3
SERVO, VECTOR	Data type: FloatingPoint32 Dynamic index: - Func. diagram: 8014
	P-Group: Converter Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
	Min Max Factory setting $10.0[\%]$ $100.0[\%]$ 95.0 [\%]
Description:	Sets the alarm threshold for the I2t power unit overload. Drive: If this threshold is exceeded, an overload alarm is generated and the system responds as parameterized in p0290. Infeed: When the threshold value is exceeded, only an overload alarm is output.
Dependency:	Refer to: r0036, p0290 Refer to: A07805

Note:	The I2t fault threshold is 100%. If this value is exceeded, fault F30005 is output.		
p0294	Power unit alarm with I2t overload / PU I2t alrm thresh		
B_INF	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8014
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [\%] } \end{aligned}$	Factory setting 95.0 [\%]
Description:	Sets the alarm threshold for the 12t power unit overload.		
Dependency:	Refer to: r0036		
	Refer to: A07805		
Note:	The parameter is only relevant for booksize units!		
p0295	Fan run-on time / Fan run-on time		
A_INF, B_INF, S_INF, SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \operatorname{Min}_{0} \\ 0[s] \end{gathered}$	$\begin{aligned} & \text { Max } \\ & 600 \text { [s] } \end{aligned}$	Factory setting 0 [s]
Description:	Sets the fan run-on time after the pulses for the power unit have been canceled.		
Note:	Under certain circumstances, the fan can continue to run for longer than was set (e.g. as a result of the excessively high heat sink temperature).		
	For values less than $1 \mathrm{~s}, \mathrm{a} 1 \mathrm{~s}$ run on time for the fan is effective.		
r0296	DC link voltage undervoltage threshold / Vdc V_lower_thresh		
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 8750, 8760, 8850, 8864, 8950, 8964
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[\mathrm{V}] \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ -[\mathrm{V}] \end{gathered}$	Factory setting $-[V]$
Description:	If the $D C$ link voltage falls below the threshold specified here, the infeed is tripped due to a $D C$ link undervoltage condition.		
Dependency:	Refer to: F30003		
r0296	DC link voltage undervoltage threshold / Vdc V_lower_thresh		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[V] \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ -[V] \end{gathered}$	Factory setting - [V]
Description:	If the DC link voltage falls below this threshold, the Motor Module is shut down due to a DC link undervoltage condition (F30003).		
Dependency:	Refer to: p0278		
	Refer to: F30003		
Note:	For booksize units, the following applies: The undervoltage threshold can be reduced with p0278.		

Dependency:	When the motor type is changed, the code number in p0301 may be reset to 0 .
	If p0300 is changed during quick commissioning ($p 0010=1$), then the matching technological application (p 0500) is automatically pre-assigned. This does not occur when commissioning the motor (p0010 = 3). If 10000 is written to p0300 for a parameter download, then p0500 is pre-assigned with DRIVE-CLiQ corresponding to the motor type. Refer to: p0301
Caution:	If a catalog motor is selected ($\mathrm{p} 0300>=100$) and an associated motor code number (p 0301), then the parameters,that are associated with this list cannot be changed (write protection). The write protection is canceled if the motor type p0300 is set to a non-Siemens motor that matches p0301 (e.g. p0300 $=2$ for p0301 $=2 x x x x$).
Notice:	The list for motor codes /encoder codes can be found in the following literature:
	SINAMICS S120/S150 List Manual
Note:	With $\mathrm{p} 0300=10000$, for a motor with DRIVE-CLiQ, the motor parameters are automatically downloaded, with $p 0300=10001$, the motor parameters of a second data set (if available).
	If a motor type has not been selected ($0300=0$), then the drive commissioning routine cannot be exited.
	A motor type with a value above p0300 >= 100 describes motors for which a motor parameter list exists.
	Motor types with a value below p0300 < 100 correspond to the selection of an unlisted motor. When appropriately selected, this means that the motor parameters are pre-assigned the settings for an unlisted motor.
	This also applies for parameters for a motor with DRIVE-CLiQ. In this case p0300 can only be set to p0300 $=10000$ or 10001 (read motor parameters) or to the corresponding non-Siemens motor (first digit of the motor code number) in order to be able to cancel the write protection.

p0301[0...n]	Motor code number selection / Mot code No. sel		
SERVO (Lin)	Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}$	Calculated: -	Access level: 1
	Data type: Unsigned16	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: FEM		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	Max 65535	Factory setting 0
Description:	The parameter is used to select a motor from a motor parameter list.		
	When changing the code number (with the exception to the value 0), all of the motor parameters are pre-assigned from the internally available parameter lists.		
Dependency:	Only code numbers for motor types can be selected that correspond to the motor type selected in 00300 . Refer to: p0300		
Notice:	The list for motor codes/encoder codes can be found in the following literature: SINAMICS S120/S150 List Manual		
Note:	The motor code number can only be changed if the matching list motor was first selected in p0300.		
	When selecting a list motor ($0300>=100$), drive commissioning can only be exited if a code number is selected.		

r0303[0...n]	Motor status word from motor with DRIVE-CLiQ / Motor ZSW Drv-CliQ		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status word of the automatic motor parameter sensing of a motor with DRIVE-CLiQ.		
Bit field:	Bit Signal name	1 signal	0 signal
	$00 ~ M o t o r ~ d a t a ~ s e t s ~$	Two	One

p0304[0...n]	Rated motor voltage / Mot V_rated		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 6300, 6724
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [Vrms]	Max 20000 [Vrms]	Factory setting 0 [Vrms]
Description:	Sets the rated motor voltage (rating plate).		
Dependency:	Refer to: p0349		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Note:	When the parameter value is entered the connection type of the motor (star/delta) must be taken into account.		
	When the induction motor is commissioned for the first time, the parameter is preassigned a value that matches the power unit and corresponds the setting in p0100.		

p0305[0...n]	Rated motor current / Mot I_rated		
SERVO	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 6300
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$0.00[$ Arms]	$10000.00[A r m s]$	0.00 [Arms]
Description:	Sets the rated motor current (rating plate).		

Caution: \quad This parameter is automatically preset for motors from the motor list (p 0301).
When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.
Notice: If 00305 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is appropriately preassigned. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$).
Note: When the parameter value is entered the connection type of the motor (star/delta) must be taken into account. When the induction motor is commissioned for the first time, the parameter is preassigned a value that matches the power unit and corresponds the setting in p0100.

p0305[0...n]	Rated motor current / Mot I_rated		
VECTOR	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 6300
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.00} \\ & \text { [Arms] } \end{aligned}$	Max 10000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Sets the rated motor current (rating plate).		
Dependency:	Refer to: p0349		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Notice:	If p0305 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is appropriately preassigned. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$).		
	If the rated motor current exceeds twice the maximum drive converter current ($\mathrm{rO209} \mathrm{)}$, reduced due to the current harmonics that increase overproportionally (r0067).		
Note:	When the parameter value is entered the connection type of the motor (star/delta) must be taken into account. When the induction motor is commissioned for the first time, the parameter is preassigned a value that matches the power unit and corresponds the setting in p0100.		

p0306[0...n]	Number of motors connected in parallel / Motor qty		
SERVO	Can be changed: C2(1,3)	Calculated: -	Access level: 1
	Data type: Unsigned8	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting

Description: Number of motors that can be operated in parallel using one motor data set Internally, an equivalent motor is calculated depending on the number of motors entered.
The following should be carefully observed for motors connected in series:
The following rating plate data should only be entered for one motor:

- resistances and inductances: p0350, p0352, p0353, p0354, p0356, p0357, p0358, p0360
- currents: p0305, p0318, p0320, p0323, p0325, p0329, p0338, p0391, p0392
- torques/forces: p0312, p0319
- power ratings: p0307
- masses/moments of inertia: p0341, p0344

All other parameters take into account the replacement/equivalent motor (e.g. r0331, r0370, r0373, r0374).
Dependency: Refer to: r0331, r0370, r0373, r0374, r0376, r0377, r0382
Caution: The motors to be connected in parallel must be of the same type and size (same order no. (MLFB)).

The mounting regulations when connecting motors in parallel must be carefully maintained! Especially for synchronous motors, the pole position of motors that are rigidly coupled with one another (mechanically) must be identical. The number of motors set must correspond to the number of motors that are actually connected in parallel.
After changing p0306, it is imperative that the control parameters are adapted (e.g. using automatic calculation with p0340 = 1).

p0309[0...n]	Rated motor efficiency / Mot eta_rated		
VECTOR	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 99.9 \text { [\%] } \end{aligned}$	Factory setting 0.0 [\%]
Description:	Sets the rated motor efficiency (rating plate).		
	For a parameter value of 0.0, the power factor is internally calculated and displayed in r0332.		
Dependency:	This parameter is only available for NEMA motors (p0100 = 1).		
	Refer to: p0100, p0308, r0332		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		

Note: \quad The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).
When the induction motor is commissioned for the first time, the parameter is preassigned a value that matches the power unit and corresponds the setting in p0100.

p0310[0...n]	Rated motor frequency / Mot f_rated		
SERVO	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 3000.00[\mathrm{~Hz}] \end{aligned}$	Factory setting $0.00[\mathrm{~Hz}]$
Description:	Sets the rated motor frequency (rating plate).		
Dependency:	The number of pole pairs (r0313) is automatically re-calculated when the parameter is changed (together with p 0311), if $\mathrm{p} 0314=0$.		
	If $p 0311$ is changed during quick commissioning ($p 0010=1$), then the maximum speed $p 1082$, which is also associated with quick commissioning, is appropriately pre-assigned.		
	Refer to: p0311, r0313, p0314		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Notice:	If p0310 is changed during quick commissioning ($p 0010=1$), then the maximum speed $p 1082$, which is also associated with quick commissioning, is appropriately pre-assigned. This is not the case when commissioning the motor (p0010 = 3).		
Note:	When the induction motor is commissioned for the first time, the parameter is preassigned a value that matches the power unit and corresponds the setting in p0100.		
	The parameter is automatically pre-assigned for induction motors from the motor list (p0301).		
	For synchronous motors, the parameter is not required and must therefore be pre-assigned zero. For p0310 $=0$, it is not possible to calculate the pole pair; instead, it must be entered in p0314.		

p0310[0...n]	Rated motor frequency / Mot f_rated		
VECTOR	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 6300
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 3000.00[\mathrm{~Hz}] \end{aligned}$	Factory setting 0.00 [Hz]
Description:	Sets the rated motor frequency (rating plate).		
Dependency:	The number of pole pairs (r0313) is automatically re-calculated when the parameter is changed (together with p0311), if p0314 $=0$.		
	The rated frequency is restricted to values between 1.00 Hz and 650.00 Hz .		
	Refer to: p0311, r0313, p0314		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Notice:	If p0310 is changed during quick commissioning ($p 0010=1$), then the maximum speed $p 1082$, which is also associated with quick commissioning, is appropriately pre-assigned. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$).		
Note:	When the induction motor is commissioned for the first time, the parameter is preassigned a value that matches the power unit and corresponds the setting in p0100.		

p0311[0...n]	Rated motor velocity / Mot v_rated		
SERVO (Lin)	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.0 [$\mathrm{m} / \mathrm{min}$]	Max 6000.0 [m/min]	Factory setting 0.0 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the rated motor velocity (rating plate).		
Dependency:	The pole pair width is set in p 0315.		
	Refer to: p0310, r0313, p0314		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Notice:	If p0311 is changed during quick commissioning ($p 0010=1$), then the maximum speed $p 1082$, which is also associated with quick commissioning, is appropriately pre-assigned. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$) .		
Note:	When the induction motor is commissioned for the first time, the parameter is preassigned a value that matches the power unit and corresponds the setting in p0100.		

p0311[0...n]	Rated motor speed / Mot n_rated		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.0 [rev/min]	Max 210000.0 [rev/min]	Factory setting 0.0 [rev/min]
Description:	Sets the rated motor speed (rating plate).		
	For VECTOR the following applies (p0107):		
	For $\mathrm{p} 0311=0$, the rated motor slip of induction motors is internally calculated and displayed in r0330.		
	It is especially important to correctly enter the rated motor speed for vector control and slip compensation for V/f control.		
Dependency:	If p0311 is changed and for $\mathrm{p} 0314=0$, the pole pair (r0313) is re-calculated automatically.		
	Refer to: p0310, r0313, p0314		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Notice:	If $p 0311$ is changed during quick commissioning ($p 0010=1$), then the maximum speed $p 1082$, which is also associated with quick commissioning, is appropriately pre-assigned. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$).		
Note:	When the induction motor is commissioned for the first time, the parameter is preassigned a value that matches the power unit and corresponds the setting in p0100.		

p0312[0...n]	Rated motor force / Mot F_rated		
SERVO (Lin)	Can be changed: C2(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: $8 _4$	Unit selection: 00100
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~N}]$	$1000000.00[\mathrm{~N}]$	$0.00[\mathrm{~N}]$
Description:	Sets the rated motor force (rating plate).		

Caution: \quad This parameter is automatically preset for motors from the motor list (p0301). be carefully observed when removing write protection.

p0312[0...n]	Rated motor torque / Mot M_rated		
SERVO	Can be changed: C2(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 7_4	Unit selection: p0100
	Not for motor type: ASM, REL, FEM		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Nm]
Description:	Sets the rated motor torque (rating plate).		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		

r0313[0...n]	Motor pole pair number, current (or calculated) / Mot PolePairNo cur		
SERVO	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned8	Dynamic index: MDS, p0130	Func. diagram: 5300
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	

r0313[0...n]	Motor pole pair number, current (or calculated) / Mot PolePairNo cur		
VECTOR	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned8	Dynamic index: MDS, p0130	Func. diagram: 1690
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	Factory setting	

p0314[0...n]	Motor pole pair number / Mot pole pair No.		
VECTOR	Calculated: -		
	Can be changed: C2(1, 3)	Dynamic index: MDS, p0130	Func. diagram: -
	Data type: Unsigned8	Units group: -	Unit selection: -
	P-Group: Motor	Expert list: 1	

p0315[0...n]	Motor pole pair width / MotPolePair width		
SERVO (Lin)	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{1.00[\mathrm{~mm}]}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00[\mathrm{~mm}] \end{aligned}$	Factory setting 30.00 [mm]
Description:	Sets the pole pair width of the linear motor.		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		

p0316[0...n]	Motor force constant / Mot kT		
SERVO (Lin)	Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 29_1	Unit selection: p0100
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min 0.00 [N/Arms]	Max 1000.00 [N/Arms]	Factory setting 0.00 [N/Arms]
Description:	Sets the force constant of the synchronous motor. p0316 = 0: The force constant is calculated from the motor data. p0316 > 0: The selected value is used as force constant.		
Dependency:	Refer to: r0334, r1937		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter is not used for induction motors (p0300 = 1xx).		
p0316[0...n]	Motor torque constant / Mot kT		
SERVO	Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 28_1	Unit selection: p0100
	Not for motor type: ASM, REL, FEM		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm} / \mathrm{A}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.00[\mathrm{Nm} / \mathrm{A}] \end{aligned}$	Factory setting 0.00 [Nm / A]
Description:	Sets the torque constant of the synchronous motor. p0316 = 0: The torque constant is calculated from the motor data. p0316 > 0: The selected value is used as torque constant.		
Dependency:	Refer to: r0334, r1937		
Caution:	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter is not used for induction motors (p0300 = 1xx).		
p0316[0...n]	Motor torque constant / Mot kT		
VECTOR	Can be changed: C2(1, 3), U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 6721
	P-Group: Motor	Units group: 28_1	Unit selection: p0100
	Not for motor type: ASM, REL, FEM		
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm} / \mathrm{A}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.00[\mathrm{Nm} / \mathrm{A}] \end{aligned}$	Factory setting 0.00 [Nm / A]
Description:	Sets the torque constant of the synchronous motor. p0316 = 0: The torque constant is calculated from the motor data. p0316 > 0: The selected value is used as torque constant.		
Dependency:	Refer to: r0334		
Caution:	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter is not used for induction	rs (p0300 $=1 x x)$.	

p0318[0...n]	Motor stall current / Mot I_standstill		
VECTOR	Can be changed: C2(3)	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8017
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min 0.00 [Arms]	Max 10000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Sets the stall current for synchronous motors (p0300 = 2xx).		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is used for the 12 t monitoring of the motor (refer to p0611).		
	This parameter is not used for induction motors (p0300 = 1xx).		
p0319[0...n]	Motor stall force / Mot F_standstill		
SERVO (Lin)	Can be changed: $\mathrm{C} 2(3)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 8_4	Unit selection: p0100
	Not for motor type: ASM, REL, FEM		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~N}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100000.00[\mathrm{~N}] \end{aligned}$	Factory setting 0.00 [N]
Description:	Sets the standstill (stall) force for linear synchronous motors (p0300 $=4 x x$).		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter value is not evaluated from a control-related perspective.		
p0319[0...n]	Motor stall torque / Mot M_standstill		
SERVO	Can be changed: $\mathrm{C} 2(3)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 7_4	Unit selection: p0100
	Not for motor type: ASM, REL, FEM		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 100000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Nm]
Description:	Sets the standstill (stall) torque for rotating synchronous motors (p0300 = 2xx).		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter is not used for induction motors (p0300 = 1xx).		
	This parameter value is not evaluated from a control-related perspective.		
p0320[0...n]	Motor rated magnetizing current/short-circuit current / Mot I_mag_rated		
SERVO, VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 5722
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL, FEM		Expert list: 1
	Min 0.000 [Arms]	Max 5000.000 [Arms]	Factory setting 0.000 [Arms]
Description:	Induction motors:		
	Sets the rated motor magnetizing current.		
	For p0320 $=0.000$ the magnetizing current is internally calculated and displayed in r0331.		

p0322[0...n]	Maximum motor speed / Mot n_max		
VECTOR	Can be changed: C2(1, 3)	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{rev} / \mathrm{min}]$	$210000.0[\mathrm{rev} / \mathrm{min}]$	$0.0[\mathrm{rev} / \mathrm{min}]$
Description:	Sets the maximum motor speed.		
Dependency:	Refer to: p1082		

Caution: \quad This parameter is automatically preset for motors from the motor list (p0301).
When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.
Notice: If p0322 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum speed p 1082 , which is also associated with quick commissioning, is appropriately pre-assigned. This is not the case when commissioning the motor (p0010 = 3).

p0323[0...n]	Maximum motor current / Mot I_max		
SERVO	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 5722
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, FEM		Expert list: 1
	Min 0.00 [Arms]	Max 20000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Set the maximum permissible motor current (e.g. de-magnetizing current for synchronous motors).		
Caution:	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Notice:	If p0323 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p 0640 is appropriately preassigned. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$).		
Note:	The parameter has no effect for induction motors.		
	For synchronous motors, a value must always be entered for the maximum motor current.		

p0323[0...n]	Maximum motor current / Mot I_max		
VECTOR	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 5722
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, FEM		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [Arms] } \end{aligned}$	Max 20000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Set the maximum permissible motor current (e.g. de-magnetizing current for synchronous motors).		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Notice:	If p0323 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is appropriately preassigned. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$).		
Note:	The parameter has no effect for induction motors.		
	The parameter has not effect for synchronous motors if a value of 0.0 is entered. The user-selectable current limit is entered into p0640.		

p0325[0...n]	Motor pole position identification current, 1st phase / Mot PollD I 1st ph		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min 0.000 [Arms]	$\begin{aligned} & \text { Max } \\ & 10000.000 \text { [Arms] } \end{aligned}$	Factory setting 0.000 [Arms]
Description:	Sets the current for the 1st phase of the two-stage technique for pole position identification routine. The current of the 2nd phase is set in p0329. The two-stage technique is selected with p1980 $=4$.		
Dependency:	Refer to: p0329, p1980, p1981, p1982, p1983, r1984, r1985, r1987, p1990		
	Refer to: F07995		

Notice:	When the motor code (p 0301) is changed, it is possible that p 0325 is not pre-assigned.
p0325 can be pre-assigned using p0340 $=3$.	
Note: \quad	The value is automatically pre-assigned for the following events:
	- For p0325 = 0 and automatic calculation of the closed-loop control parameters $(\mathrm{p} 0340=1,2,3)$.
	- for quick commissioning $(\mathrm{p} 3900=1,2,3)$.

p0326[0...n]	Motor stall force correction factor / Mot F_stall_corr		
SERVO (Lin)	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL, FEM		Expert list: 1
	Min	300 [\%]	Factory setting
	5 [\%]	60 [\%]	
Description:	Sets the correction factor for the stall force at a 600 V DC link voltage.		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should		
	be carefully observed when removing write protection.		

p0326[0...n]	Motor stall torque correction factor / Mot M_stall_corr		
SERVO	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL, FEM		Expert list: 1
	Min	$300[\%]$	Factory setting
	$5[\%]$	60 [\%]	
Description:	Sets the correction factor for the stall torque/force at a 600 V DC link voltage.		
Caution:	This parameter is automatically preset for motors from the motor list (p0301). When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		

p0328[0...n]	Motor reluctance force constant / Mot kT_reluctance		
SERVO (Lin)	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 6721
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000.00[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.00[\mathrm{mH}] \end{aligned}$	Factory setting 0.00 [mH]
Description:	Sets the reluctance force constant for synchronous motors with reluctance force (e.g. 1FE ... motors).		
Dependency:	Refer to: r1939		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Note:	For synchronous motors without reluctance torque, the value 0 must be set.		
p0328[0...n]	Motor reluctance torque constant / Mot kT_reluctance		
SERVO, VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 6721
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000.00[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.00[\mathrm{mH}] \end{aligned}$	Factory setting 0.00 [mH]
Description:	Sets the reluctance torque constant for synchronous motors with reluctance torque (e.g. 1FE ... motors).		
Dependency:	Refer to: r1939		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Note:	For synchronous motors without reluctance torque, the value 0 must be set.		
p0329[0...n]	Motor pole position identification current / Mot PollD current		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min 0.00 [Arms]	Max 10000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Sets the current for the pole position identification routine.		
	For a two-stage technique, the current is set for the second phase.		
Dependency:	Refer to: p0325, p1980, p1981, p1982, p1983, r1984, r1985, r1987, p1990		
	Refer to: F07995		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		

r0330[0...n] Rated motor slip / Mot slip_rated

SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{Hz}]$	$-[\mathrm{Hz}]$	$-[\mathrm{Hz}]$

Dependency:	The rated slip is calculated from the rated frequency, rated speed and number of pole pairs. Refer to: p0310, p0311, r0313		
Note:	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0331[0...n]	Current motor magnetizing current/short-circuit current / Mot I_mag_rtd cur		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 5722, 6722, 6724
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL, FEM		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Induction motor:		
	Displays the rated magnetizing current from p0320.		
	For p0320 $=0$, the internally calculated magnetizing current is displayed.		
	Synchronous motor:		
	Displays the rated short-circuit current from p0320.		
Dependency: Note:	If p0320 was not entered, then the parameter is calculated from the rating plate parameters.		
	In the case of multi-motor operation r0331 is increased by the factor p0306 compared to p0320.		
r0332[0...n]	Rated motor power factor / Mot cos_phi_rated		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the rated power factor for induction motors.		
	For IEC motors, the following applies ($\mathrm{p} 0100=0$):		
	For p0308 = 0, the internally-calculated power factor is displayed.		
	For p0308 > 0 , this value is displayed.		
	For NEMA motors, the following applies ($\mathrm{p} 0100=1$):		
	For p0309 $=0$, the internally-calculated power factor is displayed.		
	For p0309 > 0, this value is converted into the power factor and displayed.		
Dependency:Note:	If p0308 is not entered, the parameter is calculated from the rating plate parameters.		
	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0333[0...n]	Rated motor force / Mot F_rated		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 8_4	Unit selection: p0100
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[N] \end{gathered}$	$\begin{aligned} & \text { Max } \\ & -[N] \end{aligned}$	Factory setting - [N]
Description:	Displays the rated motor force.		
Note:	For synchronous motors, r0333 is calculated from p0305, p0316, p0327 and p0328. The result can deviate from the input in p 0312 . If $\mathrm{p} 0316=0$, then $\mathrm{r} 0333=\mathrm{p} 0312$ is displayed.		

r0333[0...n]	Rated motor torque / Mot M_rated		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 7_4	Unit selection: p0100
	Not for motor type: -		Expert list: 1
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	Displays the rated motor torque.		
Note:	For induction and reluctance motors, r0333 is calculated from p0307 and p0311.		
	For synchronous motors, r0333 is calculated from p0305, p0316, p0327 and p0328. The result can deviate from the input in p0312. If $\mathrm{p} 0316=0$, then $\mathrm{r} 0333=\mathrm{p} 0312$ is displayed.		
	In the case of multi-motor operation r0333 is increased by the factor p0306 compared to the rated torque of an individual motor.		
r0334[0...n]	Current motor force constant / Mot kT cur		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 29_1	Unit selection: p0100
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min - [N/Arms]	Max - [N/Arms]	Factory setting - [N/Arms]
Description:	Displays the force constant of the synchronous motor used.		
Dependency:	Refer to: p0316		
Note:	For synchronous motors, parameter r0334 $=\mathrm{p} 0316$ is displayed. if $\mathrm{p} 0316=0$, r 0334 is calculated from p 0305 and p0312.		
r0334[0...n]	Current motor-torque constant / Mot kT cur		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 28_1	Unit selection: p0100
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min - [Nm/A]	Max - [Nm/A]	Factory setting - [Nm/A]
Description:	Displays the torque constant of the synchronous motor used.		
Dependency:	Refer to: p0316		
Note:	This parameter is not used for induction motors (p0300 = 1xx).		
	For synchronous motors, parameter r0334 $=\mathrm{p} 0316$ is displayed. if $\mathrm{p} 0316=0$, r0334 is calculated from p0305 and p0312.		
p0335[0...n]	Motor cooling type / Motor cooling type		
SERVO, VECTOR	Can be changed: C2(1, 3), T	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 128 \end{aligned}$	Factory setting 0
Description:	Sets the motor cooling system used.		
Value:	$0:$ Non-ventilated $1:$ Forced cooling $2:$ Liquid cooling 4: Non-ventilated and internal fan		

	5: Forced cooling and internal fan 6: Liquid cooling and internal fan 128: No fan		
Dependency: Caution:	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		of p0307 and p0311. Information in p0300 should
Note:	The parameter influences the therma 1LA1 and 1LA8 motors are characteriz within the motor frame and is not visib p0335 should be set to 5 as these mo 1LA7 motors, frame size 56 are opera	motor model. the fact that they have an intern is not directly exchanged with the force-ventilated motors. hout fan.	fan. This "internal cooling" lies r ambient air. For 1PQ8 motors,
r0336[0...n]	Current rated motor frequency / Mot f_rated cur		
SERVO, VECTOR	Can be changed: - Data type: FloatingPoint32 P-Group: Motor Not for motor type: - Min - [Hz]	Calculated: - Dynamic index: MDS, p0130 Units group: - Max - [Hz]	Access level: 3 Func. diagram: - Unit selection: - Expert list: 1 Factory setting - [Hz]
Description:	Displays the rated frequency of the motor. For p0310 > 0, this value is displayed.		
Dependency: Note:	For p0310 $=0$ or for synchronous motors, the rated motor frequency r0336 is calculated from the rated speed and the pole pair number. For p0310 > 0, this value is displayed (not for synchronous motors).		
r0337[0...n]	Rated motor EMF / Mot EMF_rated		
SERVO (Lin)	Can be changed: - Data type: FloatingPoint32 P-Group: Motor Not for motor type: REL Min - [Vrms s/m]	Calculated: - Dynamic index: MDS, p0130 Units group: - Max - [Vrms s/m]	Access level: 3 Func. diagram: - Unit selection: - Expert list: 1 Factory setting - [Vrms s/m]
Description: Note:	Displays the rated EMF of the motor. EMF: Electromagnetic force		
r0337[0...n]	Rated motor EMF / Mot EMF_rated		
SERVO, VECTOR	Can be changed: - Data type: FloatingPoint32 P-Group: Motor Not for motor type: REL Min - [Vrms]	Calculated: - Dynamic index: MDS, p0130 Units group: - Max - [Vrms]	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting - [Vrms]
Description: Note:	Displays the rated EMF of the motor. EMF: Electromagnetic force		

p0340[0...n]	Automatic calculatio	rol parameters / Calc a	par
SERVO, VECTOR	Can be changed: C2(3), T	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 5 \end{aligned}$	Factory setting 0
Description:	Setting to automatically calculate motor parameters and V/f open-loop and closed-loop control parameters from the rating plate data.		
Value:	0: No calculation		
	1: Complete calculation		
	2: Calculation of equivalent circuit diagram parameters		
	3: Calculation of closed-loop control parameters		
	4: Calculation of controller parameters		
	5: Calculation of technological limits and threshold values		
Notice:	The following parameters are influenced using p0340:		
	The parameters designated with (*) are, for list motors (p0300 > 100) not overwritten.		
	SERVO:		
	p0340 = 1:		
	--> All of the parameters influenced for $\mathrm{p} 0340=2,3,4,5$		
	--> p0341 (*)		
	--> p0342, p0344, p0600, p0640, p1082, p2000, p2001, p2002, p2003		
	p0340 $=2$:		
	--> p0350 (*), p0354 (*), p0356 (*), p0358 (*), p0360 (*)		
	--> p0625 (matching p0350)		
	p0340 $=3$:		
	--> All of the parameters influenced for p0340 $=4,5$		
	--> p0325 (is only calculated for p0325 = 0)		
	--> p0348 (*) (is only calculated for p0348 = 0)		
	--> p0441, p0442, p0443, p0444, p0445 (only for 1FT6, 1FK6, 1FK7 motors)		
	--> p0492, p1082, p1980, p1319, p1326, p1327, p1612, p1752, p1755		
	$\mathrm{p} 0340=4$:		
	$\begin{aligned} & -->~ p 1441, \text { p1460, p1462, p1463, p1464, p1465, p1470, p1472, p1590, p1592, p1656, p1657, p1658, p1659, } \\ & \text { p1715, p1717 } \end{aligned}$		
	--> p1461 (for p0348 > p0322, p1461 is set to 100%)		
	--> p1463 (for p0348 > p0322, p1463 is set to 400%)		
	p0340 = 5:		
	$\begin{aligned} & \text {--> p1037, p1038, p1520, p1521, p1530, p1531, p2140 ... p2142, p2148, p2150, p2155, p2161, p2162, p2163, } \\ & \text { p2164, p2175, p2177, p2194, p3820 ... p3829 } \end{aligned}$		
	VECTOR:		
	p0340 = 1:		
	--> All of the parameters influenced for $\mathrm{p} 0340=2,3,4,5$		
	--> p0341 (*)		
	--> p0342, p0344, p0600, p0640, p1082, p1231, p1232, p1349, p1441, p1442, p1576, p1577, p1609, p1619, p1620, p1621, p1654, p1726, p1825, p1828 ... p1832, p1909, p1959, p2000, p2001, p2002, p2003, p3927, p3928		
	p0340 = 2:		
	--> p0350 (*), p0354 ... p0361 (*), p0652 ... p0660		
	--> p0625 (matching p0350)		
	p0340 $=3$:		
	--> All of the parameters influenced for p0340 $=4,5$		
	--> p0346, p0347, p0492, p0622, p1262, p1320 ... p1327, p1582, p1584, p1616, p1744, p1755, p1756, p2178		

p0341[0...n]	Motor moment of inertia / Mot M_mom of inert		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 1700, 5042, 5210, 6030, 6031
	P-Group: Motor	Units group: 25_1	Unit selection: p0100
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000000\left[\mathrm{kgm}^{2}\right] \end{aligned}$	Max $100000.000000\left[\mathrm{kgm}^{2}\right]$	Factory setting 0.000000 [kgm^{2}]
Description:	Sets the motor moment of inertia (without load).		
Dependency:	This means that together with p0342, the rated starting time of the motor is calculated.		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		

r0345[0...n]	Nominal motor starting time / Mot t_start_rated		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min $-[\mathrm{s}]$	Max - [s]	Factory setting - [s]
Description:	Displays the rated motor starting time. This time corresponds to the time from standstill up to reaching the motor rated speed and the acceleration with motor rated torque (r0333).		
Dependency:	Refer to: r0313, r0333, r0336, p0341, p0342		
p0346[0...n]	Motor excitation build-up time / Mot t_excitation		
VECTOR	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 6721, 6722, 6725
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \text { [s] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 20.000 \text { [s] } \end{aligned}$	Factory setting 0.000 [s]
Description:	This involves the delay time between enabling the pulses and enabling the ramp-function generator. The induction motor is magnetized during this time.		
Caution:	For insufficient magnetizing under load or if the acceleration rate is too high, then an induction motor can stall (refer to the note). This is especially true for sensorless vector control or V/f control.		

Notice: If the parameter is set to 0 s for separately-excited synchronous motors ($\mathrm{p} 0300=5$), then an excitation current setpoint is generated even if the drive is powered down. In the base speed range, this is the no-load excitation current (p0389). In the field-weakening range, the value is reduced with the inverse value of the current speed. An excitation current setpoint is not generated during de-magnetizing (p0347) and if an encoder fault is detected.

Note:
The parameter is calculated using p0340 $=1,3$.
For induction motors, the result depends on the rotor time constant (r0384). If this time is excessively reduced, this can result in an inadequate magnetizing of the induction motor. This is the case if the current limit is reached while building up magnetizing. For induction motors, the parameter cannot be set to 0 s (internal limit: 0.1 * r0384).
For permanent-magnet synchronous motors and vector control, the value depends on the stator time constant (r0386). Here, it defines the time to establish the current for encoderless operation immediately after the pulses have been enabled.

p0347[0...n]	Motor de-excitation time / Mot t_de-excitat.		
SERVO	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \text { [s] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 20.000 \text { [s] } \end{aligned}$	Factory setting 0.000 [s]
Description:	Sets the de-magnetizing time (for induction motors) after the inverter pulses have been inhibited. The inverter pulses cannot be switched in (enabled) within this delay time. For SERVO, the de-excitation time is only used for the DC current brake.		
Note:	The parameter is calculated us For induction motors, the result if this time is shortened too much in an overcurrent condition whe vated and the motor is rotating)	3. he rotor time constant (r0384). an result in an inadequate de-ma are subsequently enabled (only w	tizing of the induction the flying restart fu

p0347[0...n]	Motor de-excitation time / Mot t_de-excitat.		
VECTOR	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.000[s]} \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 20.000 \text { [s] } \end{aligned}$	Factory setting 0.000 [s]
Description:	Sets the de-magnetizing time (for induction motors) after the inverter pulses have been inhibited. The inverter pulses cannot be switched in (enabled) within this delay time.		
Note:	The parameter is calculated us For induction motors, the result if this time is shortened too mu in an overcurrent condition wh vated and the motor is rotating	, 3. he rotor time constant (r0384). an result in an inadequate de-m are subsequently enabled (only	tizing of the inductio the flying restart fu

p0348[0...n]	Velocity at the start of field weakening Vdc $=\mathbf{6 0 0}$ V/Mot v_field weaken		
SERVO (Lin)	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 5722
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	Max	Factory setting
	$0.0[\mathrm{~m} / \mathrm{min}]$	$0.0[\mathrm{~m} / \mathrm{min}]$	

p0348[0...n]	Speed at the start of field weakening Vdc = 600 V / Mot n_field weaken		
SERVO	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 5722
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.0 [rev/min]	Max 210000.0 [rev/min]	Factory setting 0.0 [rev/min]
Description:	Sets the speed at the start of field weakening for a DC link voltage of 600 V .		
Dependency:	Refer to: p0320, r0331		
Caution:	This parameter is automatically preset for motors from the motor list (p 0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		

Calculated: -
Dynamic index: -
P-Group: Motor
Units group: -
Not for motor type: -
Min Max

2
Sets the current system of units for motor equivalent circuit diagram data.
$\begin{array}{ll}\text { Description: } & \text { Sets the current system of units } f \\ \text { Value: } & \text { 1: } \quad \text { System of units, physical }\end{array}$
2: System of units, referred

Access level: 1
Func. diagram: -
Unit selection: -
Expert list: 1

Factory setting 1

Dependency:	Refer to: p0304, p0305, p0310
Note:	The reference parameter for resistances of the rated motor impedance $Z=p 0304 /(1.732$ * p0305) is in the \% units
	system.
	Inductances are converted into a resistance using the factor 2 * Pi *p0310.
	If a reference parameter ($\mathrm{p} 0304, \mathrm{p} 305, \mathrm{p} 0310$) is zero, then it is not possible to make a changeover to "referred"
	values (per unit values).

p0350[0...n]	Motor stator resistance, cold / Mot R_stator cold		
SERVO, VECTOR	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 2
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 16_1	Unit selection: p0349
	Not for motor type: -		Expert list: 1
	Min 0.00000 [Ohm]	$\begin{aligned} & \text { Max } \\ & 2000.00000[\mathrm{Ohm}] \end{aligned}$	Factory setting 0.00000 [Ohm]
Description:	Sets the stator resistance of the motor at ambient temperature p0625.		
Dependency:	Refer to: p0625, r1912		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Note:	The motor identification routine resistance (p0352).	he stator resistance from the total	tor resistance minus the cable

p0352[0...n]	Cable resistance / Mot R_cable cold		
SERVO	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 16_1	Unit selection: p0349
	Not for motor type: -		Expert list: 1
	Min 0.00000 [Ohm]	$\begin{aligned} & \operatorname{Max} \\ & 120.00000[\mathrm{Ohm}] \end{aligned}$	Factory setting 0.00000 [Ohm]
Description:	Resistance of the power cable between the Motor Module and motor.		
Note:	The parameter influences the temperature adaptation of the stator resistance.		
	The motor identification routine does not change the cable resistance. This is subtracted from the total measured stator resistance in order to calculate the stator resistance (p0350, p0352).		
	The cable resistance is reset when quick commissioning is exited with p3900 >0.		

p0352[0...n] Cable resistance / Mot R_cable cold

Data type: FloatingPoint32 Dynamic index: MDS, p0130
P-Group: Motor Units group: 16_1
Not for motor type: -

Min	Max
$0.00000[\mathrm{Ohm}]$	120.00000 [Ohm]

$$
120.00000[\mathrm{Ohm}]
$$

Access level: 3
Func. diagram: -
Unit selection: p0349
Expert list: 1
Factory setting
0.00000 [Ohm]

Description: Resistance of the power cable between the Motor Module and motor.
Dependency: Refer to: p7003
Notice: \quad Parallel circuits with one winding system (p7003=0):
p0352 includes the feeder cable resistance of an individual Motor Module. The total feeder cable resistance is obtained from p0352 divided by the number of activated Motor Modules (refer to r0395).
Parallel circuits with multi-winding system (p7003 = 1):
p0352 includes the complete feeder cable resistance and is directly added to the stator resistance (refer to r0395).

Note: \quad The parameter influences the temperature adaptation of the stator resistance.
The motor identification sets the cable resistance to 20% of the measured total resistance if p0352 is zero at the time that the measurement is made. If p 0352 is not zero, then the value is subtracted from the measured total stator resistance to calculate stator resistance p0350. In this case, p0350 is a minimum of 10% of the measured value. Exception:
For parallel circuit configurations with one winding system ($p 07003=0$), the cable resistance is directly measured. It is important to note that only the component of an individual Motor Module is entered into p0352.
The cable resistance is reset when quick commissioning is exited with p3900 >0.

p0353[0...n]	Motor series inductance / Mot L_series		
SERVO, VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 15_1	Unit selection: p0349
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000000.000[\mathrm{mH}] \end{aligned}$	Factory setting 0.000 [mH]
Description:	Sets the series inductance.		
Note:	For the automatic calculation with $\mathrm{p} 0340=1$ or 3 , the calculation of p 0348 is influenced by p 0353 if p 0348 was 0 .		

p0356[0...n]	Motor stator leakage inductance / Mot L_stator leak.		
SERVO	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 15_1	Unit selection: p0349
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00000[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00000[\mathrm{mH}] \end{aligned}$	Factory setting $0.00000[\mathrm{mH}]$
Description:	Induction motor, separately-excited synchronous motor: Sets the rotor leakage inductance of the motor. Synchronous motor: Sets the stator quadrature axis inductance of the motor.		
Caution:	This parameter is automatically When selecting a catalog moto be carefully observed when re	tors from the motor list (p0301). ter cannot be changed (write pro rotection.	on). Information in p0300

p0356[0...n] Motor stator leakage inductance / Mot L_stator leak.
Data type: FloatingPoint32 Dynamic index: MDS, p0130

Func. diagram: -
Unit selection: p0349
Expert list: 1
Factory setting
$0.00000[\mathrm{mH}]$

Description: Induction motor, separately-excited synchronous motor: Sets the rotor leakage inductance of the motor Synchronous motor: Sets the stator quadrature axis inductance of the motor.
This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p 1910).
Caution: \quad This parameter is automatically preset for motors from the motor list (p 0301).
When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.
Note: If the stator leakage inductance (p0356) for induction motors is changed outside the commissioning phase (p0010 $>$ 0), then the magnetizing inductance (p 0360) is automatically adapted to the new EMF (r0337). After this, we recommend that the saturation characteristic measurement is repeated (p1960).
For permanent-magnet synchronous motors ($\mathrm{p} 0300=2$), this is the non-saturated value and is therefore ideally applicable for a low current.

p0357[0...n]	Motor stator inductance, d axis / Mot L_stator d		
VECTOR	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 15_1	Unit selection: p0349
	Not for motor type: ASM, REL, FEM		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00000[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00000[\mathrm{mH}] \end{aligned}$	Factory setting 0.00000 [mH]
Description:	This parameter value is automatically calculated using the motor model ($p 0340=1,2$) or using the motor identification routine (p 1910).		
Note:	The parameter is not used for separately-excited synchronous motors (p0300 = 5).		
	For permanent-magnet synchronous motors ($\mathrm{p} 0300=2$), this is the non-saturated value and is ideal for a low current.		

p0358[0...n]	Motor rotor leakage inductance / damping inductance, d axis / Mot L_r leak / LDd		
SERVO, VECTOR	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: $15 _1$	Unit selection: p0349
	Not for motor type: PEM, REL	Expert list: 1	
	Min	Factory setting	

p0359[0...n]	Motor damping inductance, q axis / Mot L_damp q		
VECTOR	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 15_1	Unit selection: p0349
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min $0.00000[\mathrm{mH}]$	$\begin{aligned} & \text { Max } \\ & 1000.00000[\mathrm{mH}] \end{aligned}$	Factory setting $0.00000[\mathrm{mH}]$
Description:	Sets the damping inductance of the separately-excited synchronous motor quadrature to the rotor direction (q axis). This parameter value is automatically calculated using the motor model (p0340 =1, 2).		
p0360[0...n]	Motor magnetizing inductance/magn. inductance, d axis saturated / Mot Lh/Lh d sat		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 15_1	Unit selection: p0349
	Not for motor type: PEM, REL		Expert list: 1
	Min $0.00000[\mathrm{mH}]$	$\begin{aligned} & \operatorname{Max} \\ & 10000.00000[\mathrm{mH}] \end{aligned}$	Factory setting $0.00000[\mathrm{mH}]$
Description:	Sets the magnetizing inductance of the motor.		
	For separately-excited synchronous motors: Sets the saturated magnetizing inductance in the rotor direction (daxis).		
	This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p1910) (not for separately-excited synchronous motors).		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is not used for synchronous motors (p0300 = 2xx).		

p0361[0...n]	Motor magnetizing inductance q axis, saturated / Mot L_magn q sat		
VECTOR	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 15_1	Unit selection: p0349
	Not for motor type: ASM, PEM, REL	Max	Expert list: 1

p0364[0...n]	Saturation characteristic flux 3 / Mot saturat.flux 3		
VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM		Expert list: 1
	$\operatorname{Min}_{10.0} \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$	Factory setting 115.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the y coordinate (flux) for the 3rd value pair of the characteristic. Sets the third flux value of the saturation characteristic as a [\%] referred to the rated motor flux (100 \%).		
Dependency:	The following applies for the flu p0362 < p0363 < p0364 < p0365 Refer to: p0368		
Note:	For separately-excited synchronous motors p0364 $=100 \%$ corresponds to an induced terminal voltage with the magnitude of the rated motor voltage (under no-load conditions at the synchronous speed).		
p0365[0...n]	Saturation characteristic flux 4 / Mot saturat.flux 4		
VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM		Expert list: 1
	$\operatorname{Min}_{10.0} \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$	Factory setting 125.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the y coordinate (flux) for the 4th value pair of the characteristic. Sets the fourth flux value of the saturation characteristic as a [\%] referred to the rated motor flux (100 \%).		
Dependency:	The following applies for the flux values: p0362 < p0363 < p0364 < p0365 Refer to: p0369 For induction motors, p0365 = 100 \% corresponds to the rated motor flux. For separately-excited synchronous motors p0365 $=100 \%$ corresponds to an induced terminal voltage with the magnitude of the rated motor voltage (under no-load conditions at the synchronous speed).		
Note:			
p0366[0...n]	Saturation characteristic I_mag 1 / Mot sat. I_mag 1		
VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM		Expert list: 1
	Min 5.0 [\%]	$\begin{aligned} & \operatorname{Max} \\ & 800.0 \text { [\%] } \end{aligned}$	Factory setting 50.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the x coordinate (magnetizing current) for the 1st value pair of the characteristic. Sets the first magnetizing current of the saturation characteristic as a [\%] referred to the rated magnetizing current (r0331), for separately-excited synchronous motors referred to the no-load excitation current.		
Dependency:	The following applies for the m p0366 < p0367 < p0368 < p036 Refer to: p0362	rents:	

p0367[0...n]	Saturation characteristic I_mag 2 / Mot sat. I_mag 2		
VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM		Expert list: 1
	Min $5.0 \text { [\%] }$	$\begin{aligned} & \text { Max } \\ & 800.0 \text { [\%] } \end{aligned}$	Factory setting 75.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the x coordinate (magnetizing current) for the 2 nd value pair of the characteristic. Sets the second magnetizing current of the saturation characteristic as a [\%] referred to the rated magnetizing current (r0331), for separately-excited synchronous motors referred to the no-load excitation current.		
Dependency:	The following applies for the magnetizing currents:		
	p0366 < p0367 < p0368 < p0369		
	Refer to: p0363		

p0368[0...n]	Saturation characteristic I_mag 3 / Mot sat. I_mag 3		
VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM		Expert list: 1
	Min $5.0 \text { [\%] }$	$\begin{aligned} & \text { Max } \\ & 800.0 \text { [\%] } \end{aligned}$	Factory setting 150.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the x coordinate (magnetizing current) for the 3rd value pair of the characteristic. Sets the third magnetizing current of the saturation characteristic as a [\%] referred to the rated magnetizing current (r0331), for separately-excited synchronous motors referred to the no-load excitation current.		
Dependency:	The following applies for the ma p0366 < p0367 < p0368 < p036 Refer to: p0364	rents:	

p0369[0...n]	Saturation characteristic I_mag 4 / Mot sat. I_mag 4		
VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM	Expert list: 1	

r0375[0...n]	Motor damping resistance, q axis / Mot R_damp q		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 16_1	Unit selection: p0349
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min - [Ohm]	Max - [Ohm]	Factory setting - [Ohm]
Description:	Displays the damping resistance of the separately-excited synchronous motor quadrature to the rotor direction (q axis).		
r0376[0...n]	Rated motor rotor resistance / Mot R_rotor rated		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 16_1	Unit selection: p0349
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min - [Ohm]	Max - [Ohm]	Factory setting - [Ohm]
Description:	Displays the rated (nominal) rotor/secondary section resistance of the motor at the rated temperature (total of p0625 and p0628).		
Dependency:	Refer to: p0628		
Note:	The parameter is not used for synchronous motors (p0300 = 2xx).		
r0377[0...n]	Motor leakage inductance, total / Mot L_leak total		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 6640, 6714, 6721
	P-Group: Motor	Units group: 15_1	Unit selection: p0349
	Not for motor type: -		Expert list: 1
	Min - [mH]	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{mH}] \end{aligned}$	Factory setting - [mH]
Description:	Induction motor, separately-excited synchronous motor:		
	Displays the stator leakage inductance of the motor including the series inductance (p0353) for servo drives and the motor reactor (p0233) for vector drives.		
	Synchronous motor:		
	Displays the stator quadrature axis inductance including the series inductance (p 0353) for servo drives and the motor reactor (p 0233) for vector drives.		
r0378[0...n]	Motor stator inductance, d axis / Mot L_stator_d		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 6640, 6714, 6721
	P-Group: Motor	Units group: 15_1	Unit selection: p0349
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min - [mH]	Max - [mH]	Factory setting - [mH]
Description:	Displays the stator longitudinal inductance of the synchronous motor including the series inductance (p0353) and the motor reactor (p0233).		
Note:	The parameter is not used for separately-excited synchronous motors (p0300 = 5).		

r0380[0...n]	Motor damping inductance, \mathbf{d} axis $/$ Mot L_damping_d		
VECTOR	Calculated: -		
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: $15 _1$	Unit selection: $p 0349$
	Not for motor type: ASM, PEM, REL		Expert list: 1

Note: \quad The parameter is not used for synchronous motors.
The value is calculated from the total of the inductances on the rotor side ($\mathrm{p} 0358, \mathrm{p} 0360$) divided by the rotor/damping resistance (p 0354). The temperature adaptation of the rotor resistance for induction motors is not taken into account.

r0385[0...n]	Motor damping time constant, q axis / Mot T_Dq		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min - [ms]	Max - [ms]	Factory setting - [ms]
Description:	Displays the damping time constant of a separately-excited synchronous motor quadrature to the rotor direction (q axis).		
Note:	The value is calculated from the total of the inductances on the damping side ($\mathrm{p} 0359, \mathrm{p} 0361$) divided by the damping resistance (p 0355).		

r0386[0...n]	Motor stator leakage time constant / Mot T_stator leak		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [ms]	Max - [ms]	Factory setting - [ms]
Description:	Displays the stator leakage time constant.		
Note:	The value is calculated from the total of all leakage inductances ($\mathrm{p} 0233^{*}$, p0353, p0356, p0358) divided by the total of all motor resistances (p 0350 , p 0352 , p 0354). The temperature adaptation of the resistances is not taken into account.		

p0389[0...n]	Excitation rated no-load current / Exc I_noload_rated		
VECTOR	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min	Max	Factory setting
	$0.00[A]$	$0.00[A]$	
Description:	Sets the rated no-load current (I_F0) for the excitation.		

p0390[0...n]	Rated excitation current / Exc I_rated		
VECTOR	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[A] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 10000.00[\mathrm{~A}] \end{aligned}$	Factory setting 0.00 [A]
Description:	Setting the rated current (I_F) of the controlled excitation rectifier (DC master).		
p0391[0...n]	Current controller adaptation, starting point KP / I_adapt pt KP		
SERVO	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 5714
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min 0.00 [Arms]	Max 6000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Sets the starting point of the current-dependent current controller adaptation where the current controller gain p1715 is effective.		
Dependency:	Refer to: p0392, p0393, p1402, p1715		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Note:	For p0393 $=100 \%$ or p1402 bit $2=0$, the current controller adaptation is disabled and p1715 is effective over the entire range.		
p0391[0...n]	Current controller adaptation, starting point KP / I_adapt pt KP		
VECTOR	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 6714
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min 0.00 [Arms]	Max 6000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Sets the starting point of the current-dependent current controller adaptation where the current controller gain p1715 is effective.		
Dependency:	Refer to: p0392, p0393, p1402, p1715		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
p0392[0...n]	Current controller adaptation, starting point KP adapted / I_adapt pt KP adap		
SERVO	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 5714
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min 0.00 [Arms]	Max 6000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Sets the starting point of the current-dependent current controller adaptation where the adapted current controller gain p1715 * p0393 is effective.		
Dependency:	Refer to: p0391, p0393, p1402, p1715		

| Caution: | This parameter is automatically preset for motors from the motor list (p0301). |
| :--- | :--- | :--- |
| | When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should |
| be carefully observed when removing write protection. | |
| For p0393 $=100 \%$ or $p 1402$ bit $2=0$, the current controller adaptation is disabled and p1715 is effective over the | |
| entire range. | |

p0393[0...n]	Current controller adaptation p gain adaptation / I_adapt Kp adapt		
SERVO	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 5714
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [\%] } \end{aligned}$	Factory setting 100.00 [\%]
Description:	Sets the factor for the current controller P gain in the adaptation range (current greater than p 0392). The value is referred to p1715.		
Dependency:	Refer to: p0391, p0392, p1402, p1715		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Note:	For p0393 $=100 \%$ or p1402 bit $2=0$, the current controller adaptation is disabled and p1715 is effective over the entire range.		

p0407[0...n]	Linear encoder grid division / Enc grid div		
SERVO, VECTOR	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: EDS	Func. diagram: 4010, 4704
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [nm]	$\begin{aligned} & \text { Max } \\ & 250000000[\mathrm{~nm}] \end{aligned}$	Factory setting 16000 [nm]
Description:	Sets the grid division for a linear encoder.		
Caution:	This parameter is automatically preset for encoders from the encoder list (p 0400). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.		
Note:	The lowest permissible value is 250 nm .		
p0408[0...n]	Rotary encoder pulse No. / Rot enc pulse No.		
SERVO, VECTOR	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: EDS	Func. diagram: 4010, 4704
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 16777215 \end{aligned}$	Factory setting 2048
Description:	Sets the number of pulses for a rotary encoder.		
Caution:	This parameter is automatically preset for encoders from the encoder list (p0400). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.		
Note:	The number of pole pairs for a resolver is entered here. The smallest permissible value is 1 pulse.		
p0408	Rotary encoder pulse No. / Rot enc pulse No.		
TM41	Can be changed: $\mathrm{C} 2(4)$	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9674, 9676
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 16384 \end{aligned}$	Factory setting 2048
Description:	Sets the number of pulses for a rotary encoder.		
Danger:	In the SINAMICS operating mode (p4400 = 1) the following applies:		
	The number of pulses per encoder revolution of the TM41 (p0408) must always precisely correspond to the number of pulses per encoder revolution of the encoder interconnected at connector input p4420. If this condition is not taken into account, then the TM41 zero mark is not in synchronism with the interconnected encoder.		
	The following applies for TM41 SAC:		
	- Every time the pulse number is changed, a POWER ON must be carried out for CU and TM41.		
	- Min. value: 1000		
	- Max. value: 8192		
Note:	TM41 SAC: order no. $=6$ SL3055-0AA00-3PA0		
	TM41 DAC: order no. $=6$ SL3055-0AA00-3PA1		

p0412[0...n]	Measuring gear, rotary absolute gearbox, revolutions, virtual / Abs rot rev		
SERVO, VECTOR	Can be changed: C 2 (4)	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 4194303 \end{aligned}$	Factory setting 0
Description:	Sets the number of rotations that can be resolved for a rotary encoder with activated position tracking of the measuring gear.		
Dependency:	This parameter is only of significance for an absolute encoder ($p 0404.1=1$) with activated position tracking ($p 0411.0=1$) and for an incremental encoder with activated position tracking ($p 0411.3=1$).		
Note:	The resolution that is set must be able to be represented using r0483.		
	For rotary axes/modulo axes, the following applies:		
	p0411.0 = 1:		
	This parameter is preset with p0421 and can be changed.		
	p0411.3 = 1:		
	The parameter is preset to the highest possible value. The highest possible value depends on the pulse number (p0408) and fine resolution (p0419).		
	For linear axes, the following applies:		
	p0411.0 = 1:		
	This parameter is pre-assigned with p0421, expanded by 6 bits for multiturn information (maximum number of overflows) and cannot be changed.		
	p0411.3 = 1:		
	The parameter is preset to the highest possible value. The highest possible value depends on the pulse number (p0408) and fine resolution (p0419).		
p0413[0...n]	Measuring gear, position tracking tolerance window / Pos track window		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(4)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	0.00	4294967300.00	0.00
Description:	Sets a tolerance window for position tracking.		
	After the system is powered up, the difference between the saved position and the current position is determined, and depending on this, the following is initiated:		
	Difference within the tolerance window --> The position is reproduced as a result of the encoder actual value.		
Dependency:	Refer to: F31501, F32501, F33501		
Caution:	Rotation, e.g. through a com	nge is not detected.	
Note:	The value is entered in integer (complete) encoder pulses.		
	For p0411.0 = 1, the value is automatically pre-assigned quarter of the encoder range.		
	Example:		
	Quarter of the encoder range $=(\mathrm{p} 0408$ * p 0421$) / 4$		
	It is possible that the tolerance window may not be able to be precisely set due to the data type (floating point number with 23 bit mantissa).		

Danger:	In the SINAMICS operating mode (p4400 = 1) the following applies:			
	The fine resolution of the TM41 (p 0418) must always precisely correspond to the fine resolution of the encoder interconnected at connector input p4420. If this condition is not taken into account, then the TM41 zero mark is not in synchronism with the interconnected encoder. Further, in this case, the frequency of the pulses for the encoder emulation differs from the pulse frequency of the leading encoder.			
p0419[0...n]	Fine resolution absolute value Gx_XIST2 (in bits) / Enc fine Gx_XIST2			
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(4)$	Calculated: -	Acce	
	Data type: Unsigned8	Dynamic index: EDS	Func	471
	P-Group: Encoder	Units group: -	Unit	
	Not for motor type: -		Expe	
	$\begin{aligned} & \text { Min } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 18 \end{aligned}$		
Description:	Sets the fine resolution in bits of the absolute position actual values.			
Dependency:	Refer to: p0418			
Note:	This parameter applies to process data Gx_XIST2 when reading the absolute value.			
p0420[0...n]	Encoder connection / Encoder connection			
SERVO, VECTOR	Can be changed: C2(4)	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: EDS	Fu	
	P-Group: Encoder	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min	Max	Fact 0000	
Description:	Selecting the encoder connection.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 SUB-D	Yes	No	-
	01 Terminal	Yes	No	-

p0421[0...n] Absolute encoder rotary multiturn resolution / Enc abs multiturn

SERVO, VECTOR	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: EDS	Func. diagram: 4704
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	65535	Factory setting
Description:	0	Sets the number of rotations that can be resolved for a rotary absolute encoder.	
Caution:	This parameter is automatically preset for encoders from the encoder list (p0400). When selecting a catalog		
	encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.		

p0422[0...n] Absolute encoder linear measuring step resolution / Enc abs meas step
SERVO, VECTOR

Can be changed: C2(4)	Calculated: -	Access level: 3
Data type: Unsigned32	Dynamic index: EDS	Func. diagram: 4704
P-Group: Encoder	Units group: -	Unit selection: -
Not for motor type: -		Expert list: 1
Min	Max	Factory setting
$0[\mathrm{~nm}]$	$4294967295[\mathrm{~nm}]$	100 [nm]

Description: Sets the resolution of the absolute position for a linear absolute encoder.

p0430[0...n]	Sensor Module configuration / SM config				
SERVO (Lin)	Can be changed: $\mathrm{C} 2(4)$		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dynamic index: EDS	Func. diagram: -	
	P-Group: Encoder		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min -		Max	Factory setting 11100000000010000000 000000000000 bin	
Description:	Sets the configuration of the Sensor Module.				
Bit field:		Signal name	1 signal	0 signal	FP
		Burst oversampling	Yes	No	-
		Safety position actual value sensing	Yes	No	-
		Velocity calculation mode (only SMC30)	Incremental diff	Flank time meas	-
	21	Zero mark tol	Yes	No	-
	22	Rot pos adapt	Yes	No	-
		Extrapolation SSI position value	Yes	No	-
		Phase correction	Yes	No	-
		Amplitude correction	Yes	No	-
	31	Offset correction	Yes	No	-
p0430[0...n]	Sensor Module configuration / SM config				
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(4)$		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dynamic index: EDS	Func. diagram: -	
	P-Group: Encoder		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
			Max	Factory setting 11100000000010000000 000000000000 bin	
Description:	Sets the configuration of the Sensor Module.				
Bit field:		Signal name	1 signal	0 signal	FP
		Burst oversampling	Yes	No	-
		Safety position actual value sensing	Yes	No	-
		Speed calculation mode (only SMC30)	Incremental diff	Flank time meas	-
	21	Zero mark tol	Yes	No	-
		Rot pos adapt	Yes	No	-
		Extrapolation SSI position value	Yes	No	-
		Phase correction	Yes	No	-
		Amplitude correction	Yes	No	-
		Offset correction	Yes	No	-
p0431[0...n]	Angular commutation offset / Ang_com offset				
SERVO, VECTOR	Can be changed: C2(4)		Calculated: -	Access level: 3	
	Data type: FloatingPoint32		Dynamic index: EDS	Func. diagram: -	
	P-Group: Encoder		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	$\begin{aligned} & \operatorname{Min} \\ & -180.00\left[^{\circ}\right] \end{aligned}$		$\begin{aligned} & \text { Max } \\ & 180.00\left[{ }^{\circ}\right] \end{aligned}$	Factory setting 0.00 [${ }^{\circ}$]	
Description:	Sets the angular commutation offset.				
Dependency:	The value is taken into account in r0094.				


```
Example:
p0435 = 1014
--> The evaluation is switched in and the alarm bit is at position 14 with a low level.
p0435 = 1114
--> The evaluation is switched in and the alarm bit is at position 14 with a high level.
```

p0436[0...n]	Encoder SSI parity bit / Enc SSI parity bit		
SERVO, VECTOR	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$	Factory setting 0
Description:	Sets the position and parity of the parity bit in the SSI protocol.		
Notice:	The bit may only be positioned before (p0446) or after (p0448) the absolute value in the SSI protocol.		
Note:	Value = dcba		
	ba: Position of the parity bit in the protocol (0...63).		
	c: Parity (0: even, 1: uneven).		
	d: State of the evaluation (0: Off, 1: On).		
	Example:		
	p0436 = 1015		
	--> The evaluation is switched in and the parity bit is at position 15 with even parity.		
	p0436 = 1115		
	--> The evaluation is switched in and the parity bit is at position 15 with uneven parity.		

Re bit 01:
For bit $=0$, the zero mark is evaluated by ANDing tracks A and B.
For bit = 1, the zero mark is evaluated depending on the direction detected. For a positive direction, the positive edge of the zero mark is considered and for a negative direction, the negative edge of the zero mark.
Re Bit 04 and Bit 05:
Bit $5 / 4=0 / 0$: Signal evaluation per period, $4 x$.
Bit $5 / 4=1 / 0$: Signal evaluation per period, $2 x$.
Bit 5/4 $=0 / 1$: Signal evaluation per period, $1 x$.
Bit 5/4 = 1/1: Illegal setting.
Re bit 06:
When the function is activated, when the $\mathrm{dn} / \mathrm{dt}$ monitoring responds, the velocity actual value is internally frozen for a specific time. The actual value is then re-enabled after this time has expired.
Re bit 29:
When the bit is set, the EnDat encoder is initialized under a certain velocity and, therefore, with high accuracy. If initialization at a higher velocity is requested, fault F31151, F32151, or F33151 is output.
Re bit 31:
When monitoring is active, the levels of the individual track signals and the corresponding inverted track signals are monitored separately.

Re bit 06:
When the function is activated, when the $\mathrm{dn} / \mathrm{dt}$ monitoring responds, the speed actual value is internally frozen for a specific time. The actual value is then re-enabled after this time has expired.
Re bit 29:
When the bit is set, the EnDat encoder is initialized under a certain speed and, therefore, with high accuracy. If initialization at a higher speed is requested, fault F31151, F32151, or F33151 is output.
Re bit 31:
When monitoring is active, the levels of the individual track signals and the corresponding inverted track signals are monitored separately.

p0438[0...n]	Squarewave encoder filter time / Enc t_filt		
SERVO, VECTOR	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mu \mathrm{~s}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.00[\mu \mathrm{~s}] \end{aligned}$	Factory setting 0.64 [$\mu \mathrm{s}$]
Description:	Sets the filter time for a squarewave encoder.		
	The hardware of the squarewave encoder only supports the following values:		
	0 : No filtering		
	$0.04 \mu \mathrm{~s}$		
	$0.64 \mu \mathrm{~s}$		
	2.56 \%		
	$10.24 \mu \mathrm{~s}$		
	20.48 us		
Dependency:	Refer to: r0452		
Notice:	If the filter time is too long, the track signals $A / B / R$ may be suppressed and the appropriate messages output.		
Note:	The most suitable filter time depends on the number of pulses and maximum speed of the square-wave encoder.		
	The filter time is automatically corrected to the next value when entering a non-specified value. In this case, no message is output.		
	The effective filter time is displayed in r0452.		

p0440[0...n]	Copy encoder serial number / Copy enc ser_no		
SERVO, VECTOR	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Copies the current serial Example: For p0440[0] = 1, the seria	der belong to this encod coder belonging EDS0	$\begin{aligned} & \text { p0441 ... p0445. } \\ & 0441[0] \ldots \text { p0445[0]. } \end{aligned}$
Value:	0: \quad No action 1: Transfer serial nu		
Dependency:	Refer to: p0441, p0442, p	5, r0460, r0461, r0462, roun	p1990
Note:	For encoders with serial nur bration (adjustment) for m data. The serial number,	placement is monitored absolute calibration for wards is used for monitor	quest angular comm ing systems with ab , can be transferred

In the following cases, copying is automatically started in the following cases:
1.) When commissioning 1FT6, 1FK6, 1FK7 motors.
2.) When writing into p0431.
3.) For $\mathrm{p} 1990=1$.
p0440 is automatically set to 0 when the copying has been completed.
In order to permanently accept the copied values, it is necessary to save in a non-volatile fashion (p0977).

p0441[0...n]	Encoder commissioning serial number part 1 / Enc comm ser_no 1		
SERVO, VECTOR	Can be changed: C2(4)	Calculated: CALC_MOD_ALL	Access level: 4
	Data type: Unsigned32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Serial number part 1 of the encoder for the commissioning.		
Dependency:	Refer to: p0440, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0463, r0464		
	Refer to: F07414		
Note:	A value of zero is displayed if an encoder is not present.		

p0442[0...n]	Encoder commissioning serial number part 2 / Enc comm ser_no 2		
SERVO, VECTOR	Can be changed: C2(4)	Calculated: CALC_MOD_ALL	Access level: 4
	Data type: Unsigned32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Serial number part 2 of the encoder for the commissioning.		
Dependency:	Refer to: p0440, p0441, p0443, p0444, p0445, r0460, r0461, r0462, r0463, r0464		
	Refer to: F07414		
Note:	A value of zero is displayed if an encoder is not present.		
p0443[0...n]	Encoder commissioning serial number part 3 / Enc comm ser_no 3		
SERVO, VECTOR	Can be changed: C2(4)	Calculated: CALC_MOD_ALL	Access level: 4
	Data type: Unsigned32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Serial number part 3 of the encoder for the commissioning.		
Dependency:	Refer to: p0440, p0441, p0442, p0444, p0445, r0460, r0461, r0462, r0463, r0464		
	Refer to: F07414		
Note:	A value of zero is displayed if an encoder is not present.		
p0444[0...n]	Encoder commissioning serial number part 4 / Enc comm ser_no 4		
SERVO, VECTOR	Can be changed: C2(4)	Calculated: CALC_MOD_ALL	Access level: 4
	Data type: Unsigned32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Serial number part 4 of the encoder for the commissioning.		

Dependency:	Refer to: p0440, p0441, p0442, p0443, p0445, r0460, r0461, r0462, r0463, r0464		
	Refer to: F07414		
Note:	A value of zero is displayed if an encoder is not present.		
p0445[0...n]	Encoder commissioning serial number part 5 / Enc comm ser_no 5		
SERVO, VECTOR	Can be changed: C2(4)	Calculated: CALC_M	Access level: 4
	Data type: Unsigned32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Serial number part 5 of the encoder for the commissioning.		
Dependency:	Refer to: p0440, p0441, p0442, p0443, p0444, r0460, r0461, r0462, r0463, r0464		
	Refer to: F07414		
Note:	A value of zero is displayed if an encoder is not present.		
p0446[0...n]	Encoder SSI number of bits before the absolute value / Enc SSI bit before		
SERVO, VECTOR	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$	Factory setting 0
Description:	Sets the number of bits before the absolute value in the SSI protocol.		
Note:	For example, error bit, alarm bit or parity bit can be positioned at these bits.		
p0447[0...n]	Encoder SSI number of bits absolute value / Enc SSI bit val		
SERVO, VECTOR	Can be changed: C 2 (4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$	Factory setting 25
Description:	Sets the number of bits for the absolute value in the SSI protocol.		
p0448[0...n]	Encoder SSI number of bits after the absolute value / Enc SSI bit after		
SERVO, VECTOR	Can be changed: C 2 (4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	Max 65535	Factory setting 0
Description:	Sets the number of bits after the absolute value in the SSI protocol.		
Note:	For example, error bit, alarm bit or parity bit can be positioned at these bits.		

p0449[0...n]	Encoder SSI number of bits, filler bits / Enc SSI fill bits		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(4)$	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$	Factory setting 1
Description:	Sets the number of filler bits for double absolute value transfer in the SSI protocol.		
Dependency:	Refer to: p0429		
Note:	This parameter is only of significance for p0429.2 $=1$.		
r0451[0...2]	Commutation angle factor / Enc commut_factor		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 4710
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description: Index:	Displays the relationship between the electrical and mechanical pole positions. [0] = Encoder 1 [1] = Encoder 2 [2] = Encoder 3		
Note:	A value of zero is displayed if an encoder is not present.		
r0452[0...2]	Squarewave encoder filter time display / Enc t_filt displ		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [$\mu \mathrm{s}$]	Max - [$\mu \mathrm{s}$]	Factory setting - [$\mu \mathrm{s}$]
Description:	Displays the effective filter time for a squarewave encoder. The filter time is set using p0438.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p0438		
Note:	A value of zero is displayed if an encoder is not present.		
p0453[0...n]	Rect. signal enc.:nom. meas. time of pulse enc. signal eval. / Enc t_MeasSign		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(4)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 1.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 10000.00[\mathrm{~ms}] \end{aligned}$	Factory setting 1000.00 [ms]
Description:	Setting the nom. measuring time for pulse encoder signal evaluation for rec. signal encoder.		

r0455[0...2]	Encoder configuration recognized / Enc config act				
SERVO, VECTOR	Can be changed: -		Calculated: - Acce		
	Data type: Unsigned32		Dynamic index: -	Func. diagram: -	
	P-Group: Encoder		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Fact	
Description:	Displays the detected encoder configuration.				
	In this case, the encoder must automatically support the function (e.g. encoder with EnDat interface).				
Index:	$\begin{aligned} & {[0]=} \\ & {[1]=} \\ & {[2]=} \end{aligned}$	Encoder 1 Encoder 2 Encoder 3			
Bit field:		Signal name	1 signal	0 signal	FP
		Linear encoder	Yes	No	-
		Abs value encoder	Yes	No	-
		Multiturn encoder	Yes	No	-
		Track A/B sq-wave	Yes	No	-
		Track A/B sinus	Yes	No	-
		Track C/D	Yes	No	-
		Hall sensor	Yes	No	-
		EnDat encoder	Yes	No	-
		SSI encoder	Yes	No	-
		DRIVE-CLiQ encoder	Yes	No	-
		Equidistant zero mark	Yes	No	-
		Irregular zero mark	Yes	No	-
		Distance-coded zero mark	Yes	No	-
		Commutation with zero mark	Yes	No	-
		Acceleration	Yes	No	-
		Voltage level 5 V	Yes	No	-
		Voltage level 24 V	Yes	No	-
		Remote sense (only SMC30)	Yes	No	-
		Resolver excit.	Yes	No	-
Dependency:	Refer to: p0404				
Note:	ZM: Zero mark				
	This parameter is only used for diagnostics.				
	A value of zero is displayed if an encoder is not present.				
r0456[0...2]	Encoder configuration supported / Enc config supp				
SERVO, VECTOR	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: -	
	P-Group: Encoder		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Contains the encoder configuration supported by the Sensor Module.				
Index:	[0] $=$ [1] $=$ [2] $=$	Encoder 1 Encoder 2 Encoder 3			
Bit field:		Signal name	1 signal	0 signal	FP
		Linear encoder	Yes	No	-
		Abs value encoder	Yes	No	-
	02	Multiturn encoder	Yes	No	-
		Track A/B sq-wave	Yes	No	-
	04	Track A/B sinus	Yes	No	-
	05	Track C/D	Yes	No	-
	06	Hall sensor	Yes	No	-

	08	EnDat encoder	Yes
09	SSI encoder	Nes	
	10	DRIVE-CLiQ encoder	Nes
	12	Equidistant zero mark	No
	13	Irregular zero mark	No
	14	Distance-coded zero mark	Nes
	15	Commutation with zero mark	Yes
	16	Acceleration	No
	20	Voltage level 5 V	Yes
	21	Voltage level 24 V	Nes
	22	Remote sense (only SMC30)	Yes
	23	Resolver excit.	Yes
Dependency:	Refer to: p0404	Nes	
Note	ZM: Zero mark		No
	This parameter is only used for diagnostics.	No	
	A value of zero is displayed if an encoder is not present.		

r0458[0...2]	Sensor Modu Can be changed SERVO (Lin)
	Data type: Unsig No-Group: Encod motor ty Min Index:
	-
	Sets the Sensor
	$[0]=$ Encoder 1
	$[1]=$ Encoder 2
	$[2]=$ Encoder 3

Bit field:

Bit	Signal name	1 signal	0 signal	FP
00	Encoder data available	Yes	No	-
01	Motor data available	Yes	No	-
02	Temperature sensor connection available	Yes	No	-
03	Connection for PTC for motor with DRIVECLiQ also available	Yes	No	-
04	Module temperature available	Yes	No	-
05	Absolute encoder p0408/p0421, no power of 2	Yes	No	-
06	Sensor Module permits parking/unparking	Yes	No	-
07	Hall sensor can be combined with actual value inversion	Yes	No	-
08	Evaluation through several temperature channels possible	Yes	No	-
09	Encoder fault and its associated information available	Yes	No	-
10	Velocity diagnostics in the Sensor Module	Yes	No	-
11	Configuring without park state possible	Yes	No	-
12	Extended functions available	Yes	No	-
13	Extended encoder fault handling	Yes	No	-
14	Extended singleturn/multiturn information available	Yes	No	-
16	Pole position identification	Yes	No	-
17	Burst oversampling	Yes	No	-
19	Safety position actual value sensing	Yes	No	-
20	Extended velocity calculation available (only SMC30)	Yes	No	-
21	Zero mark tol	Yes	No	-
22	Rot pos adapt	Yes	No	-
27	SSI position value extrapolation	Yes	No	-
29	Phase correction	Yes	No	-

30	Amplitude correction	Yes	No
31	Offset correction	Yes	No

Dependency: Refer to: p0437, p0600, p0601
Note: A value of zero is displayed if an encoder is not present.
Re bit 11:
When the property is set, the following parameters can be changed without the actual value in the encoder interface becoming invalid (state r0481.14 = 1 "parking encoder active"):
p0314, p0315, p0430, p0431, p0441, p0442, p0443, p0444, p0445
Re bit 12:
The extended functions can be configured using p0437.

Re bit 11:
When the property is set, the following parameters can be changed without the actual value in the encoder interface becoming invalid (state r0481.14 = 1 "parking encoder active"):
p0314, p0315, p0430, p0431, p0441, p0442, p0443, p0444, p0445

Re bit 12:
The extended functions can be configured using p0437.

Dependency: Note:	Refer to: p0437		
r0460[0...2]	Encoder serial number part 1 / Enc ser_no 1		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description: Index:	Displays the current seria [0] = Encoder 1 [1] = Encoder 2 [2] = Encoder 3	he appropriate enco	
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0461, r0462, r0463, r0464		
r0461[0...2]	Encoder serial number part 2 / Enc ser_no 2		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description: Index:	Displays the current seria [0] = Encoder 1 [1] = Encoder 2 [2] = Encoder 3	he appropriate enco	
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0462, r0463, r0464		
r0462[0...2]	Encoder serial number part 3 / Enc ser_no 3		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description: Index:	Displays the current seria [0] = Encoder 1 [1] = Encoder 2 [2] = Encoder 3	he appropriate enco	
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0463, r0464		
r0463[0...2]	Encoder serial number part 4 / Enc ser_no 4		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the current serial number part 4 of the appropriate encoder.		

Index:	$\begin{aligned} & \text { [0] }=\text { Encoder } 1 \\ & \text { [1] }=\text { Encoder } 2 \\ & \text { [2] }=\text { Encoder } 3 \end{aligned}$		
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0464		
r0464[0...2]	Encoder serial number part 5 / Enc ser_no 5		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
		-	
Description:	Displays the current serial number part 5 of the appropriate encoder.		
Index:	[0] = Encoder 1		
	[1] = Encoder 2		
	[2] = Encoder 3		
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0463		
r0465[0...27]	Encoder 1 identification number/serial number / Enc1 ID_no/Ser_no		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the serial number of encoder 1.		
	Index $0=$ first character of the identification number		
	...		
	Index $\mathrm{x}=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+1=2 \mathrm{~F}$ hex (slash) --> separation between the identification number of serial number		
	Index $x+2=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+3$ = first character of the serial number		
	...		
	Index y with contents = last character of the serial number		
Dependency:	Refer to: r0460, r0461, r0462, r0463, r0464		
Notice:	An ASCII table (excerpt) can be found, for example, in the following List Manual:		
Note:	The individual characters of the identification number/serial number are available coded as ASCII characters.		
r0466[0...27]	Encoder 2 identification number/serial number / Enc2 ID_no/Ser_no		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	F
Description:	Displays the serial number of encoder 2.		
	Index $0=$ first character of the identification number		
	Index $\mathrm{x}=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+1=2 F$ hex (slash) --> separation between the identification number of serial number		
	Index $x+2=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+3=$ first character of the serial number		

	Index y with contents = last character of the serial number		
Dependency:	Refer to: r0460, r0461, r0462, r0463, r0464		
Notice:	An ASCII table (excerpt) can be found, for example, in the following List Manual:		
Note:	The individual characters of the identification number/serial number are available coded as ASCII characters.		
r0467[0...27]	Encoder 3 identification number/serial number / Enc3 ID_no/Ser_no		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the serial number of encoder 3.		
	Index $0=$ first character of the identification number		
	...		
	Index $\mathrm{x}=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+1=2 \mathrm{~F}$ hex (slash) --> separation between the identification number of serial number		
	Index $x+2=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+3$ = first character of the serial number		
	...		
	Index y with contents = last character of the serial number		
Dependency:	Refer to: r0460, r0461, r0462, r0463, r0464		
Notice:	An ASCII table (excerpt) can be found, for example, in the following List Manual:		
Note:	The individual characters of the identification number/serial number are available coded as ASCII characters.		
r0470[0...2]	Redundant coarse value valid bits / Valid bits		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the valid bits of the redundant coarse position value.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p9323, p9523		
r0471[0...2]	Redundant coarse value fine resolution bits / Fine bit		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of valid bits for the fine resolution of the redundant coarse position value.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p9324, p9524		

r0481[0...2]	CO: Encoder status word Gn_ZSW / Enc Gn_ZSW				
SERVO, VECTOR	Can be changed: - Data type: Unsigned16		Calculated: -	Access level: 3	
			Dynamic index: -	Func. diagram: 4010, 4704,4730	
	P-Group: Encoder		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory	
	-		-	-	
Description:	Displays the encoder status word Gn_ZSW according to PROFIdrive.				
Index:	$[0]$ $[1]$ $[2]$	Encoder 1 Encoder 2 Encoder 3			
Bit field:		Signal name	1 signal	0 signal	FP
		Function 1 active	Yes	No	-
		Function 2 active	Yes	No	-
		Function 3 active	Yes	No	-
		Function 4 active	Yes	No	-
		Value 1	Displayed in r0483	Not present	-
		Value 2	Displayed in r0483	Not present	-
		Value 3	Displayed in r0483	Not present	-
		Value 4	Displayed in r0483	Not present	-
		Measuring probe 1 deflected	Yes	No	-
		Measuring probe 2 deflected	Yes	No	-
		Encoder fault acknowledge active	Yes	No	9676
		Absolute value cyclically	Displayed in r0483	No	-
		Parking encoder active	Yes	No	-
		Encoder fault	Displayed in r0483	None	-
Notice:	Information on Gn_STW/Gn_ZSW can, e.g. be found in the following literature: SINAMICS S120 Function Manual Drive Functions				
Note:	Re bit 14:				
	Displays the acknowledgement for "activate parking encoder" (Gn_STW. $14=1$) or encoder position actual value (Gn_XIST1) invalid.				
	Re bit 14, 15:				
	r0481.14 = 1 and r0481.15 = 0 can have one of the following causes:				
	- the encoder is parked.				
	- the encoder is de-activated.				
	- the encoder is being commissioned.				
	- no parameterized encoder available.				
	- encoder data set is being changed over.				
	r0481.14 = 1 and r0481.15 = 1 has the following significance:				
	An encoder error has occurred and the encoder position actual value (Gn_XIST1) is invalid.				
r0481	CO	: Encoder status word Gn_	N / Enc Gn_ZSW		
TM41	Can be changed: -		Calculated: -	Access	
	Data type: Unsigned16		Dynamic index: -	Func. di	
	P-Group: Encoder		Units group: -	Unit sele	
	Not for motor type: -			Expert li	
	Min		Max	Factory	
Description:	Displays the encoder status word Gn_ZSW according to PROFIdrive.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Function 1 active	Yes	No	-
	01	Function 2 active	Yes	No	-
	02	Function 3 active	Yes	No	-

	03	Function 4 active	Yes	No	-
	04	Value 1	Displayed in r0483	Not present	-
	05	Value 2	Displayed in r0483	Not present	-
	06	Value 3	Displayed in r0483	Not present	-
	07	Value 4	Displayed in r0483	Not present	-
	08	Measuring probe 1 deflected	Yes	No	-
	09	Measuring probe 2 deflected	Yes	No	-
	11	Encoder fault acknowledge active	Yes	No	9676
	13	Absolute value cyclically	Displayed in r0483	No	-
	14	Parking encoder active	Yes	No	-
	15	Encoder fault	Displayed in r0483	None	-
Notice:	Information on Gn_STW/Gn_ZSW can, e.g. be found in the following literature: SINAMICS S120 Function Manual Drive Functions				
Note:	For p4401 = 0, the following applies:				
	For Terminal Module 41 (TM41), this value is used to interconnect with standard telegram 3 and is always zero.				
	r0481.0 indicates as to whether the zero mark synchronization is active.				
	r0481.4 indicates whether the zero mark of the incremental encoder was found.				
	r0481.14 indicates whether the output of track A / B is activated.				

r0482	CO: Encoder actual position value Gn_XIST1 / Enc Gn_XIST1		
TM41	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9674
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	-	Factory setting
	-	-	
Description:	Displays the encoder actual position value Gn XIST1 according to PROFIdrive.		

r0483[0...2]	CO: Encoder actual position value Gn_XIST2 / Enc Gn_XIST2		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 1580, 2450, 4010, 4704
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the encoder actual position value Gn_XIST2 according to PROFIdrive.		

Recommend.:	Possible causes of the error codes:
	Error code 4097 and 4098: Defective Control Unit hardware.
	Error codes 4099 and 4100: Too many measuring pulses have occurred.
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$
Notice:	The encoder position actual value must be requested using the encoder control word Gn_STW.13.
Note:	- in this value, the measuring gear ($\mathrm{p} 0432, \mathrm{p} 0433$) is only taken into account when the position tracking is activated (p0411.0 = 1).
	- if GxZSW. $15=1$ (r0481), then an error code with the following significance is located in Gx_XIST2 (r0483):
	1: Encoder fault.
	2: Possible position shift in Gx_XIST1.
	3: Reserved.
	4: Abort, reference mark search.
	5: Abort, retrieve reference value.
	6: Abort, flying measurement.
	7: Abort, retrieve measured value.
	8: Abort, absolute value transfer.
	3841: Function not supported.
	4097: Abort, reference mark search due to an initialization error.
	4098: Abort, flying measurement due to an initialization error.
	4099: Abort, reference mark search due to a measuring error.
	4100: Abort, flying measurement due to a measuring error.

r0483	CO: Encoder actual position value Gn_XIST2 / Enc Gn_XIST2		
TM41	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the encoder actual position value Gn_XIST2 according to PROFldrive.		
Notice:	The encoder position actual value must be requested using the encoder control word Gn_STW.13.		
Note:	SIMOTION (p4400 = 0) operating mode:		
	For Terminal Module 41 (TM41), this value is used to interconnect with standard telegram 3 and is always zero.		
	As soon as the automatic the leading encoder that	ization has been co to connector input p	meter indicates the zero mark of

r0484[0...2]	CO: Redundant coarse encoder position + CRC Gn_XIST1 / Enc red pos+CRC		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting

Description: Displays the redundant coarse encoder position including CRC (Cyclic Redundancy Check). Upper 16 bits:
CRC over the redundant coarse encoder position
Lower 16 bits:
Redundant coarse encoder position. The count direction is opposite to r0482 (encoder position actual value Gn_XIST1). The value contains 2 bit fine resolution.

Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Dependency:	The values are valid when the safety position actual value sensing is activated ($p 0430.19=1$). Refer to: p0430		
Note:	This absolute value does not change, contrary to r0482, when de-selecting the function "parking axis".		
r0485[0...2]	CO: Measuring gear, encoder raw value incremental / Enc raw val incr		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description: Index:	Displays the raw value of the incremental encoder actual value before the measuring gear.$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		

r0486[0...2]	CO: Measuring gear, encoder raw value absolute / Enc raw val abs		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group:	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	Max	Factory setting
	-	-	
Description:	Displays the raw value of the absolute encoder actual value before the measuring gear.		
Index:	$[0]=$ Encoder 1		
	$[1]=$ Encoder 2		
	$[2]=$ Encoder 3		

Notice:	To the terminal designation:			
	The first designation is valid for CU320, the second for CU310.			
	To select the values:			
	For CU310, CX32, NX10 and NX15, only DI/DO 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual).			
Note:	DI/DO: Bidirectional Digital Input/Output			
	The terminal must be set as input (p0728).			
	Refer to the encoder interface for PROFIdrive.			
	If parameterization is rejected, check whether the terminal is already being used in p0580, p0680, p2517 or p2518.			
p0490	Invert measuring probe or equivalent zero mark / Meas. probe invert			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 4740	
	P-Group: Encoder	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting 0000 bin	
	-	-		
Description:	Setting to invert the digital input signals to connect a measuring probe or an equivalent zero mark.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	09 DI/DO 9 (X122.8/X121.8)	Inverted	Not inverted	-
	10 DI/DO 10 (X122.10/X121.10)	Inverted	Not inverted	-
	11 DI/DO 11 (X122.11/X121.11)	Inverted	Not inverted	-
	13 DI/DO 13 (X132.8)	Inverted	Not inverted	-
	14 DI/DO 14 (X132.10)	Inverted	Not inverted	-
	15 DI/DO 15 (X132.11)	Inverted	Not inverted	-
Dependency:	Refer to: p0488, p0489, p0495, p0728			
Notice:	To the terminal designation:			
	The second designation is only applicable for CU310.			
Note:	The terminal must be set as input.			
	When the measuring probe or the equivalent zero mark is inverted, this has no effect on the status displays of the digital inputs (r0721, r0722, r0723).			
	DI: Digital input, DO: Digital output			
p0490	Invert measuring probe or equivalent zero mark / Meas. probe invert			
CU_I, CU_S	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 4740	
	P-Group: Encoder	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting	
	-	-	$0000 \text { bin }$	
Description:	Setting to invert the digital input signals to connect a measuring probe or an equivalent zero mark.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	09 DI/DO 9 (X122.8/X121.8)	Inverted	Not inverted	-
	10 DI/DO 10 (X122.10/X121.10)	Inverted	Not inverted	-
	11 DI/DO 11 (X122.11/X121.11)	Inverted	Not inverted	-
Dependency:	Refer to: p0488, p0489, p0495, p0728			
Notice:	To the terminal designation:			
	The second designation is only applicable for CU310.			
Note:	The terminal must be set as input.			
	When the measuring probe or the equivalent zero mark is inverted, this has no effect on the status displays of the digital inputs (r0721, r0722, r0723).			
	DI: Digital input, DO: Digital output			

Dependency:	The following parameters are relevant for encoderless operation.
	Refer to: p0341, p0342, p1470, p1472, p1517, p1612, p1755
	Refer to: F07575
Caution:	For p0491 = 1, the following must be carefully observed:
!	In spite of the motor encoder fault that has occurred, the motor is still operated.
Note:	For a value 1, 2, 3, the following applies:
	Encoderless operation must have been commissioned.
	Refer to the status signal "encoderless operation due to a fault" (BO: r1407.13).
	Not possible for separately excited synchronous motors (p0300 = 5).
p0492	Square-wave encoder, max. velocity difference per sampling cycle / v_dif max/samp_cyc
SERVO (Lin)	Can be changed: U, T Calculated: CALC_MOD_REG Access level: 3
	Data type: FloatingPoint32 Dynamic index: - Func. diagram: -
	P-Group: Encoder Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
	Min Max Factory setting $0.0[\mathrm{~m} / \mathrm{min}]$ $1000.0[\mathrm{~m} / \mathrm{min}]$ $0.0[\mathrm{~m} / \mathrm{min}]$
Description:	Sets the maximum permissible velocity difference between two computing cycles when square-wave encoders are evaluated.
	When the value is exceeded, depending on p0491, either an encoderless closed-loop velocity/force control is selected or the drive is powered down.
Dependency:	Refer to: F31118, A31418, F32118, A32418, F33118, A33418
Note:	For a value of 0.0 , the velocity change monitoring is disabled.
	When half of the parameter value is exceeded, an alarm is already generated and the velocity change is limited to this.
p0492	Square-wave encoder, maximum speed difference per sampling cycle / n_dif max/samp_cyc
SERVO, VECTOR	Can be changed: U, T Calculated: CALC_MOD_REG Access level: 3
	Data type: FloatingPoint32 Dynamic index: - Func. diagram: -
	P-Group: Encoder Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
	Min Max Factory setting $0.0[\mathrm{rev} / \mathrm{min}]$ $210000.0[\mathrm{rev} / \mathrm{min}]$ 0.0 [rev/min]
Description:	Sets the maximum permissible speed difference within the current controller sampling time for squarewave encoders.
	When the value is exceeded, depending on p0491, either encoderless closed-loop speed/torque control is selected or the drive is powered down.
Dependency:	Refer to: F31118, A31418, F32118, A32418, F33118, A33418
Note:	For a value of 0.0 , the speed change monitoring is disabled. if the set maximum speed difference is only exceeded for one sampling time of the current controller, then an appropriate alarm is output. However, if the maximum speed difference is exceeded over several sampling times, then a corresponding fault is output.
	For VECTOR, the following applies:
	The parameter is only pre-assigned when selecting p0340 $=1,3$.
	The following applies for SERVO, VECTORMV:
	The speed actual value used for the monitoring is a floating average between p0115[0] and p0115[1].

r0498[0...2]	Encoder diagnostic signal word low / Enc diag word low		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underline{M i n}$	Max	Factory setting
Description: Index:	Trace signal for encoder diagnostics (low component). The output signal is selected in p0496. [0] = Encoder 1 [1] = Encoder 2 [2] = Encoder 3		
r0499[0...2]	Encoder diagnostic signal word high / Enc diag word high		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description: Index:	Trace signal for encoder diagnostics (high component). The output signal is selected in p0496. [0] = Encoder 1 [1] $=$ Encoder 2 [2] = Encoder 3		
p0500	Technology application / Tec application		
SERVO	Can be changed: $\mathrm{C} 2(1,5)$, T	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Applications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \text { Min } \\ 100 \end{gathered}$	$\begin{aligned} & \text { Max } \\ & 102 \end{aligned}$	Factory setting 100
Description:	The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0578.		
Value:	100: Standard drive (SERVO) 101: Feed drive (limit current limitation) 102: Spindle drive (rated current limitation)		
Dependency:	Refer to: p1520, p1521, p1530, p1531, p2000, p2175, p2177		
	After changing over the technological application and then calculating the open-loop and closed-loop parameters, the behavior of the motor can have changed very significantly (e.g. the same setpoint results in a higher speed due to a different reference speed). For this reason extreme caution must be taken when the motor is started for the first time.		
Note:	The calculation of parameters - when exiting the quick comm - when writing p0340 $=1,3,5$ - when writing p0578 = 1	the technology appli $\text { g p3900 > } 0$	led up as follows:
	For p0500 $=100$ and the calculation is initiated, the following parameters are set:		
	- p1520/p1521 = rated motor torque (r0333)		
	- p1530/p1531 = $2^{*} \mathrm{pi}^{*} \mathrm{r} 0333^{*} \mathrm{p} 0311$ (rotary) or r0333*p0311 (linear)		
	- p2000 = rated motor speed (p0311)		
	- p2175 = factory setting		
	- p2177 = factory setting		

p0505	Selecting the syste	lect unit sys	
A_INF, B_INF, S_INF, SERVO, TM41, VECTOR	Can be changed: C2(5)	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Applications	Units group: -	Unit selection: -
	Not for motor type:-		Expert list: 1
	$\underset{1}{\operatorname{Min}}$	$\begin{aligned} & \text { Max } \\ & 4 \end{aligned}$	Factory setting 1
Description: Value:	Setting parameter of the current system of units.		
	1: System of units SI 2: System of units, referred/SI 3: US system of units 4: System of units, referred/US		
Dependency:	The parameter cannot be changed if the master control was fetched.		
	If a per unit representation is selected and if reference parameters (e.g. p2000) are subsequently changed, then the physical significance of some closed-loop control parameters will also be adapted where as a result, the closedloop control behavior can change (refer to p1576, p1621, p1744, p1752, p1755 and p1609, p1612, p1619, p1620).		
Note:	Reference parameter for the unit system \% are, for example, p2000 ... p2004. Depending on what has been selected, these are displayed using either SI or US units.		
p0528	Controller gain, system of units / Ctrl_gain unit_sys		
SERVO, TM41	Can be changed: C2(5)	Calculated: -	Access level: 4
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Applications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{1}{\operatorname{Max}}$	Factory setting 0
Description:	Sets the system of units for the controller gains.		
Value:	0: Representation, physical/\% (p0505) 1: Representation, no dimensions (referred)		
Note:	For p0528 = 0 (physical/\%), the following applies: Using p0505, the dependent parameters can be changed over between physical and \% representation. For SERVO (r0107) the following applies: The parameter is pre-assigned a value of 0 and cannot be changed.		
p0528	Controller gain, system of units / Ctrl_gain unit_sys		
VECTOR	Can be changed: C2(5)	Calculated: -	Access level: 4
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Applications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{1}{\operatorname{Max}}$	Factory setting 1
Description:	Sets the system of units for the controller gains.		
Value:	0: Representation, physical/\% (p0505) 1: Representation, no dimensions (referred)		
Note:	For VECTOR (r0107) the following applies:The parameter is pre-assigned a value of 1 and cannot be chang		

Note:	If a parameter change is rejected, it should be checked whether the input terminal is already being used in p0488, p0489, p0495, p0680, p2517 or p2518.		
p0581	Meas probe, edge / M		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets the edge to evaluate th 0 : $0 / 1$ edge 1: $1 / 0$ edge	e signal for speed	surement.
Dependency:	Refer to: p0580		
p0582	Measuring probe, pulses per revolution / MT pulses per rev		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 12 \end{aligned}$	Factory setting 1
Description:	Sets the number of pulses per revolution (e.g. for disks with holes).		
p0583	Measuring probe, maximum measuring time / MT t_meas max		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{0.040[s]}$	$\begin{aligned} & \text { Max } \\ & 10.000 \text { [s] } \end{aligned}$	Factory setting 10.000 [s]
Description:	If a new pulse is not received before the maximum measuring time has expired, then the speed actual value in r0586 is set to zero. This timer is re-started with the next pulse.		
Dependency:	Refer to: r0586		
r0586	CO: Measuring probe, velocity actual value / MT v_act		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the velocity actual value measured using the BERO.		
Dependency:	Refer to: p0580, p0583		
Note:	For $00580=0$ (no measuring probe), a value of zero is displayed here.		

p0601	Temperature sensor, sen	/ Temp_sens	
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 4 \end{aligned}$	Factory setting 0
Description:	Sets the sensor type for the temperature measurement at input X21 (booksize) or X41 (chassis). The measured value is displayed in r0035.		
Value:	0: No sensor 1: PTC alarm \& timer 2: KTY84 4: Bimetallic NC contact alarm \& timer		
Dependency:	Refer to: r0035		
Note:	The measured value display depends on the selected sensor type.		
	Re p0601 $=0$ (no sensor):		
	Re p0601 = 1 (PTC alarm \& timer):		
	Tripping resistance $=1650$ Ohm (lower resistance $-->$ r0035 $=-50^{\circ} \mathrm{C}$, higher resistance $-->$ r0035 $=250^{\circ} \mathrm{C}$). Rep0601 = 2 (KTY84):		
	Displays the temperature in ${ }^{\circ} \mathrm{C}$.		
	Re p0601 $=4$ (bimetallic NC contact alarm \& timer):		
	r0035 $=-50{ }^{\circ} \mathrm{C}$		
	--> The tripping resistance is less than 100 Ohm (bimetallic NC contact is closed or has a short-circuit) r0035 $=250^{\circ} \mathrm{C}$		
	--> The tripping resistance is greater than 100 Ohm (bimetallic NC contact is open, not connected or has a wire breakage).		
	When using the following components, a value of 4 is set as the factory setting and can no longer be changed:		
	- Active Line Module (ALM) with line filter Active Interface Module (AIM, p0220[0] = 41 ... 45).		
	In these cases, in addition to the temperature display, the temperature is also monitored.		

p0601[0...n]	Motor temperature sensor type / Mot_temp_sens type		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10 \end{aligned}$	Factory setting 2
Description:	Sets the sensor type for the motor temperature monitoring.		
Value:	0: No sensor		
	1: PTC alarm \& timer		
	2: KTY84		
	3: KTY84 and PTC (only for	DRIVE-CLiQ):	
	4: Bimetallic NC contact a	(only for temp_eval via MM)	
	5: PT100		
	10: Evaluation via several t	annels	
Dependency:	Refer to: r0458, p0600		
Note:	The temperature sensor for the temperature evaluation is set in p0600.		
	For 0660 = 10 (temperature sensor via a BICO interconnection), the setting in p0601 has no significance		

Information on using temperature sensors is provided in the following literature:

- hardware description of the appropriate components
- SINAMICS S120 Commissioning Manual

Re p0601 = 1 (PTC alarm \& timer):
Tripping resistance $=1650$ Ohm.
After the tripping resistance has been exceeded, an appropriate alarm is output and after the delay time set in p0606 has expired, an appropriate fault is output.
Re p0601 = 3 (KTY84 and PTC (only for motors with DRIVE-CLiQ)):
For motors with DRIVE-CLiQ and 2 temperature sensors, the value is automatically set. Re p0601 = 4 (bimetallic NC contact alarm \& timer (only for temperature evaluation via the Motor Module)): r0035 $=-200^{\circ} \mathrm{C}$
--> The tripping resistance is less than 100 Ohm (bimetallic NC contact is closed or has a short-circuit).
r0035 $=250^{\circ} \mathrm{C}$
--> The tripping resistance is greater than 100 Ohm (bimetallic NC contact is open, not connected or has a wire breakage).
After tripping, an appropriate alarm is output and after the delay time set in p0606 has expired, an appropriate fault is output.
Re p0601 = 5 (PT100):
It is only possible to evaluate a PT100 for $\mathrm{p} 0600=11$ and r0192 bit $15=1$.
Re p0601 = 10 (evaluation through several temperature channels):
Not permitted for $\mathrm{p} 0600=0,10,11$.
For r0458.8 = 1, a temperature evaluation is supported through several temperature channels.
Examples:
When evaluating using SME120 or SME125, 4 temperature channels are available (parameterized using p4600, p4601, p4602, p4603).
When evaluating using CU310 and CUA32, 2 temperature channels are available (encoder interface, parameterization via p4600 / terminal strip, parameterization via p4601).

p0602	Par_circuit power unit number, temperature sensor / PU_No temp_sensor		
VECTOR (Parallel)	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10 \end{aligned}$	Factory setting 0
Description:	Sets the power unit number to which the temperature sensor is connected. The value corresponds to the Power unit Data Set number (PDS) of the power unit. The number of power unit data sets is defined in p0120.		
p0603	CI: Motor temperature signal source / Mot temp S_src		
SERVO, VECTOR	Can be changed: C2(3), T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: -	Func. diagram: 8016
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to evaluate the motor temperature via a BICO interconnection.		
Dependency:	Refer to: p0600		
Note:	Temperature sensor KTY: Valid temperature range $-48{ }^{\circ} \mathrm{C}$... $248{ }^{\circ} \mathrm{C}$.		
	PTC temperature sensor:		
	For the $-50^{\circ} \mathrm{C}$, the following applies: Motor temperature < nominal response temperature of the PTC.		
	For the $250^{\circ} \mathrm{C}$, the following applies: Motor temperature > $=$ nominal response temperature of the PTC.		

> Note:
> When using a Terminal Module 31 (TM31), the following applies:
> - the sensor type used is set using p4100.
> - the temperature signal is interconnected using CO: r4105.

p0604[0...n]	Motor overtemperature alarm threshold / Mot TempAIrmThresh		
SERVO	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.0\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting 120.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the alarm threshold for monitoring the motor temperature.		
Dependency:	Refer to: p0606		
p0604[0...n]	Motor overtemperature alarm threshold / Mot TempAIrmThresh		
VECTOR	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{0.0}\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & \operatorname{Max} \\ & 200.0\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting 130.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the alarm threshold for monitoring the motor temperature.		
Dependency:	Refer to: p0606		
p0605[0...n]	Motor overtemperature fault threshold / MotTempFaultThresh		
SERVO, VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8016, 8017
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\left.\operatorname{Min}_{0.0}{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & \operatorname{Max} \\ & 200.0\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting $145.0\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the fault threshold to monitor the motor temperature.		
Caution:	This parameter is automatically preset for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is also used as alarm threshold for the thermal 12 t motor model (refer to p0611) for permanent-magnet synchronous motors. When the I 2 t model identifies that the alarm threshold has been reached, then this is displayed using a motor utilization level of r0034 $=100 \%$.		

p0606[0...n]	Motor overtemperature timer / Mot TempTimeStage		
SERVO	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~s}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 600.000 \text { [s] } \end{aligned}$	Factory setting 240.000 [s]
Description:	Sets the timer for the alarm thr This timer is started when the If the timer expires before the put.	motor temperature monitoring fu arm threshold (p 0604) is exceed the meantime falls below the al	hreshold, the fault F070

	If the temperature fault threshold (p 0605) is prematurely exceeded before the timer has expired, then fault F07011 is immediately output.
	As long as the motor temperature has still not exceeded the fault threshold and the alarm thresholds have again been undershot, the fault can be acknowledged.
Dependency:	Refer to: p0604, p0605
	Refer to: F07011, A07910
Note:	With p0606 = 0 s , the timer is de-activated and only the fault threshold is effective.
	KTY sensor: When setting the minimum value, the timer is disabled and a fault is not output until p0605 is exceeded.
	PTC sensor: The timer minimum value has no particular significance.
p0606[0...n]	Motor overtemperature timer / Mot TempTimeStage
VECTOR	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ Calculated: - Access level: 2
	Data type: FloatingPoint32 Dynamic index: MDS, p0130 Func. diagram: 8016
	P-Group: Motor Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
	Min Max Factory setting
	$0.000[\mathrm{~s}] \quad 600.000[\mathrm{~s}] \quad 0.000$ [s]
Description:	Sets the timer for the alarm threshold for the motor temperature monitoring function. This timer is started when the temperature alarm threshold (p 0604) is exceeded. If the timer expires before the temperature in the meantime falls below the alarm threshold, the fault F07011 is output.
	If the temperature fault threshold (p 0605) is prematurely exceeded before the timer has expired, then fault F07011 is immediately output.
	As long as the motor temperature has still not exceeded the fault threshold and the alarm thresholds have again been undershot, the fault can be acknowledged.
Dependency:	Refer to: p0604, p0605
	Refer to: F07011, A07910
Note:	With p0606 = 0 s , the timer is de-activated and only the fault threshold is effective.
	KTY sensor: When setting the minimum value, the timer is disabled and a fault is not output until p0605 is exceeded.
	PTC sensor: The timer minimum value has no particular significance.

p0607[0...n]	Temperature sensor fault timer / Sensor fault time		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~s}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 600.000 \text { [s] } \end{aligned}$	Factory setting 0.100 [s]
Description:	If there is a sensor fault, this timer is started. If the sensor fault is still present after the timer has expired, a corresponding fault message is output.		
Note:	If the motor is an induction mo Temperature monitoring is the	switched off when setting the thermal model.	um value and no ala

p0615[0...n]	I2t motor model fault threshold / I2t mot_mod thresh		
SERVO, VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8017
	P-Group: Motor	Units group: $21 _1$	Unit selection: p0505
	Not for motor type: ASM, REL, FEM		Expert list: 1

p0616[0...n]	Motor overtemperature alarm threshold 1 / Mot temp alarm 1		
SERVO	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $0.0\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & \operatorname{Max} \\ & 200.0\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting 195.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the alarm threshold 1 for monitoring the motor temperature.		
Note:	The alarm threshold is not, as for p0604, coupled to the timer p0606.		
p0616[0...n]	Motor overtemperature alarm threshold 1 / Mot temp alarm 1		
VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.0\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.0\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting 130.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the alarm threshold 1 for monitoring the motor temperature.		
Note:	The alarm threshold is not, as for p0604, coupled to the timer p0606.		
p0620[0...n]	Thermal adaptation, stator and rotor resistance / Mot therm_adapt R		
SERVO	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 2
Description:	Sets the thermal adaptation of the stator/primary section resistance and rotor/secondary section resistance according to r0395 and r0396.		
Value:	0: No thermal adaptation of stator and rotor resistances 1: Resistances adapted to the temperatures of the thermal model 2: Resistances adapted to the measured stator winding temperature		
Note:	For p0620 = 1, the following applies:		
	The stator resistance is adapted using the temperature in r0035 and the rotor resistance together with the model temperature in r0633.		

For p0620 = 2, the following applies:
The stator resistance is adapted using the temperature in r0035. The rotor temperature to adapt the rotor resistance is calculated as follows from the stator temperature (r0035).
theta_R $=(\mathrm{r} 0628+\mathrm{r} 0625) /(\mathrm{rO627}+\mathrm{r} 0625) *$ r0035

> If identification is activated, the magnetizing time is determined via p0622 and not via p0346. Quick magnetizing (p 1401.6) is de-energized internally and alarm A07416 is displayed.

p0622[0...n]	Motor excitation time for Rs_ident after powering up again / t_excit Rs_id		
VECTOR (n / M)	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min $0.000 \text { [s] }$	$\begin{aligned} & \text { Max } \\ & 20.000 \text { [s] } \end{aligned}$	Factory setting 0.000 [s]
Description: Dependency:	Sets the excitation time of the motor for the stator resistance identification after powering up again (restart). Refer to: p0621, r0623		
r0623	Stator resistance of Rs identification after powering up again / R_Stator Reset_Id		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min - [Ohm]	Max - [Ohm]	Factory setting - [Ohm]
Description:	Displays the identified stator resistance after the Rs identification after powering up again.		
Dependency:	Refer to: p0621, p0622		
Note:	The parameter is internally limited to the magnetizing time p0346.		
p0624[0...n]	Motor Temperature Offset PT100 / Mot T_offset PT100		
SERVO, VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: 21_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -100.0[\mathrm{~K}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.0[\mathrm{~K}] \end{aligned}$	Factory setting 0.0 [K]
Description:	Differential temperature to the offset compensation of the PT100 measured value.		
Dependency:	Refer to: p0600, p0601, p0602		
Note:	The parameter only has an influence if the temperature sensor of the power unit is detected ($\mathrm{p} 0600=11$) an PT100 was selected as sensor type (p0601 = 5).		
p0625[0...n]	Motor ambient temperature / Mot T_ambient		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -40\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 80\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting $20\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Defines the ambient temperature of the motor to calculate the temperature model.		
Note:	If the thermal I2t motor model is activated for permanent-magnet synchronous motors (refer to p0611), then p0625 is included in the model calculation if a temperature sensor is not being used (refer to p0600, p0601).		

p0626[0...n]	Motor overtemperature, stator core / Mot T_over core		
SERVO, VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: 21_2	Unit selection: p0505
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min_{20}	$\begin{aligned} & \text { Max } \\ & 200[\mathrm{~K}] \end{aligned}$	Factory setting 50 [K]
Description: Dependency:	Defines the rated overtemperature of the stator core referred to the ambient temperature. For 1LA5 and 1LA7 motors (refer to p0300), the parameter is pre-set as a function of p0307 and p0311. Refer to: p0625		
p0627[0...n]	Motor overtemperature, stator winding / Mot T_over stator		
SERVO, VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: 21_2	Unit selection: p0505
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min_{20}	$\begin{aligned} & \operatorname{Max} \\ & 200[K] \end{aligned}$	Factory setting 80 [K]
Description: Dependency:	Defines the rated overtemperature of t For 1LA5 and 1LA7 motors (refer to p030 Refer to: p0625	or winding referred to the ambie the parameter is pre-set as a fun	mperature. of p0307 and p0311.
p0628[0...n]	Motor overtemperature rotor winding / Mot T_over rotor		
SERVO, VECTOR	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: 21_2	Unit selection: p0505
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min_{20}	$\begin{aligned} & \operatorname{Max} \\ & 200[K] \end{aligned}$	Factory setting 100 [K]
Description: Dependency:	Defines the rated overtemperature of the For 1LA5 and 1LA7 motors (refer to p0 Refer to: p0625	irrel cage rotor referred to ambie the parameter is pre-set as a fun	mperature. of p0307 and p0311.
r0630[0...n]	Motor temperature model ambient temperature / MotTMod T_amb.		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: PEM, REL, FEM		Expert list: 1
	$\operatorname{Min}_{-\left[{ }^{\circ} \mathrm{C}\right]}$	$\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the ambient temperature of the motor temperature model.		
r0631[0...n]	Motor temperature model, stator core temperature / MotTMod T_core		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: PEM, REL, FEM		Expert list: 1
	$\operatorname{Min}_{-\left[{ }^{\circ} \mathrm{C}\right]}$	$\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the stator core temperature of the motor temperature model.		

r0632[0...n]	Motor temperature model, stator winding temperature / MotTMod T_copper		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min $-\left[^{\circ} \mathrm{C}\right]$	Max $-\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting - [$\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the stator winding temperature	motor temperature model.	

p0642[0...n]	Encoderless operation current reduction / Encoderl op I_red		
SERVO	Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.00 \text { [\%] } \end{aligned}$	Factory setting 100.00 [\%]
Description:	Sets the reduction for the current limit in encoderless operation. The value is referred to p0640.		
Dependency:	Refer to: r0209, p0323, p0491, p0640, p1300, p1404		
Note:	If the motor is operated both with encoder as well as without encoder (e.g. p0491 is not equal to 0 or p1404 < p 1082) then the maximum current can be reduced in encoderless operation. This reduces disturbing saturationrelated motor data changes in encoderless operation.		
p0643[0...n]	Overvoltage protection for synchronous motors / Overvolt_protect		
SERVO	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets the overvoltage protection for synchronous motors in the field-weakening range.		
Value:	0: \quad No measure 1: \quad Voltage Protection Module (VPM)		
Dependency:	Refer to: p0316, p1082, p1231, p9601, p9801		
Notice:	When the speed limiting is removed, the user is responsible for implementing a suitable overvoltage protection.		
Note:	In the field-weakening range, syn ages. The following possibilities - limit the maximum speed (p 1082) The maximum speed without pro Rotary motors: p 1082 [rpm] <= 1 Linear motors: p1082 [m/min] <= - use a Voltage Protection Modul When a fault condition exists, the pressed - this means that the term - activating the internal voltage pr	otors can, when a fault conditio ect the drive system from being ny additional protection. Iculated as follows: 97/p0316 [Nm/A] 297/0316 [N/A] conjunction with the function "S -circuits the motors. During the e function "Safe Torque Off" mu P) with $\mathrm{p} 1231=3$.	sts, generate high DC link voltoyed due to overvoltage: rque Off" (p9601, p9801). circuit, the pulses must be supconnected to the VPM.
p0643[0...n]	Overvoltage protection for synchronous motors / Overvolt_protect		
VECTOR (n/M)	Can be changed: $\mathrm{C} 2(3)$	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets the overvoltage protection for synchronous motors in the field-weakening range.		
Value:	0: No measure		
Dependency:	Refer to: p0316, p1082, p1231, p9601, p9801		
Notice:	When the speed limiting is remov	is responsible for implementing	uitable overvoltage protection.

Note: In the field-weakening range, synchronous motors can, when a fault condition exists, generate high DC link voltages. The following possibilities exist to protect the drive system from being destroyed due to overvoltage: - limit the maximum speed (p1082) without any additional protection.

The maximum speed without protection is calculated as follows:
Rotary motors: p1082 [rpm] <= 11.695 * p0297/p0316 [Nm/A]
Linear motors: p1082 [m/min] <= 73.484 *p0297/0316 [N/A]

- use a Voltage Protection Module (VPM) in conjunction with the function "Safe Torque Off" (p9601, p9801).

When a fault condition exists, the VPM short-circuits the motors. During the short-circuit, the pulses must be suppressed - this means that the terminals for the function "Safe Torque Off" must be connected to the VPM.

- activating the internal voltage protection (IVP) with p1231 $=3$.

p0645[0...n]	Motor kT characteristic kT1 / Mot kT char kT1		
SERVO (Exp M_ctrl,	Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
Lin)	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection:
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min 0.00 [N/Arms]	Max 200.00 [N/Arms]	Factory setting 0.00 [N/Arms]
Description:	Sets the constant kT 1 for the kT characteristic. $\mathrm{kT}(\mathrm{iq})=\mathrm{kT} 1+\mathrm{kT} 3^{*} \mathrm{iq} \wedge 2+\mathrm{kT5}{ }^{*} \mathrm{iq} \mathrm{q}^{\wedge}+\mathrm{kT7} 7^{*} \mathrm{iq} \mathrm{q}^{\wedge} 6$		
Dependency:	Refer to: p0316, p0646, p0647, p0648, p1780		
Note:	The value in p0316 is ignored and the kT characteristic is effective, if the following conditions are fulfilled: - the function module "expanded torque control" has been activated (r0108 = 1). - the KT characteristic has been activated (p1780.9 = 1) .		

p0645[0...n]	Motor kT characteristic kT1 / Mot kT char kT1		
SERVO (Exp M_ctrl)	Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm} / \mathrm{A}] \end{aligned}$	$\underset{200.00[\mathrm{Nm} / \mathrm{A}]}{\operatorname{Max}^{2}}$	Factory setting 0.00 [Nm / A]
Description:	Sets the constant kT 1 for the kT characteristic.		
Dependency:	Refer to: p0316, p0646, p0647, p0648, p1780		
Note:	For the standard setting, the value in p03 The value in p0316 is ignored and the k - the function module "expanded torque - the kT characteristic has been activated	is effective. aracteristic is effective, if the foll rol" has been activated (r0108 = $1780.9=1$).	conditions are fulfilled:

p0646[0...n] Motor kT characteristic kT3 / Mot kT char kT3

SERVO (Exp M ctrl) Can be changed: C2(1, 3), U, T Calculated: -
Data type: FloatingPoint32
P-Group: Motor
Not for motor type: ASM, REL, FEM
Min

Description: Sets the constant $\mathrm{kT3}$ for the kT characteristic.
$\mathrm{kT}(\mathrm{iq})=\mathrm{kT} 1+\mathrm{kT} 3^{*} \mathrm{iq} \mathrm{q}^{\wedge} 2+\mathrm{kT} 5{ }^{*} \mathrm{iq}{ }^{\wedge} 4+\mathrm{kT} 7^{*} \mathrm{i} q^{\wedge} 6$
Dependency:
Refer to: p0316, p0645, p0647, p0648, p1780

Dynamic index: MDS, p0130
Units group: -

Max
,

Access level: 1
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
For the standard setting, the value in p 0316 is effective.
The value in p 0316 is ignored and the kT characteristic is effective, if the following conditions are fulfilled:

- the function module "expanded torque control" has been activated $(\mathrm{r} 0108=1)$.
- the kT characteristic has been activated $(\mathrm{p} 1780.9=1)$.

p0647[0...n]	Motor kT characteristic kT5 / Mot kT char kT5		
SERVO (Exp M_ctrl)	Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min	Max	Factory setting
Description:	Sets the constant kT5 for the kT characteristic.$k T(i q)=k T 1+k T 3^{*} i q^{\wedge} 2+k T 5^{*} i q^{\wedge} 4+k T 7^{*} i q^{\wedge} 6$		
Dependency:	Refer to: p0316, p0645, p0646, p0648, p1780		
Note:	For the standard setting, the value in p The value in p0316 is ignored and the - the function module "expanded torque - the kT characteristic has been activat	is effective. aracteristic is effective, if the follo rol" has been activated (r0108 = $1780.9=1$).	conditions are fulfilled:

p0648[0...n]	Motor kT characteristic kT7 / Mot kT char kT7		
SERVO (Exp M_ctrl)	Can be changed: C2(1, 3), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Expert list: 1	
	Min	Factory setting	

p0650[0...n]	Actual motor operating hours / Mot t_oper act		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [h]	$\begin{aligned} & \text { Max } \\ & 4294967295[\mathrm{~h}] \end{aligned}$	Factory setting 0 [h]
Description:	The motor operating time counter continues to run when the pulses are enabled. When the pulse enable is withdrawn, the counter is held and the value saved.		
Dependency:	The following prerequisit fashion: - firmware with V2.2 or high - Control Unit 320 (CU320) Refer to: p0651 Refer to: A01590	order to be able to save the op sion C or higher (module with	g hours counter in a non-volatile M).

Note:	The operating hours counter in p0650 can only be reset to $0 . \operatorname{In}$ this case, p0651 is automatically set to 0.
	For $00651=0$, the operating hours counter is disabled.
The operating hours counter only runs for MDS0 and MDS1 (Motor Data Set).	

p0651[0...n]	Motor operating hours maintenance interval / Mot t_op maint		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [h]	Max 99999 [h]	Factory setting 0 [h]
Description:	Sets the service/maintenance intervals in hours for the appropriate motor.		
	An appropriate fault is output when the operating hours set here are reached.		
Dependency:	Refer to: p0650		
	Refer to: A01590		
Note:	For p0651 = 0, the operating hours counter is disabled.		
	The operating hours counter only runs for MDS0 and MDS1 (Motor Data Set).		

p0652[0...n]	Motor stator resistance, scali	Mot R_stator scal	
VECTOR	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description:	Factor to evaluate the stator resistance.		
Dependency:	Refer to: p0350, r0370		

p0653[0...n]	Motor stator leakage inductance, scaling / Mot L_S_leak scal		
VECTOR	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min	Max	Factory setting
	$10.0[\%]$	$100.0[\%]$	
Description:	Factor to evaluate the stator leakage inductance.		
Dependency:	Refer to: $\mathrm{p} 0356, \mathrm{rO377}$		

p0655[0...n]	Motor magnetizing inductance, d axis saturated scaling / Mot L_m d sat scal		
VECTOR	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min	Max	Factory setting
	$10.0[\%]$	$300.0[\%]$	$100.0[\%]$
Description:	Factor to evaluate the magnetizing inductance in the direction of the rotor axis (d axis).		
Dependency:	Refer to: p0360, r0382		

p0656[0...n]	Motor magnetizing inductance, q axis, saturated scaling / Mot L_m q sat scal		
VECTOR	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description: Dependency:	Factor to evaluate the magnetizing inductance quadrature to the rotor axis (q axis).		
p0657[0...n]	Motor damping inductance, d axis scaling / Mot L_damp d scal		
VECTOR	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description: Dependency:	Factor to evaluate the damping inductance in the direction of the rotor axis (d axis). Refer to: p0358, r0380		
p0658[0...n]	Motor damping inductance, q axis scaling / Mot L_damp q scal		
VECTOR	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description: Dependency:	Factor to evaluate the damping inductance quadrature to the rotor axis (q axis). Refer to: p0359, r0381		
p0659[0...n]	Motor damping resistance, d axis scaling / Mot R_damp d scal		
VECTOR	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description: Dependency:	Factor to evaluate the damping resistance in the direction of the rotor axis (d axis). Refer to: p0354, r0374		
p0660[0...n]	Motor damping resistance, q axis scaling / Mot R_damp q scal		
VECTOR	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 300.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description: Dependency:	Factor to evaluate the damping resistance quadrature to the rotor axis (q axis). Refer to: p0355, r0375		

p0680[0...5]	Central measuring probe, input terminal / Cen meas inp		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	$\underset{6}{\operatorname{Max}}$	Factory setting 0
Description:	Sets the digital input used for the function "central measuring probe evaluation".		
	p0680[1]: Digital input, measuring probe 2		
	p0680[2]: Digital input, measuring probe 3		
	p0680[3]: Digital input, measuring probe 4		
	p0680[4]: Digital input, measuring probe 5		
	p0680[5]: Digital input, measuring probe 6		
Value:	0: \quad No meas probe		
	1: DI/DO 9 (X122.8/X121.8)		
	2: DI/DO 10 (X122.10/X121.10)		
	3: DI/DO 11 (X122.11/X121.11)		
	4: DI/DO 13 (X132.8)		
	5: DI/DO 14 (X132.10)		
	6: DI/DO 15 (X132.11)		
Dependency:	Refer to: p0728		
Notice:	To the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
	To select the values:		
	For CU310, CX32, NX10 and NX15, only DI/DO 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual).		
Note:	Prerequisite: The DI/DO must be set as input ($\mathrm{p} 0728 . \mathrm{x}=0$).		
	DI/DO: Bidirectional Digital Input/Output		
	If a parameter change is rejected, it should be checked whether the input terminal is already being used in p0488, p0489, p0495, p0580, p2517 or p2518.		

p0680[0...5]	Central measuring probe, input terminal / Cen meas inp		
CU_I, CU_S	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 3 \end{aligned}$	Factory setting 0
Description:	Sets the digital input used for the function "central measuring probe evaluation".		
	p0680[0]: Digital input, measuring probe 1		
	p0680[1]: Digital input, measuring probe 2		
	p0680[2]: Digital input, measuring probe 3		
	p0680[3]: Digital input, measuring probe 4		
	p0680[4]: Digital input, measuring probe 5		
	p0680[5]: Digital input, measuring probe 6		
Value:	0: No meas probe		
	1: DI/DO 9 (X122.8/X121.8)		
	2: \quad DI/DO 10 (X122.10/X121.10)		
	3: DI/DO 11 (X122.11/X121.11)		
Dependency:	Refer to: p0728		

Notice:	To the terminal designation:			
	The first designation is valid for CU320, the second for CU310.			
	To select the values:			
	For CU310, CX32, NX10 and NX15, only DI/DO 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual).			
Note:	Prerequisite: The DI/DO must be set as input (p0728.x $=0$).			
	DI/DO: Bidirectional Digital Input/Output			
	If a parameter change is rejected, it should be checked whether the input terminal is already being used in p0488, p0489, p0495, p0580, p2517 or p2518.			
p0681	BI: Central measuring probe, synchronizing signal signal source / Cen meas sync_sig			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 3	
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -	
	P-Group: Commands	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting 0	
	-	-		
Description:	Sets the signal source for the synchronizing signal (SYN) of the function "central measuring probe evaluation". The signal is used to synchronize the common system time between the master and slave.			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.			
p0682	CI: Central measuring probe, control word signal source / Cen meas STW S_src			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 3	
	Data type: Unsigned32 / Integer16	Dynamic index: -	Func. diagram: -	
	P-Group: Displays, signals	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting 0	
Description:	Sets the signal source for the control word of the function "central measuring probe evaluation".			
p0684$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Central measuring probe evaluation technique / Cen meas eval			
	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: Integer16	Dynamic index: -	Func. diagram: -	
	P-Group: Encoder	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 0 \end{aligned}$	Factory setting 0	
Description:	Sets the evaluation technique for the function "central measuring probe evaluation".			
Value:	0 : Measurement with handshake			
r0685	Central measuring probe, control word display / Cen meas STW disp			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -	
	P-Group: Commands	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting	
	-	-		
Description:	Displays the control word for the function "central measuring probe evaluation".			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Falling edge, measuring probe 1	Yes	No	-
	01 Falling edge, measuring probe 2	Yes	No	-

02	Falling edge, measuring probe 3	Yes	No
03	Falling edge, measuring probe 4	Yes	No
04	Falling edge, measuring probe 5	Yes	No
05	Falling edge, measuring probe 6	Yes	No
08	Rising edge, measuring probe 1	Yes	No
09	Rising edge, measuring probe 2	Yes	No
10	Rising edge, measuring probe 3	Yes	No
11	Rising edge, measuring probe 4	Yes	No
12	Rising edge, measuring probe 5	Yes	No
13	Rising edge, measuring probe 6	Yes	No

r0688	CO: Central measuring probe, status word display / Cen meas ZSW disp		
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 3
CU_S	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	Max	Factory setting
	-	-	
Description:	Displays the status word for the function "central measuring probe evaluation".		

	05	DI 5 (X132.2)	High	Low	-
	06	DI 6 (X132.3)	High	Low	-
	07	DI 7 (X132.4)	High	Low	-
	08	DI/DO 8 (X122.7/X121.7)	High	Low	-
	09	DI/DO 9 (X122.8/X121.8)	High	Low	-
	10	DI/DO 10 (X122.10/X121.10)	High	Low	-
	11	DI/DO 11 (X122.11/X121.11)	High	Low	-
		DI/DO 12 (X132.7)	High	Low	-
		DI/DO 13 (X132.8)	High	Low	-
		DI/DO 14 (X132.10)	High	Low	-
	15	DI/DO 15 (X132.11)	High	Low	-
Notice:	To the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	If a DI/DO is parameterized as output ($\mathrm{p} 0728 . x=1$), then r0721. $x=0$ is displayed.				
	DI: Digital input				
	DI/DO: Bidirectional Digital Input/Output				
r0721	CX digital inputs, terminal actual value / CX DI actual value				
CU_CX32	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 2220, 2230, 2231	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the actual value at the digital inputs.				
	This means that the actual input signal can be checked at terminal $\mathrm{DI} \times$ or $\mathrm{DI} / \mathrm{DO} \times$ prior to switching from the simulation mode $(p 0795 . x=1)$ to terminal mode $(p 0795 \cdot x=0)$. The input signal at terminal $\mathrm{DI} x$ is displayed in bit x of r0721.				
Bit field:		Signal name	1 signal	0 signal	FP
		DI 0 (X122.1)	High	Low	-
		DI 1 (X122.2)	High	Low	-
		DI 2 (X122.3)	High	Low	-
		DI 3 (X122.4)	High	Low	-
		DI/DO 8 (X122.7)	High	Low	-
		DI/DO 9 (X122.8)	High	Low	-
		DI/DO 10 (X122.10)	High	Low	-
		DI/DO 11 (X122.11)	High	Low	-
r0721		digital inputs, terminal	value / CU DI actur		
CU_I, CU_S	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 1510, 2020,$\begin{aligned} & \text { 2030, 2031, 2100, 2120, 2130, } \\ & 2131,2132,2133 \end{aligned}$	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Displays the actual value at the digital inputs.				
	This means that the actual input signal can be checked at terminal $\mathrm{DI} \times$ or $\mathrm{DI} / \mathrm{DO} \times$ prior to switching from the simulation mode $(p 0795 . x=1)$ to terminal mode $(p 0795 \cdot x=0)$. The input signal at terminal DI x is displayed in bit x of r0721.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI 0 (X122.1/X121.1)	High	Low	-
	01	DI 1 (X122.2/X121.2)	High	Low	-
	02	DI 2 (X122.3/X121.3)	High	Low	-

	03	DI 3 (X122.4/X121.4)	High	Low	-
	08	DI/DO 8 (X122.7/X121.7)	High	Low	-
		DI/DO 9 (X122.8/X121.8)	High	Low	-
		DI/DO 10 (X122.10/X121.10)	High	Low	-
	11	DI/DO 11 (X122.11/X121.11)	High	Low	-
Notice:	To the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	If a DI/DO is parameterized as output ($\mathrm{p} 0728 \cdot x=1$), then r0721.x $=0$ is displayed.				
	DI: Digital input				
	DI/DO: Bidirectional Digital Input/Output				
r0722.0... 15	CO/BO: CU digital inputs, status / CU DI status				
CU_I, CU_S	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	$\begin{aligned} & \text { Func. diagram: } 1510,2020, \\ & \text { 2030, 2031, } 2100,2120,2130, \\ & 2131,2132,2133 \end{aligned}$	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Displays the status of the digital inputs.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X122.1/X121.1)	High	Low	-
		DI 1 (X122.2/X121.2)	High	Low	-
		DI 2 (X122.3/X121.3)	High	Low	-
		DI 3 (X122.4/X121.4)	High	Low	-
	04	DI 4 (X132.1)	High	Low	-
	05	DI 5 (X132.2)	High	Low	-
	06	DI 6 (X132.3)	High	Low	-
		DI 7 (X132.4)	High	Low	-
		DI/DO 8 (X122.7/X121.7)	High	Low	-
		DI/DO 9 (X122.8/X121.8)	High	Low	-
	10	DI/DO 10 (X122.10/X121.10)	High	Low	-
		DI/DO 11 (X122.11/X121.11)	High	Low	-
		DI/DO 12 (X132.7)	High	Low	-
		DI/DO 13 (X132.8)	High	Low	-
		DI/DO 14 (X132.10)	High	Low	-
		DI/DO 15 (X132.11)	High	Low	-
Dependency:	Refer to: r0723				
Notice:	To the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	DI: Digital input				
	DI/DO: Bidirectional Digital Input/Output				
r0722.0... 11	CO/BO: CX digital inputs, status / CX DI status				
CU_CX32	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 2220, 2230, 2231	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Displays the status of the digital inputs.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X122.1)	High	Low	-
	01	DI 1 (X122.2)	High	Low	-

	02	DI 2 (X122.3)	High	Low	-
	03	DI 3 (X122.4)	High	Low	-
	08	DI/DO 8 (X122.7)	High	Low	-
		DI/DO 9 (X122.8)	High	Low	-
		DI/DO 10 (X122.10)	High	Low	-
	11	DI/DO 11 (X122.11)	High	Low	-
r0722.0...11	CO/BO: CU digital inputs, status / CU DI status				
CU_I, CU_S	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	$\begin{aligned} & \text { Func. diagram: 1510, 2020, } \\ & 2030,2031,2100,2120,2130, \\ & 2131,2132,2133 \end{aligned}$	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Displays the status of the digital inputs.				
Bit field:		Signal name	1 signal	0 signal	FP
		DI 0 (X122.1/X121.1)	High	Low	-
		DI 1 (X122.2/X121.2)	High	Low	-
		DI 2 (X122.3/X121.3)	High	Low	-
		DI 3 (X122.4/X121.4)	High	Low	-
		DI/DO 8 (X122.7/X121.7)	High	Low	-
		DI/DO 9 (X122.8/X121.8)	High	Low	-
		DI/DO 10 (X122.10/X121.10)	High	Low	-
		DI/DO 11 (X122.11/X121.11)	High	Low	-
Dependency: Notice:	Refer to: r0723				
	To the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	DI: Digital input				
	DI/DO: Bidirectional Digital Input/Output				
r0723.0... 15	BO: CU digital inputs, status inverted / CU DI status inv				
CU_I, CU_S	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	$\begin{aligned} & \text { Func. diagram: 1510, 2020, } \\ & \text { 2030, 2031, 2100, 2120, 2130, } \\ & 21312132,2133 \end{aligned}$	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the inverted status of the digital inputs.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X122.1/X121.1)	High	Low	-
	01	DI 1 (X122.2/X121.2)	High	Low	-
	02	DI 2 (X122.3/X121.3)	High	Low	-
	03	DI 3 (X122.4/X121.4)	High	Low	-
	04	DI 4 (X132.1)	High	Low	-
	05	DI 5 (X132.2)	High	Low	-
	06	DI 6 (X132.3)	High	Low	-
	07	DI 7 (X132.4)	High	Low	-
	08	DI/DO 8 (X122.7/X121.7)	High	Low	-
	09	DI/DO 9 (X122.8/X121.8)	High	Low	-
	10	DI/DO 10 (X122.10/X121.10)	High	Low	-
	11	DI/DO 11 (X122.11/X121.11)	High	Low	-
	12	DI/DO 12 (X132.7)	High	Low	-

		DI/DO 13 (X132.8)	High	Low	-
	14	DI/DO 14 (X132.10)	High	Low	-
	15	DI/DO 15 (X132.11)	High	Low	-
Dependency:	Refer to: r0722				
Notice:	To the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	DI: Digital input				
	DI/DO: Bidirectional Digital Input/Output				
r0723.0... 11	BO: CX digital inputs, status inverted / CX DI status inv				
CU_CX32	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 2220, 2230, 2231	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max		
	-		-		
Description:	Displays the inverted status of the digital inputs.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X122.1)	High	Low	-
		DI 1 (X122.2)	High	Low	-
		DI 2 (X122.3)	High	Low	-
		DI 3 (X122.4)	High	Low	-
		DI/DO 8 (X122.7)	High	Low	-
		DI/DO 9 (X122.8)	High	Low	-
		DI/DO 10 (X122.10)	High	Low	-
		DI/DO 11 (X122.11)	High	Low	-
r0723.0... 11	BO: CU digital inputs, status inverted / CU DI status inv				
CU_I, CU_S	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	$\begin{aligned} & \text { Func. diagram: 1510, 2020, } \\ & \text { 2030, 2031, 2100, 2120, 2130, } \\ & 21312132,2133 \end{aligned}$	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Displays the inverted status of the digital inputs.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X122.1/X121.1)	High	Low	-
		DI 1 (X122.2/X121.2)	High	Low	-
		DI 2 (X122.3/X121.3)	High	Low	-
		DI 3 (X122.4/X121.4)	High	Low	-
		DI/DO 8 (X122.7/X121.7)	High	Low	-
		DI/DO 9 (X122.8/X121.8)	High	Low	-
		DI/DO 10 (X122.10/X121.10)	High	Low	-
		DI/DO 11 (X122.11/X121.11)	High	Low	-
Dependency:	Refer to: r0722				
Notice:	To the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	DI: Digital input				
	DI/DO: Bidirectional Digital Input/Output				

p0728	CU, set input or output / CU DI or DO			
CU_I, CU_S	Can be changed: T	Calculated: -	Acce	
	Data type: Unsigned32	Dynamic index: -	Func 2031,	$\begin{aligned} & 2030, \\ & 32,2133 \end{aligned}$
	P-Group: Commands	Units group: -	Unit	
	Not for motor type: -		Expe	
	$\underline{M i n}$	Max	Facto 0000	
Description:	Sets the bidirectional digital inputs/outputs as an input or output.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	08 DI/DO 8 (X122.7/X121.7)	Output	Input	-
	09 DI/DO 9 (X122.8/X121.8)	Output	Input	-
	10 DI/DO 10 (X122.10/X121.10)	Output	Input	-
	11 DI/DO 11 (X122.11/X121.11)	Output	Input	-
	12 DI/DO 12 (X132.7)	Output	Input	-
	13 DI/DO 13 (X132.8)	Output	Input	-
	14 DI/DO 14 (X132.10)	Output	Input	-
	15 DI/DO 15 (X132.11)	Output	Input	-
Notice:	To the terminal designation:			
	The first designation is valid for CU320, the second for CU310.			
Note:	DI/DO: Bidirectional Digital Input/Output			
p0728	CX set input or output / CX DI or DO			
CU_CX32	Can be changed: T	Calculated: -	Acce	
	Data type: Unsigned32	Dynamic index: -	Func	2231
	P-Group: Commands	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min	Max	Fact 0000	
Description:Bit field:	Sets the bidirectional digital inputs/outputs as an input or output.			
	Bit Signal name	1 signal	0 signal	FP
	08 DIIDO 8 (X122.7)	Output	Input	-
	09 DIIDO 9 (X122.8)	Output	Input	-
	10 DI/DO 10 (X122.10)	Output	Input	-
	11 DI/DO 11 (X122.11)	Output	Input	-
Note:	DI/DO: Bidirectional Digital Input/Ou			
p0728	CU, set input or output / CU	DO		
CU_I, CU_S	Can be changed: T	Calculated: -	Acce	
	Data type: Unsigned32	Dynamic index: -	$\begin{aligned} & \text { Func } \\ & \text { 2031, } \end{aligned}$	$\begin{aligned} & 2030, \\ & 32,2133 \end{aligned}$
	P-Group: Commands	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min	Max	Facto	
		-	0000	
Description:	Sets the bidirectional digital inputs/outputs as an input or output.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	08 DI/DO 8 (X122.7/X121.7)	Output	Input	-
	09 DI/DO 9 (X122.8/X121.8)	Output	Input	-
	10 DI/DO 10 (X122.10/X121.10)	Output	Input	-
	11 DI/DO 11 (X122.11/X121.11)	Output	Input	-
Notice:	To the terminal designation:			
	The first designation is valid for CU320, the second for CU310.			

Note:	DI/DO: Bidirectional Digital Input/Output										
r0729	CU digital outputs access authority / CU DO access										
CU_I, CU_S	Can be changed: -		Calculated: -	Access level: 1							
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 2030, 2031, 2130, 2131, 2132, 2133							
	P-Group: Commands		Units group: -	Unit selection: -							
	Not for motor type: -			Expert list: 1							
			Max	Factory setting							
			Displays the access authority at the digital outputs.								
Description:											
	Bit = 1:										
	The control has access authority to the digital output via PROFIBUS or direct access.										
	Bit $=0$:										
	The drive has access authority to the digital output or the digital input/output is not set as digital output or is not available.										
Bit field:		Signal name	1 signal	0 signal	FP						
		DI/DO 8 (X122.7/X121.7)	High	Low	-						
		DI/DO 9 (X122.8/X121.8)	High	Low	-						
		DI/DO 10 (X122.10/X121.10)	High	Low	-						
		DI/DO 11 (X122.11/X121.11)	High	Low	-						
		DI/DO 12 (X132.7)	High	Low	-						
		DI/DO 13 (X132.8)	High	Low	-						
		DI/DO 14 (X132.10)	High	Low	-						
		DI/DO 15 (X132.11)	High	Low	-						
Dependency:	Refer to: p0728, p0738, p0739, p0740, p0741, p0742, p0743, p0744, p0745, r0747, p0748										
Notice:	To the terminal designation:										
	The first designation is valid for CU320, the second for CU310.										
Note:	The DI/DO must be connected as output (p0728).										
	DI/DO: Bidirectional Digital Input/Output										
r0729	CX digital outputs access authority / CX DO access										
CU_CX32	Can be changed: -		Calculated: -	Access level: 1							
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 2230, 2231							
	P-Group: Commands		Units group: -	Unit selection: -							
	Not for motor type: -			Expert list: 1							
	Min		Max	Factory setting							
			-								
Description:	Displays the access authority at the digital outputs.Bit = 1:										
	The control has access authority to the digital output via PROFIBUS or direct access.Bit $=0$:										
	The drive has access authority to the digital output or the digital input/output is not set as digital output or is not available.										
Bit field:	Bit	Signal name	1 signal	0 signal	FP						
		DI/DO 8 (X122.7)	High	Low	-						
		DI/DO 9 (X122.8)	High	Low	-						
	10	DI/DO 10 (X122.10)	High	Low	-						
		DI/DO 11 (X122.11)	High	Low	-						
Dependency:	Refer to: p0728, p0738, p0739, p0740, p0741, r0747, p0748										
Note:	DI/DO: Bidirectional Digital Input/Output										

p0738	BI: CU, signal source for terminal DI/DO 8 / CU S_src DI/DO 8		
CU_I, CU_S	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 1510, 2030, 2130
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 8 (X122.7).		
Notice:	To the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Note:	Prerequisite: The DI/DO must be set as an output ($\mathrm{p} 0728.8=1$). DI/DO: Bidirectional Digital Input/Output		
p0738	BI: CX signal source for terminal DI/DO 8 / CX S_src DI/DO 8		
CU_CX32	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2230
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 8 (X122.7).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.8 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0739	BI: CU, signal source for terminal DI/DO 9 / CU S_src DI/DO 9		
CU_I, CU_S	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2030, 2130
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 9 (X122.8).		
Notice:	To the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.9 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0739	BI: CX signal source for terminal DI/DO 9 / CX S_src DI/DO 9		
CU_CX32	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2230
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 9 (X122.8).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output ($\mathrm{p} 0728.9=1$). DI/DO: Bidirectional Digital Input/Output		

p0740	BI: CU, signal source for terminal DI/DO 10 / CU S_src DI/DO 10		
CU_I, CU_S	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2031, 2131
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 10 (X122.10).		
Notice:	To the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.10 = 1).DI/DO: Bidirectional Digital Input/Output		
p0740	BI: CX signal source for terminal DI/DO 10 / CX S_src DI/DO 10		
CU_CX32	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2231
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 10 (X122.10).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output ($\mathrm{p} 0728.10=1$).		
p0741	BI: CU, signal source for terminal DI/DO 11 / CU S_src DI/DO 11		
CU_I, CU_S	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 1510, 2031, 2131
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 11 (X122.11).		
Notice:	To the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.11 = 1). DI/DO: Bidirectional Digital Input/Output		
p0741	BI: CX signal source for terminal DI/DO 11 / CX S_src DI/DO 11		
CU_CX32	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2231
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 11 (X122.11).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.11 = 1). DI/DO: Bidirectional Digital Input/Output		

p0742	BI: CU, signal source for terminal DI/DO 12 / CU S_src DI/DO 12		
CU_I, CU_S	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 1510, 2132
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 12 (X132.7).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.12 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0743	BI: CU, signal source for terminal DI/DO 13 / CU S_src DI/DO 13		
CU_I, CU_S	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2132
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Sets the signal source for terminal DI/DO 13 (X132.8).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.13-1).		
	DI/DO: Bidirectional Digital Input/Output		
p0744	BI: CU, signal source for terminal DI/DO 14 / CU S_src DI/DO 14		
CU_I, CU_S	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2133
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 14 (X132.10).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.14-1).		
	DI/DO: Bidirectional Digital Input/Output		
p0745	BI: CU, signal source for terminal DI/DO 15 / CU S_src DI/DO 15		
CU_I, CU_S	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 1510, 2133
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 15 (X132.11).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output ($\mathrm{p} 0728.15=1$). DI/DO: Bidirectional Digital Input/Output		

Notice:	To the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Note:	DI/DO: Bidirectional Digital Input/Output		
p0771[0...2]	Cl: Test sockets signal source / TestSktsSigSrce		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 2
CU_S	Data type: Unsigned32 / Integer16	Dynamic index: -	Func. diagram: 8134
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the signal to be output at the test sockets.		
Index:	$\begin{aligned} & {[0]=\mathrm{T} 0} \\ & {[1]=\mathrm{T} 1} \\ & {[2]=\mathrm{T} 2} \end{aligned}$		
Dependency:	Can only be set when p0776 = 99.		
	Refer to: r0772, r0774, p0776, p0777, p0778, p0779, p0780, p0783, p0784, r0786		
r0772[0...2]	Test sockets output signal / TestSktsSignalVal		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8134
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the actual value of the signal to be output.		
Index:	$[0]=\mathrm{T} 0$ $[1]=\mathrm{T} 1$ $[2]=\mathrm{T} 2$		
Dependency:	Refer to: p0771, r0774, p0776, p0777, p0778, p0779, p0780, p0783, p0784, r0786		
r0774[0...2]	Test sockets output voltage / TestSkts V_output		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8134
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [V]	Max - [V]	Factory setting - [V]
Description:	Displays the current output voltage for the test sockets.		
Index:	$[0]=\mathrm{T} 0$ $[1]=\mathrm{T} 1$ $[2]=\mathrm{T} 2$		
Dependency:	Refer to: p0771, r0772, p0776, p0777, p0778, p0779, p0780, p0783, p0784, r0786		
p0776[0...2]	Test socket mode / Test skt mode		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Integer16	Dynamic index: -	Func. diagram: 8134
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 96 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 99 \end{aligned}$	Factory setting 99
Description:	Sets the mode for the test sockets.		

r0786[0...2]	Test socket normalization per volt / TestSktNorm/Volt		
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 2
CU_S	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8134
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the normalization of the signal to be output. A change in the output voltage by 1 volt corresponds to the value in this parameter. The units are determined by the interconnected test signal.		
Index:	$[0]=\mathrm{T} 0$ $[1]=\mathrm{T} 1$ $[2]=\mathrm{T} 2$		
Dependency:	Refer to: p0771, r0772, r0774, p0777, p0778, p0779, p0780, p0783, p0784		
Note:	Example:		
	$\mathrm{r} 0786[0]=1500.0$ and the measuring signal is r0063 (CO: Speed actual value smoothed [RPM]).		

p0788[0...2]	Test sockets physical address / Test skt PhyAddr		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 4
CU_S	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 bin	Max 111111111111111111111111 11111111 bin	Factory setting 0000 bin
Description: Index:	Sets the physical addres $\begin{aligned} & {[0]=\mathrm{T} 0} \\ & {[1]=\mathrm{T} 1} \\ & {[2]=\mathrm{T} 2} \end{aligned}$	ia the test sockets.	
Dependency:	Changes only become e Refer to: p0789, r0790	s not equal 99 .	

p0789[0...2]	Test sockets physical address gain / TestSktPhyAddrGain		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 4
CU_S	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -340.28235 E 36 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 340.28235 E 36 \end{aligned}$	Factory setting 1.00000
Description:	Sets the gain of a signal output of a physical address via test sockets.		
Index:	$\begin{aligned} & {[0]=\mathrm{T} 0} \\ & {[1]=\mathrm{T} 1} \\ & {[2]=\mathrm{T} 2} \end{aligned}$		
Dependency:	Changes only become effec Refer to: p0788	s not equal 99 .	

p0796	CU digital inputs simulation mode setpoint / CU DI simul setp				
CU_I, CU_S	Can be changed: U, T		Calculated: -	Access level: 2	
		type: Unsigned32	Dynamic index: -	Func. diagram: 1510, 2020, 2030, 2031, 2100, 2120, 2130,	
		roup: Commands	Units group: -	Unit selection: -	
	Not	for motor type: -		Expert list: 1	
	Min		Max	Factory setting 0000 bin	
Description:	Sets the setpoint for the input signals in the digital input simulation mode.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X122.1/X121.1)	High	Low	-
		DI 1 (X122.2/X121.2)	High	Low	-
		DI 2 (X122.3/X121.3)	High	Low	-
		DI 3 (X122.4/X121.4)	High	Low	-
		DI 4 (X132.1)	High	Low	-
		DI 5 (X132.2)	High	Low	-
		DI 6 (X132.3)	High	Low	-
		DI 7 (X132.4)	High	Low	-
		DI/DO 8 (X122.7/X121.7)	High	Low	-
		DI/DO 9 (X122.8/X121.8)	High	Low	-
		DI/DO 10 (X122.10/X121.10)	High	Low	-
		DI/DO 11 (X122.11/X121.11)	High	Low	-
		DI/DO 12 (X132.7)	High	Low	-
		DI/DO 13 (X132.8)	High	Low	-
		DI/DO 14 (X132.10)	High	Low	-
		DI/DO 15 (X132.11)	High	Low	-
Dependency:	The simulation of a digital input is selected using p0795.				
Notice:	To the terminal designation:				
Note:	DI: DI/D This	Digital input O: Bidirectional Digital Input/Ou parameter is not saved when	cked-up (p0971, p09		
p0796	CX digital inputs, simulation mode, setpoint / CX DI simul setp				
CU_CX32	Can be changed: U, T		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 2020, 2030, 2031	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting 0000 bin	
Description:	Sets the setpoint for the input signals in the digital input simulation mode.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI 0 (X122.1)	High	Low	-
	01	DI 1 (X122.2)	High	Low	-
	02	DI 2 (X122.3)	High	Low	-
	03	DI 3 (X122.4)	High	Low	-
	08	DI/DO 8 (X122.7)	High	Low	-
	09	DI/DO 9 (X122.8)	High	Low	-
	10	DI/DO 10 (X122.10)	High	Low	-
	11	DI/DO 11 (X122.11)	High	Low	-

p0796	CU digital inputs simulation mode setpoint / CU DI simul setp			
CU_I, CU_S	Can be changed: U, T	Calculated: -	Acces	
	Data type: Unsigned32	Dynamic index: -	$\begin{aligned} & \text { Func. } \\ & 2030, \\ & 2131, \end{aligned}$	$\begin{aligned} & 2020, \\ & 20,2130 \end{aligned}$
	P-Group: Commands	Units group: -	Unit	
	Not for motor type: -		Exper	
	Min	Max	Facto 0000	
Description:	Sets the setpoint for the input signals in the digital input simulation mode.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (X122.1/X121.1)	High	Low	-
	01 DI 1 (X122.2/X121.2)	High	Low	-
	02 DI 2 (X122.3/X121.3)	High	Low	-
	03 DI 3 (X122.4/X121.4)	High	Low	-
	08 DI/DO 8 (X122.7/X121.7)	High	Low	-
	09 DI/DO 9 (X122.8/X121.8)	High	Low	-
	10 DI/DO 10 (X122.10/X121.10)	High	Low	-
	11 DI/DO 11 (X122.11/X121.11)	High	Low	-
Dependency:	The simulation of a digital input is selected using p0795. Refer to: p0795			
Notice:	To the terminal designation:			
	The first designation is valid for CU320, the second for CU310.			
Note:	DI: Digital input			
	DI/DO: Bidirectional Digital Input/Output			
	This parameter is not saved when data is backed-up (p0971, p0977).			
p0799	CU inputs/outputs, sampling time / CU I/O t_sam			
CU_I, CU_S	Can be changed: C 1 (3)	Calculated: -	Acces	
	Data type: FloatingPoint32	Dynamic index: -	Func 2031, 2132	$\begin{aligned} & , 2030, \\ & 30,2131, \end{aligned}$
	P-Group: Commands	Units group: -	Unit	
	Not for motor type: -		Exper	
	$\begin{aligned} & \operatorname{Min}_{0.00[\mu \mathrm{~s}]} \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 5000.00[\mu \mathrm{~s}] \end{aligned}$	$\begin{aligned} & \text { Facto } \\ & 4000 . \end{aligned}$	
Description: Dependency:	Sets the sampling time for the inputs and outputs.			
	The parameter can only be modified for $00009=3,29$.			
	The sampling times can only be set as an integer multiple of the basic sampling time ($\mathrm{p} 0110, \mathrm{p} 0111$).			
	Refer to: p0009, r0110, r0111			
Note:	The modified sampling time is not effective until the drive unit is powered up again.			
p0799	CX inputs/outputs, sampling time / CX I/O t_sampl			
CU_CX32	Can be changed: C 1 (3)	Calculated: -	Acces	
	Data type: FloatingPoint32	Dynamic index: -	$\begin{aligned} & \text { Func. } \\ & 2231 \end{aligned}$, 2230,
	P-Group: Commands	Units group: -	Unit s	
	Not for motor type: -		Exper	
	Min 0.00 [$\mu \mathrm{s}$]	Max $5000.00[\mu \mathrm{~s}]$	Facto 4000	
Description:	Sets the sampling time for the inputs and outputs.			

p0810	BI: Command Data Set selection CDS bit 0 / CDS select., bit 0		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 8560
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the Command Data Set bit 0 (CDS bit 0).		
Dependency:	Refer to: r0050, p0811, r0836		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The Command Data Set selected using the binector inputs is displayed in r0836.		
	The currently effective Command Data Set is displayed in r0050.		
	A Command Data Set can be copied using p0809.		
p0811	BI: Command Data Set selection CDS bit 1 / CDS select., bit 1		
VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 8560
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the Command Data Set bit 1 (CDS bit 1).		
Dependency:	Refer to: r0050, p0810, r0836		
Note:	The Command Data Set selected using the binector inputs is displayed in r0836.		
	The currently effective Command Data Set is displayed in r0050.		
	A Command Data Set can be copied using p0809.		

p0819[0...2] Copy Drive Data Set DDS / Copy DDS
, TM41, VEC- Can be changed: C2(
Data type: Unsigned8
P-Group: Data sets
Not for motor type: Min Max
0

Calculated: -
Dynamic index: -
Units group: -

31

Access level: 2
Func. diagram: 8565
Unit selection: -
Expert list: 1

Factory setting

 0Description: Copies one Drive Data Set (DDS) into another.
Index:
[0] = Source Drive Data Set
[1] = Target Drive Data Set
[2] = Start copying
Note:
Procedure:

1. In Index 0, enter which drive data set is to be copied
2. In Index 1, enter the drive data set data that is to be copied into
3. Start copying: Set index 2 from 0 to 1 .
$\mathrm{p} 0819[2]$ is automatically set to 0 when copying is completed.

p0820[0...n]	BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0		
SERVO, TM41, VEC-	Can be changed: C 2 (15), T	Calculated: -	Access level: 3
TOR	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 8565, 8575
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the Drive Data Set, bit 0 (DDS, bit 0).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0821[0...n]	BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1		
SERVO, TM41, VEC-	Can be changed: C 2 (15), T	Calculated: -	Access level: 3
TOR	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 8565
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the Drive Data Set, bit 1 (DDS, bit 1).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0822[0...n]	BI: Drive Data Set selection DDS bit 2 / DDS select., bit 2		
SERVO, TM41, VEC-	Can be changed: C 2 (15), T	Calculated: -	Access level: 3
TOR	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 8565
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the Drive Data Set, bit 2 (DDS, bit 2).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0823[0...n]	BI: Drive Data Set selection DDS bit 3 / DDS select., bit 3		
SERVO, TM41, VEC-	Can be changed: C 2 (15), T	Calculated: -	Access level: 3
TOR	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 8565
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the Drive Data Set, bit 3 (DDS, bit 3).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p0824[0...n]	BI: Drive Data Set selection DDS bit 4 / DDS select., bit 4		
$\begin{aligned} & \text { SERVO, TM41, VEC- } \\ & \text { TOR } \end{aligned}$	Can be changed: C 2 (15), T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 8565, 8575
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the Drive Data Set, bit 4 (DDS, bit 4).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0826[0...n]	Motor changeover, motor number / Mot_chng mot No.		
SERVO	Can be changed: C2(3), U	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: MDS, p0130	Func. diagram: 8575
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underset{0}{\operatorname{Min}}$	$\begin{aligned} & \text { Max } \\ & 15 \end{aligned}$	Factory setting 0
Description:	Sets the freely-assignable motor number for the motor changeover.		
Dependency:	Refer to: p0827		
Caution:	When changing over motor data sets with the same motor number (e.g. star/delta changeover) and for a motor with brake, the motor brake remains open during the changeover.		
Note:	When the motor data sets are changed over, the following applies:		
	The same motor number signifies the same thermal model.		
p0826[0...n]	Motor changeover, moto	/ Mot_chng mot No.	
VECTOR	Can be changed: C2(3), U	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: MDS, p0130	Func. diagram: 8575
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 15 \end{aligned}$	Factory setting 0
Description:	Sets the freely-assignable motor number for the motor changeover.		
Dependency:	Refer to: p0827		
Caution:	When changing over motor data sets with the same motor number (e.g. star/delta changeover) and for a motor with brake, the motor brake remains open during the changeover.		
Note:	When the motor data sets are changed over, the following applies:		
	The same motor number signifies the same thermal model.		
	When the motor number is the same, the corrective values of the Rs, Lh or kT adaptation are transferred between motor data sets (see r1782, r1787, r1797).		

p0827[0...n]	Motor changeover status word bit number / Mot_chg ZSW bitNo.		
SERVO, VECTOR	Can be changed: C2(3), U	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: MDS, p0130	Func. diagram: 8575
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	Fax	Factory setting
	0	0	
Description:	Sets the bit number for every motor data set.		
	Example:		
	p0827[0] = 0: For MDS0, r0830.0 is switched.		
	p0827[1] = 5: For MDS1, r0830.5 is switched.		
Dependency:	Refer to: p0826, r0830		
Note:	A motor is only changed over (a new motor selected) after the pulses have been suppressed.		
	When the motor data sets are changed over, the following applies:		
	Bit numbers that are not identical, signify that the motor must be changed over.		

p0828[0...n]	BI: Motor changeover, feedback signal / Mot_chng fdbk sig		
SERVO, VECTOR	Can be changed: C2(3), T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 8575
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	-	Factory setting
	-	0	
Description:	Sets the signal source for the feedback signal when changing over the motor.		
	For p0833.0 =1 the following applies:		
	This feedback signal (0/1 edge) is required after a motor changeover to enable the pulses.		
Dependency:	Refer to: p0833		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

Note: | For VECTOR, the following applies: |
| :--- |
| The "flying restart" function should be activated (p 1200) when changing over to a motor that is already running. |
| Re bit 00: |
| When the bit is set and the motor has to be changed over, then p0827 must be set differently in the appropriate |
| motor data sets. |
| Re bit 02: |
| The bit defines whether, for an EDS changeover, the status signal Gn_ZSW. 14 is suppressed (parking encoder |
| active). |

r0835.0	CO/BO: Motor data set changeover status word / MDS_chngov ZSW			
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 8575	
	P-Group: Displays, signals	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting	
Description:	Displays the status word for the motor data set changeover.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Motor changeover active	Active	Not active	8575
Note:	Re bit 00:			
	The signal is only influenced when a motor changeover is set via p0827 (unequal bit numbers).			

r0836.0...3	CO/BO: Command Data Set CDS selected / CDS selected		
A_INF, B_INF,	Can be changed: -	Calculated: -	Access level: 2
S_INF, SERVO,	Data type: Unsigned8	Dynamic index: -	Func. diagram: 1530,8560
TM41, VECTOR	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting

Description: Displays the command data set (CDS) selected via the binector input. Bit field:

Bit	Signal name	1 signal	0 signal	FP
00	CDS select. bit 0	On	Off	-
01	CDS select. bit 1	On	Off	-
02	CDS select. bit 2	On	Off	-
03	CDS select. bit 3	On	Off	-

Dependency: Refer to: r0050, p0810, p0811
Note: Command data sets are selected via binector input p0810 and following.
The currently effective Command Data Set is displayed in r0050.

r0837.0...4	CO/BO: Drive Data Set DDS selected / DDS selected		
SERVO, TM41, VEC- Can be changed: -	Calculated: -	Access level: 2	
TOR	Data type: Unsigned8	Dynamic index: -	Func. diagram: 8565
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting

Description Bit field:

Displays the drive data set (DDS) selected via the binector input

Bit	Signal name	1 signal	$\mathbf{0}$ signal	FP
00	DDS select. bit 0	On	Off	-
01	DDS select. bit 1	On	Off	-
02	DDS select. bit 2	On	Off	-
03	DDS select. bit 3	On	Off	-
04	DDS select. bit 4	On	Off	-

Dependency:	Refer to: r0051, p0820, p0821, p0822, p0823, p0824
Note:	Drive data sets are selected via binector input p0820 and following.
	The currently effective drive data set is displayed in r0051.
	If there is only one data set, then a value of 0 is displayed in this parameter and not the selection via binector inputs.

p0840[0...n]	BI: ON/OFF1 / ON/OFF1		
A_INF, B_INF,	Can be changed: T	Calculated: -	Access level: 3
$\begin{aligned} & \text { S_INF, SERVO, } \\ & \text { VECTOR } \end{aligned}$	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2501, 2610, $\text { 8720, 8820, } 8920$
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for control word 1 bit 0 (ON/OFF1).		
Recommend.:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	Refer to: p1055, p1056		
Notice:	For BI: p0840 = 0 signal, the motor can be moved, jogging using BI: p1055 or BI: p1056.		
	The command "ON/OFF1" can be issued using BI: 08840 or using BI: p1055/p1056.		
	Only the signal source that originally powered up can also power down again.		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For drives with closed-loop speed control ($\mathrm{p} 1300=20,21$), the following applies:		
	Bit $0=0$: OFF1 (braking with the ramp-function generator, then pulse csuppression and switching on inhibited)		

For drives with closed-loop torque control ($p 1300=22,23$), the following applies:
Bit $0=0$: Immediate pulse suppression
For drives with closed-loop torque control (activated using p1501), the following applies:
Bit $0=0$: No dedicated braking response, but pulse suppression when standstill is detected ($\mathrm{p} 1226, \mathrm{p} 1227$)
For drives with closed-loop speed/torque control, the following applies:
Bit $0=0 / 1$: ON (pulses can be enabled)
For active infeeds (Active Line Module and Smart Line Module) the following applies:
Bit $0=0$: OFF1 (reduce Vdc along the ramp, then pulse suppression and pre-charging contactor/line contactor open)
Bit $0=0 / 1$: ON (pre-charging contactor/line contactor closed, pulses can be enabled)
For passive infeeds (Basic Line Module) the following applies:
Bit $0=0$: OFF1 (pre-charging contactor/line contactor open)
Bit $0=0 / 1$: ON (pre-charging contactor/line contactor closed)
r0863.1 of a drive can also be selected as signal source.

p0840	BI: ON/OFF1 / ON/OFF1		
TM41	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9677
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for control word 1 bit 0 (ON/OFF1).		
Recommend.:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	Refer to: p1055, p1056		
Notice:	Only the signal source that originally powered up can also power down again. The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Bit $0=0$: OFF1 (pulse suppress Bit $0=0 / 1$: ON (pulses can be This parameter has no function	hing on inhibited) MICS" operating mode (p4400	
p0844[0...n]	BI: 1. OFF2 / 1. OFF2		
A_INF, B_INF,	Can be changed: T	Calculated: -	Access level: 3
S_INF, SERVO, VECTOR	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2501, 8720, $8820,8920$
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the 1st OC/OFF2.		The AND logic operation of the 1st OC/OFF2 and 2nd OC/OFF2 results in control word 1, bit 1 (OC/OFF2).
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For drives, the following applies Bit $1=0$: OFF2 (immediate puls Bit $1=1$: No OFF2 (enable is po	n and switching on inhibited)	

	For infeed units, the following applies: Bit 1 = 0: OFF2 (immediate pulse suppression for Active Infeed Modules and Smart Line Modules, pre-charging contactor/line contactor open and switching on inhibited) Bit 1 = 1: No OFF2 (enable is possible) OC: Operating condition		
p0844	BI: OFF2 / OFF2		
TM41	Can be changed: T Data type: Unsigned32 / Binary P-Group: Commands Not for motor type: - Min	Calculated: - Dynamic index: - Units group: - Max	Access level: 3 Func. diagram: 9677 Unit selection: - Expert list: 1 Factory setting 1
Description: Notice: Note:	Sets the signal source for control word 1, bit 1 (OC/OFF2). The parameter may be protected as a result of p0922 or p2079 and cannot be changed. Bit $1=0$: OFF2 (immediate pulse suppression and switching on inhibited) Bit $1=1$: No OFF2 (enable is possible) OC: Operating condition This parameter has no function in the "SINAMICS" operating mode (p4400 = 1).		
p0845[0...n]	BI: 2. OFF2 / 2. OFF2		
A_INF, B_INF, S_INF, SERVO, VECTOR	Can be changed: T Data type: Unsigned32 / Binary	Calculated: - Dynamic index: CDS, p0170	Access level: 3 Func. diagram: 2501, 8720, $8820,8920$
	P-Group: Commands Not for motor type: -	Units group: -	Unit selection: Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the 2nd OC/OFF2. The AND logic operation of the 1st OC/OFF2 and 2nd OC/OFF2 results in control word 1, bit 1 (OC/OFF2).		
Note:	For drives, the following applies: Bit $1=0$: OFF2 (immediate pulse suppression and switching on inhibited) Bit $1=1$: No OFF2 (enable is possible) For infeed units, the following applies: Bit 1 = 0: OFF2 (immediate pulse suppression for Active Infeed Modules and Smart Line Modules, pre-charging contactor/line contactor open and switching on inhibited) Bit 1 = 1: No OFF2 (enable is possible) OC: Operating condition		
p0848[0...n]	BI: 1. OFF3 / 1. OFF3		
SERVO, VECTOR	Can be changed: T Data type: Unsigned32 / Binary P-Group: Commands Not for motor type: - Min	Calculated: - Dynamic index: CDS, p0170 Units group: - Max	Access level: 3 Func. diagram: 2501 Unit selection: - Expert list: 1 Factory setting 1
Description:	Sets the signal source for the 1st OC/OFF3. The AND logic operation of the 1st OC/OFF3 and 2nd OC/OFF3 results in control word 1, bit 2 (OC/OFF3).		
Caution:	When "master control from PC " is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

Note: \quad| Bit $2=0:$ OFF3 (braking along the OFF3 ramp (p 1135), then pulse suppression and switching on inhibited) |
| :--- |
| Bit $2=1$: No OFF3 (enable is possible) |
| OC: Operating condition | ll

p0848	BI: OFF3 / OFF3		
TM41	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9677
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for control word 1, bit 2 (OC/OFF3).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Bit $2=0$: OFF3 (pulse suppression and switching on inhibited)		
	Bit $2=1$: No OFF3 (enable is possible)		
	OC: Operating condition		
	This parameter has no function in the "SINAMICS" operating mode (p4400 = 1).		

p0849[0...n]	Bl: 2. OFF3 / 2. OFF3		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2501
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	-	Factory setting
	-	1	

p0852[0...n]	BI: Operation enable / Operation enable		
A_INF, S_INF,	Can be changed: T	Calculated: -	Access level: 3
SERVO, VECTOR	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2501, 8820,
			8920
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting

Description: Sets the signal source for control word 1 bit 3 (enable operation)
Caution: When "master control from PC" is activated, this binector input is ineffective.

Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:
Bit $3=0$: Inhibit operation (cancel pulses)
Bit 3 = 1: Enable operation (pulses can be enabled)

p0852	BI: Operation enable / Operation enable		
TM41	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9677
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for control word 1 bit 3 (enable operation)		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Bit $3=0$: Inhibit operation (cancel pulses)		
	Bit 3 = 1: Enable operation (pulses can be enabled)		
	This parameter has no function in the "SINAMICS" operating mode ($\mathrm{p} 4400=1$).		
p0854[0...n]	BI: Master control by PLC / Master ctrl by PLC		
A_INF, B_INF, S INF, SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2501, 8720, $\text { 8820, } 8920$
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for control word 1 bit 10 (master control by PLC).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Bit $10=0$: No master control by PLC		
	Bit 10 = 1: Master control by PLC		
	This bit is used to initiate a response for the drives when the control fails (F07220). If there is no control available, then BI : p0854 should be set to a 1 signal.		
p0854	BI: Master control by PLC / Master ctrl by PLC		
TM41	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9677, 9678
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	(1
Description:	Sets the signal source for control word 1 bit 10 (master control by PLC).		
Dependency:	Refer to: p1155		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Bit $10=0$: No master control by PLC		
	Bit $10=1$: Master control by PLC		
	For the TM41, a response can be initiated using this bit if the control fails.		
	The parameter is only effective in the "SIMOTION" operating mode ($\mathrm{p} 4400=0$).		
	In the "SINAMICS" operating mode, the setpoints at CI: p4420 are evaluated independently of p0854.		
	Further, the setting of p2037 should be observed.		

p0855[0...n]	BI: Unconditionally release holding brake / Uncond open brake		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2501, 2701, 2707
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the command "unconditionally open holding brake".		
Dependency:	Refer to: p0858		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The signal via BI: p0858 (unconditionally close holding brake) has a higher priority than via BI: p0855 (unconditionally open holding brake).		
p0856[0...n]	BI: Velocity controller enable / v_ctrl enable		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2501, 2701, 2707
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the command "enable speed controller" (r0898.12). 0 signal: Set the I component and speed controller output to zero. 1 signal: Enable speed controller.		
Dependency: Note:	Refer to: r0898 If "enable speed controller" is withdrawn, then an existing brake will be closed. If "speed controller enable" is withdrawn, the pulses are not suppressed.		
p0856[0...n]	BI: Speed controller enable / n_ctrl enable		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2501, 2701, 2707
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the command "enable speed controller" (r0898.12). 0 signal: Set the I component and speed controller output to zero. 1 signal: Enable speed controller.		
Dependency:	Refer to: r0898		
Note:	If "enable speed controller" is withdrawn, then an existing brake will be closed. If "speed controller enable" is withdrawn, the pulses are not suppressed.		

p0857	Power unit monitoring time / PU t_monit		
A_INF, B_INF, S INF, SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8760, 8864, 8964
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{100.0[\mathrm{~ms}]}$	$\begin{aligned} & \text { Max } \\ & 60000.0[\mathrm{~ms}] \end{aligned}$	Factory setting 6000.0 [ms]
Description:	Sets the monitoring time for the power unit.		
	The monitoring time is started after an 0/1 edge of the ON/OFF1 command. If the power unit does not return a READY signal within the monitoring time, then fault F06000 (infeeds) or F07802 (drives) is output.		
	For drives, the following also applies:		
	After the pulse enable (operation enabled, p0852), the monitoring time is re-started. If the infeed does not signal ready to the drive within the monitoring time (using BI: p0864 of the drive), fault F07840 is initiated.		
Dependency: Notice:	Refer to: F06000, F07802, F07840, F30027		
	The maximum time to pre-charge the $D C$ link is monitored in the power unit and cannot be changed. The maximum duration of the pre-charging depends on the power class and the power unit design.		
	The monitoring time for the pre-charging is started after the ON command (BI: p0840 $=0 / 1$ signal). Fault F30027 is output when the maximum pre-charging duration is exceeded.		
Note:	The factory setting for p0857 depends on the power class and the design of the power unit. The monitoring time for the ready signal of the power unit includes the time to pre-charge the DC link and, if relevant, the de-bounce time of the contactors.		
	If an excessively low value is entered into p0857, then after enable, this results in the corresponding fault.		
p0858[0...n]	BI: Unconditionally close holding brake / Uncond close brake		
SERVO	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	$\begin{aligned} & \text { Func. diagram: 2501, 2701, } \\ & 2707 \end{aligned}$
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Sets the signal source for the command "unconditionally close holding brake".		
Dependency:	Refer to: p0855		
Note:	The signal via BI: p0858 (unconditionally close holding brake) has a higher priority than via BI: p0855 (unconditionally open holding brake).		
	For a 1 signal via BI: p0858, the command "unconditionally close the holding brake" is executed and internally a zero setpoint is entered.		
p0858[0...n]	BI: Unconditionally close holding brake / Uncond close brake		
VECTOR	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2501, 2701, 2707
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source for the command "unconditionally close holding brake". Refer to: p0855		

Note: The signal via BI: p0858 (unconditionally close holding brake) has a higher priority than via BI: p0855 (unconditionally open holding brake).
For a 1 signal via BI: p0858, the command "unconditionally close the holding brake" is executed and internally a zero setpoint is entered.

p0860	BI: Line cont. fdbk sig / Line contact feedb		
A_INF, B_INF, S_INF, SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2634, 8734, 8834, 8934
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underline{\text { Min }}$	Max	Factory setting 863.1
Description:	Sets the signal source for the feedback signal from the line contactor.		
Recommend.:	When the monitoring is activated (BI: p0860 not equal to r0863.1), then to control the line contactor, signal BO: r0863.1 of its own drive object should be used.		
Dependency:	Refer to: p0861, r0863		
	Refer to: F07300		
Notice:	The line contactor monitoring is de-activated if the control signal of the particular drive object is set as the signal source for the feedback signal of the line contactor (BI: p0860 = r0863.1).		
Note:	The state of the line contactor is monitored depending on signal BO: r0863.1.		
	When the monitoring is activated (BI: p0860 not equal to r0863.1), fault F07300 is then also output if the contactor is closed before it is controlled using r0863.1.		

p0861	Line contactor monitoring time / LineContact t_mon		
A_INF, B_INF, S_INF, SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2634, 8734, 8834, 8934
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0[\mathrm{~ms}]} \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 5000 \text { [ms] } \end{aligned}$	Factory setting 100 [ms]
Description:	Sets the monitoring time of the line contactor. This time starts each time that the line contactor switches (r0863.1). If a feedback signal is not received from the line contactor within the time, a message is output.		
Dependency:	Refer to: p0860, r0863		
	Refer to: F07300		
Note:	The monitoring function is disabled for the factory setting of p0860.		
p0862	Power unit ON delay / PU t_on		
A_INF, B_INF, SIINF, SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2610, 8732, 8832, 8932
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0} \\ & \text { [ms] } \end{aligned}$	Max 65000 [ms]	Factory setting 0 [ms]
Description:	Sets the delay time for the control command of the power unit and a line contactor, if used.		
Note:	This means that it is possible to realize a shifted (delayed) pre-charging or power-on using a single ON command. When the infeed units are active, before the line contactor is closed, an offset adjustment of the current measurement is carried out for a duration of 120 ms (p 3491).		

r0863.0... 2	CO/BO: Drive coupling status word/control word / CoupleZSW/STW			
A_INF, B_INF, S_INF, SERVO, VECTOR	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: -	Fun	
	P-Group: Commands	Units group: -	Unit	
	Not for motor type: -		Exp	
	Min	Max	Fact	
	-			
Description:	Displays the status and control words of the drive coupling.			
Bit field:	Bit Signal name 00 Closed-loop control operation	1 signal Yes	0 signal No	FP 2610, 6495, 8732, 8832, 8932, 9794
	01 Energize contactor	Yes	No	$\begin{aligned} & 2610, \\ & 2634, \\ & 8732, \\ & 8734, \\ & 8832, \\ & 8834, \\ & 8932, \\ & 8934 \end{aligned}$
	02 Infeed line supply failure	Yes	No	-
Dependency:	Refer to: p0864			
Note:	Re bit 00:			
	Bit 0 signals that the infeed is ready.			
	When the operating signal is transfe time when they are simultaneously p To realize this, the following connec Drive 1: Internconnect BI: p0864 with Drive 2: Internconnect BI: p0864 with Drive 3: Internconnect BI: p0864 with The first drive only transfers the ope tion. Re bit 01: Bit 1 is used to control an external lin Re bit 02: This bit only signals line supply failu	3O: r0863.0 this allo up. rconnections are req 863.0 of the infeed 363.0 of drive 1 863.0 of drive 2, etc. nal to the next drive ctor. ive Infeed (A_INF) a	ives to sta reached its eed (S_IN	ered ov on con
p0864	BI: Infeed operation / INF operation			
SERVO, VECTOR	Can be changed: T	Calculated: -	Acce	
	Data type: Unsigned32 / Binary	Dynamic index: -	$\begin{aligned} & \text { Func } \\ & 2610 \end{aligned}$	1774
	P-Group: Commands	Units group: -	Unit	
	Not for motor type: -			
	Min	Max	Fact 0	
Description:	Sets the signal source for the operating signal of the infeed (e.g. BO: r0863.0).			
Dependency:	Refer to: r0863			
Note:	The sequence control of a servo/vector drive requires this signal.			
	For these infeeds, the "ready" message is available via an output terminal. This signal must be connected to a digi tal input. The drives supplied from this infeed must use this signal as ready signal (BI: p0864 = digital input).			

r0873	CO/BO: Infeed, total operation / INF total oper		
B_INF, S_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 8732, 8832
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the operational readiness of the infeeds when using Smart Line Module (SLM) and Basic Line Module (BLM) together (mixed operation).		
	In order that signal BO: r0873 is available at one of the infeeds, then BI: p0874 of the one infeed must be intercon nected to BO: r0863.0 of the other infeed.		
Dependency:	Refer to: r0863, p0874		
Note:	Mixed operation is not possible with the Active Line Module (ALM)!		
p0874	BI: Smart/ Basic Line Module operation / SLM/BLM operation		
B_INF, S_INF	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 8732, 8832
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Setting to interconnect the ready signal for mixed operation of Smart Line Module (SLM) and Basic Line Module (BLM).		
	In order that signal BO: r0873 is available at one of the infeeds, then BI: p0874 of the one infeed must be interco nected to BO: r0863.0 of the other infeed.		
Dependency:	Refer to: r0863, r0873		
Note:	Mixed operation is not possible with the Active Line Module (ALM)!		
p0895[0...n]	BI: Activate/de-activate power unit components / PU_comp act/de-act		
A_INF, B_INF, S_INF, SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source to activate/de-activate a power unit component.		
Dependency:	BI: p0895 = 0 signal		
	De-activating power unit components		
	BI: p0895 = 1 signal		
	Activating power unit components		
	Refer to: p0125, r0126		
	Refer to: A05054		
Caution:	It is not permissible to de-activate drive objects with safety functions enabled.		
Note:	The power unit is only de-activated when the pulses are suppressed.		
	For units connected in parallel, when one of the power units is de-activated, then the enable in p7001 is withdrawn.		

r0898.0... 10	CO/BO: Control word sequence control infeed / STW seq_ctrl INF			
A_INF, S_INF	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: -	Func 8920	, 8820,
	P-Group: Displays, signals	Units group: -	Unit	
	Not for motor type: -		Exp	
	Min	Max	Fact	
	-	-	-	
Description:	Displays control word 1 of the infeed.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 ON/OFF1	Yes	No	-
	01 OC / OFF2	Yes	No	-
	03 Operation enable	Yes	No	-
	05 Inhibit motoring operation	Yes	No	-
	06 Inhibit regenerating	Yes	No	-
	10 Master control by PLC	Yes	No	-
Note:	OC: Operating condition			
r0898.0... 10	CO/BO: Control word sequence control infeed / STW seq_ctrl INF			
B_INF	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 8720	
	P-Group: Displays, signals	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	$\underline{\text { Max }}$	Factory setting	
Description:	Displays control word 1 of the infeed.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 ON/OFF1	Yes	No	-
	01 OC / OFF2	Yes	No	-
	10 Master control by PLC	Yes	No	-
Note:	OC: Operating condition			
r0898.0... 14	CO/BO: Control word sequence control / STW seq_ctrl			
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned16	Dynamic index: - Units group:	Func. diagram: 1530, 2501	
	P-Group: Displays, signals		Unit selection: -	
	Not for motor type: -	Units group: -		
	Min	Max	Factory setting	
Description:	Displays the control word of the sequence control.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 ON/OFF1	Yes	No	-
	01 OC / OFF2	Yes	No	-
	02 OC / OFF3	Yes	No	-
	03 Operation enable	Yes	No	-
	04 Ramp-function generator enable	Yes	No	-
	05 Freeze ramp-function generator	No	Yes	-
	06 Velocity setpoint enable	Yes	No	-
	07 Command open brake	Yes	No	-
	08 Jog 1	Yes	No	-
	09 Jog 2	Yes	No	-
	10 Master control by PLC	Yes	No	-
	12 Velocity controller enable	Yes	No	-
	14 Command close brake	Yes	No	-

Note:	OC: Operating condition			
r0898.0... 14	CO/BO: Control word sequence control / STW seq_ctrl			
SERVO, VECTOR	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: -	Fun	2501
	P-Group: Displays, signals	Units group: -	Unit	
	Not for motor type: -		Exp	
	Min	Max	Fact	
	-	-	-	
Description:	Displays the control word of the sequence control.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 ON/OFF1	Yes	No	-
	01 OC / OFF2	Yes	No	-
	02 OC / OFF3	Yes	No	-
	03 Operation enable	Yes	No	-
	04 Ramp-function generator enable	Yes	No	-
	05 Freeze ramp-function generator	No	Yes	-
	06 Speed setpoint enable	Yes	No	-
	07 Command open brake	Yes	No	-
	08 Jog 1	Yes	No	-
	09 Jog 2	Yes	No	-
	10 Master control by PLC	Yes	No	-
	12 Speed controller enable	Yes	No	-
	14 Command close brake	Yes	No	-
Note:	OC: Operating condition			
r0898.0... 13	CO/BO: Control word sequence control / STW seq_ctrl			
TM41	Can be changed: -	Calculated: -	Acc	
	Data type: Unsigned16	Dynamic index: -	Func	
	P-Group: Displays, signals	Units group: -		
	Not for motor type: -		Exp	
	Min	Max	Factory setting	
Description:	Displays the control word of the sequence control.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 ON/OFF1	Yes	No	-
		Yes	No	-
	$\begin{array}{ll}01 & \text { OC / OFF2 } \\ 02 & \text { OC / OFF3 }\end{array}$	Yes	No	-
	03 Operation enable	Yes	No	-
	04 Ramp-function generator enable	Yes	No	-
	05 Start ramp-function generator	Yes	No	-
	06 Speed setpoint enable	Yes	No	-
	07 Acknowledge fault	Yes	No	-
	10 Master control by PLC	Yes	No	-
	13 Zero mark enable	Yes	No	-
Note:	OC: Operating condition			
r0899.0... 15	CO/BO: Status word drive object 1 / ZSW D01			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned16	Dynamic index: -	Func	
	P-Group: Displays, signals		Unit	
	Not for motor type: -		Expe	
	Min	Max	Factory setting	
Description:	Displays the status word from drive object 1 (Control Unit).			

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Ready for switching on	Yes	No	-
	03	Fault present	Yes	No	-
	07	Alarm present	Yes	No	-
	08	System time synchronized	Yes	No	-
	12	Slave sign-of-life bit 0	Yes	No	-
	13	Slave sign-of-life bit 1	Yes	No	-
		Slave sign-of-life bit 2	Yes	No	-
	15	Slave sign-of-life bit 3	Yes	No	-
r0899.0... 15		$B O$: Status word sequence co	ntrol / ZSW seq.		
SERVO, VECTOR	Can	be changed: -	Calculated: -	Access	
	Data	type: Unsigned16	Dynamic index: -	Func. di	2503
	P-G	oup: Displays, signals	Units group: -	Unit sele	
		for motor type: -		Expert li	
	Min		Max	Factory	
Description:	Disp	ays the status word of the sequence con	trol.		
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Ready for switching on	Yes	No	-
		Ready for operation	Yes	No	-
	02	Operation enabled	Yes	No	-
	03	Jog active	Yes	No	-
	04	No coasting active	OFF2 inactive	OFF2 active	-
	05	No Quick Stop active	OFF3 inactive	OFF3 active	-
	06	Switching on inhibited active	Yes	No	-
	07	Drive ready	Yes	No	-
	08	Controller enable	Yes	No	-
		Control requested	Yes	No	-
		Pulses enabled	Yes	No	-
		Holding brake open	Yes	No	-
		Command close holding brake	Yes	No	-
		Pulse enable from the brake control	Yes	No	-
	15	Setpoint enable from the brake control	Yes	No	-
Note:	Reb	its 00, 01, 02, 04, 05, 06, 09:			
	For	ROFldrive, these signals are used for s	tatus word 1.		
	Re	it 13:			
		the "Safe Brake Control" (SBC) is activ it 14,15 :	vated and selected, th	no longer contr	is sign
	Thes 1).	e signals are only of significance when	he "extended brake c	tion module is	108.14

06	Switching on inhibited	Yes	No
09	Control requested	Yes	No
13	Zero mark enabled	Yes	No
14	Track A/B enabled	Yes	No
15	Interface encoder emulation enabled	Yes	No

Note: Re bit 00, 01, 02, 06 :
For PROFIdrive, these signals are used for status word 1.

r0899.0... 12	CO/BO: Status word sequence control infeed / ZSW seq_ctrl INF		
A_INF, S_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 1530, 8826, 8926
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status word of the infeed sequence control.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 Ready for switching on	Yes	No
	01 Ready for operation	Yes	No
	02 Operation enabled	Yes	No
	04 No OFF2 active	OFF2 inactive	OFF2 active
	06 Switching on inhibited	Yes	No
	09 Control requested	Yes	No
	11 Pre-charging compl	Yes	No
	12 Line contactor closed	Yes	No 8934
Note:	Re bit 12:		
	The feedback signal of a line contactor (auxiliary contact) can be interconnected via BI: p0860.		

r0899.0... 12 CO/BO: Status word sequence control infeed / ZSW seq_ctrl INF

B_INF	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dynamic index: -	Func. diagram: 8726	
	P-Group: Displays, signals		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory	
	-		-	-	
Description:	Displays the status word of the infeed sequence control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Ready for switching on	Yes	No	-
	01	Ready for operation	Yes	No	-
	02	Operation enabled	Yes	No	-
	04	No OFF2 active	OFF2 inactive	OFF2 active	-
	06	Switching on inhibited	Yes	No	-
	09	Control requested	Yes	No	-
	11	Pre-charging compl	Yes	No	-
	12	Line contactor closed	Yes	No	-
Note:	Re bits 00, 01, 02, 04, 06, 09:				
	For	PROFIdrive, these signal	tatus word 1.		

p0915[0...35]	TM17 PROFIdrive PZD setpoint assignment / TM17 PD PZD setp		
TM17	Can be changed: T Data type: Unsigned16 P-Group: Communications Not for motor type: -	Calculated: -	Access level: 2
		Dynamic index: -	Func. diagram: -
		Units group: -	Unit selection: -
			Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 4265 \end{aligned}$	Factory setting [0] 4201
			[1] 4204
			[2] 4211
			[3] 4212
			[4] 0
			[5] 0
			[6] 0
			[7] 0
			[8] 0
			[9] 0
			[10] 0
			[11] 0
			[12] 0
			[13] 0
			[14] 0
			[15] 0
			[16] 0
			[17] 0
			[18] 0
			[19] 0
			[20] 0
			[21] 0
			[22] 0
			[23] 0
			[24] 0
			[25] 0
			[26] 0
			[27] 0
			[28] 0
			[29] 0
			[30] 0
			[31] 0
			[32] 0
			[33] 0
			[34] 0
			[35] 0
Description:	Is used to assign the process data received from the master (PZD, setpoints).		
Value:	0: ZERO		
	4201: r4201 (system time for synchronization)		
	4204: r4204 (control digital output 0 ... 15)		
	4211: r4211 (edge mode digital input 0 ... 7)		
	4212: r4212 (edge mode digital input 8 ... 15)		
	4250: r4250 (set/resetting time digital output 0)		
	4251: r4251 (set/resetting time digital output 1)		
	4252: r4252 (set/resetting time digital output 2)		
	4253: r4253 (set/resetting time digital output 3)		
	4254: r4254 (set/resetting time digital output 4)		

```
4255: r4255 (set/resetting time digital output 5)
4256: r4256 (set/resetting time digital output 6)
4257: r4257 (set/resetting time digital output 7)
4258: r4258 (set/resetting time digital output 8)
4259: r4259 (set/resetting time digital output 9)
4260: r4260 (set/resetting time digital output 10)
4261: r4261 (set/resetting time digital output 11)
4262: r4262 (set/resetting time digital output 12)
4263: r4263 (set/resetting time digital output 13)
4264: r4264 (set/resetting time digital output 14)
4265: r4265 (set/resetting time digital output 15)
Index:
Note:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
[25] = PZD 26
[26] = PZD 27
[27] = PZD 28
[28] = PZD 29
[29] = PZD 30
[30] = PZD 31
[31] = PZD 32
[32] = PZD 33
[33] = PZD 34
[34] = PZD 35
[35] = PZD 36
Example:
The telegram for the setpoints should have the following process data (PZD) and assignments: PZD 1 (r4201), PZD 2 (r4204), PZD 3 (r4250), PZD 4 (r4250)
The setpoint assignment must be realized as follows:
p0915[0] = 4201-16 bit
p0915[1] = 4204-16 bit
p0915[2] \(=4250-32\) bit - specified twice one after the other
p0915[3] = 4250-32 bit
p0915[4] \(=0\)
p0915[35] = 0
```

p0915[0...29]	TM15 PROFldrive PZD setpoint assignment / TM15 PD PZD setp		
TM15	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 4273 \end{aligned}$	Factory setting [0] 4201
			[1] 4204
			[2] 4205
			[3] 4211
			[4] 4212
			[5] 4213
			[6] 0
			[7] 0
			[8] 0
			[9] 0
			[10] 0
			[11] 0
			[12] 0
			[13] 0
			[14] 0
			[15] 0
			[16] 0
			[17] 0
			[18] 0
			[19] 0
			[20] 0
			[21] 0
			[22] 0
			[23] 0
			[24] 0
			[25] 0
			[26] 0
			[27] 0
			[28] 0
			[29] 0
Description:	Is used to assign the process data received from the master (PZD, setpoints).		
Value:	0: ZERO		
	4201: r4201 (system time f		
	4204: r4204 (control digital		
	4205: r4205 (control digital		
	4211: r4211 (edge mode di		
	4212: r4212 (edge mode d		
	4213: r4213 (edge mode d		
	4250: r4250 (set/resetting tim		
	4251: r4251 (set/resetting		
	4252: r4252 (set/resetting		
	4253: r4253 (set/resetting tim		
	4254: r4254 (set/resetting tim		
	4255: r4255 (set/resetting		
	4256: r4256 (set/resetting tim		
	4257: r4257 (set/resetting		
	4258: r4258 (set/resetting		
	4259: r4259 (set/resetting tim		

[^1]| p0916[0...35] | TM17 PROFIdrive PZD actual value assignment / TM17 PD PZD actVal | | |
| :---: | :---: | :---: | :---: |
| TM17 | Can be changed: T C | Calculated: - | Access level: 2 |
| | Data type: Unsigned16 Dy | Dynamic index: - | Func. diagram: - |
| | P-Group: Communications U | Units group: - | Unit selection: - |
| | Not for motor type: - | | Expert list: 1 |
| | $\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 4365 \end{aligned}$ | Factory setting
 [0] 4301 |
| | | | [1] 4304 |
| | | | [2] 4311 |
| | | | [3] 4312 |
| | | | [4] 0 |
| | | | [5] 0 |
| | | | [6] 0 |
| | | | [7] 0 |
| | | | [8] 0 |
| | | | [9] 0 |
| | | | [10] 0 |
| | | | [11] 0 |
| | | | [12] 0 |
| | | | [13] 0 |
| | | | [14] 0 |
| | | | [15] 0 |
| | | | [16] 0 |
| | | | [17] 0 |
| | | | [18] 0 |
| | | | [19] 0 |
| | | | [20] 0 |
| | | | [21] 0 |
| | | | [22] 0 |
| | | | [23] 0 |
| | | | [24] 0 |
| | | | [25] 0 |
| | | | [26] 0 |
| | | | [27] 0 |
| | | | [28] 0 |
| | | | [29] 0 |
| | | | [30] 0 |
| | | | [31] 0 |
| | | | [32] 0 |
| | | | [33] 0 |
| | | | [34] 0 |
| | | | [35] 0 |
| Description: | Is used to assign the process data to be sent to the master (PZD, actual values). | | |
| Value: | 0: ZERO | | |
| | 4301: r4301 (module synchronization) | | |
| | 4304: r4304 (status digital input 0 ... 15) | | |
| | 4311: r4311 (edge status digital input 0 ... 7) | | |
| | 4312: r4312 (edge status digital input 8 ... 15) | | |
| | 4350: r4350 (edge times digital input 0) | | |
| | 4351: r4351 (edge times digital input 1) | | |
| | 4352: r4352 (edge times digital input 2) | | |
| | 4353: r4353 (edge times digital input 3) | | |
| | 4354: r4354 (edge times digital input 4) | | |

```
4355: r4355 (edge times digital input 5)
4356: r4356 (edge times digital input 6)
4357: r4357 (edge times digital input 7)
4358: r4358 (edge times digital input 8)
4359: r4359 (edge times digital input 9)
4360: r4360 (edge times digital input 10)
4361: r4361 (edge times digital input 11)
4362: r4362 (edge times digital input 12)
4363: r4363 (edge times digital input 13)
4364: r4364 (edge times digital input 14)
4365: r4365 (edge times digital input 15)
Index:
Note:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
[25] = PZD 26
[26] = PZD 27
[27] = PZD 28
[28] = PZD 29
[29] = PZD 30
[30] = PZD 31
[31] = PZD 32
[32] = PZD 33
[33] = PZD 34
[34] = PZD 35
[35] = PZD 36
Example:
The telegram for the actual values should have the following process data (PZD) and assignments: PZD 1 (r4301), PZD 2 (r4304), PZD 3 (r4350), PZD 4 (r4350)
The setpoint assignment must be realized as follows:
p0916[0] = 4301-16 bit
p0916[1] = 4304-16 bit
p0916[2] \(=4350-32\) bit - specified twice one after the other
p0916[3] \(=4350-32\) bit
p0916[4] \(=0\)
p0916[35] = 0
```


[^2]| p0918 | PROFIBUS address / PB address | | |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$ | Can be changed: T | Calculated: - | Access level: 2 |
| | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1520, 2410 |
| | P-Group: Communications | Units group: - | Unit selection: - |
| | Not for motor type: - | | Expert list: 1 |
| | $\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 126 \end{aligned}$ | Factory setting 126 |
| Description: | Displays or sets the PROFIBUS address for PROFIBUS interface (X126) on the Control Unit.
 The address can be set as follows:
 1) Using the DIP switch on the Control Unit.
 --> p0918 can then only be read and displays the selected address.
 --> A change only becomes effective after a POWER ON.
 2) Using p0918
 --> only if all of the DIP switches - from S1 to S 7 - are either set to ON or OFF.
 --> The address is saved in a non-volatile fashion using the function "copy from RAM to ROM".
 --> A change only becomes effective after a POWER ON. | | |
| Note: | Permissible PROFIBUS add Address 126 is used for com Every PROFIBUS address | mes effective after | |
| p0922 | PROFIdrive telegram selection / PD Telegr_sel | | |
| $\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$ | Can be changed: C2(1), T | Calculated: - | Access level: 1 |
| | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1520, 2420, 2423, 2481, 2483 |
| | P-Group: Communications | Units group: - | Unit selection: - |
| | Not for motor type: - | | Expert list: 1 |
| | $\begin{aligned} & \text { Min } \\ & 390 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 999 \end{aligned}$ | Factory setting 999 |
| Description: | Sets the send and receive telegram. | | |
| Value: | 390: SIEMENS telegram
 391: SIEMENS telegram
 392: SIEMENS telegram
 999: Free telegram config | | |
| p0922 | PROFIdrive telegram selection / PD Telegr_sel | | |
| $\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$ | Can be changed: C2(1), T | Calculated: - | Access level: 1 |
| | Data type: Unsigned16 | Dynamic index: - | Func. diagram: 1520, 2420, 2423, 2447, 2457, 2481, 2483 |
| | P-Group: Communications | Units group: - | Unit selection: - |
| | Not for motor type: - | | |
| | $\begin{aligned} & \text { Min } \\ & 370 \end{aligned}$ | $\begin{aligned} & \text { Max } \\ & 999 \end{aligned}$ | Factory setting 999 |
| Description: | Sets the send and receive telegram. | | |
| Value: | 370: SIEMENS telegram
 371: SIEMENS telegram
 999: Free telegram config | | |
| Dependency: | Refer to: F01505, F01506 | | |
| Note: | If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhib ited. | | |

p0922	PROFIdrive telegram selection / PD Telegr_sel		
SERVO (Pos ctrl)	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 1520, 2420, 2422, 2423, 2468, 2470
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 999 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 999 \end{aligned}$	Factory setting 999
Description:	Sets the send and receive telegram.		
Value:	999: Free telegram configuration with BICO		
Dependency:	Refer to: p2038		
	Refer to: F01505, F01506		
Note:	If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhibited.		
	The inhibited interconnections can only be changed again after setting value 999.		
p0922	PROFIdrive telegram selection / PD Telegr_sel		
SERVO (EPOS)	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 1520, 2420, 2422, 2423, 2468, 2470
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 7 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 999 \end{aligned}$	Factory setting 999
Description:	Sets the send and receive telegram.		
Value:	7: Standard telegram 7 9: Standard telegram 9 110: SIEMENS telegram 111: SIEMENS telegram 999: Free telegram config		
Dependency:	Refer to: p2038		
Note:	For p0922 = $100 \ldots 199$, p2038 is automatically set to 1 and p2038 can no longer be changed. This means that for these telegrams, the "SIMODRIVE 611 universal" interface mode is set and cannot be changed. If a value is not equal to 999, a telegram is set and the automatically set interconnections in the telegram are inhibited. The inhibited interconnections can only be changed again after setting value 999.		
p0922	PROFIdrive telegram selection / PD Telegr_sel		
SERVO	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 1520, 2420, 2422, 2423, 2468, 2470
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 999 \end{aligned}$	Factory setting 999
Description:	Sets the send and receive telegram.		
Value:	1: Standard telegram 1 2: Standard telegram 2, 3: Standard telegram 3, 4: Standard telegram 4		

r0930	PROFIdrive operating mode / PD operating mode		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the operating mode.		
	1: Closed-loop speed controlled operation with ramp-function generator		
	2: Closed-loop position controlled operation		
	3: Closed-loop speed controlled operation without ramp-function generator		
r0944	CO: Counter for fault buffer changes / Fault buff change		
All objects	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays fault buffer changes. This counter is incremented every time the fault buffer changes.		
Recommend.:	Used to check whether the fault buffer has been read out consistently.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109		
r0945[0...63]	Fault code / Fault code		
All objects	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 1750, 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the numbers of faults that have occurred.		
Dependency:	Refer to: r0947, r0948, r0949, r2109, r2130, r2133, r2136		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	Fault buffer structure (general principle):		
	r0945[0], r0949[0], r0948[0], r2109[0], r3115[0] --> current fault case, fault 1		
	. .		
	r0945[7], r0949[7], r0948[7], r2109[7], r3115[7] --> current fault case, fault 8		
	r0945[8], r0949[8], r0948[8], r2109[8], r3115[8] --> 1st acknowledged fault case, fault 1		
	r0945[15], r0949[15], r0948[15], r2109[15], r3115[15] --> 1st acknowledged fault case, fault 8		
	r0945[56], r0949[56], r0948[56], r2109[56], r3115[56] --> 7th acknowledged fault case, fault 1		
	r0945[63], r0949[63], r0948[63], r2109[63], r3115[63] --> 7th acknowledged fault case, fault 8		

r0946[0...65534]	Fault code list / Fault code list		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 0
	Min	-	Factory setting
Description:	-	Lists the fault codes stored in the drive unit.	
Dependency:	The indices can only be accessed with a valid fault code.		
	The parameter assigned to the fault code is entered in ro951 under the same index.		

r0947[0...63]	Fault number / Fault number		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 1750,8060
	P-Group: Messages	Units group:	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	

r0948[0...63] Fault time received in milliseconds / t_fault recv ms

All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 1750, 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [ms]	Max - [ms]	Factory setting - [ms]
Description:	Displays the system runtime in milliseconds when the fault occurred.		
Dependency:	Refer to: r0945, r0947, r0949, r2109, r2114, r2130, r2133, r2136, r3115		
Notice:	The time comprises r2130 (days) and r0948 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
	When the parameter is read via PROFIdrive, the TimeDifference data type applies.		

r0949[0...63]	Fault value / Fault value		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dynamic index: -	Func. diagram: 1750,8060
	P-Group: Messages		Unit selection: -
	Not for motor type: -	Max	Expert list: 1

p0952	Fault cases, counter / Fault cases qty		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 1710, 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$	Factory setting 0
Description:	Number of fault situations that have occurred since the last reset.		
Dependency:	The fault buffer is deleted (cleared) by setting p0952 to 0.		
	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136		
r0963	PROFIBUS baud rate / PB baud rate		
CU_S	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 255 \end{aligned}$	Factory setting
Value:	0: $\quad 9.6 \mathrm{kbit} / \mathrm{s}$		
	1: $\quad 19.2$ kbit/s		
	2: $\quad 93.75 \mathrm{kbit} / \mathrm{s}$		
	3: $\quad 187.5 \mathrm{kbit} / \mathrm{s}$		
	4: $\quad 500 \mathrm{kbit} / \mathrm{s}$		
	6: $\quad 1.5 \mathrm{Mbit} / \mathrm{s}$		
	7: $3 \mathrm{Mbit} / \mathrm{s}$		
	8: $6 \mathrm{Mbit} / \mathrm{s}$		
	9: $12 \mathrm{Mbit} / \mathrm{s}$		
	10: $31.25 \mathrm{kbit} / \mathrm{s}$		
	11: $45.45 \mathrm{kbit} / \mathrm{s}$		
	255: Unknown		
r0964[0...6]	Device identification / Device ident.		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
		-	
Description: Index:	Displays the device identification.		
	[0] = Company (Siemens = 42)		
	[1] = Device type		
	[2] = Firmware version		
	[3] = Firmware date (year)		
	[4] = Firmware date (day/month)		
	[5] = Number of drive objects		
	[6] = Firmware patch/hot fix		
Note:	Example:		
	r0964[0] = 42 --> SIEMENS		
	r0964[1] = 5000 --> SINAMICS S CU320		
	r0964[1] = 5200 --> SINAMICS G CU320		
	r0964[2] = 102 --> first part of the firmware version V01.02 (second part, refer to index 6)		
	r0964[3] = 2003 --> year 2003		
	r0964[4] = 1401 --> 14th of January		
	r0964[5] = 4 --> 4 drive objects		

$$
\text { r0964[6] = } 600 \text {--> second part, firmware version (complete version: V01.02.06.00) }
$$

r0965	PROFIdrive profile number / PD profile number		
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 3
CU_S	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the PROFIdrive profile number and profile version. Constant value $=0329$ hex		
	Byte 1: Profile number = 03 hex = PROFIdrive profile		
	Byte 2: Profile version = 29 hex = Version 4.1		
Note:	When the parameter is read via PROFIdrive, the Octet String 2 data type applies.		
p0969	System runtime relative / t_System relative		
CU_CX32, CU_I,	Can be changed: T	Calculated: -	Access level: 3
CU_S	Data type: Unsigned32	Dynamic index: -	Func. diagram: 1750, 8060
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [ms]	Max $4294967295 \text { [ms] }$	Factory setting 0 [ms]
Description:	Displays the system runtime in ms since the last POWER ON.		
Note:	The value in p0969 can only be reset to 0 .		
	The value overflows after approx. 49 days.		
	When the parameter is read via PROFIdrive, the TimeDifference data type applies.		

p0970	Reset infeed parameter / INF par reset		
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$	Can be changed: C2(30)	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Factory settings	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 100 \end{aligned}$	Factory setting 0
Description:	The parameter is used to initiate a reset of the parameters of an individual infeed unit.		
	The parameters of the basic commissioning (refer to p0009) are in this case not reset (p0107, p0108, p0121, p 0170). These can only be reset using the factory setting of the complete drive unit (p 0976).		
	The sampling times ($\mathrm{p} 0111, \mathrm{p} 0112, \mathrm{p} 0115$) are only not reset if this results in a conflict with the basic clock cycle (p0110).		
Value:	0: Inactive		
	1: Starts a parameter reset		
	100: Starts a BICO intercon		
Note:	A factory setting run can only be started if p0010 was first set to 30 (parameter reset).		
	At the end of the calculations, p0970 is automatically set to 0 .		

p0970	Reset drive parameters / Drive par reset		
SERVO, VECTOR	Can be changed: C2(30)	Calculated: -	Access level: 2
	Data type: Unsigned16	Units group: -	Func. diagram: -
	P-Group: Factory settings		Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	100	Factory setting
	0	0	

Danger:	It must be absolutely ensured that the system is in a safe condition.
	The memory card of the Control Unit must not be accessed.
Notice:	For SIMOTION or SINUMERIK with integrated SINAMICS, the hardware reset acts on the complete system and depends on the state of the control.
Note:	Re value = 1:
	Reset is immediately executed and communications interrupted.
	After communications have been established, check the reset operation (refer below).
	Re value $=2$:
	Help to check the reset operation.
	Firstly, set p0972 $=2$ and then read back. Secondly, set p0972 $=1$ (it is possible that this request is possibly no longer acknowledged). The communication is then interrupted.
	After communications have been established, check the reset operation (refer below).
	Re value = 3:
	The reset is executed after interrupting cyclic communication. This setting is used to implement a synchronized reset by a control for several drive units.
	If the cyclic communication is active for both PROFIdrive interfaces, then the reset is executed after completing both cycle communications.
	After communications have been established, check the reset operation (refer below).
	To check the reset operation:
	After the drive unit has been restarted and communications have been established, read p0972 and check the following:
	p0972 = 0? --> The reset was successfully executed.
	p0972 > 0? --> The reset was not executed.
r0975[0...10]	Drive object identification / DO identification
All objects	Can be changed: - Calculated: - Access level: 2
	Data type: Unsigned16 Dynamic index: - Func. diagram: -
	P-Group: Communications Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
	Min Max Factory setting
	- - -
Description:	Displays the identification of the drive object.
Index:	[0] = Company (Siemens $=42$)
	[1] = Drive object type
	[2] = Firmware version
	[3] = Firmware date (year)
	[4] = Firmware date (day/month)
	[5] = PROFldrive drive object, type class
	[6] = PROFIdrive drive object, sub-type Class 1
	[7] = Drive object number
	[8] = Reserved
	[9] = Reserved
	[10] = Firmware patch/hot fix
Note:	Example:
	r0975[0] = 42 --> SIEMENS
	r0975[1] = 11 --> SERVO drive object type
	r0975[2] = 102 --> first part, firmware version V01.02 (second part, refer to index 10)
	r0975[3] = 2003 --> year 2003
	r0975[4] = 1401 --> 14th of January
	r0975[5] = 1 --> PROFIdrive drive object, type class
	r0975[6] = 9 --> PROFIdrive drive object sub-type class 1
	r0975[7] = 2 --> drive object number $=2$
	r0975[8] = 0 (reserved)
	r0975[9] $=0$ (reserved)

r0975[10] = 600 --> second part, firmware version (complete version: V01.02.06.00)

r0979[0...30]	PROFldrive encoder format / PD encoder format	
SERVO, VECTOR	Can be changed: - Calculated: -	Access level: 3
	Data type: Unsigned32 Dynamic index: -	Func. diagram: 4010, 4704
	P-Group: Encoder Units group: -	Unit selection: -
	Not for motor type: -	Expert list:
	Min Max	Factory setting
Description:	Displays the actual position encoder used according to PROFIdrive.	
Index:	```[0] = Header [1] = Type, encoder 1 [2] = Resolution encod 1 [3] = Shift factor G1_XIST1 [4] = Shift factor G1_XIST2 [5] = Distinguishable revolutions encoder 1 [6] = Reserved [7] = Reserved [8] = Reserved [9] = Reserved [10] = Reserved [11] = Type, encoder 2 [12] = Resolution encod 2 [13] = Shift factor G2_XIST1 [14] = Shift factor G2_XIST2 [15] = Distinguishable revolutions encoder 2 [16] = Reserved [17] = Reserved [18] = Reserved [19] = Reserved [20] = Reserved [21] = Type, encoder 3 [22] = Resolution encod 3 [23] = Shift factor G3_XIST1 [24] = Shift factor G3_XIST2 [25] = Distinguishable revolutions encoder 3 [26] = Reserved [27] = Reserved [28] = Reserved [29] = Reserved [30] = Reserved```	
Note:	Information about the individual indices can be taken from the following literature: PROFIdrive Profile Drive Technology	
r0979[0..10]	PROFIdrive encoder format / PD encoder format	
TM41	Can be changed: - Calculated: -	Access level: 3
	Data type: Unsigned32 Dynamic index: -	Func. diagram: 4010, 4704
	P-Group: Encoder Units group: -	Unit selection: -
	Min Max	Factory setting
Description: Index:	Displays the actual position encoder used according to PROFIdrive. [0] = Header [1] = Type, encoder 1 [2] = Resolution encod 1 [3] = Shift factor G1_XIST1 [4] = Shift factor G1_XIST2 [5] = Distinguishable revolutions encoder 1 [6] = Reserved	

Note: Information about the individual indices can be taken from the following literature: PROFIdrive Profile Drive Technology

r0980[0...199]	List of existing parameters 1 / List avail par 1		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
Description:	Displays the parameters that exist for this drive.		
Dependency:	Refer to: r0981, r0989		
Note:	The existing parameters are displayed in indices 0 to 198. If an index contains the value 0 , then the list ends here. In a long list, index 199 contains the parameter number at which position the list continues.		
	This list completely comprises the following parameters:		
	r0980[0...199], r0981[0...199] ... r0989[0...199]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0981[0...199] List of existing parameters 2 / List avail par 2

All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the parameters that exist for this drive.		
Dependency:	Refer to: r0980, r0989		
Note:	The existing parameters are displayed in indices 0 to 198. If an index contains the value 0 , then the list ends here. In a long list, index 199 contains the parameter number at which position the list continues.		
	This list completely comprises the following parameters:		
	r0980[0...199], r0981[0...199] ... r0989[0...199]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0989[0...199]	List of existing parameters 10 / List avail par 10		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
Description:	Displays the parameters that exist for this drive.		
Dependency:	Refer to: r0980, r0981		
Note:	The existing parameters are displayed in indices 0 to 198. If an index contains the value 0 , then the list ends here.		
	This list completely comprises the following parameters:		
	r0980[0...199], r0981[0...199] ... r0989[0...199]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0990[0...99]	List of modified parameters 1 / List chang. par 1		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	${ }_{-} \mathbf{M i n}$	Max	Factory setting
Description:	Displays those parameters with a value other than the factory setting for this drive.		
Dependency:	Refer to: r0991, r0999		
Note:	Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. In a long list, index 99 contains the parameter number at which position the list continues.		
	This list completely comprises the following parameters:		
	r0990[0...99], r0991[0...99] ... r0999[0...99]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0991[0...99]	List of modified parameters 2 / List chang. par 2		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
Description:	Displays those parameters with a value other than the factory setting for this drive.		
Dependency:	Refer to: r0990, r0999		
Note:	Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. In a long list, index 99 contains the parameter number at which position the list continues.		
	This list completely comprises the following parameters:		
	r0990[0...99], r0991[0...99] ... r0999[0...99]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0999[0...99]	List of modified parameters $10 /$ List chang. par 10	
All objects	Can be changed: -	Calculated: -
	Data type: Unsigned16	Dynamic index:
	P-Group: -	Units group: -
	Not for motor type: -	Func. diagram: -
	Min	Unit selection: -
	-	Expert list: 0

p1001[0...n]	CO: Fixed velocity setpoint 1 / n_set_fixed 1		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1021, 3010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -1000.000 [m/min]	Max 1000.000 [m/min]	Factory setting 0.000 [m/min]
Description:	Sets a value for the fixed speed/velocity setpoint 1.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1001[0...n]	CO: Fixed speed setpoint 1 / n_set_fixed 1		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1021, 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description:	Sets a value for the fixed speed/velocity setpoint 1.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1002[0...n]	CO: Fixed velocity setpoint 2 / n_set_fixed 2		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -1000.000 [m/min]	Max 1000.000 [m/min]	Factory setting 0.000 [m/min]
Description:	Sets a value for the fixed speed/velocity setpoint 2.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1002[0...n]	CO: Fixed speed setpoint 2 / n_set_fixed 2		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description:	Sets a value for the fixed speed/velocity setpoint 2.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		

p1003[0...n]	CO: Fixed velocity setpoint 3 / n_set_fixed 3		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.000 [m/min]
Description:	Sets a value for the fixed speed/velocity setpoint 3.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1003[0...n]	CO: Fixed speed setpoint 3 / n_set_fixed 3		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -210000.000[\mathrm{rev} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 210000.000[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 0.000 [rev/min]
Description:	Sets a value for the fixed speed/velocity setpoint 3.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1004[0...n]	CO: Fixed velocity setpoint 4 / n_set_fixed 4		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -1000.000 [m/min]	$\begin{aligned} & \text { Max } \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets a value for the fixed speed/velocity setpoint 4.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1004[0...n]	CO: Fixed speed setpoint 4 / n_set_fixed 4		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	$\begin{aligned} & \text { Max } \\ & 210000.000[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 0.000 [rev/min]
Description:	Sets a value for the fixed speed/velocity setpoint 4.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		

p1005[0...n]	CO: Fixed velocity setpoint 5 / n_set_fixed 5		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -1000.000 [m/min]	Max 1000.000 [m/min]	Factory setting 0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets a value for the fixed speed/velocity setpoint 5.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1005[0...n]	CO: Fixed speed setpoint 5 / n_set_fixed 5		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description:	Sets a value for the fixed speed/velocity setpoint 5.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1006[0...n]	CO: Fixed velocity setpoint 6 / n_set_fixed 6		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -1000.000 [m/min]	Max $1000.000[\mathrm{~m} / \mathrm{min}]$	Factory setting 0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets a value for the fixed speed/velocity setpoint 6.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1006[0...n]	CO: Fixed speed setpoint 6 / n_set_fixed 6		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description:	Sets a value for the fixed speed/velocity setpoint 6.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		

p1007[0...n]	CO: Fixed velocity setpoint 7 / n_set_fixed 7		
SERVO (Extended	Can be changed: U, T	Calculated: -	Access level: 2
setp, Lin)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.000 [m/min]
Description:	Sets a value for the fixed speed/velocity setpoint 7.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1007[0...n]	CO: Fixed speed setpoint 7 / n_set_fixed 7		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -210000.000[\mathrm{rev} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 210000.000[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 0.000 [rev/min]
Description:	Sets a value for the fixed speed/velocity setpoint 7.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1008[0...n]	CO: Fixed velocity setpoint 8 / n_set_fixed 8		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -1000.000 [m/min]	$\begin{aligned} & \text { Max } \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets a value for the fixed speed/velocity setpoint 8.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1008[0...n]	CO: Fixed speed setpoint 8 / n_set_fixed 8		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	$\begin{aligned} & \text { Max } \\ & 210000.000[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 0.000 [rev/min]
Description:	Sets a value for the fixed speed/velocity setpoint 8.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		

p1009[0...n]	CO: Fixed velocity setpoint 9 / n_set_fixed 9		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -1000.000 [m/min]	Max 1000.000 [$\mathrm{m} / \mathrm{min}$]	Factory setting 0.000 [m/min]
Description:	Sets a value for the fixed speed/velocity setpoint 9.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1009[0...n]	CO: Fixed speed setpoint 9 / n_set_fixed 9		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description:	Sets a value for the fixed speed/velocity setpoint 9.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1010[0...n]	CO: Fixed velocity setpoint 10 / n_set_fixed 10		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -1000.000 [m/min]	Max 1000.000 [$\mathrm{m} / \mathrm{min}$]	Factory setting 0.000 [m/min]
Description:	Sets a value for the fixed speed/velocity setpoint 10.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1010[0...n]	CO: Fixed speed setpoint 10 / n_set_fixed 10		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description:	Sets a value for the fixed speed/velocity setpoint 10.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		

p1011[0...n]	CO: Fixed velocity setpoint 11 / n_set_fixed 11		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -1000.000 [m/min]	Max 1000.000 [$\mathrm{m} / \mathrm{min}]$	Factory setting 0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets a value for the fixed speed/ velocity setpoint 11.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1011[0...n]	CO: Fixed speed setpoint 11 / n_set_fixed 11		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description:	Sets a value for the fixed speed/velocity setpoint 11.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1012[0...n]	CO: Fixed velocity setpoint 12 / n_set_fixed 12		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.000 [m/min]
Description:	Sets a value for the fixed speed/velocity setpoint 12.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1012[0...n]	CO: Fixed speed setpoint 12 / n_set_fixed 12		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description:	Sets a value for the fixed speed / velocity setpoint 12.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		

p1013[0...n]	CO: Fixed velocity setpoint 13 / n_set_fixed 13		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -1000.000 [m/min]	$\begin{aligned} & \operatorname{Max} \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.000 [m/min]
Description:	Sets a value for the fixed speed/ velocity setpoint 13.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1013[0..n]	CO: Fixed speed setpoint 13 / n_set_fixed 13		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description:	Sets a value for the fixed speed / velocity setpoint 13.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1014[0...n]	CO: Fixed velocity setpoint 14 / n_set_fixed 14		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -1000.000 [m/min]	Max 1000.000 [m/min]	Factory setting 0.000 [m/min]
Description:	Sets a value for the fixed speed/velocity setpoint 14.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1014[0..n]	CO: Fixed speed setpoint 14 / n_set_fixed 14		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description:	Sets a value for the fixed speed/velocity setpoint 14.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		

p1015[0...n]	CO: Fixed velocity setpoint 15 / n_set_fixed 15		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1021, 3010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -1000.000 [m/min]	Max 1000.000 [m/min]	Factory setting 0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets a value for the fixed speed/velocity setpoint 15.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1015[0...n]	CO: Fixed speed setpoint 15 / n_set_fixed 15		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1021, 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description:	Sets a value for the fixed speed/velocity setpoint 15.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1020[0...n]	BI: Fixed velocity setpoint selection Bit 0 / v_set_fixed Bit 0		
SERVO (Extended setp, Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2505
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the fixed velocity setpoint.		
Dependency:	Selects the required fixed velocity setpoint using p1020 ... p1023.		
	Displays the number of the current fixed velocity setpoint in r1197.		
	Sets a value for the fixed velocity setpoints $1 \ldots 15$ using p1001 ... p1015.		
	Refer to: p1021, p1022, p1023, r1197		
Note:	If a fixed velocity setpoint has not been selected (p1020 \ldots p1023 $=0, \mathrm{r} 1197=0$), then r1024 $=0$ (setpoint $=0$).		
p1020[0...n]	BI: Fixed speed setpoint selection Bit 0 / n_set_fixed Bit 0		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2505
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the current fixed speed setpoint in r1197.		
	Sets a value for the fixed speed setpoints $1 . . .15$ using p1001 ... p1015.		
	Refer to: p1021, p1022, p1023, r1197		
Note:	If a fixed speed setpoint has not	d $(\mathrm{p} 1020 \ldots \mathrm{p} 1023=0, \mathrm{r} 1197=$	hen r1024 $=0$ (setpoint $=0$).

p1021[0...n]	BI: Fixed velocity setpoint selection Bit 1 / v_set_fixed Bit 1		
SERVO (Extended setp, Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2505
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the fixed velocity setpoint.		
Dependency:	Selects the required fixed velocity setpoint using p1020 ... p1023.		
	Displays the number of the current fixed velocity setpoint in r1197.		
	Sets a value for the fixed velocity setpoints $1 \ldots 15$ using p1001 ... p1015.		
	Refer to: p1020, p1022, p1023, r1197		
Note:	If a fixed velocity setpoint has not been selected (p1020 \ldots p $1023=0, r 1197=0$), then r1024 $=0$ (setpoint $=0$).		
p1021[0...n]	BI: Fixed speed setpoint selection Bit 1 / n_set_fixed Bit 1		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2505
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the current fixed speed setpoint in r1197.		
	Sets a value for the fixed speed setpoints $1 . . .15$ using p1001 ... p1015.		
	Refer to: p1020, p1022, p1023, r1197		
Note:	If a fixed speed setpoint has not been selected (p1020 .. p1023 $=0, r 1197=0$), then r1024 $=0($ setpoint $=0)$.		
p1022[0...n]	BI: Fixed velocity setpoint selection Bit 2 / v_set_fixed Bit 2		
SERVO (Extended setp, Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2505
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the fixed velocity setpoint.		
Dependency:	Selects the required fixed velocity setpoint using p1020 ... p1023.		
	Displays the number of the current fixed velocity setpoint in r 1197.		
	Sets a value for the fixed velocity setpoints $1 \ldots 15$ using p1001 ... p1015.		
	Refer to: p1020, p1021, p1023, r1197		
Note:	If a fixed velocity setpoint has not been selected (p1020 \ldots p1023 $=0, r 1197=0$), then r1024 $=0$ (setpoint $=0$).		
p1022[0...n]	BI: Fixed speed setpoint selection Bit 2 / n_set_fixed Bit 2		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2505
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the fixed speed setpoint.		

r1024	CO: Fixed speed setpoint effective / n_set_fixed eff			
SERVO (Extended setp), VECTOR	Can be changed: - C	Calculated: -	Acce	
	Data type: FloatingPoint32 Dy	Dynamic index: -	Func	, 301
	P-Group: Setpoints U	Units group: 3_1	Unit	
	Not for motor type: -		Expe	
	Min - [rev/min]	Max - [rev/min]	Fact - [rev	
Description:	This setpoint is the output value for the fixed speed setpoints and must be appropriately interconnected (e.g. with the main setpoint).			
Recommend.:	Interconnect the signal with main setpoint (p1070).			
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.			
	Displays the number of the current fixed speed setpoint in r1197.			
	Sets a value for the fixed speed setpoints $1 . . .15$ using p1001 ... p1015.			
	Refer to: p1070, r1197			
Note:	If a fixed speed setpoint has not been selected (p1020 ..p1023 $=0, \mathrm{r} 1197=0$), then r1024 $=0$ (setpoint $=0$).			
p1030[0...n]	Motorized potentiometer configuration / Mop configuration			
SERVO (Extended setp), VECTOR	Can be changed: U, T Ca	Calculated: -	Acce	
	Data type: Unsigned16 D	Dynamic index: D	Func	
	P-Group: Closed-loop control U	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min M	Max	Facto	
	- -			
Description:	Sets the configuration for the motorized potentiometer.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Data save active	Yes	No	-
	01 Automatic mode, ramp-function generator active	r Yes	No	-
	02 Initial rounding-off active	Yes	No	-
	03 Save in NVRAM active	Yes	No	-
Note:	Re bit 00:			
	0 : The setpoint for the motorized potentiometer is not saved and after ON is entered using p1040.			
	1: The setpoint for the motorized potentiometer is saved after OFF and after ON set to the saved value. In order to save in a non-volatile fashion, bit 03 should be set to 1.			
	Re bit 01:			
	0 : Without ramp-function generator in the automatic mode (ramp-up/ramp-down time $=0$) .			
	1: With ramp-function generator in the automatic mode.			
	For manual operation (0 signal via BI : p 1041), the ramp-function generator is always active.			
	Re bit 02:			
	0 : Without initial rounding-off			
	1: With initial rounding-off. The selected ramp-up/down time is correspondingly exceeded. The initial rounding-off is a sensitive way of specifying small changes (progressive reaction when keys are pressed).			
	The jerk for the initial rounding-off is independent of the ramp-up time and only depends on the selected maximum speed (p 1082). It is calculated as follows:			
	$r=0.01$ \% * p1082 [1/s] / 0.13^2 [s^2]			
	The jerk acts up until the maximum acceleration is reached (a_max = p1082 [1/s] / p1047 [s]), and then the drive continues to run linearly with a constant rate of acceleration. The higher the maximum acceleration (the lower that p1047 is), the longer the ramp-up time increases with respect to the set ramp-up time.			

Re bit 03:
0: Non-volatile data save de-activated.
1: The setpoint for the motorized potentiometer is saved in a non-volatile fashion (for bit $00=1$).
The following prerequisites must be fulfilled in order to be able to save the setpoint in a non-volatile fashion:

- Firmware with V2.3 or higher.
- Control Unit 320 (CU320) with hardware version C or higher (module with NVRAM).

p1035[0...n]	BI: Motorized potentiometer setpoint raise / Mop raise		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2442, 2505, 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to increase the setpoint for the motorized potentiometer		
Dependency:	Refer to: p1036		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1035	BI: Zero marks enable / ZM enable		
TM41	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9678
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to enable the zero marks.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For TM41, this parameter has no function.		
	The zero mark can only be switched in or switched out using p4401.0.		

p1036[0...n]	BI: Motorized potentiometer lower setpoint / Mop lower		
SERVO (Extended	Can be changed: T	Calculated: -	Access level: 3
setp), VECTOR	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2442, 2505
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underline{M i n}$	Max	Factory setting 0
Description:	Sets the signal source to reduce the setpoint for the motorized potentiometer.		
Dependency:	Refer to: p1035		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1037[0...n]	Motorized potentiometer maximum velocity / Mop n_max		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3020
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.000 [m/min]
Description:	Sets the maximum speed/velocity for the motorized potentiometer.		

Note:	This parameter is automatically pre-assigned in the commissioning phase. The setpoint output from the motorized potentiometer is limited to this value.		
p1037[0...n]	Motorized potentiometer	m speed / Mop n_max	
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3020
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description: Note:	Sets the maximum speed/velocity for the motorized potentiometer. This parameter is automatically pre-assigned in the commissioning phase. The setpoint output from the motorized potentiometer is limited to this value.		
p1038[0...n]	Motorized potentiometer minimum velocity / Mop n_min		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3020
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -1000.000 [m/min]	$\begin{aligned} & \text { Max } \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.000 [m/min]
Description: Note:	Sets the minimum speed/velocity for the motorized potentiometer. This parameter is automatically pre-assigned in the commissioning phase. The setpoint output from the motorized potentiometer is limited to this value.		
p1038[0...n]	Motorized potentiometer minimum speed / Mop n_min		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3020
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description: Note:	Sets the minimum speed/velocity for the motorized potentiometer. This parameter is automatically pre-assigned in the commissioning phase. The setpoint output from the motorized potentiometer is limited to this value.		
p1039[0...n]	BI: Motorized potentiometer inversion / Mop inversion		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		
	Min	Max	Factory setting 0
Description:	Sets the signal source to invert the minimum speed/velocity or the maximum speed/velocity for the motorized potentiometer.		
Dependency:	Refer to: p1037, p1038		
Note:	The inversion is only active during "motorized potentiometer raise" or "motorized potentiometer lower".		

p1040[0...n]	Motorized potentiometer starting value / Mop start value		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3020
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the starting value for the motorized potentiometer. This starting value becomes effective after the drive has been powered up.		
Dependency:	Only effective if p1030.0 $=0$		
	Refer to: p1030		
p1040[0...n]	Motorized potentiometer starting value / Mop start value		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3020
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description:	Sets the starting value for the motorized potentiometer. This starting value becomes effective after the drive has been powered up.		
Dependency:	Only effective if p1030.0 $=0$.		
	Refer to: p1030		
p1041[0...n]	BI: Motorized potentiometer manual/automatic / Mop manual/auto		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to change over from manual to automatic when using a motorized potentiometer. In the manual mode, the setpoint is changed using two signals - raise and lower. In the automatic mode, the setpoint must be interconnected via a connector input.		
Dependency:	Refer to: p1030, p1035, p1036, p1042		
Note:	The effectiveness of the internal ramp-function generator can be set in automatic mode.		
p1042[0...n]	CI: Motorized potentiometer automatic setpoint / Mop auto setpoint		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source for the setpoint of the motorized potentiometer in the automatic mode. Refer to: p1041		

p1043[0...n]	BI: Motorized potentiometer accept setpoint / Mop accept set val		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underline{M i n}$	Max	Factory setting 0
Description:	Sets the signal source to accept the setting value for the motorized potentiometer. Refer to: p1044		
Dependency:			
Note:	The setting value (CI: p1044) becomes effective for a $0 / 1$ edge of the setting command (BI: p1043).		
p1044[0...n]	Cl : Motorized potentiometer setting value / Mop set val		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Sets the signal source for the setting value for the motorized potentiometer.		
Dependency:	Refer to: p1043		
Note:	The setting value (CI: p1044) becomes effective for a 0/1 edge of the setting command (BI: p1043).		
r1045	CO: Mot. potentiom. velocity setp. in front of ramp-fct. gen. / Mop n_set bef RFG		
SERVO (Extended setp, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3020
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Sets the effective setpoint in front of the internal motorized potentiometer ramp-function generator.		
r1045	CO: Mot. potentiometer speed setp. in front of ramp-fct. gen. / Mop n_set bef RFG		
SERVO (Extended setp), VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3020
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Sets the effective setpoint in front of the internal motorized potentiometer ramp-function generator.		
p1047[0...n]	Motorized potentiometer ramp-up time / Mop ramp-up time		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.000 \text { [s] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.000 \text { [s] } \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 10.000 \text { [s] } \end{aligned}$
Description:	Sets the ramp-up time for the internal ramp-function generator for the motorized potentiometer. The setpoint is changed from zero up to the speed/velocity limit (p 1082) within this time (if no initial rounding-off has been activated).		

Dependency:	Refer to: p1030, p1048, p1082		
Note:	When the initial rounding-off is activated (p1030.2) the ramp-up time is correspondingly extended.		
p1048[0...n]	Motorized potentiometer ramp-down time / Mop ramp-down time		
SERVO (Extended	Can be changed: U, T	Calculated: -	Access level: 2
setp), VECTOR	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~s}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.000 \text { [s] } \end{aligned}$	Factory setting 10.000 [s]
Description:	The setpoint is changed from the speed/velocity limit (p1082) to zero within this time (if no initial rounding-off has been activated).		
Dependency:	Refer to: p1030, p1047, p1082		
Note:	The deceleration time is extended corresponding to the activated initial rounding-off (p1030.2).		
r1050	CO: Motor. potentiometer setpoint after the ramp-function generator / Mop setp after RFG		
SERVO (Extended setp, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1550, 3020
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	This setpoint is the output value of the motorized potentiometer and must be appropriately interconnected onwards (e.g. with the main setpoint).		
Recommend.:	Interconnect the signal with main setpoint (p1070).		
Dependency:	Refer to: p1070		
Note:	For "With ramp-function generator", after an OFF1, OFF2, OFF3 or for a 0 signal via BI: p0852 (inhibit operation, cancel pulses) the ramp-function generator output (r 1050) is set to the starting value (configuration via p 1030.0).		
r1050	CO: Motor. potentiometer setpoint after the ramp-function generator / Mop setp after RFG		
SERVO (Extended setp), VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1550, 3020
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Sets the effective setpoint after the internal motorized potentiometer ramp-function generator. This setpoint is the output value of the motorized potentiometer and must be appropriately interconnected onwards (e.g. with the main setpoint).		
Recommend.:	Interconnect the signal with main setpoint (p1070).		
Dependency:	Refer to: p1070		
Note:	For "With ramp-function generator", after an OFF1, OFF2, OFF3 or for a 0 signal via BI : p0852 (inhibit operation, cancel pulses) the ramp-function generator output (r1050) is set to the starting value (configuration via p1030.0).		

p1055[0...n]	BI: Jog bit 0 / Jog bit 0		
SERVO (Extended	Can be changed: T	Calculated: -	Access level: 3
setp), VECTOR	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2501, 3030
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for jog 1.		
Recommend.:	When the signal source is set, this does not trigger a response - but only a signal change of the source.		
Dependency:	Refer to: p0840, p1058		
Notice:	The drive is enabled for jogging using BI : p 1055 or BI : p 1056 .		
	The command "ON/OFF1" can be issued using BI: 00840 or using BI: p1055/p1056.		
	Only the signal source that was used to power up can also be used to power down again.		

p1056[0...n]	BI: Jog bit 1 / Jog bit 1		
SERVO (Extended	Can be changed: T	Calculated: -	Access level: 3
setp), VECTOR	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2501, 3030
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for jog 2.		
Recommend.:	When the signal source is set, this does not trigger a response - but only a signal change of the source.		
Dependency:	Refer to: p0840, p1059		
Notice:	The drive is enabled for jogging using BI : p 1055 or $\mathrm{BI}: \mathrm{p} 1056$.		
	The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.		
	Only the signal source that was used to power up can also be used to power down again.		

p1058[0...n]	Jog 1 velocity setpoint / Jog 1 n_set		
SERVO (Extended	Can be changed: T	Calculated: -	Access level: 2
setp, Lin)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1550, 3030
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -1000.000 [m/min]	Max $1000.000[\mathrm{~m} / \mathrm{min}]$	Factory setting 0.000 [$\mathrm{m} / \mathrm{min}$]
Description: Dependency:	Sets the speed/velocity for jog 1. Jogging is level-triggered and allows the motor to be incrementally moved. Refer to: p1055, p1056		
p1058[0...n]	Jog 1 speed setpoint / Jog 1 n_set		
SERVO (Extended	Can be changed: T	Calculated: -	Access level: 2
setp), VECTOR	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1550, 3030
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description: Dependency:	Sets the speed/velocity for jog 1. Jogging is level-triggered and allows the motor to be incrementally moved. Refer to: p1055, p1056		

p1059[0...n]	Jog 2 velocity setpoint / Jog 2 n_set		
SERVO (Extended setp, Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1550, 3030
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $-1000.000[\mathrm{~m} / \mathrm{min}]$	Max 1000.000 [$\mathrm{m} / \mathrm{min}$]	Factory setting 0.000 [$\mathrm{m} / \mathrm{min}$]
Description: Dependency:	Sets the speed/velocity for jog 2. Jogging is level-triggered and allows the motor to be incrementally moved. Refer to: p1055, p1056		
p1059[0...n]	Jog 2 speed setpoint / Jog 2 n_set		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1550, 3030
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description: Dependency:	Sets the speed/velocity for jog 2. Jogging is level-triggered and allows the motor to be incrementally moved. Refer to: p1055, p1056		
p1063[0...n]	Velocity limit setpoint channel / v_limit setp		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3040
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [$\mathrm{m} / \mathrm{min}$]	Max 1000.000 [$\mathrm{m} / \mathrm{min}$]	Factory setting 1000.000 [m/min]
Description:	Sets the speed limit/velocity limit effective in the setpoint channel.		
Dependency:	Refer to: p1082, p1083, p1085, p1086, p1088		
p1063[0...n]	Speed limit setpoint	mit setp	
SERVO (Extended setp)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3040
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 210000.000 [rev/min]
Description:	Sets the speed limit/velocity limit effective in the setpoint channel. Refer to: p1082, p1083, p1085, p1086, p1088		
Dependency:			
p1063[0...n]	Speed limit setpoint channel / n_limit setp		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3040
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 40000.000 [rev/min]
Description:	Sets the speed limit/velocity limit effective in the setpoint channel. Refer to: p1082, p1083, p1085, p1086, p1088		
Dependency:			

p1070[0...n]	Cl : Main setpoint / Main setpoint		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1550, 3030
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underline{M i n}$	Max	Factory setting 1024[0]
Description:	Sets the signal source for the main setpoint.		
	Examples:		
	r1024: Fixed speed setpoint effective		
	r1050: Motor. potentiometer setpoint after the ramp-function generator		
Dependency: Refer to: p1071, r1073, r1078			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1071[0...n]	CI: Main setpoint scaling / Main setp scal		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 3030
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Sets the signal source for scaling the main setpoint.		
r1073	CO: Main setpoint effective / Main setpoint eff		
SERVO (Extended setp, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3030
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [$\mathrm{m} / \mathrm{min}$]	Max - [m/min]	Factory setting - [$\mathrm{m} / \mathrm{min}$]
Description:	Displays the effective main setpoint. The value shown is the main setpoint after scaling.		
r1073	CO: Main setpoint effective / Main setpoint eff		
SERVO (Extended setp), VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3030
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the effective main setpoint. The value shown is the main setpoint after scaling.		
p1075[0...n]	CI: Supplementary setpoint / Suppl setpoint		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1550, 3030
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Sets the signal source for the supplementary setpoint. Refer to: p1076, r1077, r1078		
Dependency:			

p1076[0...n]	CI: Supplementary setpoint scaling / Suppl setp scal		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 3030
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for scaling the supplementary setpoint.		
$\overline{\mathbf{r 1 0 7 7}}$	CO: Supplementary setpoint effective / Suppl setpoint eff		
SERVO (Extended setp, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3030
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the effective supplementary setpoint. The value shown is the additional setpoint after scaling.		
r1077	CO: Supplementary setpoint effective / Suppl setpoint eff		
SERVO (Extended setp), VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3030
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the effective supplementary setpoint. The value shown is the additional setpoint after scaling.		
r1078	CO: Total setpoint effective / Total setpoint eff		
SERVO (Extended setp, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3030
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the total effective setpoint. The value setpoint.	e indicates the sum of the effective	main setpoint and supplementary
r1078	CO: Total setpoint effective / Total setpoint eff		
SERVO (Extended setp), VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3030
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the total effective setpoint. The value indicates the sum of the effective main setpoint and supplementary setpoint.		

p1080[0...n]	Minimum velocity / Minimum speed		
SERVO (Extended	Can be changed: C2(1), T	Calculated: -	
setp, Lin)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: $4 _1$	Unit selection: p0505
	Not for motor type: -	Max	Expert list: 1
	Min	1000.000 [m/min]	Factory setting
	$0.000[\mathrm{~m} / \mathrm{min}]$	0.000 [m/min]	
Description:	Sets the lowest possible speed/velocity. This value is not undershot in operation.		
Note:	The parameter value applies for both motor directions of rotation.		
	In exceptional cases, the motor can operate below this value (e.g. when reversing).		

p1080[0...n]	Minimum speed / Minimum speed		
SERVO (Extended	Can be changed: C2(1), T	Calculated: -	Access level: 1
setp), VECTOR	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: $3 _1$	Unit selection: p0505
	Not for motor type: -		Max
	Min	19500.000 [rev/min]	Factory setting
	0.000 [rev/min]	0.000 [rev/min]	
Description:	Sets the lowest possible speed/velocity. This value is not undershot in operation.		
Note:	The parameter value applies for both motor directions of rotation.		
	In exceptional cases, the motor can operate below this value (e.g. when reversing).		

p1082[0...n]	Maximum speed / Maximum speed		
SERVO	Can be changed: C2(1), T	Calculated: CALC_MOD_ALL	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3020, 3050, 3060, 3070, 3095, 5300
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 1500.000 [rev/min]
Description:	Sets the highest possible speed.		
Dependency:	Refer to: p0115, p0322		
Note:	The parameter applies for both motor directions. The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer).		
	The parameter is part of the quick commissioning (p0010 = 1); this means that it is appropriately pre-assigned when changing p0311 and p0322.		
	The following limits are always effective for p1082:		
	p1082 < p 0322 , if p0322 > 0		
	p1082 <= $60 /(10.5$ * p0115[0] * r0313)		
	p1082 <= 60 * Maximum power unit pulse frequency / (5.3 * r0313)		
	For the automatic calculation $(\mathrm{p} 0340=1)$ the value of the parameter is pre-assigned the maximum motor speed (p0322). If p0322 = 0, the rated motor speed (p0311) is used as default (pre-assignment) value. For induction motors that are not catalog motors ($\mathrm{p} 0301=0$), the synchronous no-load speed is used as default (pre-assignment) value (p0310 * $60 / \mathrm{r} 0313$).		
	For synchronous motors, the following additionally applies:		
	In the automatic calculation ($\mathrm{p} 0340=1$), p1082 is limited to speeds for which the steady-state maximum current of the power unit is not sufficient as field current: p1082 < p0348 / (1-r0207 / r0331). On the other hand, an additional limit is effective, which prevents the EMF from exceeding the maximum DC link voltage.		
	The effective assignment of the motor data set parameter (e.g. p0311) to the drive data set parameter p1082 when pre-assigning should be taken from p0186.		
	p1082 is also available in the quick commissioning (p0010 = 1); this means that when exiting via p3900 > 0, the value is not changed.		

p1082[0...n]	Maximum speed / Maximum speed		
VECTOR	Can be changed: C2(1), T	Calculated: CALC_MOD_ALL	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3020, 3050, 3060, 3070, 3095, 6732
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [rev/min]	$\begin{aligned} & \operatorname{Max} \\ & 210000.000[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 1500.000 [rev/min]
Description:	Sets the highest possible speed.		
Dependency:	Refer to: p0115, p0230, r0313, p0322, r0336		
Note:	The parameter applies for both motor directions. The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer).		
	The parameter is part of the quick commissioning ($\mathrm{p} 0010=1$); this means that it is appropriately pre-assigned when changing p0311 and p0322.		
	The following limits are always effective for p1082:		
	p1082 < p 0322, if p0322 > 0		
	p01082 <= 60 * Minimum (15 * r0336, 650 Hz) / r0313		
	p01082 < = 60 * Maximum power unit pulse frequency / (k * r0313)		
	$k=12$ for vector control (r0108.2 = 1), $k=6.5$ for V/f control (r0108.2 $=0$)		
	If a sine-wave filter $(\mathrm{p} 0230=3)$ is parameterized as output filter, then the maximum speed is limited corresponding to the maximum permissible filter output frequency (refer to the filter data sheet). For reactors and dv/dt filters, it is limited to 150 Hz / r0313 (for chassis power units) or $120 \mathrm{~Hz} / \mathrm{r0313}$ (for booksize power units).		

For the automatic calculation ($\mathrm{p} 0340=1$) the value of the parameter is pre-assigned the maximum motor speed
(p 0322). If p0322 $=0$, the rated motor speed (p 0311) is used as default (pre-assignment) value. For induction
motors that are not catalog motors ($\mathrm{p} 0301=0$), the synchronous no-load speed is used as default (pre-assignment)
value (p 0310 * $60 / \mathrm{r} 0313$).
For synchronous motors, the following additionally applies:
In the automatic calculation (p 0340), p1082 is limited to speeds where the EMF does not exceed the DC link volt-
age.
The effective assignment of the motor data set parameter (e.g. p0311) to the drive data set parameter p1082 when
pre-assigning should be taken from p0186.
$p 1082$ is also available in the quick commissioning ($p 0010=1$); this means that when exiting via p3900 >0, the
value is not changed.
For vector control ($\mathrm{p} 1300=20 \ldots 23$) the maximum speed is limited to $60.0 /\left(8.333 * \mathrm{p} 0115[0]^{*}\right.$ r0313). This can be
identified by a reduction in r1084. p1082 is not changed in this process due to the fact that the operating mode
p1300 can be changed over.

p1083[0...n]	CO: Velocity limit positive direction / v_limit pos		
SERVO (Lin)	Can be changed: U, T	Calculated: -	
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$0.000[\mathrm{~m} / \mathrm{min}]$	$1000.000[\mathrm{~m} / \mathrm{min}]$	$1000.000[\mathrm{~m} / \mathrm{min}]$
Description:	Sets the maximum velocity for the positive direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		

p1083[0...n]	CO: Speed limit in positive direction of rotation / n_limit pos		
SERVO	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 210000.000 [rev/min]
Description:	Sets the maximum speed for the positive direction.		
Notice:	A BICO interconnection to a	belongs to a drive object always	on the effective data set.

p1083[0...n]	CO: Speed limit in positive direction of rotation / n_limit pos		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$0.000[r e v / m i n]$	$40000.000[r e v / m i n]$	
Description:	Sets the maximum speed for the positive direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		

r1084	CO: Velocity limit positive effective / v_limit pos eff		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3050, 3095, 5030, 5042, 5210, 6640, 7020, 8010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the effective positive velocity limit.		
Dependency:	Refer to: p1082, p1083, p1085		
r1084	CO: Speed limit positive effective / n_limit pos eff		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3050, 3095, 5030, 5042, 5210, 6640, 7020, 8010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the effective positive speed limit.		
Dependency:	Refer to: p1082, p1083, p1085		
p1085[0...n]	CI: Velocity limit positive direction / v_limit pos		
SERVO (Extended setp, Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 3050
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1083[0]
Description:	Sets the signal source for the velocity limit of the positive direction.		
p1085[0...n]	CI: Speed limit in positive direction of rotation / n_limit pos		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 3050
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1083[0]
Description:	Sets the signal source for the speed limit of the positive direction.		
p1086[0...n]	CO: Velocity limit negative direction / v_limit neg		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $-1000.000[\mathrm{~m} / \mathrm{min}]$	Max 0.000 [$\mathrm{m} / \mathrm{min}$]	Factory setting -1000.000 [m/min]
Description:	Sets the velocity limit for the negative direction.		

Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
	CO: Speed limit negative directio	of rotation / n_limit neg	
SERVO	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 0.000 [rev/min]	Factory setting -210000.000 [rev/min]
Description:	Sets the speed limit for the negative direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1086[0...n]	CO: Speed limit negative direction of rotation / n_limit neg		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min -210000.000 [rev/min]	Max 0.000 [rev/min]	Factory setting -40000.000 [rev/min]
Description:	Sets the speed limit for the negative direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
r1087	CO: Velocity limit negative effective / v_limit neg eff		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3050, 3095, 5030, 5042, 5210, 6640, 7020, 8010
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the effective negative velocity limit. Refer to: p1082, p1086, p1088		
Dependency:			
r1087	CO: Speed limit negative effective / n_limit neg eff		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3050, 3095, 5030, 5042, 5210, 6640, 7020, 8010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the effective negative speed limit. Refer to: p1082, p1086, p1088		
Dependency:			

p1088[0...n]	CI: Velocity limit negative direction / n_limit neg		
SERVO (Extended setp, Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 3050
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1086[0]
Description:	Sets the signal source for the speed/velocity limit of the negative direction.		
p1088[0...n]	CI: Speed limit negative direction of rotation / n_limit neg		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 3050
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1086[0]
Description:	Sets the signal source for the speed/velocity limit of the negative direction.		
p1091[0...n]	Skip velocity 1 / v_skip 1		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [$\mathrm{m} / \mathrm{min}$]	$\begin{aligned} & \operatorname{Max} \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.000 [m/min]
Description:	Sets skip velocity 1.		
Dependency:	Refer to: p1092, p1093, p1094, p1101		
Note:	The skip (suppression) velocities can be used to prevent the effects of mechanical resonance.		
p1091[0...n]	Skip speed 1 / n_skip 1		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description:	Sets skip speed 1.		
Dependency:	Refer to: p1092, p1093, p1094, p1101		
Note:	The skip (suppression) speeds can be used to prevent the effects of mechanical resonance.		
p1092[0...n]	Skip velocity 2 / v_skip 2		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [$\mathrm{m} / \mathrm{min}$]	Max 1000.000 [$\mathrm{m} / \mathrm{min}$]	Factory setting 0.000 [m/min]
Description:	Sets skip velocity 2.		
Dependency:	Refer to: p1091, p1093, p1094, p1101		

p1092[0...n]	Skip speed 2 / n_skip 2		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description:	Sets skip speed 2.		
Dependency:	Refer to: p1091, p1093, p1094, p1101		
p1093[0...n] SERVO (Extended setp, Lin)	Skip velocity 3 / v_skip 3		
	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets skip velocity 3.		
Dependency:	Refer to: p1091, p1092, p1094, p1101		
p1093[0...n] SERVO (Extended setp), VECTOR	Skip speed 3 / n_skip 3		
	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description: Dependency:	Sets skip speed 3.		
	Refer to: p1091, p1092, p1094, p1101		
$\overline{\text { p1094[0...n] }}$ SERVO (Extended setp, Lin)	Skip velocity 4 / v_skip 4		
	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [$\mathrm{m} / \mathrm{min}$]	Max 1000.000 [m/min]	Factory setting 0.000 [$\mathrm{m} / \mathrm{min}$]
Description: Dependency:	Sets skip velocity 4.		
	Refer to: p1091, p1092, p1093, p1101		
p1094[0...n] SERVO (Extended setp), VECTOR	Skip speed 4 / n_skip 4		
	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description: Dependency:	Sets skip speed 4.		
	Refer to: p1091, p1092, p1093, p1101		

p1101[0...n]	Skip velocity bandwidth / v_skip bandwidth		
SERVO (Extended setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [$\mathrm{m} / \mathrm{min}$]	Max 1000.000 [$\mathrm{m} / \mathrm{min}$]	Factory setting 0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the bandwidth for the skip velocities 1 to 4.		
Dependency:	Refer to: p1091, p1092, p1093, p1094		
Note:	The setpoint velocities are skipped (suppressed) in the range of the skip velocity +/-p1101.		
	Steady-state operation is not possible in the skipped (suppressed) velocity range. The skip (suppression) range is skipped.		
	Example:		
	p1091 = 600 and p1101 = 20		
	--> setpoint velocities between 580 and 620 [rpm] are skipped.		
	For the skip bandwidths, the following hysteresis behavior applies:		
	For a setpoint velocity coming from below, the following applies:		
	$\mathrm{r} 1170<580$ [$\mathrm{m} / \mathrm{min}]$ and $580[\mathrm{~m} / \mathrm{min}]<=r 1114<=620[\mathrm{~m} / \mathrm{min}] ~-->~ r 1119=580[\mathrm{~m} / \mathrm{min}]$		
	For a setpoint velocity coming from above, the following applies:		
	$\mathrm{r} 1170>620[\mathrm{~m} / \mathrm{min}]$ and $580[\mathrm{~m} / \mathrm{min}]<=r 1114<=620[\mathrm{~m} / \mathrm{min}]-->\mathrm{r} 1119=620[\mathrm{~m} / \mathrm{min}]$		
$\mathrm{p} 1101[0 \ldots \mathrm{n}]$ SERVO (Extended setp), VECTOR	Skip speed bandwidth / n_skip bandwidth		
	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 0.000 [rev/min]
Description:	Sets the bandwidth for the skip s	ities 1 to 4.	
Dependency:	Refer to: p1091, p1092, p1093, p		
Note:	The setpoint (reference) speeds are skipped (suppressed) in the range of the skip speed +/-p1101.		
	Steady-state operation is not possible in the skipped (suppressed) speed range. The skip (suppression) range is skipped.		
	Example:		
	p1091 = 600 and p1101 = 20		
	--> setpoint speeds between 580 and 620 [rpm] are skipped.		
	For the skip bandwidths, the following hysteresis behavior applies:		
	For a setpoint speed coming from below, the following applies:		
	$\mathrm{r} 1170<580$ [rpm] and 580 [rpm] <= r1114 <= 620 [rpm] --> r1119 $=580$ [rpm]		
	For a setpoint speed coming from above, the following applies:		
	$\mathrm{r} 1170>620[\mathrm{rpm}]$ and $580[\mathrm{rpm}]<=\mathrm{r} 1114<=620[\mathrm{rpm}]-->\mathrm{r} 1119=620[\mathrm{rpm}]$		
p1110[0...n]	BI: Inhibit negative direc	ib neg dir	
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2505, 3040
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to disable the negative direction.		
Dependency:	Refer to: p1111		

$\overline{\mathrm{p} 1111[0 \ldots \mathrm{n}]}$ SERVO (Extended setp), VECTOR	BI: Inhibit positive direction / Inhib pos dir		
	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2505, 3040
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to disable the positive direction. Refer to: p1110		
Dependency:			
$\mathbf{r 1 1 1 2}$	CO: Velocity setpoint after minimum limiting / v_set \mathbf{n}. min_lim		
SERVO (Extended setp, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3050
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the speed / velocity setpoint after the minimum limiting. Refer to: p1091, p1092, p1093, p1094, p1101		
Dependency:			
$\mathbf{r 1 1 1 2}$	CO: Speed setpoint after minimum limiting / n_set n. min_lim		
SERVO (Extended setp), VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3050
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the speed / velocity setpoint after the minimum limiting. Refer to: p1091, p1092, p1093, p1094, p1101		
Dependency:			
p1113[0...n]	BI: Setpoint inversion / Setp inv		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2441, 2442, 2505, 3040
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underline{M i n}$	Max	Factory setting 0
Description:	Sets the signal source to invert the setpoint. Refer to: r1198		
Dependency:			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

r1114	CO: Setpoint after the direction limiting / Setp after limit		
SERVO (Extended setp, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1550, 3040, 3050
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the speed/velocity setpoint after the changeover and limiting the direction.		
r1114	CO: Setpoint after the direction limiting / Setp after limit		
SERVO (Extended setp), VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1550, 3040, 3050
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the speed/velocity setpoint after the changeover and limiting the direction.		
p1115	Ramp-function generator selection / RFG selection		
SERVO (Extended setp), VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 1550, 3080
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets the ramp-function generator type.		
Value:	0: Basic ramp-function generator 1: Extended ramp-function generator		
Note:	Another ramp-function generator type can only be selected when the motor is at a standstill.		
$\mathbf{r 1 1 1 9}$	CO: Ramp-function 9	point at the inp	at inp
SERVO (Extended setp, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1550, 1750, 3050, 3060, 3070, 5030
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the setpoint at the input of the ramp-function generator.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The setpoint is influenced by other functions, e.g. skip (suppressed) speeds, minimum and maximum limits.		

$\mathbf{r 1 1 1 9}$	CO: Ramp-function generator setpoint at the input / RFG setp at inp		
SERVO (Extended setp), VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1550, 1690, 1750, 3050, 3060, 3070, 5030, 6031
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the setpoint at the input of the ramp-function generator.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The setpoint is influenced by other functions, e.g. skip (suppressed) speeds, minimum and maximum limits.		
p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time		
SERVO (Extended	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
setp, Lin)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{0.000[s]}$	Max 999999.000 [s]	Factory setting $10.000 \text { [s] }$
Description: Dependency:	The drive is accelerated from standstill (setpoint $=0$) up to the maximum velocity $(\mathrm{p} 1082)$ in this time. Refer to: p1082		
p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time		
SERVO (Extended	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
setp)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\mathrm{Min}_{0.000[\mathrm{~s}]}$	Max 999999.000 [s]	$\begin{aligned} & \text { Factory setting } \\ & 10.000[\mathrm{~s}] \end{aligned}$
Description:	The ramp-function generator ramps-up the speed setpoint from standstill (setpoint $=0$) up to the maximum speed (p1082) in this time.		
Dependency:	Refer to: p1082		
p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time		
VECTOR	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.000 [s]	Max 999999.000 [s]	Factory setting 10.000 [s]
Description:	The ramp-function generator ramps-up the speed setpoint from standstill (setpoint $=0$) up to the maximum speed (p1082) in this time.		
Dependency:	Refer to: p1082		
Note:	The parameter is adapted during the rotating measurement (p1960>0). This is the reason that during the rotating measurement, the motor can accelerate faster than was originally parameterized.		

p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time		
SERVO (Lin)	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.000 \text { [s] }$	$\begin{aligned} & \text { Max } \\ & 999999.000[\mathrm{~s}] \end{aligned}$	Factory setting 0.000 [s]
Description:	The drive is decelerated from the maximum velocity (p 1082) down to standstill (setpoint $=0$) in this time.		
Dependency:	Refer to: p1082		
Note:	The following applies for SERVO:		
	The ramp-function generator is only available when the function module "extended setpoint channel" is active (r0108.8 = 1).		
p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(1), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.000 \text { [s] }$	$\begin{aligned} & \operatorname{Max} \\ & 999999.000[\mathrm{~s}] \end{aligned}$	Factory setting 10.000 [s]
Description:	The ramp-function generator ramps-down the speed setpoint from the maximum speed (p 1082) down to standstill (setpoint $=0$) in this time. Further, the ramp-down time is always effective for OFF1.		
Dependency:	Refer to: p1082		
Note:	The following applies for SERVO:		
	The ramp-function generator is only available when the function module "extended setpoint channel" is active (r0108.8 = 1).		
p1122[0...n]	BI: Bypass ramp-function generator / Bypass RFG		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2505
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for bypassing the ramp generator (ramp-up and ramp-down times $=0$).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For VECTOR in encoderless operation, it is not permissible that the ramp-function generator is bypassed.		
p1130[0...n]	Ramp-function generator initial rounding-off time / RFG t_start_round		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		
	Min $0.000 \text { [s] }$	$\begin{aligned} & \operatorname{Max} \\ & 30.000[\mathrm{~s}] \end{aligned}$	Factory setting 0.000 [s]
Description: Note:	Sets the initial rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down. Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.		

p1135[0...n]	OFF3 ramp-down time / RFG OFF3 t_ramp-dn		
VECTOR	Can be changed: $\mathrm{C} 2(1), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~s}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 600.000 \text { [s] } \end{aligned}$	Factory setting 3.000 [s]
Description: Note:	Sets the ramp-down time from the maximum speed down to zero speed for the OFF3 command.		
p1136[0..n]	OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3070, 3080
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~s}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 30.000 \text { [s] } \end{aligned}$	Factory setting 0.000 [s]
Description:	Sets the initial rounding-off time for OFF3 for the extended ramp generator.		
p1137[0...n]	OFF3 final rounding-off time / RFG OFF3 t_end_del		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[s] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 30.000 \text { [s] } \end{aligned}$	Factory setting 0.000 [s]
Description:	Sets the final rounding-off time for OFF3 for the extended ramp generator.		
p1140[0...n]	BI: Ramp-function generator enable / RFG enable		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2442, 2443, 2501
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for control word 1 bit 4 (operating condition/disable ramp-function generator).		
Dependency:	Refer to: p1141, p1142		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Bit $4=0$: Inhibits the ramp-function generator (the ramp-function generator output is set to zero)		
	Bit $4=1$: Operating condition (the ramp-function generator can be enabled)		
p1140	BI: Ramp-function generator enable / RFG enable		
TM41	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9677
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for control word 1 bit 4 (operating condition/disable ramp-function generator).		

Dependency:	Refer to: p1141, p1142
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	Bit $4=0$: Inhibits the ramp-function generator (the ramp-function generator output is set to zero)
	Bit $4=1:$ Operating condition (the ramp-function generator can be enabled)
	This parameter has no function in the "SINAMICS" operating mode (p4400 =1).

p1141[0...n]	BI: Start ramp-function generator / Start RFG		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2442, 2443, 2501
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1

Description: Sets the signal source for control word 1 bit 5 (enables ramp-function generator/stops ramp-function generator)
Dependency: Refer to: p1140, p1142
Notice: The ramp-function generator is, independent of the state of the signal source, active in the following cases:

- OFF1/OFF3.
- ramp-function generator output within the suppression bandwidth.
- ramp-function generator output below the minimum speed.

Note: \quad Bit $5=0$: Stop the ramp-function generator (the ramp-function generator output is frozen)
Bit $5=1$: Enable ramp-function generator

p1141	BI: Start ramp-function generator / Start RFG		
TM41	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9677
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting

Description: Sets the signal source for control word 1 bit 5 (enables ramp-function generator/stops ramp-function generator)
Dependency: Refer to: p1140, p1142
Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: \quad Bit $5=0$: Stop the ramp-function generator (the ramp-function generator output is frozen)
Bit 5 = 1: Enable ramp-function generator
This parameter has no function in the "SINAMICS" operating mode (p4400 = 1).

p1142[0...n]	BI: Velocity setpoint enable / v_set enable		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2441, 2442, $2443,2501,2711$
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for control word 1 bit 6 (enable setpoint/disable setpoint).		
Dependency:	Refer to: p1140, p1141		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Bit $6=0$: Inhibits the setpoint (the ramp-function generator input is set to zero)		
	Bit $6=1$: Enable setpoint		

p1142[0...n]	BI: Speed setpoint enable / n_set enable		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2441, 2442, 2443, 2501, 2711
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for control word 1 bit 6 (enable setpoint/disable setpoint).		
Dependency:	Refer to: p1140, p1141		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Bit $6=0$: Inhibits the setpoint (the ramp-function generator input is set to zero)		
	Bit $6=1$: Enable setpoint		

p1142	BI: Speed setpoint enable / n_set enable		
TM41	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9674, 9677
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for control word 1 bit 6 (enable setpoint/disable setpoint).		
Dependency:	Refer to: p1140, p1141		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Bit $6=0$: Inhibits the setpoint (the ramp-function generator input is set to zero)		
	Bit $6=1$: Enable setpoint		
	This parameter has no function in the "SINAMICS" operating mode (p4400 = 1).		

p1143[0...n]	BI: Ramp-function generator, accept setting value / Accept RFG set val		
SERVO (Extended	Can be changed: T	Calculated: -	Access level: 3
setp), VECTOR	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for accepting the setting value of the ramp-function generator.		
Dependency:	The signal source for the ramp-function generator setting value is set using parameters. Refer to: p1144		
Note:	0/1 signal:		
	The ramp-function generator output is immediately (without delay) set to the setting value of the ramp-function generator.		
	The setting value of the ramp-function generator is effective.		
	The input value of the ramp-function generator is effective. The ramp-function generator output is adapted to the input value using the ramp-up time or the ramp-down time.		
	0 signal:		
	The input value of the ramp-func	or is effective.	

p1144[0...n]	Cl : Ramp-function generator setting value / RFG setting value		
SERVO (Extended setp), VECTOR	Can be changed: U, T Data type: Unsigned32 / FloatingPoint32 P-Group: Setpoints Not for motor type: - Min	Calculated: - Dynamic index: CDS, p0170 Units group: - Max	Access level: 3 Func. diagram: 3060, 3070 Unit selection: - Expert list: 1 Factory setting 0
Description: Dependency:	Sets the signal source for the ramp-func The signal source for accepting the settin Refer to: p1143	generator setting value. value is set using parameters.	
p1145[0...n] SERVO (Extended setp), VECTOR	Ramp-function generator tracki Can be changed: U, T Data type: FloatingPoint32 P-Group: Setpoints Not for motor type: - Min 0.0	intensity. / RFG track Calculated: - Dynamic index: DDS, p0180 Units group: - $\begin{aligned} & \text { Max } \\ & 50.0 \end{aligned}$	s Access level: 3 Func. diagram: 3080 Unit selection: - Expert list: 1 Factory setting 1.3
Description:	Sets the ramp-function generator tracking. The output value of the ramp-function generator is tracked (corrected) corresponding to the maximum possible drive acceleration. The reference value is the deviation at the speed/velocity controller input that is necessary to ensure that the motor accelerates at the torque/force limit.		
Recommend.: Note:	p1145 = 0.0: This value de-activates the ramp-function p1145 = 0.0 ... 1.0: Generally, these values are not practical. selected value, the greater the margin betw p1145>1.0: The greater the value, the higher the perm In the V/f mode, the ramp-function genera For SERVO with V/f operation, the following The complete ramp-function generator is	nerator tracking. ey cause the motor to accelerat en the controller and torque limit ible deviation between the spe tracking is not active. applies: active, i.e. ramp-up and ramp-d	w its torque limit. The lower the n accelerating. point and speed actual value. time $=0$.
$\overline{\text { p1148[0...n] }}$ SERVO (Extended setp, Lin)	Ramp-function gen., tolerance Can be changed: U, T Data type: FloatingPoint32 P-Group: Setpoints Not for motor type: - Min 0.00 [$\mathrm{m} / \mathrm{min}$]	ramp-up and ramp-dow Calculated: - Dynamic index: DDS, p0180 Units group: 4_1 Max 10.00 [$\mathrm{m} / \mathrm{min}$]	tive / RFG tol HL/RL act Access level: 3 Func. diagram: 3060, 3070 Unit selection: p0505 Expert list: 1 Factory setting 0.20 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the tolerance value for the status of the ramp-function generator (ramp-up active, ramp-down active). If the input of the ramp-function generator does not change in comparison to the output by more than the entered tolerance time, then the status bits "ramp-up active" and "ramp-down active" are not influenced.		
Dependency:	Refer to: r1199		

p1148[0...n]	Ramp-function gen., tolerance for ramp-up and ramp-down active / RFG tol HL/RL act		
SERVO (Extended setp), VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.00 [rev/min]	Max 1000.00 [rev/min]	Factory setting 19.80 [rev/min]
Description:	Sets the tolerance value for the status of the ramp-function generator (ramp-up active, ramp-down active). If the input of the ramp-function generator does not change in comparison to the output by more than the entered tolerance time, then the status bits "ramp-up active" and "ramp-down active" are not influenced.		
Dependency:	Refer to: r1199		
$r 1149$	CO: Ramp-function generator, acceleration / RFG acceleration		
SERVO (Extended setp, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: 22_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $-\left[\mathrm{m} / \mathrm{s}^{2}\right]$	Max - $\left[\mathrm{m} / \mathrm{s}^{2}\right]$	Factory setting - [m/s ${ }^{2}$]
Description:	Displays the acceleration of the ramp-function generator.		
r1149	CO: Ramp-function generator, acceleration / RFG acceleration		
SERVO (Extended setp), VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: 39_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/s²]	Max - [rev/s²]	Factory setting - [rev/s ${ }^{2}$]
Description:	Displays the acceleration of the ramp-function generator.		
r1150	CO: Ramp-function generator velocity setpoint at the output / RFG n_set at outp		
SERVO (Extended setp, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1550, 3060, $3070,3080$
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the setpoint at the output of the ramp-function generator.		
r1150	CO: Ramp-function generator speed setpoint at the output / RFG n_set at outp		
SERVO (Extended setp), VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1550, 3060, 3070, 3080
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the setpoint at the output of the ramp-function generator.		

p1151[0...n]	Ramp-function generator configuration / RFG config			
SERVO (Extended setp), VECTOR	Can be changed: U, T Ca	Calculated: -	Acc	
	Data type: Unsigned16 Dy	Dynamic index: DDS, p0180	Fu	
	P-Group: Setpoints Un	Units group: -		
	Not for motor type: -		Exp	
	Min	Max	Fac 0000	
Description:	Sets the configuration for the extended ramp-function generator.			
Bit field:	Bit Signal name 00 Disable rounding-off at the zero cross-ove	1 signal ver Yes	0 signal No	$\begin{aligned} & \text { FP } \\ & 3070 \end{aligned}$
Caution:	Re bit $00=1$: If the ramp-up time is longer than the ramp-down time ($\mathrm{p} 1120>\mathrm{p} 1121$), then there is an acceleration step at the zero crossover. This can have a negative impact on the mechanical system.			
Note:	When the direction change is changed there is no rounding-off before and after the zero crossover.			
p1152	BI: Setpoint 2 enable / Setp 2 enab			
SERVO (Extended brk), VECTOR (Extended brk)	Can be changed: T Data type: Unsigned32 / Binary P-Group: Commands	Calculated: -	Acc	
		Dynamic index: -	Fun	4015
		Units group: -	Unit	
	Not for motor type: -		Exp	
	Min Max		Fact 899.	
Description: Sets the signal source for "setpoint 2 enable".				
p1155[0...n] Cl: Velocity controller, velocity setpoint 1 / v_ctrl n_set 1				
SERVO (Lin)	Can be changed: T Data type: Unsigned32 / FloatingPoint32	Calculated: -	Ac	
		Dynamic index: CDS, p0170		3080
	P-Group: Setpoints U	Units group: -		
	Not for motor type: -		Exp	
	Min	Max		
Description: Dependency:	Sets the signal source for velocity setpoint 1 of the velocity controller.			
	The effectiveness of this setpoint depends on, e.g. STW1.4 and STW1.6.			
	Refer to: r0002, p0840, p0844, p0848, p0852, p0854, r0898, p1140, p1142, p1160, r1170, p1189, p1412, p1414, p1417, p1418			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.			
p1155[0...n]	CI: Speed controller speed setpoint 1 / n_ctrl n_set 1			
SERVO, VECTOR	Can be changed: T Ca	Calculated: -	Acce	
	Data type: Unsigned32 / FloatingPoint32 Dy	Dynamic index: CDS, p0170		3080
	P-Group: Setpoints Un	Units group: -	Unit	
	Not for motor type: -			
	Min	Max		
Description:	Sets the signal source for speed setpoint 1 of the speed controller.			
Dependency:	Refer to: r0002, p0840, p0844, p0848, p0852, p0854, r0898, p1140, p1142, p1160, r1170, p1189, p1412, p1414, p1417, p1418			

Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1155	CI: TM41 incremental encoder emulation speed setpoint 1 / Enc_emulat n_set 1		
TM41	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: -	Func. diagram: 9674
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Sets the signal source for speed setpoint 1 of the incremental encoder emulation. The speed setpoint is processed corresponding to the sequencer of the TM41.		
Dependency:	The effectiveness of this setpoint depends on control word 1 (STW1).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	This parameter has no function in the SINAMICS operating mode (p4400 = 1) of the TM41.		
p1160[0...n] SERVO (Lin)	CI: Velocity controller, velocity setpoint 2 / v_ctrl n_set 2		
	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1550, 3080, 6031
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Dependency: Note:	Sets the signal source for velocity setpoint 2 of the velocity controller.		
	Refer to: p1155, r1170		
	For OFF1/OFF3, the ramp-function generator ramp is effective.		
	The ramp-function generator is set to the actual value and stops the drive corresponding to the ramp-downtime (p1121 or p1135). While stopping via the ramp-function generator, STW1.4 is effective (enable ramp-function generator).		
	For the function module "position control" (r0108.3 = 1), this connector input is interconnected as follows as standard:		
	Cl: p1160 = r2562		
p1160[0...n] SERVO, VECTOR	CI: Speed controller speed setpoint 2 / n_ctrl n_set 2		
	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1550, 3080, 6031
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for speed setpoint 2 of the speed controller.		
Dependency:	Refer to: p1155, r1170		
Note:	For OFF1/OFF3, the ramp-function generator ramp is effective.		
	The ramp-function generator is set (SERVO: to the actual value, VECTOR: To the setpoint (r1170)) and stops the drive corresponding to the ramp-downtime (p1121 or p1135). While stopping via the ramp-function generator, STW1.4 is effective (enable ramp-function generator).		
	When the function module "position control" (r0108.3 = 1) is activated, this connector input is interconnected as follows as standard:		

r1169	CO: Velocity controller, velocity setpoints 1 and $2 / \mathrm{v}$ _ctrl n_set 1/2		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3080
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the velocity setpoint after the addition of the velocity setpoint 1 (p 1155) and velocity setpoint 2 (p 1160) Refer to: p1155, p1160		
Dependency:			
Note:	The value is only correctly displayed at r0899.2 $=1$ (operation enabled).		
r1169	CO: Speed controller, speed setpoints 1 and $2 / n _c t r l ~ n _s e t ~ 1 / 2 ~$		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3080
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the speed setpoint after the addition of the speed setpoint 1 (p 1155) and speed setpoint 2 (p 1160).		
Dependency:	Refer to: p1155, p1160		
Note:	The value is only correctly displayed at r0899.2 $=1$ (operation enabled).		
$\mathbf{r 1 1 7 0}$	CO: Velocity controller, setpoint sum / v_ctrl setp sum		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1550, 3080, 5020 5020
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the velocity setpoint after selecting the ramp-function generator and adding the velocity setpoint 1 (p1155) and velocity setpoint 2 (p 1160).		
Dependency:	Refer to: r1150, p1155, p1160		
r1170	CO: Speed controller, setpoint sum / n_ctrl setp sum		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1550, 1690, 3080, 5020, 6030
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the speed setpoint after selecting the ramp-function generator and adding the speed setpoint 1 (p 1155) and speed setpoint 2 (p1160).		
Dependency:	Refer to: r1150, p1155, p1160		

Note:
Re bit 01:
The interpolator is only effective for clock-cycle synchronous PROFIBUS operation and when the master receives a sign-of-life (STW 2.12 ... STW 2.15)

p1189	Incremental encoder emulation configuration / Enc_emulat config		
TM41	Can be changed: U, T Calculated: -	Acce	
	Data type: Unsigned16 Dynamic index: -	Fun	
	P-Group: Closed-loop control Units group: -	Unit	
	Not for motor type: -	Exp	
	Min Max	$\begin{aligned} & \text { Facto } \\ & 0010 \end{aligned}$	
Description:	Sets the configuration for the incremental encoder emulation.		
Bit field:	Bit Signal name 1 signal 01 Interpol. op-loop ctrl/speed controller active Yes	0 signal No	$\begin{aligned} & \text { FP } \\ & 9674 \end{aligned}$
Note:	Re bit 01: The interpolator is only effective for clock-cycle synchronous PRO sign-of-life (STW 2.12 ... STW 2.15). This parameter has no function in the SINAMICS operating mode	ation and of the TM	eceiv

p1190	CI: DSC position deviation XERR / DSC XERR		
SERVO	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer32	Dynamic index: -	Func. diagram: 1550, 3090
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the position deviation XERR for DSC (position controller output of the higher-level control).		
Dependency:	Clock cycle synchronous operation must be activated for DSC.		
	The position controller gain factor (KPC), the position deviation (XERR) and the speed setpoint (N_SOLL_B) must be included in the setpoint telegram.		
	At least the encoder interface (Gx_XIST1) must be included in the actual value telegram. The position actual value used for the internal position controller can be selected using p1192. Refer to: p1191, p1192		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	DSC: Dynamic Servo Control		
p1191	CI: DSC position controller gain KPC / DSC KPC		
SERVO	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: -	Func. diagram: 1550, 3090
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the position controller gain KPC for DSC.		
Dependency:	Clock cycle synchronous operation must be activated for DSC.		
	Refer to: p1190		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	DSC: Dynamic Servo Control		
p1192[0...n]	DSC enc selection / DSC enc selection		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 3090
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 3 \end{aligned}$	Factory setting 1
Description:	Sets the number of the encoder used for DSC.		
Value:	1: Encoder 1 (motor encoder) 2: Encoder 2 3: Encoder 3		
Note:	DSC: Dynamic Servo Control		
	Value 1 corresponds to encoder 1 (motor Value 2 corresponds to encoder 2 ; the encod Value 3 corresponds to encoder 3 ; the encod	coder); the encoder data set is a der data set is assigned via p018 der data set is assigned via p018	ned via p0187.

01	Fixed setpoint bit 1	Yes	No	
02	Fixed setpoint bit 2	Yes	No	
03	Fixed setpoint bit 3	Yes	No	
05	Inhibit negative direction	Yes	No	-
06	Inhibit positive direction	Yes	No	-
11	Setpoint inversion	Yes	No	3040
13	Motorized potentiometer raise	Yes	No	3040
14	Motorized potentiometer lower	Yes	No	3040
15	Bypass ramp-function generator	Yes	No	3020
			3020	

r1199.0..6	CO/BO: Ramp-function generator status word / RFG ZSW			
SERVO (Extended setp), VECTOR	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: -	$\begin{aligned} & \text { Func. } \\ & 8010 \end{aligned}$	3080,
	P-Group: Setpoints	Units group: -	Unit	
	Not for motor type: -		Exp	
	Min	Max	Facto	
	- -			
Description:	Displays the status word for the ramp-function generator (RFG).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Ramp-up active	Yes	No	6300
	01 Ramp-down active	Yes	No	-
	02 Ramp-function generator active	Yes	No	-
	03 Ramp-function generator set	Yes	No	-
	04 Ramp-function generator held	Yes	No	-
	05 Ramp-function generator tracking active	Yes	No	-
	06 Maximum limit active	Yes	No	-
Note:	Re bit 02:			
	The bit is an OR logic operation - bit 00 and bit 01.			
p1200[0...n]	FlyRest oper mode / FlyRest op_mode			
VECTOR	Can be changed: U, T	Calculated: -	Acce	
	Data type: Integer16	Dynamic index: DDS, p0180	Func	
	P-Group: Functions	Units group: -	Unit	
	Not for motor type: REL			
	Min Max 0 6		Fact 0	
Description:	The flying restart allows the drive converter to be powered up while the motor is still rotating. In so doing, the drive converter output frequency is changed until the current motor speed/velocity is found.. The motor then accelerates up to the setpoint at the ramp-function generator setting.			
Value:	0: Flying restart inactive 1: Flying restart always active (start in set 2: FlyRestart active after on fault OFF2 (s 3: FlyRestart active after fault OFF2 (start 4: Flying restart always active (start only in 5: FlyRestart active after on fault OFF2 (s 6: FlyRestart active after fault OFF2 (start	etpoint direction) start in setp. dir.) rt in setp. direction) in setpoint direction) start only in setp_dir) rt only in setp. dir.)		
Dependency:	A differentiation is made between flying restart for V/f control and for vector control (p1300). Flying restart, V/f control: p1202, p1203, r1204 Flying restart for vector control: p1202, p1203, r1205			
Notice:	The "flying restart" function must be used in ca supply interruption) or is being driven by the load. It does not make sense to use "flying restart" tog then the flying restart will always be realized w	ases where the motor is possib oad. The system might otherwi together with the "motor holdin with the motor stationary.	still runnin shut down brake func	ief lin ercur beca

Note: | For $p 1200=1,4$, the following applies: |
| :--- |
| Flying restart is active after faults, OFF1, OFF2, OFF3. |
| For $p 1200=2,5$, the following applies: |
| The "power-on" is the first power-on operation after the drive system has been booted. This is practical for motors |
| with a high-inertia load. |
| For $p 1200=1,2,3$, the following applies: The search is made in both directions. |
| For p1200 $=4,5,6$, the following applies: The search is only made in the setpoint direction. |
| For operation with encoder, the following applies: |
| p1200 $=1,4$ as well as p1200 $=2,5$ and $1200=3,6$ have the same meaning. |
| For V/f control (p1300 < 20), the following applies: |
| The speed can only be sensed for values above approx. 5% of the rated motor speed. For lower speeds, it is |
| assumed that the motor is at a standstill. |
| If p1200 is changed while commissioning (p0009, p0010 >0), then it is possible that the old value will no longer be |
| able to be set. The reason for this is that the dynamic limits of p1200 have been changed by a parameter that was |
| set when the drive was commissioned (e.g. p0300). |

p1202[0...n]	FlyRest srch curr / FlyRest srch curr		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	Min	Max	Factory setting
	$10[\%]$	$400[\%]$	$100[\%]$

Description: Sets the search current for the "flying restart" function. The value is referred to the motor magnetizing current.
Dependency: Refer to: r0331
Caution: An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion.

Note: \quad Reducing the search current can improve the flying restart performance (if the system moment of inertia is not very high).

p1203[0...n]	Flying restart search rate factor / FlyRst v_Srch Fact		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	Min 10 [\%]	Max $4000 \text { [\%] }$	Factory setting 100 [\%]
Description:	The value influences the rate at which the output frequency is changed during a flying restart . A higher value results in a longer search time.		
Caution:	An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion.		
	For vector control, a value that is too low or too high can cause flying restart to become unstable.		
Note:	The parameter factory setting is restarted as quickly as possible (f are accelerated as a result of activ	that standard induction motors start). With this pre-setting, the recommend that the search ra	re rotating can be found and is not found, e.g. for motors reduced (by increasing p1203).

p1210	Automatic restart, mode / AR mode		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 6 \end{aligned}$	Factory setting 0
Description:	Sets the automatic restart mode (AR).		
Value:	0: Disables automatic restart 1: Acknowledges all faults without restarting 4: Restart after power failure without additional start attempts 6: Restart after fault with additional start attempts		
Dependency:	The automatic restart re If, for p1210 > 1, there is When using an Advance Refer to: p0840, p0857, Refer to: F30003	command, e.g. that is mand, then the autom OP) in the LOCAL	digital input. rrupted. is no automatic res
Danger:	If the automatic restart is activated ($\mathrm{p} 1210>1$) if there is an ON command (refer to p 0840), the drive is powered up as soon as any fault messages that are present can be acknowledged. This also occurs after the line supply returns or the Control Unit boots if the DC link voltage is again present or the feedback of the line supply infeed (refer to p0864) is again available. This automatic power-up sequence can only be interrupted by withdrawing the ON command.		
Caution:	A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1)		
Note:	For brief line supply failu shaft is still rotating, the	can still be rotating w on should be activate	n order to restart

p1210 = 4:
An automatic restart is only carried out if fault F30003 occurred at the Motor Module or a high signal is present at the binector input p1208[1]. If additional faults are present, then these faults are also acknowledged and when successful, starting continues. If the 24 V Control Unit power supply fails, then this is interpreted as a line supply failure.
p1210 = 6:
An automatic restart is carried out if any fault has occurred or there is a high signal at binector input p1208[0]. p1210 = 1:
Faults that are present are automatically acknowledged. If new faults occur after a successful fault acknowledgement, then these are also automatically acknowledged again. A minimum time of $\mathrm{p} 1212+1 \mathrm{~s}$ must expire between a successful fault acknowledgement and a fault re-occurring if the signal ON/OFF1 (control word 1 bit 0) is at a HIGH signal level. If the signal ON/OFF1 is at a LOW signal level, then the time between a successful fault acknowledgement and a new fault must be at least 1 s .
For p1210 = 1, fault F07320 is not generated if the acknowledgement attempt was not successful, for example, due to frequently occurring faults.

p1211

Automatic restart, start attempts / AR start attempts

Can be changed: U, T
Data type: Unsigned16
P-Group: Functions
Not for motor type: -

Min

0

Calculated: -
Dynamic index: -
Units group: -

Max

10

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting 3

[^3]| Dependency: | The setting of this parameter is always effective for $\mathrm{p} 1210=6$. For $\mathrm{p} 1210=4$, the parameter only has an influence |
| :--- | :--- |
| if an additional undervoltage fault occurs at the start attempt. | |
| Refer to: $\mathrm{p} 1210, \mathrm{r} 1214$ | |
| Refer to: F07320 | |
| Caution: | A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1). |
| Notice: | After fault F07320 occurs, the power-on command must be withdrawn and all of the faults acknowledged so that the |
| automatic restart function is re-activated. After a complete blackout the start counter always starts with the starting | |
| value p1211 when the power is restored. | |
| Note: | A start attempt starts immediately when a fault occurs. The start attempt is considered to been completed if the |
| motor was magnetized (r0056.4 = 1) and an additional delay time of 1 s has expired. | |
| As long as a fault is present, an acknowledge command is generated in the time intervals of p1212 / 2 . When suc- | |
| cessfully acknowledged, the start counter is decremented. If, after this, a fault re-occurs before a restart has been | |
| completed, then acknowledgement starts again from the beginning. | |
| Fault F07320 is output if, after several faults occur, the number of parameterized start attempts has been reached. | |
| After a successful start attempt, i.e. a fault/error has no longer occurred up to the end of the magnetizing phase, the | |
| start counter is again reset to the parameter value after 1 s . If a fault re-occurs - the parameterized number of start | |
| attempts is again available. | |
| At least one start attempt is always carried out. | |
| After a line supply failure, acknowledgement is immediate and when the line supply returns, the system is powered | |
| up. If, between successfully acknowledging the line fault and the line supply returning, another fault occurs, then its | |

p1212	Automatic restart, delay time start attempts / AR t_wait start		
A_INF, B_INF,	Can be changed: U, T	Calculated: -	Access level: 3
S_INF	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.1 [s]	Max 600.0 [s]	Factory setting 1.0 [s]
Description:	Sets the delay time up to restart.		
Dependency:	This parameter setting is active for $\mathrm{p} 1210=4,6$.		
	For p1210 = 1, the following applies: Faults are only acknowledged, no restart.		
	Refer to: p1210, r1214		
Caution:	A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1)		
Note:	The faults are automatically acknowledged and the system is powered up again after half of the waiting time has expired and after the full waiting time has expired.		

Automatic restart, delay time start attempts / AR t_wait start		
Can be changed: U, T	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
P-Group: Functions	Units group: -	Unit selection: -
Not for motor type: -		Expert list: 1
Min	Max	Factory setting
$0.1[\mathrm{~s}]$	$600.0[\mathrm{~s}]$	$1.0[\mathrm{~s}]$

Description:
Sets the delay time up to restart.
Dependency: \quad This parameter setting is active for $\mathrm{p} 1210=4,6$.
For $\mathrm{p} 1210=1$, the following applies: Faults are only automatically acknowledged in half of the waiting time, no restart.
Refer to: p1210, r1214
Caution: \quad A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).
Note: \quad The faults are automatically acknowledged after half of the waiting time has expired and the full waiting time. If the cause of a fault is not removed in the first half of the delay time, then it is no longer possible to acknowledge in the waiting time.

p1213	Automatic restart, monitoring time line supply return / AR t_mon line sup
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$	Can be changed: U, T Calculated: - Access level: 3
	Data type: FloatingPoint32 Dynamic index: - Func. diagram: -
	P-Group: Functions Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
	Min Max Factory setting $0.0[\mathrm{~s}]$ $1999.0[\mathrm{~s}]$ 0.0 [s]
Description:	Sets the monitoring time of the automatic restart (AR).
Dependency:	Refer to: p1210, r1214
Caution:	A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).
Notice:	After fault F07320 occurs, the power-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.
Note:	The monitoring time starts when the faults are detected. If the automatic acknowledgements are not successful, the monitoring time runs again. After fault F07320 occurs, the power-on command must be withdrawn and all of the faults acknowledged so that the automatic restart can be re-activated.
	The monitoring is de-activated with p1213 = 0. If the time in p1213 is set lower than in p1212, then fault F07320 is also generated at each restart.
	The monitoring time must be extended if the faults that occur cannot be immediately and successfully acknowledged (e.g. for faults that are permanently present).
p1213	Automatic restart, monitoring time line supply return / AR t_mon line sup
SERVO, VECTOR	Can be changed: U, T Calculated: - Access level: 3
	Data type: FloatingPoint32 Dynamic index: - Func. diagram: -
	P-Group: Functions Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
	Min Max Factory setting $0.0[\mathrm{~s}]$ $1999.0[\mathrm{~s}]$ $0.0[\mathrm{~s}]$
Description:	Sets the monitoring time of the automatic restart (AR).
Dependency:	Refer to: p1210, r1214
Caution:	A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).
Notice:	After fault F07320 occurs, the power-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.
Note:	The monitoring time starts when the faults are detected. If the automatic acknowledgements are not successful, the monitoring time runs again. If, after the monitoring time has expired, the drive has still not successfully started again (flying restart and magnetizing of the motor must have been completed: r0056.4 = 1), then fault F07320 is output.
	The monitoring is de-activated with $\mathrm{p} 1213=0$. If p 1213 is set lower than the sum of p 1212 , the magnetizing time p0346 and the additional delay time due to the flying restart, then fault F07320 is generated at each restart. If, for $\mathrm{p} 1210=1$, the time in p1213 is set lower than in p1212, then fault F07320 is also generated at each restart.
	The monitoring time must be extended if the faults that occur cannot be immediately and successfully acknowledged (e.g. for faults that are permanently present).

r1214.0... 15
A_INF, B_INF,

CO/BO: Automatic restart, status / AR status

S_INF

Bit field:
Bit field:

Calculated: -
Dynamic index: -
Units group: -

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Displays the status of the automatic restart (AR).

Bit	Signal name	1 signa
00	Initialization	Yes
01	Wait for alarm	Yes

$\mathbf{0}$ signal	FP
No	-
No	-
No	-

Note:

03	Setting the acknowledgement command	Yes	No
04	Acknowledge alarms	Yes	No
05	Restart	Yes	No
06	Delay time running after automatic power-	Yes	No
	up		
07	Fault	Yes	No
12	Start count. bit 0	On	Off
13	Start count. bit 1	On	Off
14	Start count. bit 2	On	Off
15	Start count. bit 3	On	Off

Re bit 00:
State to display the single initialization after POWER ON.
Re bit 01:
State in which the automatic restart function waits for faults (initial state).
Re bit 02:
General display that a fault has been identified and that the restart or acknowledgement has been initiated.
Re bit 03:
Displays the acknowledge command within the "acknowledge alarms" state (bit $4=1$). For bit $5=1$ or bit $6=1$, the acknowledge command is continually displayed.
Re bit 04:
State in which the faults that are present are acknowledged. The state is exited again after successful acknowledgement. A change is only made into the next state if it is signaled that a fault is no longer present after an acknowledgement command (bit $3=1$).
Re bit 05:
State in which the drive is automatically powered up (only for p1210 $=4,6$).
Re bit 06:
State in which the system waits after having been powered up, to the end of the start attempt.
For $\mathrm{p} 1210=1$, this signal is directly set after the faults have been successfully acknowledged.
Re bit 07:
State which is assumed after a fault occurs within the automatic restart function.
Re bits $12 \ldots 15$:
Current state of the start counter (binary coded).

Note:	Re bit 00: State to display the single initialization after POWER ON. Re bit 01: State in which the automatic restart function waits for faults (initial state). Re bit 02: General display that a fault has been identified and that the restart or acknowledgement has been initiated. Re bit 03: Displays the acknowledge command within the "acknowledge alarms" state (bit $4=1$). For bit $5=1$ or bit $6=1$, the acknowledge command is continually displayed. Re bit 04: State in which the faults that are present are acknowledged. The state is exited again after successful acknowledgement. A change is only made into the next state if it is signaled that a fault is no longer present after an acknowledgement command (bit $3=1$). Re bit 05: State in which the drive is automatically powered up (only for p1210 = 4, 6). Re bit 06: State in which the system waits after having been powered up, to the end of the start attempt (to the end of the magnetizing process). For p1210 = 1, this signal is directly set after the faults have been successfully acknowledged. Re bit 07: State which is assumed after a fault occurs within the automatic restart function. Re bits $12 \ldots 15$: Current state of the start counter (binary coded).
p1215	Motor holding brake configuration / Brake con
SERVO, VECTOR	Can be changed: U, T Calculated: - Access level: 2 Data type: Integer16 Dynamic index: - Func. diagram: 2701, 2707, 2711 P-Group: Functions Units group: - Unit selection: - Not for motor type: - Expert list: 1 Min Max Factory setting 0 3 0
Description: Value:	Sets the holding brake configuration. 0 : \quad No motor holding brake being used 1: Motor holding brake acc. to sequence control 2: Motor holding brake always open 3: Motor holding brake like sequence control, connection via BICO
Dependency: Caution: Notice:	Refer to: p1216, p1217, p1226, p1227, p1228, p1278 For the setting p1215 = 0, if a brake is used, it remains closed. If the motor moves, this will destroy the brake. If p1215 was set to 1 or if p 1215 was set to 3 , then when the pulses are suppressed, the brake is closed even if the motor is still rotating. Pulse suppression can either be caused by a 0 signal at p0844, p0845 or p0852 or as a result of a fault with OFF2 response. If this is not desirable (e.g. for a flying restart), then the brake can be kept open using a 1 signal at p0855.
Note:	If the configuration is set to "no holding brake present" when booting, then the motor holding brake will be automatically identified. If a motor holding brake is detected, the configuration is set to "motor holding brake as for sequence control". If a holding brake integrated in the motor is used, then it is not permissible that p1215 is set to 3 . if an external motor holding brake is being used, then p1215 should be set to 3 and r0899.12 should be interconnected as control signal. When the function module "extended brake control" is activated ($\mathrm{r} 0108.14=1$), r 1229.1 should be interconnected as control signal. The parameter can only be set to zero when the pulses are inhibited. The parameterization "no motor holding brake available" and "Safe Brake Control" enabled (p1215 = 0, p9602 = 1, p9802 = 1) is not practical if there is no motor holding brake.

The parameterization "motor holding brake the same as sequence control, connection via BICO" and "Safe Brake Control" enabled ($\mathrm{p} 1215=3, \mathrm{p} 9602=1, \mathrm{p} 9802=1$) is not practical.

p1216	Motor holding brake, opening time / Brake t_open		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2701, 2711
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [ms]	$\begin{aligned} & \text { Max } \\ & 10000 \text { [ms] } \end{aligned}$	Factory setting 100 [ms]
Description:	Sets the time to open the motor holding brake.		
	After controlling the holding brake (opens), the speed/velocity setpoint remains at zero for this time. After this, the speed/velocity setpoint is enabled.		
Recommend.:	This time should be set longer than the actual opening time of the brake. This ensures that the drive cannot accelerate when the brake is applied.		
Dependency:	Refer to: p1215, p1217		
p1217	Motor holding brake closing time / Brake t_close		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2701, 2711
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [ms]	Max 10000 [ms]	Factory setting 100 [ms]
Description:	Sets the time to apply the motor holding brake.		
	After OFF1 or OFF3 and the holding brake is controlled (the brake closes), then the drive remains closed-loop controlled for this time stationary with a speed setpoint/velocity setpoint of zero. The pulses are suppressed when the time expires.		
Recommend.:	This time should be set longer than the actual closing time of the brake. This ensures that the pulses are only suppressed after the brake has closed.		
Dependency:	Refer to: p1215, p1216		
Notice:	If the closing time is selected to be too long with respect to the actual closing time of the brake, the control works against the brake and therefore reduces its lifetime.		
p1218[0..1]	BI: Open motor holding brake / Open brake		
SERVO (Extended brk), VECTOR (Extended brk)	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2707
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for a conditional opening of the motor holding brake.		
Dependency:	Refer to: p1215		
Note:	[0]: Signal, open brake, AND logic operation, input 1		

p1219[0...3] SERVO (Extended brk), VECTOR (Extended brk)	BI: Immediately close motor holding brake / Close brake		
	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2707
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting [0] 0
			[1] 0
			[2] 0
			[3] 1229.9
Description: Dependency: Note:	Sets the signal source for an unconditional (immediate) closing of the motor holding brake.		
	Refer to: p1215, p1275		
	[0]: Signal, immediately close brake, inversion via p1275.0		
	[1]: Signal, immediately close brake, inversion via p1275.1		
	[2]: Signal, immediately close brake		
	[3]: Signal, immediately close brake - refer to the factory setting		
	These four signals form an OR logic operation.		
p1220	CI: Open motor holding brake, signal source, threshold / Open brake thresh		
SERVO (Extended brk), VECTOR (Extended brk)	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: -	Func. diagram: 2707
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Sets the signal source for the command "open brake".		
Dependency:	Refer to: p1215, p1221, r1229, p1277		
p1221	Open motor holding brake, threshold / Open brake thresh		
SERVO (Extended brk), VECTOR (Extended brk)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2707
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	Sets the threshold value for the command "open brake".		
Dependency:	Refer to: p1220, r1229, p1277		
p1222	BI: Motor holding brake feedback signal brake closed / Brake feedb closed		
SERVO (Extended brk), VECTOR (Extended brk)	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2711
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the feedback signal "brake closed".		
	For motor holding brakes with feedback signal, the signal "brake closed" can be activated using p1275.5		
Dependency:			

Note: 1 signal: Brake closed.
When braking with 1 feedback signal, the inverted feedback signal is connected to the BICO input for the second feedback signal (p1223).
For $r 1229.5=1$, OFF/OFF3 are suppressed to prevent the drive accelerating by a load that drives the motor whereby OFF2 remains effective.

p1223	BI: Motor holding brake feedback signal brake open / Brake feedb open		
SERVO (Extended brk), VECTOR (Extended brk)	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2711
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the feedback signal "brake open".		
	For motor holding brakes with feedback signal, the signal "brake open" can be activated using p1275.5 $=1$.		
Dependency:	Refer to: p1222, p1275		
Note:	1 signal: Brake open.		
	When braking with 1 feedback signal, the inverted feedback signal is connected to the BICO input for the second feedback signal (p1222).		
p1224[0...3]	BI: Close motor holding brake at standstill / Brk close standst		
SERVO (Extended brk), VECTOR (Extended brk)	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2704
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Sets the signal source for close brake at standstill.		
Dependency:	Refer to: p1275		
Note:	[0]: Signal, close brake at standstill, inversion via p1275.2		
	[1]: Signal, close brake at standstill, inversion via p1275.3		
	[2]: Signal, close brake at standstill		
	[3]: Signal, close brake at standstill		
	These four signals form an OR logic operation.		

p1225 CI: Standstill detection, threshold value / Standstill thresh
brk), VECTOR
(Extended brk)
Data type: Unsigned32 / FloatingPoint32
P-Group: Functions
Not for motor type: -
Min Max

Description: Sets the signal source "threshold value" for the standstill identification.
Dependency: Refer to: p1226, p1228, r1229

| p1234[0...n] | Speed at the start of DC braking / DCBRK n_start | |
| :--- | :--- | :--- | :--- |
| SERVO | Calculated: - | Access level: 1 |

p1234[0...n]	Speed at the start of DC braking / DCBRK n_start		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: 7017
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min	Max	Factory setting
	$0.00[r e v / \mathrm{min}]$	$210000.00[\mathrm{rev} / \mathrm{min}]$	$40000.00[\mathrm{rev} / \mathrm{min}]$
Description:	Sets the starting speed for DC braking.		
	If the actual speed falls below this threshold, then DC braking is activated.		

r1238	CO: Armature short-circuit, external state / EASC state		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: 2610
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: ASM		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 6 \end{aligned}$	Factory setting
Description:	Displays the state for the external armature short-circuit.		
Value:	0: Powered down 1: Ready 2: Active 3: Active - feedback sig 4: Active - feedback si 5: Prompt to remove th 6: Active - feedback sig	sing -circuit ing	
Dependency:	Refer to: p1230, p1231, p1235, p1236, p1237, r1239		
Note:	Activation criterion (one of - the signal at BI: p1230 (ar - the drive is not in the state - the internal pulse enable Re state "switched out" (r12 - the external armature sho Re state "ready" (r1238 = 1) - as soon as the activation Regarding the state "active nal "Closed" missing" (r123 - the control signal to close - if a contactor feedback sig state 3. - if a contactor feedback sig p1235 goes to "1" (closed) - otherwise, a transition is m Re state "prompt to remove - the activation criterion is no - the control signal to close - if a contactor feedback sig to expire until a transition is - if a contactor feedback sig (open) until a transition is m tion is made into state 6. Re state "active - feedback - this error state can be exit	ia is fulfilled): it activation) is 0 . or in S5x (refer to fu $19=0$). elected with p1231 = , then a transition is ive - feedback signa is set to "1" (closed) ted (BI: p1235 = 0 s then a transition is ing time (p 1236). rt-circuit" (r1238 = 5) An attempt is made 39.0 is set to "0" (op ted (BI: p1235 = 0 s the system waits un If this does not occu ssing" (r1238 = 6): g the external armat	10). ate "active" (r1238 = 2). 238 = 3)", "active - feedback sig- are suppressed. sition is immediately made into if the feedback signal at BI : the armature short circuit. s remain suppressed. waits for the delay time (p1237) signal at BI:p1235 goes to "0" oring time (p 1236), then a transi- p1231 = 0).
r1239.0... 10	CO/BO: Armature short-circuit / DC brake status word / ASC ZSW		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the status word for	circuit.	

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	External armature short-circuit	Active	Inactive	-
	01	External armature short-circuit, contactor feedback signal	Closed	Open	-
	02	External armature short-circuit ready	Yes	No	-
	03	External armature short-circuit with contactor feedback signal	Yes	No	-
	04	Internal armature short-circuit	Active	Inactive	-
	05	Int. armature short-circuit, feedback signal from power unit	Active	Inactive	-
	06	Internal armature short-circuit ready	Yes	No	-
	08	DC brake active	Active	Inactive	7017
	10	DC brake ready	Yes	No	7017
Dependency:	Refer to: p1230, p1231, p1232, p1233, p1234, p1235, p1236, p1237				
Note:	External armature short-circuit (bits $0 \ldots 3$):				
	Re bit 00:				
	Using this signal, the motor is short-circuited through an external contactor circuit. This means that this BO: p1239.0 must be interconnected e.g. to a digital output.				
	Re bit 01:				
	This signal indicates the state of the contactor to establish the armature short-circuit. To do this, BI: p1235 must be interconnected to a digital input.				
	Re bit 02:				
	The external armature short-circuit configuration is ready and is activated as soon as the activation criterion is fulfilled.				
	Re bit 03:				
	1: A feedback signal from an external contactor was parameterized in BI : p 1235.				
	Internal voltage protection / internal armature short-circuit (bits $4 \ldots .6$):				
	Re bit 04:				
	a) Internal voltage protection (p1231 = 3) was selected and the Motor Module does not support the autonomous internal voltage protection (r0192.10 = 0).				
	The Control Unit issues the command to the Motor Module to short-circuit the motor through the power semiconductors.				
	a) Internal voltage protection $(\mathrm{p} 1231=3)$ was selected and the Motor Module supports the autonomous internal voltage protection (r0192.10 = 1).				
	The Motor Module decides autonomously whether the armature short-circuit is activated. In this case, the following applies: r1239.4 = r1239.5.				
	c) Internal armature short-circuit (p1231 = 4) was selected.				
	The Control Unit issues the command to the Motor Module to short-circuit the motor through the power semiconductors.				
	Re bit 05:				
	The Motor Module signals that the motor is short-circuited in the Motor Module through the power semiconductors.				
	Re bit 06:				
	a) Internal voltage protection $(\mathrm{p} 1231=3)$ was selected and the Motor Module does not support the autonomous internal voltage protection (r0192.10 = 0).				
	The internal voltage protection is ready and is activated as soon as the activation criterion is fulfilled.				
	a) Internal voltage protection (p1231 = 3) was selected and the Motor Module supports the autonomous internal voltage protection (r0192.10 = 1).				
	The internal voltage protection is ready and the Motor Module decides autonomously - using the DC link voltage whether the short-circuit is activated. In this case, protection is also provided even if the DRIVE-CLiQ connection between the Control Unit and Motor Module was interrupted. The short-circuit is activated if the DC link voltage exceeds 800 V . If the DC link voltage falls below 450 V , then the short-circuit is withdrawn.				
	c) Internal armature short-circuit (p1231 $=4$) was selected.				
	The internal armature short-circuit is ready and is activated as soon as the activation criterion is fulfilled.				
	Activation criterion (one of the following criteria is fulfilled):				
	- the signal at BI : p1230 (armature short-circuit activation) is 1.				
	- the drive is not in the state "S4: Operation" or in S5x (refer to function diagram 2610).				
	- the internal pulse enable is missing (r0046.19 = 0).				

p1240[0...n]	Vdc controller or Vdc monitoring configuration / Vdc_ctrl config
SERVO	Can be changed: U, T Calculated: - Access level: 3
	Data type: Integer16 Dynamic index: DDS, p0180 Func. diagram: 5650
	P-Group: Functions Units group: - Unit selection: -
	Not for motor type: REL Expert list: 1
	Min Max Factory setting 0 9 0
Description:	Sets the configuration of the controller or monitoring for the DC link voltage (Vdc).
Value:	0: Inhib Vdc ctrl
	1: Vdc_max controller enable
	2: Vdc_min controller (kinetic buffering) enable
	3: Vdc_min controller and Vdc_max controller enable
	4: Activates Vdc_max monitoring
	5: Activates Vdc_min monitoring
	6: Activates Vdc_min monitoring and Vdc_max monitoring
	7: Vdc_max controller without accelerating enable
	8: Vdc_min controller without braking enable
	9: Vdc_min and Vdc_max controller w/o braking/accelerating enable
Dependency:	Refer to: p1244, p1248, p1250, p1532
Notice:	During a few steps of the rotating measurement (p1960 = 1) the Vdc_min controller and/or Vdc_max controller is disabled.
Note:	p 1240 = 1, 3:
	When the upper DC link voltage threshold is reached (p1244), then the following applies:
	- when other drives regenerate into the DC link, then the Vdc_max controller causes the motor to accelerate. p1240 = 2, 3:
	- the Vdc_min controller limits the energy taken from the DC link in order to keep the DC link voltage above the minimum DC link voltage when accelerating.
	- the motor is braked in order to use its kinetic energy to buffer the DC link.
	When the threshold in p1244 or p1248 is reached, the DC link voltage monitoring initiates a fault with a response and therefore reduces additional negative effects on the DC link voltage. $\mathrm{p} 1240=7,9:$
	As for $p 1240=1,3$. However, the motor is prevented from accelerating due to the fact that other drives are regenerating. The effective lower torque limit cannot exceed the offset of the torque limit (p1532). $\mathrm{p} 1240=8,9:$
	As for $\mathrm{p} 1240=2,3$. However, the motor is prevented from braking due to the fact that the DC link voltage has been lowered. The effective upper torque limit cannot be less than the offset of the torque limit (p 1532).

p1240[0...n] Vdc controller or Vdc monitoring configuration / Vdc_ctrl config

Can be changed: U, T	Calculated: -
Data type: Integer16	Dynamic inde
P-Group: Functions	
Not for motor type: REL	
Min	
0	
Sets the controller configuration of the DC link voltage (Vdc	
$0:$	Inhib Vdc ctrl

	5: Activates Vdc_min monitoring 6: Activates Vdc_min monitoring and Vdc_max monitoring	
Dependency:	Refer to: p1245 Refer to: A07400, A07401, A07402, F07403, F07404, F07405, F07406	
	An excessively high value in p1245 can possibly negatively influence the norm p1240 = 1, 3: When the DC link voltage limit specified for the Motor Module is reached the fo - the Vdc_max controller limits the regenerative energy in order that the DC link DC link voltage when braking. - the ramp-down times are automatically increased. $\mathrm{p} 1240=2,3:$ When the switch-in threshold of the Vdc_min controller is reached (p1245), the - the Vdc_min controller limits the energy taken from the DC link in order to keep imum DC link voltage when accelerating. - the motor is braked in order to use its kinetic energy to buffer the DC link. $\mathrm{p} 1240=4,5,6:$ When the threshold in r1242 or r1246 is reached, the DC link voltage monitoring with a response and therefore reduces additional negative effects on the DC link	peration of the drive. wing applies: Itage is kept below the maximum lowing applies: he DC link voltage above the min- itiates a fault (F07403 or F07404) voltage.
r1242	Vdc_max controller switch-in level / Vdc_max on_level	
VECTOR (n / M)	Can be changed: - Calculated: - Data type: FloatingPoint32 Dynamic index: - P-Group: Functions Units group: - Not for motor type: REL Min Max $-[V]$ $-[V]$	Access level: 3 Func. diagram: 6220 Unit selection: - Expert list: 1 Factory setting - [V]
Description:	Displays the switch-in level for the Vdc_max controller. If p1254 $=0$ (automatic sensing of the switch-in level $=$ off), then the following applies: AC/AC device: $r 1242=1.15$ * sqrt(2) * V_mains $=1.15$ * sqrt(2) * p0210 (supply voltage) DC/AC device: $\mathrm{r} 1242=1.15$ * Udc $=1.15$ * p 0210 (supply voltage) If p1254 $=1$ (automatic sensing of the switch-in level $=$ on), then the following applies: r1242 = Vdc_max-50.0 V (Vdc_max: Overvoltage threshold of the power unit)	
p1243[0...n]	Vdc_max controller dynamic factor / Vdc_max dyn_factor	
VECTOR (n / M)	Can be changed: U, T Calculated: CALC_MOD_CON Data type: FloatingPoint32 Dynamic index: DDS, p0180 P-Group: Functions Units group: - Not for motor type: REL Min Max $1[\%]$ 10000 [\%]	Access level: 3 Func. diagram: 6220 Unit selection: - Expert list: 1 Factory setting 100 [\%]
Description:	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller). 100% means that p1250, p1251 and p1252 (gain, integral time and rate time) are used corresponding to their basic settings and based on a theoretical controller optimization. If subsequent optimization is required, then this can be realized using the dynamic factor. In this case p1250, p1251, p1252 are weighted with the dynamic factor p1243. If several modules are connected to the DC link, then the dynamic factor must be increased corresponding to the ratio of the additional capacitances to the capacitance of the module involved.	
Note:	The pre-setting of the dynamic factor is based on the power units connected at DRIVE-CLiQ. It is assumed that the power unit connected via DRIVE-CLiQ is also electrically connected to the DC link. If this is not the case, then the dynamic factor must be optimized manually.	

p1244[0...n]	DC link voltage threshold upper / Vdc upper thresh		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5650
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min $165 \text { [V] }$	Max $1200 \text { [V] }$	Factory setting 750 [V]
Description:	For p1240 $=1,3,7,9$, this threshold is used as limit setpoint for the Vdc_max controller. For $\mathrm{p} 1240=4,6$, for DC link voltages above this threshold, an appropriate fault is output.		
Dependency:	Refer to: p1240, p1248, p1250		
Note:	For p1244 < 1.07 * "parame For p0204.0 = 1, the followin "Parameterized DC link volta For p0204.0 = 0, the followin "Parameterized DC link volta	oltage" input of values is rejected. 4142	
p1245[0...n]	Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6220
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min 65 [\%]	$\begin{aligned} & \operatorname{Max} \\ & 150 \text { [\%] } \end{aligned}$	Factory setting 76 [\%]
Description:	Sets the switch-in level for th The value is obtained as foll AC/AC device: $\mathrm{r} 1246[\mathrm{~V}]=\mathrm{p}$ DC/AC device: $\mathrm{r} 1246[\mathrm{~V}]=\mathrm{p}$	oller (kinetic buffering). * p0210	
Dependency:	Refer to: p0210		
Warning:	An excessively large value may adversely influence normal drive operation. The values up to 150% are intended for operating modes p1240 $=5,6$.		
r1246	Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6220
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min - [V]	Max - [V]	Factory setting - [V]
Description:	Displays the switch-in level for the Vdc_min controller (kinetic buffering).		
p1247[0...n]	Vdc_min controller dynamic factor (kinetic buffering) / Vdc_min dyn_factor		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6220
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min 1 [\%]	$\begin{aligned} & \operatorname{Max} \\ & 10000 \text { [\%] } \end{aligned}$	Factory setting 100 [\%]
Description:	Sets the dynamic factor for the Vdc-min controller (kinetic buffering).		

Note: The pre-setting of the dynamic factor is based on the power units connected at DRIVE-CLiQ. It is assumed that the power unit connected via DRIVE-CLiQ is also electrically connected to the DC link. If this is not the case, then the dynamic factor must be optimized manually.

p1249[0...n] Vdc_max controller speed threshold / Vdc_max n_thresh
VECTOR (n / M) Can be changed: U, T Calculated: CALC_MOD_ALL
Data type: FloatingPoint32 Dynamic index: DDS, p0180
P-Group: Functions Units group: 3_1

Not for motor type: REL
Min Max
210000.0 [rev/min]

Access level: 3
Func. diagram: -
Unit selection: p0505
Expert list: 1
Factory setting
10.0 [rev/min]

Description: Sets the lower speed threshold for the Vdc_max controller. When this speed threshold is undershot, the Vdc_max control is switched out and the speed is controlled using the ramp-function generator.
Note: \quad For fast braking where the ramp-function generator tracking was active, it is possible to prevent the drive rotating in the opposite direction by increasing the speed threshold and setting a final rounding-off time in the ramp-function generator (p 1131). This is supported using a dynamic setting of the speed controller.

$\mathbf{p 1 2 5 0 [0 . . . n] ~}$	Vdc controller proportional gain / Vdc_ctrl Kp		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5650
	P-Group: Functions	Units group: $19 _1$	Unit selection: $p 0505$
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
	$0.00[A / V]$	$10.00[A / V]$	$1.00[A / V]$
Description:	Sets the proportional gain for the Vdc controller (DC link voltage controller).		
Dependency:	Refer to: p1240, p1244, p1248		

p1250[0...n]	Vdc controller proportional gain / Vdc_ctrl Kp		
VECTOR (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6220
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL	Max	Expert list: 1

p1251[0...n]	Vdc controller integral time / Vdc_ctrl Tn		
VECTOR (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6220
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min 0 [ms]	Max 10000 [ms]	Factory setting 0 [ms]
Description:	Sets the integral time for the Vdc controller (DC link voltage controller).		
Dependency:	The effective integral time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		
Note:	An integral time is normally possible to compensate for time of 0 (default) de-activat	ingle axis drives. For multi-axis other axes using the integral tim	on the other hand, it may be tegral component) . An integral

p1252[0...n]	Vdc controller rate time / Vdc_ctrl t_rate		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6220
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min 0 [ms]	$\begin{aligned} & \text { Max } \\ & 1000 \text { [ms] } \end{aligned}$	Factory setting 0 [ms]
Description:	Sets the rate time constant for the Vdc controller (DC link voltage controller).		
Dependency:	The effective rate time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		
Note:	During controlled operation this parameter has no effect.		
p1254	Vdc_max controller automatic ON level detection / Vdc_max SenseOnLev		
VECTOR (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 6220
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 1
Description:	Activates/de-activates the automatic sensing of the switch-in level for the Vdc_max controller.		
Value:	0 : \quad Automatic detection inhibited 1: Automatic detection enabled		

p1255[0...n]	Vdc_min controller time threshold / Vdc_min t_thresh		
VECTOR (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min 0.000 [s]	$\begin{aligned} & \operatorname{Max} \\ & 10000.000 \text { [s] } \end{aligned}$	Factory setting 0.000 [s]
Description:	Sets the time threshold for the Vdc_min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized.		
	Prerequisite: p1256 = 1 .		
Dependency:	Refer to: F07406		
p1256[0...n]	Vdc_min controller response (kinetic buffering) / Vdc_min response		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets the response for the Vdc_min controller (kinetic buffering).		
Value:	0: Buffer Vdc until undervoltage, $\mathrm{n}<\mathrm{p} 1257$-> F07405 1: Buff. Vdc until undervolt., n<p1257 -> F07405, t>p1255 -> F07406		
Dependency:	Refer to: F07405, F07406		
p1257[0...n]	Vdc_min controller speed threshold / Vdc_min n_thresh		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.0 [rev/min]	Max 210000.0 [rev/min]	Factory setting 50.0 [rev/min]
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized .		
$\overline{\mathbf{r 1 2 5 8}}$	CO: Vdc controller output / Vdc_ctrl output		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6220
	P-Group: Functions	Units group: 6_2	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the current output of the Vdc controller (DC link voltage controller)		
Note:	The regenerative power limit p1531 is used for vector control to pre-control the Vdc_max controller. The lower the power limit is set, the lower the correction signals of the controller when the voltage limit is reached.		

p1262[0...n]	Bypass dead time / Bypass t_dead		
VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$0.000[\mathrm{~s}]$	$20.000[\mathrm{~s}]$	1.000 [s]
Description:	Sets the dead time for non-synchronized bypass.		

Note: | The parameter only has an effect for a non-synchronized bypass. |
| :--- |
| p 1267 bit $0=1$: |
| The bypass is initiated by setting a binary signal. When the command is reset, after the debypass delay time |
| (p 1263) has expired, operation at the Motor Module is re-selected. |
| p 1267 bit $1=1$: |
| When the speed threshold entered in p 1265 is reached, the bypass is switched in. The system only switches back |
| when the speed setpoint again falls below the threshold value. |

p1268	BI: Bypass, feedback synchronization completed / FdbkSig sync compl		
VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Max	Factory setting
	Min	-	3819.2
	-		
Description:	Input for the feedback signal that synchronization was successfully completed.		
Dependency:	Refer to: r3819		

p1269[0...1]	BI: Bypass switch feedback signal / Bypass FS		
VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Index:	Sets the signal source for the feed [0] = Switch motor - drive [1] = Switch motor - line supply	al of the bypass swit	
p1272	Simulation mode / Simulation mode		
VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$	$\underset{1}{\operatorname{Max}}$	Factory setting 0
Description:	In the simulation mode, the closed-loop control or V/f control can be operated without motor.		
	The simulation mode is used to test the power unit. Even though the DC link voltage is missing, the pulses are enabled when powering up. The DC link pre-charging is bypassed and the undervoltage detection is disabled.		
	Closed-loop speed control with an encoder is possible if the torque setpoint (r0079) is used in order to operate a second drive in the closed-loop torque controlled mode.		
Value:	$\begin{array}{ll} 0: & \text { Off } \\ \text { 1: } & \text { On } \end{array}$		
Dependency:	The following functions are de-activated in the simulation mode:		
	- motor data identification routine		
	- motor data identification routine, rotating without encoder		
	- pole position identification routine		
	For V/f control and sensorless vector control, flying restart is not carried out (refer to p1200).		
	Refer to: r0192, p1900, p1910, p1960, p1990		
	Refer to: A07825, F07826		

p1277	Motor holding brake, braking threshold delay exceeded / Del thresh exceed.		
SERVO (Extended brk), VECTOR (Extended brk)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2707
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[s] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 300.000 \text { [s] } \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 0.000 \text { [s] } \end{aligned}$
Description:	Sets the delay time for the signal "braking threshold exceeded" (BO: r1229.6). Refer to: p1220, p1221, r1229		
Dependency:			
p1278	Brake control, diagnostics evaluation / Brake diagnostics		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	${ }_{1}^{\operatorname{Max}}$	Factory setting 0
Description:	Sets the brake control type (with Example for brake control with - brake control in the Motor Mod - Safe Brake Relay for AC Drive Example for brake control witho - Brake Relay for AC Drive	iagnostics evaluatio valuation. size format s evaluation.	
Value:	0: Brake control with diagnostics evaluation 1: Brake control without diagnostics evaluation		
Note:	If the configuration of the motor holding brake (p 1215) is set to "no holding brake present" when booting, then an automatic identification of the motor holding brake will be carried out. If a brake control is detected without diagnos tics evaluation (e.g. Brake Relay for AC Drive), then the parameter is set to "brake control without diagnostics eval uation".		
p1279[0...3]	BI: Motor holding brake, OR/AND logic operation / Brake OR AND		
SERVO (Extended brk), VECTOR (Extended brk)	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2707
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the OR/AND logic operation.		
Dependency:	Refer to: r1229		
Note:	[0]: OR logic operation, input 1 - [1]: OR logic operation, input 2 - [2]: AND logic operation, input 1 [3]: AND logic operation, input 2	is displayed in r 1229 is displayed in r 1229 l is displayed in r 12 t is displayed in r 12	

p1280[0...n]	Vdc controller or Vdc monitoring configuration (V/f) / Vdc_ctr config V/f		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 1690, 6320
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 6 \end{aligned}$	Factory setting 1
Description:	Sets the configuration of the controller for the DC link voltage (Vdc controller) in the V/f operating mode.		
Value:	0: Inhib Vdc ctrl		
	1: Vdc_max controller enable		
	2: Vdc_min controller (kinetic buffering) enable		
	3: Vdc_min controller and Vdc_max controller enable		
	4: Activates Vdc_max monitoring		
	5: Activates Vdc_min monitoring		
	6: Activates Vdc_min monitoring and Vdc_max monitoring		
Note:	$\mathrm{p} 1240=4,5,6$:		
	When the threshold in r1282 or r1286 is reached, the DC link voltage monitoring initiates a fault (F07403 or F07404) with a response and therefore reduces additional negative effects on the DC link voltage.		
r1282	Vdc_max controller switch-in level (V/f) / Vdc_max on_level		
VECTOR	Can be changed: - Data type: FloatingPoint32	Calculated: -	Access level: 3
		Dynamic index: -	Func. diagram: 6320
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [V]	$\begin{aligned} & \operatorname{Max} \\ & -[V] \end{aligned}$	Factory setting $-[V]$
Description:	Displays the switch-in level for the Vdc_max controller. If p1294 $=0$ (automatic sensing of the switch-in level $=$ off), then the following applies: AC/AC device: $\mathrm{r} 1282=1.15$ * sqrt(2) * V_mains $=1.15$ * sqrt(2) * p0210 (supply voltage) DC/AC device: $\mathrm{r} 1282=1.15$ * Vdc $=1.15$ * p 0210 (supply voltage) If p1294 $=1$ (automatic sensing of the switch-in level $=$ on), then the following applies: r1282 = Vdc_max -50.0 V (Vdc_max: Overvoltage threshold of the power unit)		
p1283[0...n]	Vdc_max controller dynamic factor (V/f) / Vdc_max dyn_factor		
VECTOR	Can be changed: U, T Data type: FloatingPoint32 P-Group: Functions	Calculated: CALC_MOD_CON	Access level: 3
		Dynamic index: DDS, p0180	Func. diagram: -
		Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 1 [\%]	$\begin{aligned} & \text { Max } \\ & 10000 \text { [\%] } \end{aligned}$	Factory setting 100 [\%]
Description:	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).		
	100% means that p1290, p1291 and p1292 (gain, integral time and rate time) are used corresponding to their basic settings and based on a theoretical controller optimization.		
	If subsequent optimization is required, then this can be realized using the dynamic factor. In this case p1290, p1291, p1292 are weighted with the dynamic factor p1283. If several modules are connected to the DC link, then the dynamic factor must be increased corresponding to the ratio of the additional capacitances to the capacitance of the module involved.		
Note:	The pre-setting of the dynamic factor is based on the power units connected at DRIVE-CLiQ. It is assumed that the power unit connected via DRIVE-CLiQ is also electrically connected to the DC link. If this is not the case, then the dynamic factor must be optimized manually.		

p1288[0...n]	Vdc_max controller feedback coupling factor ramp-fct. gen. (V/f) / Vdc_max factor RFG		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 100.0 \end{aligned}$	Factory setting 0.5
Description:	Sets the feedback factor for the ramp-function generator. Its ramp times are decelerated relative to the output signal of the Vdc_max controller.		
Note:	For values p1288 $=0.0$ to 0.5 , the control dynamics are automatically adapted internally.		
p1289[0...n]	Vdc_max controller speed threshold (V/f) / Vdc_max n_thresh		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.0 [rev/min]	Max 210000.0 [rev/min]	Factory setting 10.0 [rev/min]
Description:	Sets the lower speed threshold for the Vdc_max controller. When this speed threshold is undershot, the Vdc_max control is switched out and the speed is controlled using the ramp-function generator.		
p1290[0...n]	Vdc controller proportional gain (V/f) / Vdc_ctrl Kp		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6320
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 100.00 \end{aligned}$	Factory setting 1.00
Description:	Sets the proportional gain for the Vdc controller (DC link voltage controller).		
Note:	The gain factor is proportional to the capacitance of the DC link. The parameter is preset to a value that is optimally adapted to the capacitance of the individual Motor Module. The capacitances of the other power units which are connected to the DC link can be taken into account using the dynamic factor (p1287 or p1283).		
p1291[0...n]	Vdc controller integral time (V/f) / Vdc_ctrl Tn		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6320
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [ms]	$\begin{aligned} & \text { Max } \\ & 10000[\mathrm{~ms}] \end{aligned}$	Factory setting 40 [ms]
Description:	Sets the integral time for the Vdc controller (DC link voltage controller).		

p1292[0...n]	Vdc controller rate time (V/f) / Vdc_ctrl t_rate		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6320
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [ms]	$\begin{aligned} & \text { Max } \\ & 1000 \text { [ms] } \end{aligned}$	Factory setting 10 [ms]
Description:	Sets the rate time constant for the Vdc controller (DC link voltage controller).		
p1293[0...n]	Vdc controller output limit (V/f) / Vdc_ctrl outp_lim		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6320
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 600.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 10.0 [Hz]
Description:	Sets the output limit for the Vdc controller (DC link voltage controller).		
p1294	Vdc_max controller automatic detection ON signal level (V/f) / Vdc_max SenseOnLev		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	When detection is de-activated, the activation threshold r1282 for the Vdc_max controller is determined from the parameterized supply voltage p0210.		
Value:	0 : Automatic detection 1: Automatic detection		
p1295[0...n]	Vdc_min controller time threshold (V/f) / Vdc_min t_thresh		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.000 [s]	$\begin{aligned} & \text { Max } \\ & 10000.000 \text { [s] } \end{aligned}$	Factory setting 0.000 [s]
Description:	Sets the time threshold for the Vdc_min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized.		
p1296[0...n]	Vdc_min controller response (kinetic buffering) (V/f / Vdc_min response		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets the response for the Vdc_min controller (kinetic buffering).		

Value:	0: Buffer Vdc until undervoltage, n<p1297 -> F07405		
p1297[0...n]	Vdc_min controller speed threshold (V/f) / Vdc_min n_thresh		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.0 [rev/min]	Max 210000.0 [rev/min]	Factory setting 50.0 [rev/min]
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized .		
r1298	CO: Vdc controller output (V/f) / Vdc_ctrl output		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6320
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the current output of the Vdc controller (DC link voltage controller)		
p1300[0...n]	Open-loop/closed-loop control operating mode / Op/cl-Ip ctrl_mode		
SERVO	Can be changed: C2(1), T	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 1590, 4710, 5060, 8012
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 20 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 23 \end{aligned}$	Factory setting 21
Description:	Sets the open and closed loop control mode of a drive.		
Value:	20: Speed control (encoderless) 21: Speed control (with encoder) 23: Torque control (with encoder)		
Dependency:	Closed-loop speed or torque control (with encoder) cannot be selected if the encoder type is not entered (p0400). Refer to: p0108, r0108, p0300, p0311, p0400, p1501		
Note:	The closed-loop torque control c speed control (p1501). At the ch displayed in r1407, bit 2 and bit For encoderless operation (p140 - The following condition must be - For motors with a small power	hanged over in operation (p1300 e setting of p1300 does not chan $300=20$), the following applies: $800>=n /(2 \text { * p0115[0]), n = 1, } 2$ W) we recommend to set $\mathrm{n}>=2$	21) by selecting the closed-loop In this case, the current state is
p1300[0...n]	Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode		
VECTOR (n/M)	Can be changed: C2(1), T	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 1690, 1700, 6300, 8012
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 23 \end{aligned}$	Factory setting 20
Description:	Sets the open and closed loop control mode of a drive.		

Value:	0: V/f control with linear ch		
	1: V/f control with linear ch	d FCC	
	2: V/f control with parabolic		
	3: V/f control with paramet	acteristic	
	5: V/f control for drives req	se freq. (e.g. textiles)	
	6: V/f control for drives req	e frequency with FCC	
	18: I/f control with fixed curr		
	19: V/f control with indepen	setpoint	
	20: Speed control (encoder		
	21: Speed control (with enc		
	22: Torque control (encoder		
	23: Torque control (with enco		
Dependency:	Closed-loop speed or torque control (with encoder) cannot be selected if the encoder type is not entered (p0400).		
	Closed-loop speed or torque control can be selected if the closed-loop speed/torque control was selected as operating mode (r0108.2).		
	Only operation with V/f characteristic is possible if the rated motor speed is not entered (p0311).		
	A reluctance motor can only be operated in a V/f control mode ($\mathrm{p} 1300<20$).		
	Refer to: p0108, r0108, p0300, p0311, p0400, p1501		
Note:	The closed-loop torque control can only be changed over in operation ($p 1300=20,21$) by selecting the closed-loop speed control (p1501). At the changeover, the setting of p1300 does not change. In this case, the current state is displayed in r1407, bit 2 and bit 3.		
	For the open-loop control modes p1300 = 5 and 6, the slip compensation p1335 and the resonance damping p1338 are internally switched out (disabled) in order to be able to precisely set the output frequency.		
	Separately-excited synchronous motors can only be operated in the modes p1300 = 21 and $23-$ or for diagnostic purposes in the modes p1300 $=0,3$ and 18 . For l/f control ($p 1300=18$), the current amplitude can be set using p1609. Both for V/f control as well as for I/f control, only a small load may be applied to the separately-excited synchronous motor because the excitation current is not calculated as a function of the load.		
	During operation (the pulses enabled) the open-loop/closed-loop control mode cannot be changed by changing over drive data sets.		
	p 1300 is pre-assigned depending on r0108.2 and p0187.		
p1300[0...n]	Open-loop/closed-loop	erating mode / Op/cl-Ip	mode
VECTOR	Can be changed: C2(1), T	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 1690, 6300, 6310, 6320
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0	$\begin{aligned} & \text { Max } \\ & 19 \end{aligned}$	Factory setting 0
Description:	Sets the V/f control mode of the drive.		
Value:	0: V/f control with linear characteristic		
	1: V/f control with linear ch	nd FCC	
	2: V/f control with paraboli		
	3: V/f control with paramet	acteristic	
	5: V/f control for drives req	se freq. (e.g. textiles)	
	6: V/f control for drives req	e frequency with FCC	
	19: V/f control with indepen	etpoint	
Note:	For the open-loop control modes p1300 = 5 and 6, the slip compensation p1335 and the resonance damping p1338 are internally switched out (disabled) in order to be able to precisely set the output frequency.		
	During operation (the pulses enabled) the open-loop control mode cannot be changed by changing over drive data sets.		

p1310[0...n]	Voltage boost permanent / V_boost perm		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1690, 6300
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.0 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 250.0 \text { [\%] } \end{aligned}$	Factory setting 50.0 [\%]
Description:	Defines the voltage boost as a [\%] referred to the rated motor current (p0305).		
	The magnitude of the permanent voltage boost is reduced with increasing frequency so that at the rated motor frequency, the rated motor voltage is present.		
	The magnitude of the boost in Volt at a frequency of zero is defined as follows:		
	Voltage boost [V] = p0305 (rated motor current [A]) x p0350 (stator/primary section resistance [ohm]) x p1310 (permanent voltage boost [\%]) / 100 \%		
	At low output frequencies, there is only a low output voltage in order to maintain the motor flux. However, the output voltage can be too low in order to achieve the following:		
	- magnetize the induction motor.		
	- hold the load.		
	- compensate for losses in the system.		
	This is the reason that the output voltage can be increased using p1310.		
	The voltage boost can be used for both linear as well as square-law V/f characteristics and is calculated as follows:		
	Voltage boost $=$ p0305 (rated motor current \times p0350 (stator/primary section resistance) $\times \mathrm{p} 1310$ (permanent voltage boost)		
Dependency:	Setting in p0640 (motor overload factor [\%]) limits the boost.		
	For vector control, the permanent voltage boost (p1310) has no effect as the drive converter automatically sets the optimum operating conditions.		
	Refer to: p1300, p1311, r1315		
Notice:	The voltage boost increases the	rature (particularly at zero spe	
Note:	The voltage boost is only effective for V/f control (p1300).		
	The boost values are combined with one another if the permanent voltage boost (p 1310) is used in conjunction with other boost parameters (acceleration boost (p1311)).		
	However, these parameters are assigned the following priorities: p1310 > p1311		
p1311[0...n]	Voltage boost at acceleration / V_boost accelera		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1690, 6300
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.0 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 250.0 \text { [\%] } \end{aligned}$	Factory setting $0.0 \text { [\%] }$
Description:	p1311 only results in a voltage boost when accelerating and generates a supplementary torque/force to accelerate the load.		
	The voltage boost becomes effective for a positive setpoint increase and disappears as soon as the setpoint has been reached.		
	The magnitude of the boost in Volt at a frequency of zero is defined as follows:		
	Voltage boost [V] = p0305 (rated motor current [A]) x p0350 (stator/primary section resistance [ohm]) x p1310 (permanent voltage boost [\%]) / 100 \%		
Dependency:	Setting in p0640 (motor overload factor [\%]) limits the boost.		
	Refer to: p1300, p1310, r1315		
Notice:	The voltage boost results in a higher motor temperature increase.		
Note:	The voltage boost when accelerating can improve the response to small, positive setpoint changes. Assigning priorities for the voltage boosts: refer to p1310		

r1315	Voltage boost total / V_boost total		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6300
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the total resulting voltage boost in volt (p1310 + p1311).		
p1317[0...n]	V/f control diagnostics activation / Uf diagn act		
SERVO	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 1590, 5730
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Activates the V/f control with linear characteristic for diagnostic purposes. 0 : Operation as set in p1300. 1: Activates the V/f control.		
Value:	$\begin{array}{ll} 0: & \text { Off (p1300 eff) } \\ \text { 1: } & \text { On } \end{array}$		
Dependency:	Refer to: p1318, p1319, p1326, p1327		
p1318[0...n]	V/f control ramp-up/ramp-down time / Uf t_rmp-up_rmp-dn		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5300
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \text { [s] } \end{aligned}$	Max 999999.000 [s]	Factory setting 10.000 [s]
Description:	Sets the ramp-up and ramp-down time for the V/f control. The ramp-function generator requires this time to reach the maximum speed (p 1082) from zero.		
Dependency:	Refer to: p1317, p1319, p1326, p1327		
Note:	This ramp is used for stall protection and operates independently of any ramp-function generator that might have been configured.		
p1319[0...n]	V/f control voltage at zero frequency / Uf V at f=0 Hz		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5300
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.0 [Vrms]	$\begin{aligned} & \text { Max } \\ & 50.0[\mathrm{Vrms}] \end{aligned}$	Factory setting 0.0 [Vrms]
Description:	The linear characteristic for the V/f control is defined by $0 \mathrm{~Hz} / \mathrm{p} 1319$ and p1326 / p1327. This parameter specifies the voltage for a frequency of 0 Hz .		
Dependency:	Activates the V/f control using p1317.		
Note:	Linear interpolation is carried ou	points $0 \mathrm{~Hz} / \mathrm{p} 1319$ and p1326	327.

p1322[0...n]	V/f control programmable characteristic frequency 2 / Vf char f2		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6300
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 3000.00[\mathrm{~Hz}] \end{aligned}$	Factory setting 0.00 [Hz]
Description:	The programmable characteristic for the V/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the second point along the characteristic.		
Dependency:	The following applies to the frequ teristic is used that contains the Refer to: p1310, p1311, p1320,	s: p1320 <= p1322 <= p1324 <= perating point. 3, p1324, p1325, p1326, p1327	6. Otherwise, a standard charac-

p1323[0...n]	V/f control programmable characteristic voltage 2 / Vf char U2		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6300
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.0 \text { [Vrms] } \end{aligned}$	Max 10000.0 [Vrms]	Factory setting 0.0 [Vrms]
Description:	The programmable characteristic for the V/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the second point along the characteristic.		
Dependency:	Refer to: p1310, p1311, p1320, p1321, p1322, p1324, p1325, p1326, p1327		
p1324[0...n]	V/f control programmable characteristic frequency 3 / Vf char f3		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6300
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 3000.00[\mathrm{~Hz}] \end{aligned}$	Factory setting 0.00 [Hz]
Description:	The programmable characteristic for the V/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the third point along the characteristic.		
Dependency:	The following applies to the frequency values: p1320 <= p1322 <= p1324 <= p1326. Otherwise, a standard characteristic is used that contains the rated motor operating point.		
p1325[0...n]	V/f control programmable characteristic voltage 3 / Vf char U3		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6300
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.0 \text { [Vrms] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10000.0 \text { [Vrms] } \end{aligned}$	Factory setting 0.0 [Vrms]
Description:	The programmable characteristic for the V/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the third point along the characteristic.		
Dependency:	Refer to: p1310, p1311, p1320, p1321, p1322, p1323, p1324, p1326, p1327		
p1326[0...n]	V/f control programmable characteristic frequency 4 / Vf char f4		
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5300, 6300
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 10000.00[\mathrm{~Hz}] \end{aligned}$	Factory setting 0.00 [Hz]
Description:	In the servo control mode the following applies:		
	The linear characteristic for the V/f control is defined by $0 \mathrm{~Hz} / \mathrm{p} 1319$ and p1326 / p1327.		
	For vector control, the following applies:		
	The programmable characteristic for the V/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the fourth point along the characteristic.		
Dependency:	In the servo control mode the following applies:		

p1335[0...n]	Slip compensation, scaling / Slip comp scal		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1690, 6310
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	Min $0.0 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 600.0 \text { [\%] } \end{aligned}$	Factory setting 0.0 [\%]
Description:	Sets the setpoint for slip compensation in [\%] referred to r0330 (motor rated slip). p1335 $=0.0 \%$: Slip compensation de-activated. p1335 $=100.0 \%$: The slip is completely compensated.		
Dependency:	Prerequisite for a precise slip compensation for p1335 = 100% are the precise motor parameters (p0350 ... p0360). If the parameters are not precisely known, a precise compensation can be achieved by varying p1335.		
Note:	The purpose of slip compensation is to maintain a constant motor speed regardless of the applied load. The fact that the motor speed decreases with increasing load is a typical characteristic of induction motors.		
	For synchronous motors, this effect does not occur and the parameter has no effect in this case.		
	For the open-loop control modes p1300 $=5$ and 6 (textile sector), the slip compensation is internally disabled in order to be able to precisely set the output frequency.		
	If p 1335 is changed while commissioning (p 0009 , $\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of $p 1335$ have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).		

p1336[0...n]	Slip compensation limit value / Slip comp lim val		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6310
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	Min	Max	Factory setting
	$0.00[\%]$	$600.00[\%]$	$250.00[\%]$
Description:	Sets the limit value for slip compensation in [\%] referred to r0330 (motor rated slip).		

$\mathbf{r 1 3 3 7}$	Actual slip compensation / Slip comp act val		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6310
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description: Dependency:	Displays the actual compensated slip [\%] referred to r0330 (rated motor slip). p1335 > 0 \%: Slip compensation active.		
p1338[0...n]	V/f mode resonance damping gain / Vf Res_damp gain		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1690, 6310
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 100.00 \end{aligned}$	Factory setting 0.00
Description: Dependency:	Sets the controller gain for resonance damping for V/f control. Refer to: p1300, p1339, p1349		

Note: The resonance damping function dampens active current oscillations that frequency occur under no-load conditions.
The resonance damping is active in a range of approximately $5 \ldots 90 \%$ of the rated motor frequency (p0310), but up to a maximum of 45 Hz .
For the open-loop control modes p1300 = 5 and 6 (textile sectors), the resonance damping is internally disabled in order that the output frequency can be precisely set.

p1339[0...n]	V/f mode resonance damping filter time constant / Vf Res_damp T		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6310
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$1.00[m s]$	1000.00 [ms]	
Description:	Sets the filter time constant of the controller for resonance damping with V/f control.		
Dependency:	Refer to: p1300, p1338, p1349		

$\mathbf{p 1 3 4 0 [0 . . . n] ~}$	I_max frequency controller proportional gain / I_max_ctrl Kp		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1690
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	0.500	Factory setting
	0.000	0.000	
Description:	Sets the proportional gain of the I_max voltage controller.		
	The I_max controller reduces the drive converter/inverter output current if the maximum current (r0067) is		
	exceeded.		

Dependency: In the V/f modes (p1300) for textile applications and for external voltage setpoints, only the I_max voltage controller is used.
Notice: When de-activating the I_max controller, the following must be carefully observed:
When the maximum current (r0067) is exceeded, the output current is no longer reduced, however, overcurrent alarm messages are generated. The drive is shut down if the overcurrent limit (r0209) is exceeded.
Note: \quad The I_max limiting controller becomes ineffective if the ramp-function generator is de-activated with $p 1122=1$. p1341 = 0: I_max frequency controller de-activated and I_max voltage controller activated over the complete speed range.

p1341[0...n]	I_max frequency controller integral time / I_max_ctrl Tn		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1690
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min		Factory setting
	0.000 [s]	50.000 [s]	0.300 [s]
Description:	Sets the integral time for the I_max frequency controller.		
Dependency:	Refer to: p1340		
Note:	The current limiting controller is deactivated with p1341 $=0$.		

r1343	I_max controller frequency output / I_max_ctrl f_outp		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1690
	P-Group: V/f open-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the effective frequency limit.		
Dependency:	Refer to: p1340		
r1344	I_max controller voltage output / I_max_ctrl V_outp		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1690
	P-Group: V/f open-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the amount by which the converter output voltage is reduced. Refer to: p1340		
Dependency:			
p1345[0...n]	I_max voltage controller proportional gain / I_max_V_ctrl Kp		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1690
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \end{aligned}$	Max 100000.000	Factory setting 0.000
Description:	Sets the proportional gain for the I_max voltage controller.		
Dependency:	Refer to: p1340		
Note:	The controller settings are also used in the current controller of the DC brake (refer to p1232).		
p1346[0...n]	I_max voltage controller integral time / I_max_V_ctrl Tn		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1690
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \text { [s] } \end{aligned}$	Max $50.000 \text { [s] }$	Factory setting 0.030 [s]
Description:	Sets the integral time for the I_max voltage controller.		
Dependency:	Refer to: p1340		
Note:	p1346 = 0: Integral time of the I_max voltage controller de-activated.		

p1349[0...n]	V/f mode resonance damping maximum frequency / Vf res_damp F_max		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6310
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 3000.00[\mathrm{~Hz}] \end{aligned}$	Factory setting 0.00 [Hz]
Description: Dependency:	Sets the maximum output frequency above which the resonance damping for V/f control is de-activated.		
Note:	For p1349 = 0, the changeover limit is automatically set to 95% of the rated motor frequency - however, to a max. of 45 Hz .		
p1350[0...n]	Soft starting / Soft starting		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 1690
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets whether the voltage is continuously increased during the magnetizing phase (p1350 = 1, On) or whether it jumps directly to the voltage boost (p1350 = 0, Off).		
Value:	$\begin{array}{ll} 0: & \text { Off } \\ \text { 1: } & \text { On } \end{array}$		
Note:	The settings for this parameter have the fo $0=$ off (jump directly to voltage boost) Advantage: Flux is established quickly -> to Disadvantage: The motor can move while it 1 = on (voltage is continually established) Advantage: The motor is unlikely to rotate Disadvantage: The flux is established slow	wing advantages and disadvanta que is quickly available is being magnetized -> torque is available later	
p1356[0...n]	CI: V/f control, angular setpoint / Vf ang setpoint		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: -
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the differential angular generation for V/f control.		
p1358[0...n]	Angular difference, symmetrizing, actual angle / Sym act angle		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: V/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -		
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{1}{\text { Max }}$	Factory setting 0
Description:	Sets the dead time for the symmetrizing of the actual angle value for the differential angular generation. The selected multiplier refers to the current controller clock cycle (dead time= p1358 * p0115[0]).		

r1359	CO: Angular difference / Angular difference				
VECTOR	Can be changed: - C		Calculated: -	Access level: 3	
	Data type: FloatingPoint32 Dy		Dynamic index: -	Func. diagram: -	
	P-Group: V/f open-loop control U		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	$\begin{gathered} \operatorname{Min} \\ -\left[{ }^{\circ}\right] \end{gathered}$		Max	Factory setting	
Description:	Displays the output of the differential angular generation.				
Note:	The difference between the setpoint angle, read-in in p1356 and the actual value of the V/f control delayed with p1358 is displayed.				
p1400[0...n]	Velocity control, configuration / v_ctrl config				
SERVO (Lin)	Can be changed: U, T Ca		ulated: -	Access level: 2	
	Data type: Unsigned16 Dy		Dynamic index: DDS, p0180	Func. diagram: 1590, 5490	
	P-Group: Closed-loop control U		Units group: -	Unit selection: -	
				Expert list: 1	
	Min Max		Max	Factory setting	
Description:	Sets the configuration for the closed-loop velocity control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Reference model velocity setpoint I component		Off	5030
		Force limiting active in motoring/regenerating mode	Yes	No	$\begin{aligned} & 1610, \\ & 5640 \end{aligned}$
	05	$\mathrm{Kp} / \mathrm{Tn}$ adaptation active	Yes	No	5040, 5042,
					5210
		Interpolation velocity controller pre-control active	Yes	No	5020
		Interpolation force setpoint active	Yes	No	5610
		Damping for encoderless open-loop controlled oper.	Yes	No	-
		Velocity pre-control	For balancing	For setp_filter 2	5020
		Encoderless oper. velocity actual value starting value	Setpoint	0.0	5210
		Encoderless operation changeover	Steady-state	When accelerating	-
		Motoring/regenerating depending on	Speed setpoint	Actual speed value	
Note:	Re bit 07:				
	The interpolator is only effective for clock-cycle synchronous PROFIBUS operation and when the master receives sign-of-life (STW 2.12 ... STW 2.15). Further, for active Dynamic Servo Control (DSC) an additional dead time of one velocity controller clock cycle is obtained.				
	Re bit 11:				
	If the motor rotates when the pulses are enabled, then we recommend p1400.11 $=1$ (starting value $=$ setpoint) with the matching sign.				
	If the motor remains stationary (zero speed) when the pulses are enabled, the we recommend p1400.11 $=0$ (sta ing value $=0.0$).				
	Re bit 12:				
	If a changeover is made from operation with encoder to encoderless operation while accelerating (with the thresh old from p1404), then we recommend p1400.12 $=0$.				
	If the changeover is made from operation with encoder to encoderless at constant speed/velocity (e.g. with a DDS changeover or if there is an encoder fault via p0491) then we recommend p1400.12 $=1$.				

06	Free Tn adaptation active	Yes	No	-
14	Torque pre-control	Always active	For n_ctrl enab	-
15	Sensorless vector control, speed pre-control	Yes	No	-

Note:
Re bit 01:
When the bit is set, the I component of the speed controller is kept when changing into the open-loop controlled mode.

p1401[0...n]	Flux control configuration / Flux ctrl config			
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dynamic index: DDS, p0180	Func. diagram: 6723	. 6722,
	P-Group: Closed-loop control	Units group: -	Unit selection:	
	Not for motor type: PEM, REL		Expert list: 1	
	Min	Max	Factory setting 1110 bin	
Description:	Sets the configuration for flux setpoint control			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Flux setpoint soft starting active	Yes	No	
	01 Flux setpoint differentiation active	Yes	No	
	02 Flux build-up control active	Yes	No	-
	03 Flux characteristic, load-dependent	Yes	No	
	04 Flux controller (ASM with encoder)	Yes	No	
	05 Flux impression (ASM with encoder)	with model chngov	From 30 \% n_rated	
	06 Quick magnetizing	Yes	No	
Note:	Re bit 00 (not for permanent-magnet synchronous motors):			
	Initially, the flux is only established with a low rate of rise when magnetizing the induction motor. The flux setpoint p1570 is reached again at the end of the magnetizing time p0346.			
	Re bit 01 (not for permanent-magnet synchronous motors):			
	Initially, the flux is only established with a low rate of rise when magnetizing the induction motor. The flux setpoint p 1570 is reached again at the end of the magnetizing time p0346. When quick magnetizing ($\mathrm{p} 1401.6=1$) is selected, smooth starting is internally de-activated and alarm A07416 is displayed.			
	The flux differentiation can be switched out if a significant ripple occurs in the field-generating current setpoint (r0075) when entering the field weakening range. However, this is not suitable for fast acceleration operations because then, the flux decays more slowly and the voltage limiting responds.			
	Re bit 02 (not for permanent-magnet synchronous motors):			
	The flux build-up control operates during the magnetizing phase p0346 of the induction motor. If it is switched out, a constant current setpoint is impressed and the flux is built-up corresponding to the rotor time constant. When quick magnetizing ($p 1401.6=1$) is selected and when flux build-up control is de-energized alarm A07416 is displayed.			
	Re bit 03:			
	The load-dependent calculation of the flux characteristic is only available for separately-excited synchronous motors.			
	Re bit 04 (only for vector control with encoder):			
	The flux controller does not operate in the range of the current model and not in the range of the flux impression (refer to p1750.4).			
	Re bit 05 (only for vector control with encoder):			
	Extremely rugged control operation is possible by directly toggling between the current model and flux impression. We therefore recommend that, in addition, the time-controlled model change is switched in ($p 1750.4=1$) or the model changeover limits are significantly increased (p1752 > 0.35 * p0311; p1753 = 5%).			
	Re bit 06 (not for induction motors):			
	Magnetizing is performed with maximum current (0.9 * r0067). After the reference flux is reached the current is reduced via smoothing p1616 (maximum 32 * p0115[2]). With active identification of the stator resistance (see p0621) quick magnetizing is internally de-activated and alarm A07416 is displayed. During a flying restart of a rotating motor (see p1200) no quick magnetizing takes place.			

p1402[0...n]	Closed-loop current control and motor model configuration / _ctrl config			
SERVO (Lin)	Can be changed: T	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: DDS, p0180	Fun	
	P-Group: Closed-loop control	Units group: -	Unit	
	Not for motor type: -		Exp	
	Min	Max	$\begin{aligned} & \text { Facto } \\ & 0100 \end{aligned}$	
Description:	Sets the configuration for the closed-loop control and the motor model.			
Bit field:	Bit Signal name 01 Park encoder for v_act > p1404 02 Current controller adaptation active 04 Force-velocity pre-control with encoder	1 signal	0 signal	FP
		Yes	No	
		Yes	No	5714
		Yes	No	5060
Note:	Re bit 01:			
	When the bit is set, the encoder is parked as soon as the actual velocity is greater than the changeover velocity (p1404). The encoder state is displayed in r0487.14.			
	Re bit 02:			
	The current controller adaptation (p0391 ... p0393) is only calculated when the bit is set.			
p1402[0...n]	Closed-loop current control and motor model configuration / I_ctrl config			
SERVO	Can be changed: T	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dynamic index: DDS, p0180	Func	
	P-Group: Closed-loop control	Units group: -	Unit	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting 0100 bin	
Description:	Sets the configuration for the closed-loop control and the motor model.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	01 Park encoder for n_ist > p1404	Yes	No	-
	02 Current controller adaptation active	Yes	No	5714
	04 Torque-speed pre-control with encoder	Yes	No	5060
Note:	Re bit 01:			
	When the bit is set, the encoder is parked as soon as the actual speed is greater than the changeover speed (p1404). The encoder state is displayed in r0487.14.			
	Re bit 02:			
	The current controller adaptation (p0391 ... p0393) is only calculated when the bit is set.			
p1402[0...n]	Closed-loop current control and motor model configuration / I_ctrl config			
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3	
	Data type: Unsigned16	Dynamic index: DDS, p0180	Func. diagram: -	
	P-Group: Closed-loop control	Units group: -	Unit selection: -	
	Not for motor type: REL		Expert list: 1	
	Min	Max	Factory setting 0001 bin	
Description:	Sets the configuration for the closed-loop control and the motor model.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Speed-following error correction active	Yes	No	
	02 Current controller adaptation active	Yes	No	6714
Note:	Re bit 00:			
	When the bit is set, the speed following error is compensated that is obtained as a result of the smoothing time co stant in p1441.			
	Re bit 02:			
	The current controller adaptation (p0391 ... p0	0393) is only calculated when the	bit is set.	

r1406.8... 12 CO/BO: Control word velocity controller / STW v_ctrl

SERVO (Lin)	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dynamic index: -	Func. diagram: 1530, 2520	
	P-Group: Closed-loop control		Units group: -	Unit selection: -	
	Not for motor type: REL			Expert list: 1	
	Min		Max	Fact	
Description:	Displays the control word of the velocity controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Travel to fixed stop active	Yes	No	-
	12	Force control active	Yes	No	2522,

r1407.0... 13	CO/BO: Status word velocity controller / ZSW v_ctrl			
SERVO (Lin)	Can be changed: -	Calculated: - Ac		
	Data type: Unsigned16	Dynamic index: - Fu		Func. diagram: 1530, 2522
	P-Group: Closed-loop control	Units group: -	Unit selection: -	
	Not for motor type: REL		Expert list: 1	
	Min	Max	Factory setting	
Description:	Displays the status word of the velocity controller.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	$00 \mathrm{~V} / \mathrm{f}$ control active	Yes	No	-
	01 Encoderless operation active	Yes	No	$\begin{aligned} & 4710, \\ & 5060 \end{aligned}$
	02 Force control active	Yes	No	8010
	04 Velocity setpoint from DSC	Yes	No	3090 5020,
				5030
	05 Velocity controller I component frozen	Yes	No	$\begin{aligned} & 5040, \\ & 5042, \end{aligned}$
				5210
	06 Velocity controller I component set	Yes	No	5040,
				$\begin{aligned} & 5042, \\ & 5210 \end{aligned}$

Note: \quad Re bit 04:
The following conditions must be fulfilled to set to 1 :

- CI: p1190 and Cl : p1191 must be interconnected with a signal source that is not equal to zero.
- it is not permissible that OFF1, OFF3 or STOP2 are active.
- it is not permissible that the motor data identification is active.
- Master control must not be active.

The following conditions can mean that the DSC function is not active in spite of the fact that the bit is set:

- clock-cycle synchronous operation is not selected (r2054 not equal to 4).
- the PROFIBUS is not clock-cycle synchronous (r2064[0] not equal to 1).
- DSC is not switched in on the control side; this means that KPC $=0$ is transferred as value at CI: p1191.

r1408.0... 9	CO/BO: Status word closed-loop current control / ZSW curr ctrl		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 1530,2530
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Expert list: 1	
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status word of the closed-loop current control.	1 signal	Active
Bit field:	Bit Signal name	Active	signal
	00	Cl-loop curr ctrl	Active
	04	Vd limit	Active

Note:	The selected current limit is taken into account by the upstream torque limiting; this is the reason that bits 6,7 and 8 are only set for overshoots due to the current setpoint filter.			
r1408.0.. 12	CO/BO: Status word closed-loop current control / ZSW curr ctrl			
VECTOR (n / M)	Can be changed: -	Calculated: -	Access	
	Data type: Unsigned16	Dynamic index: -	Func. di	2530
	P-Group: Closed-loop control	Units group: -	Unit sele	
	Not for motor type: REL		Expert	
	Min	Max	Factory	
	-	-	S	
Description:	Displays the status word of the closed-loop current control.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Current ctrl act	Active	Not active	-
	01 Id control, l-component limiting	Active	Not active	6714
	03 Voltage limiting	Active	Not active	6714
	10 Speed adaptation, limiting	Active	Not active	-
	11 Speed adaptation, speed deviation	Out tolerance	In tolerance	6719
	12 Motor stalled	Yes	No	$\begin{aligned} & 6719, \\ & 8018 \end{aligned}$
p1412[0...n]	Speed setpoint filter, dead time / n_set dead time			
TM41	Can be changed: U, T	Calculated: -	Access	
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 9674	
	P-Group: Closed-loop control	Units group: -	Unit selection: -	
	Not for motor type: REL		Expert list: 1	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \text { [ms] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1.000[\mathrm{~ms}] \end{aligned}$	Factory setting 0.000 [ms]	
Description:	Sets the delay of the speed setpoint for the incremental encoder emulation.			
Note:	This parameter has no function in the SINAMICS operating mode ($\mathrm{p} 4400=1$) of the TM41.			
p1414[0...n]	Velocity setpoint filter activation / v_set_filt active			
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access	
	Data type: Unsigned16	Dynamic index: DDS, p0180	Func. di	
	P-Group: Closed-loop control	Units group: -	Unit sele	
	Not for motor type: REL		Expert li	
	Min	Max	Factory 0000 bin	
Description:	Setting for activating/de-activating the velocity setpoint filter.			
Recommend.:	If only one filter is required, filter 1 should be activated and filter 2 de-activated, to avoid excessive processing tim			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Activate filter 1	Yes	No	-
	01 Activate filter 2	Yes	No	-
Dependency:	The individual velocity setpoint filters are parameterized as of p1415.			
p1414[0...n]	Speed setpoint filter activation / n_set_filt act			
SERVO	Can be changed: U, T	Calculated: -	Access	
	Data type: Unsigned16	Dynamic index: DDS, p0180	Func. di	
	P-Group: Closed-loop control	Units group: -	Unit sele	
	Not for motor type: REL		Expert li	
	Min	Max	Factory 0000 bin	
Description:	Setting for activating/de-activating the speed setpoint filter.			

Recommend.: If only one filter is required, filter 1 should be activated and filter 2 de-activated, to avoid excessive processing time.

Description:	Sets the type for speed setpoint filter 1.
Value:	$0: \quad$ Low pass: PT1
	1: Low pass: PT2
Dependency:	2: General 2nd-order filter
	PT1 low pass: p1416
	PT2 low pass: 1417, p1418
	General filter: p 1417 ... p1420

p1416[0...n]	Velocity setpoint filter 1 time constant / v_set_filt 1 T		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	Max 5000.00 [ms]	Factory setting 0.00 [ms]
Description:	Sets the time constant for the velocity setpoint filter 1 (PT1).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the velocity filter is set as a PT1 low pass.		
p1416[0...n]	Speed setpoint filter 1 time constant / n_set_filt 1 T		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 5000.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description:	Sets the time constant for the speed setpoint filter 1 (PT1).		
Dependency:	Refer to: p1414, p1415		
Note:	For SERVO (p0107) the following applies:		
	This parameter is only effective if the speed filter is set as a PT1 low pass.		
p1416[0...n]	Speed setpoint filter 1 time constant / n_set_filt 1 T		
VECTOR (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1700, 6030
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 5000.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description:	Sets the time constant for the speed setpoint filter 1 (PT1).		
Note:	For SERVO (p0107) the following applies:		
	This parameter is only effective if the speed filter is set as a PT1 low pass.		
p1417[0...n]	Velocity setpoint filter 1 denominator natural frequency / v_set_filt 1 fn_d		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 2000.0 [Hz]
Description:	Sets the denominator natural frequency for velocity setpoint filter 1 (PT2, general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the velocity filter is parameterized as a PT2 low pass or as general filter.		

p1417[0...n]	Speed setpoint filter 1 denominator natural frequency / n_set_filt 1 fn_d		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	Max $16000.0[\mathrm{~Hz}]$	Factory setting 2000.0 [Hz]
Description:	Sets the denominator natural frequency for the speed setpoint filter 1 (PT2, general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter.		
	The filter is only effective if the natural frequency is less than half of the sampling frequency.		
p1417[0...n]	Speed setpoint filter 1 denominator natural frequency / n_set_filt 1 fn_d		
TM41	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 9674
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	Max $16000.0[\mathrm{~Hz}]$	Factory setting 2000.0 [Hz]
Description:	Sets the denominator natural frequency for the speed setpoint filter 1 (PT2) of the incremental encoder emulation.		
Dependency:	Refer to: p1414		
Note:	This parameter is only effective if the speed setpoint filter in p1414 is activated.		
	The filter is only effective if the natural frequency is less than half of the sampling frequency.		
	This parameter has no function in the SINAMICS operating mode ($\mathrm{p} 4400=1$) of the TM41.		
p1418[0...n]	Velocity setpoint filter 1 denominator damping / v_set_filt 1 D_d		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.001 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description:	Sets the denominator damping for velocity setpoint filter 1 (PT2, general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the velocity filter is parameterized as a PT2 low pass or as general filter.		
p1418[0...n]	Speed setpoint filter 1 denominator damping / n_set_filt 1 D_d		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.001 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description:	Sets the denominator damping for speed setpoint filter 1 (PT2, general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter.		

p1418[0...n]	Speed setpoint filter 1 denominator damping / n_set_filt 1 D_d		
TM41	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 9674
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.001 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1.000 \end{aligned}$	Factory setting 0.700
Description:	Sets the denominator damping for the speed setpoint filter 1 (PT2) of the incremental encoder emulation.		
Dependency:	Refer to: p1414		
Note:	This parameter is only effective if the speed setpoint filter in p1414 is activated.		
	This parameter has no function in the SINAMICS operating mode (p4400 = 1) of the TM41.		

p1419[0...n]	Velocity setpoint filter 1 numerator natural frequency / v_set_filt $\mathbf{1}$ fn_n		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Max	Expert list: 1
	Min	$16000.0[\mathrm{~Hz}]$	Factory setting
	$0.5[\mathrm{~Hz}]$	$2000.0[\mathrm{~Hz}]$	
Description:	Sets the numerator natural frequency for velocity setpoint filter 1 (general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the velocity filter is set as a general filter.		
	The filter is only effective if the natural frequency is less than half of the sampling frequency.		

p1419[0...n]	Speed setpoint filter 1 numerator natural frequency / n_set_filt 1 fn_n		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 2000.0 [Hz]
Description:	Sets the numerator natural frequency for speed setpoint filter 1 (general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the speed filter is set as a general filter.		
	The filter is only effective if the natural frequency is less than half of the sampling frequency.		

p1420[0...n]	Velocity setpoint filter 1 numerator damping / v_set_filt 1 D_n		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
	0.000	0.700	
Description:	Sets the numerator damping for velocity setpoint filter 1 (general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the velocity filter is set as a general filter.		

p1420[0...n]	Speed setpoint filter 1 numerator damping / n_set_filt 1 D_n		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description:	Sets the numerator damping for speed setpoint filter 1 (general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the speed filter is set as a general filter.		
p1421[0...n]	Velocity setpoint filter 2 type / v_setp_filt 2 typ		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 0
Description:	Sets the type for speed setpoint filter 2.		
Value:	0: Low pass: PT1 1: Low pass: PT2 2: General 2nd-order filter		
Dependency:	PT1 low pass: p1422		
	PT2 low pass: p1423, p1424		
	General filter: p1423 ... p1426		
p1421[0...n]	Speed setpoint filter 2 type / n_set_filt 2 typ		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 0
Description:	Sets the type for speed setpoint filter 2.		
Value:	0: Low pass: PT1 1: Low pass: PT2 2: General 2nd-order filter		
Dependency:	PT1 low pass: p1422		
	PT2 low pass: p1423, p1424		
	General filter: p1423 ... p1426		
p1422[0...n]	Velocity setpoint filter 2 time constant / v_set_filt 2 T		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	Max 5000.00 [ms]	Factory setting 0.00 [ms]
Description:	Sets the time constant for the velocity setpoint filter 2 (PT1).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the velocity filter is set as a PT1 low pass.		

p1422[0...n]	Speed setpoint filter 2 time constant / n_set_filt 2 T		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [ms] } \end{aligned}$	Max $5000.00 \text { [ms] }$	Factory setting 0.00 [ms]
Description:	Sets the time constant for the speed setpoint filter 2 (PT1).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the speed filter is set as a PT1 low pass.		
p1423[0...n]	Velocity setpoint filter 2 denominator natural frequency / v_set_filt 2 fn_d		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 2000.0 [Hz]
Description:	Sets the denominator natural frequency for velocity setpoint filter 2 (PT2, general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the velocity filter is parameterized as a PT2 low pass or as general filter.		
p1423[0...n]	Speed setpoint filter 2 denominator natural frequency / n_set_filt 2 fn_d		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 2000.0 [Hz]
Description:	Sets the denominator natural frequency for speed setpoint filter 2 (PT2, general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter.		
p1424[0...n]	Velocity setpoint filter 2 denominator damping / v_set_filt 2 D_d		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.001 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description:	Sets the denominator damping for velocity setpoint filter 2 (PT2, general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the velocity filter is parameterized as a PT2 low pass or as general filter.		

p1424[0...n]	Speed setpoint filter 2 denominator damping / n_set_filt 2 D_d		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.001 \end{aligned}$	Max 10.000	Factory setting 0.700
Description:	Sets the denominator damping for speed setpoint filter 2 (PT2, general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter.		
p1425[0...n]	Velocity setpoint filter 2 numerator natural frequency / v_set_filt 2 fn_n		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min $0.5[\mathrm{~Hz}]$	$\begin{aligned} & \text { Max } \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 2000.0 [Hz]
Description:	Sets the numerator natural frequency for velocity setpoint filter 2 (general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the velocity filter is set as a general filter.		
	The filter is only effective if the natural frequency is less than half of the sampling frequency.		
p1425[0...n]	Speed setpoint filter 2 numerator natural frequency / n_set_filt 2 fn_n		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 2000.0 [Hz]
Description:	Sets the numerator natural frequency for speed setpoint filter 2 (general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the speed filter is set as a general filter.		
	The filter is only effective if the natural frequency is less than half of the sampling frequency.		
p1426[0...n]	Velocity setpoint filter 2 numerator damping / v_set_filt 2 D_n		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description:	Sets the numerator damping for velocity setpoint filter 2 (general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the velocity filter is set as a general filter.		

p1426[0...n]	Speed setpoint filter 2 numerator damping / n_set_filt 2 D_n		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description:	Sets the numerator damping for speed setpoint filter 2 (general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the speed filter is set as a general filter.		
p1428[0...n]	Velocity pre-control balancing dead time / n_prectrBal t_dead		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5030, 5042, 5210
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2.0 \end{aligned}$	Factory setting 0.0
Description:	Sets the dead time to symmetrize the velocity setpoint for active force pre-control.		
Dependency:	In conjunction with p1429, this parameter can emulate the characteristics of how the force is established (dynamic response of closed current control loop).		
p1428[0...n]	Speed pre-control balancing dead time / n_prectrBal t_dead		
SERVO, VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5030, 5042, 5210, 6031
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2.0 \end{aligned}$	Factory setting 0.0
Description:	Sets the dead time to symmetrize the speed setpoint for active torque pre-control.		
Dependency:	In conjunction with p1429, this response of closed current con For VECTOR (r0107) the follow The parameter is only effective 1). For p1400.2 = 0, a fixed dead Refer to: p1429, p1511	emulate the characteristics of h ation model is supplied using ex d.	e torque is established (dynamic acceleration signals (p1400.2 =
p1429[0...n]	Velocity pre-control balancing time constant / n_prectr bal T		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5030, 5042, 5210
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	Max 10000.00 [ms]	Factory setting 0.00 [ms]
Description:	Sets the time constant (PT1) for	g the velocity setpoint for active	pre-control.

Dependency:	In conjunction with p1428, this parameter can emulate the characteristics of how the force is established (dynamic response of closed current control loop). Refer to: p1428, p1511		
p1429[0...n]	Speed pre-control balancing tim	constant / n_prectr b	
SERVO, VECTOR (n / M)	Can be changed: U, T Data type: FloatingPoint32	Calculated: - Dynamic index: DDS, p0180	Access level: 3 Func. diagram: 5030, 5042, 5210, 6031
	P-Group: Closed-loop control Not for motor type: REL	Units group: -	Unit selection: - Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00 \text { [ms] } \end{aligned}$	Max 10000.00 [ms]	Factory setting 0.00 [ms]
Description: Dependency:	Sets the time constant (PT1) for symmetriz In conjunction with p1428, this parameter c response of the closed current control loop). For VECTOR (r0107) the following applies: The parameter is only effective if the accele 1). For p1400.2 $=0$, time constant p1442 (Refer to: p1428, p1511	g the speed setpoint for active tor emulate the characteristics of ation model is supplied using ex p1452 for sensorless vector co	pre-control. orque is established (dynamic acceleration signals (p1400.2 = is used.
p1430[0...n]	CI: Velocity pre-control / v_prectrl		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1550, 1590, 3090, 5020, 5030
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description: Notice:	Sets the signal source for the velocity pre-control channel (velocity pre-control or force pre-control). The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1430[0...n]	CI: Speed pre-control / n_prectrl		
SERVO	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1550, 1590, 3090, 5020, 5030
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for speed pre-control channel (speed pre-control or torque pre-control). The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Notice:			
r1432	CO: Velocity pre-control after symmetrizing / n_prectr after sym		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5030
	P-Group: Closed-loop control	Units group: 4_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the velocity pre-control value after symmetrizing for the force build-up (emulates the closed current control loop).		
Dependency:	Symmetrizing can be parameterized with p1428 and/or p1429.		

r1432	CO: Speed pre-control after symmetrizing / n_prectr after sym		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5030
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the speed pre-control value after symmetrizing for the torque build-up (emulates the closed current control loop).		
Dependency:	Symmetrizing can be parameterized with p1428 and/or p1429.		
p1433[0...n]	Velocity controller reference model natural frequency / v_ctrl RefMod fn		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5030, 6031
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\operatorname{Min}_{0.0}$	$\begin{aligned} & \operatorname{Max} \\ & 8000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting $0.0[\mathrm{~Hz}]$
Description:	Sets the natural frequency of a PT2 element for the reference model of the velocity controller.		
Recommend.:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual velocity value) are virtually identical when the I-component of the velocity controller is disabled.		
Dependency:	Together with p1434 and p1435, the characteristics (in the time domain) of the closed-loop velocity control (P) can be emulated.		
p1433[0...n]	Speed controller reference model natural frequency / n_ctrl RefMod fn		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
(n / M)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5030, 6031
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.0} \\ & 0 . \mathrm{Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 8000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting $0.0[\mathrm{~Hz}]$
Description:	Sets the natural frequency of a PT2 element for the reference model of the speed controller.		
Recommend.:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual speed value) are virtually identical when the I-component of the speed controller is disabled.		
Dependency:	Together with p1434 and p1435, the characteristics (in the time domain) of the closed-loop speed control (P) can be emulated.		
	For VECTOR (r0107) the following applies:		
	The reference model is activated with p1400.3 $=1$. For sensorless vector control $(p 1300=20)$ the reference mode is disabled in open-loop speed controlled operation (refer to p1755).		
p1434[0...n]	Velocity controller reference model damping / v_ctrl RefMod D		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5030, 6031
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\operatorname{Min}_{0.000}$	$\begin{aligned} & \text { Max } \\ & 5.000 \end{aligned}$	Factory setting 1.000
Description:	Sets the damping of a PT2 element for the reference model of the velocity controller.		

Recommend.: \quad| The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual |
| :--- |
| velocity value) are virtually identical when the l-component of the velocity controller is disabled. |

Dependency: \quad| Together with p1433 and p1435, the characteristics (in the time domain) of the P-controlled velocity control loop |
| :--- |
| can be emulated. |
| Refer to: p1433, p1435 |

p1434[0...n]	Speed controller reference model damping / n_ctrl RefMod D		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
(n / M)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5030, 6031
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 5.000 \end{aligned}$	Factory setting 1.000
Description:	Sets the damping of a PT2 element for the reference model of the speed controller.		
Recommend.:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual speed value) are virtually identical when the l-component of the speed controller is disabled.		
Dependency:	In conjunction with p1433 and p1435, the characteristics (in time) of the P-controlled speed control loop can be emulated.		
	For VECTOR (r0107) the following applies:		
	The reference model is activated with p1400.3 $=1$.		
	Refer to: p1433, p1435		

p1435[0...n]	Velocity controller reference model dead time / v_ctrRefMod t_dead		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5030, 6031
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2.00 \end{aligned}$	Factory setting 0.00
Description:	Sets the "fractional" dead time This parameter emulates the comer The selected multiplier refers to	ce model of the velocity contro	velocity control loop. $735 \text { * p0115[1]). }$
Recommend.:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual velocity value) are virtually identical when the l-component of the velocity controller is disabled.		
Dependency:	Together with p1433 and p1434, the characteristics (in the time domain) of the P-controlled velocity control loop can be emulated.		
	Refer to: p0115, p1433, p1434		


```
Note: The velocity actual value should be smoothed for encoders with a low pulse number or for resolvers.
After this parameter has been changed, we recommend that the velocity controller is adapted and/or the velocity
```

controller settings checked Kp (p1460) and Tn (p1462).

p1441[0...n]	Actual speed smoothing time / n_act T_smooth		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 4710,4715
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Max	Expert list: 1
	Min	$50.00[\mathrm{~ms}]$	Factory setting
	$0.00[m s]$	0.00 [ms]	
Description:	Sets the smoothing time constant (PT1) for the speed actual value.		
Dependency:	Refer to: r0063		
Note:	The speed actual value should be smoothed for encoders with a low pulse number or for resolvers.		
	After this parameter has been changed, we recommend that the speed controller is adapted and/or the speed con-		

p1441[0...n] Actual speed smoothing time / n_act T_smooth

Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL

Min	Max
$0.00[\mathrm{~ms}]$	$1000.00[\mathrm{~ms}]$

Description: Sets the smoothing time constant (PT1) for the speed actual value.
Dependency: Refer to: r0063
Notice: \quad Smoothing times above 20 ms are only possible if the drive is accelerated or braked with the appropriately long ramp-up/ramp-down times. Otherwise, significant torque errors can occur and there is the danger that the drive is powered down (tripped) with F07902 (motor stalled).
Note: The speed actual value should be smoothed for encoders with a low pulse number or for resolvers.
After this parameter has been changed, we recommend that the speed controller is adapted and/or the speed controller settings checked $K p$ ($p 1460$) and Tn ($p 1462$).
p1442[0...n] Speed controller speed actual value smoothing time / n_ctr n_act T_smth
VECTOR (n / M) Can be changed: U, T

Data type: FloatingPoint32
Calculated: CALC_MOD_ALL Access level: 2

P-Group: Closed-loop control
Not for motor type: REL

Min	Max	Factory setting
$0.00[\mathrm{~ms}]$	$32000.00[\mathrm{~ms}]$	$4.00[\mathrm{~ms}]$

Description: Sets the smoothing time for the actual speed value of the speed controller for closed-loop control with encoder.
Note: The smoothing must be increased if there is gear backlash. For longer smoothing times, the integral time of the speed controller must also be increased (e.g. using p0340 = 4).

$\mathbf{r 1 4 4 4}$	Velocity controller, velocity setpoint, total / v_ctrl v_set stat		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5030
	P-Group: Closed-loop control	Units group: $4 _1$	Unit selection: $p 0505$
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$
	Displays the sum of all velocity setpoints that are present.		

r1454	CO: Velocity controller system deviation I component / v_ctrl sys dev Tn		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5040, 5042
	P-Group: Closed-loop control	Units group: 4_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the system deviation of the I component of the velocity controller.		

r1454	CO: Speed controller system deviation I component / n_ctrl sys dev Tn		
SERVO, VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5040, 5042, 6040
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	When the reference model is inactive ($\mathrm{p} 1433=0 \mathrm{~Hz}$), this parameter corresponds to the system deviation of the complete PI controller (r1454 = r0064).		
p1455[0...n]	CI: Velocity controller, P gain adaptation signal / v_ctrl Adpt_sig Kp		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description: Dependency:	Sets the source for the adaptation signal to additionally adapt the P gain of the velocity controller.		
p1455[0...n]	CI: Speed controller P gain adaptation signal / n_ctrl Adpt_sig Kp		
SERVO	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description: Dependency:	Sets the source for the adaptation signal to additionally adapt the P gain of the speed controller. Refer to: p1456, p1457, p1458, p1459		

p1457[0...n]	Velocity controller P gain adaptation upper starting point / v_ctrl AdaptKp up		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Max	Expert list: 1

p1458[0...n]	Adaptation factor, lower / Adapt_factor lower		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 200000.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description:	Sets the adaptation factor before the adaptation range ($0 \% \ldots \mathrm{p} 1456$) to additionally adapt the P gain of the speed/velocity controller.		
Dependency:	Refer to: p1455, p1456, p1457, p1459		
Note:	If the upper transition point p1457 of the speed controller adaptation is set to lower values than the lower transition p 1456 , then the controller gain below p1457 is adapted with p1459 and above p1456, with p1458.		
p1459[0...n]	Adaptation factor, upper / Adapt_factor upper		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 200000.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 100.0 \text { [\%] } \end{aligned}$
Description:	Sets the adaptation factor after the adaptation range (> p1457) to additionally adapt the P gain of the speed/velocity controller.		
Dependency:	Refer to: p1455, p1456, p1457, p1458		
p1459[0...n]	Adaptation factor, upper / Adapt_factor upper		
VECTOR (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200000.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 100.0 \text { [\%] } \end{aligned}$
Description:	Sets the adaptation factor after the adaptation range (> p1457) to additionally adapt the P gain of the speed/velocity controller.		
Dependency:	Refer to: p1455, p1456, p1457, p1458		
Note:	If the upper transition point p1457 of the speed controller adaptation is set to lower values than the lower transition p 1456 , then the controller gain below p1457 is adapted with p1459 and above p1456, with p1458.		
p1460[0...n]	Velocity controller, P gain adaptation velocity, lower / v_ctrl Kp n lower		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	```Func. diagram: 5040, 5042, 5050```
	P-Group: Closed-loop control	Units group: 24_2	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.000}[\mathrm{Ns} / \mathrm{m}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 999999.000[\mathrm{Ns} / \mathrm{m}] \end{aligned}$	Factory setting 10.000 [Ns / m]
Description:	Sets the P gain of the velocity controller before the adaptation velocity range ($0 \ldots \mathrm{p} 1464$). This value corresponds to the basic setting of the P gain of the velocity controller without adaptation ($p 1461=100 \%$).		
Dependency:	Refer to: p1461, p1464, p1465		
Note:	When automatically calculating the velocity controller, only the motor inertia is taken into account (p 0341). For higher inertias ($\mathrm{p} 0342>1$ or p1498 > 0) we recommend that the velocity controller gain is checked.		

p1460[0...n]	Speed controller P gain adaptation speed, lower / n_ctrl Kp n lower		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5040, 5042, 5050
	P-Group: Closed-loop control	Units group: 17_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.000 [$\mathrm{Nms} / \mathrm{rad}$]	Max 999999.000 [$\mathrm{Nms} / \mathrm{rad}$]	Factory setting 0.300 [$\mathrm{Nms} / \mathrm{rad}$]
Description:	Sets the P gain of the speed controller before the adaptation speed range ($0 \ldots \mathrm{p} 1464$). This value corresponds to the basic setting of the P gain of the speed controller without adaptation (p1461 = 100%).		
Dependency:	Refer to: p1461, p1464, p1465		
Note:	When automatically calculating the speed controller, only the motor moment of inertia is taken into account (p 0341). For higher load moments of inertia ($\mathrm{p} 0342>1$ or $\mathrm{p} 1498>0$) we recommend that the speed controller gain is checked.		

$\mathbf{p 1 4 6 0 [0 . . . n] ~}$	Speed controller P gain adaptation speed, lower / n_ctrl Kp n lower		
VECTOR (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1700,6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1

p1461[0...n]	Velocity controller, P gain adaptation velocity, upper / v_ctrl Kp n upper		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Max
	Min	Expert list: 1	

p1461[0...n]	Speed controller Kp adaptation speed, upper scaling / n_ctrl Kp n upper		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Max	Expert list: 1
	Min	200000.0 [\%]	Factory setting
	$0.0[\%]$	100.0 [\%]	
Description:	Sets the P gain of the speed controller for the upper adaptation speed range (> p1465). The entry is made referred		
	to the P gain for the lower adaptation speed range of the speed controller (\% referred to p1460).		
Dependency:	Refer to: p1460, p1464, p1465		

Note:	When automatically calculating the speed controller, only the motor moment of inertia is taken into account (p 0341). For higher load moments of inertia ($\mathrm{p} 0342>1$ or $\mathrm{p} 1498>0$) we recommend that the speed controller gain is checked.		
p1461[0...n]	Speed controller Kp adaptation speed, upper scaling / n_ctrl Kp n upper		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 200000.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description:	Sets the P gain of the speed controller for the upper adaptation speed range (> p1465). The entry is made referred to the P gain for the lower adaptation speed range of the speed controller (\% referred to p 1460).		
Dependency:	Refer to: p1460, p1464, p1465		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition p1464, then the controller gain below p1465 is adapted with p1461. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		
p1462[0...n]	Velocity contr. integral act. time adaptation velocity lower / v_ctrl Tn n lower		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5040, 5042, 5050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	Max 100000.00 [ms]	Factory setting 20.00 [ms]
Description:	Sets the integration time of the velocity controller before the adaptation velocity range ($0 \ldots$ p1464). This value corresponds to the basic setting of the integral time of the velocity controller without adaptation (p1461 = 100%).		
Dependency:	Refer to: p1463, p1464, p1465		
p1462[0...n]	Speed controller integral time adaptation speed lower / n_ctrl Tn n lower		
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
(n / M)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1700, 5040, 5050, 5042, 6040, 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	Max 100000.00 [ms]	Factory setting 20.00 [ms]
Description:	Sets the integration time of the speed controller before the adaptation speed range ($0 \ldots \mathrm{p} 1464$). This value corresponds to the basic setting of the integral time of the speed controller without adaptation (p1461 = 100%).		
Dependency:	Refer to: p1463, p1464, p1465		
p1463[0...n]	Velocity contr. integral act. time adaptation velocity upper / v_ctrl Tn n upper		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		
	Min $0.0 \text { [\%] }$	$\begin{aligned} & \text { Max } \\ & 200000.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description:	Sets the integral time of the velocity controller after the adaptation velocity range (> p1465). The entry is made referred to the integral time for the lower adaptation velocity range of the velocity controller (\% referred to p1462).		
Dependency:	Refer to: p1462, p1464, p1465		

p1463[0...n]	Speed controller Tn adaptation speed, upper scaling / n_ctrl Tn n upper		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min $0.0 \text { [\%] }$	$\begin{aligned} & \text { Max } \\ & 200000.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description:	Sets the integral time of the speed controller after the adaptation speed range (> p1465). The entry is made referred to the integral time for the lower adaptation speed range of the speed controller (\% referred to p1462).		
Dependency:	Refer to: p1462, p1464, p1465		
p1463[0...n]	Speed controller Tn adaptation speed, upper scaling / n_ctrl Tn n upper		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min $0.0 \text { [\%] }$	Max $200000.0 \text { [\%] }$	Factory setting 100.0 [\%]
Description:	Sets the integral time of the speed controller after the adaptation speed range (> p1465). The entry is made referred to the integral time for the lower adaptation speed range of the speed controller (\% referred to p 1462).		
Dependency:	Refer to: p1462, p1464, p1465		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller integral time below p1465 is adapted with p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1464[0...n]	Velocity controller adaptation velocity, lower / v_ctrl n lower		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Units group: 4_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
	$0.00[m / m i n]$	0.00 [m/min]	
	Sets the lower adaptation velocity of the velocity controller. No adaptation is effective below this velocity.		
Description:	Refer to: p1460, p1461, p1462, p1463, p1465		

p1464[0...n]	Speed controller adaptation speed, lower / n_ctrl n lower		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
	$0.00[r e v / m i n]$	0.00 [rev/min]	
Description:	Sets the lower adaptation speed of the speed controller. No adaptation is effective below this speed.		
Dependency:	Refer to: p1460, p1461, p1462, p1463, p1465		

p1464[0...n]	Speed controller adaptation speed, lower / n_ctrl n lower		
VECTOR (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [rev/min]	Max 210000.00 [rev/min]	Factory setting 0.00 [rev/min]
Description:	Sets the lower adaptation speed of the speed controller. No adaptation is effective below this speed.		
Dependency:	Refer to: p1460, p1461, p1462, p1463, p1465		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to values less than the lower transition point p1464, then the controller below p1465 is adapted with p1461 or p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1465[0...n]	Velocity controller adaptation velocity, upper / v_ctrl n upper		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Units group: 4_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 1000.00 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the upper adaptation velocity of the velocity controller. No adaptation is effective above this velocity. For P gain, p1460 * p1461 is effective. For the integral time, p1462 * p1463 is effective.		
Dependency:	Refer to: p1460, p1461, p1462, p1463, p1464		
p1465[0...n]	Speed controller adaptation speed, upper / n_ctrl n upper		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [rev/min]	$\begin{aligned} & \operatorname{Max} \\ & 210000.00[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 210000.00 [rev/min]
Description:	Sets the upper adaptation speed of the speed controller. No adaptation is effective above this speed. For P gain, p1460 * p1461 is effective. For the integral time, p1462 * p1463 is effective.		
Dependency:	Refer to: p1460, p1461, p1462, p1463, p1464		
p1465[0...n]	Speed controller adaptation speed, upper / n_ctrl n upper		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [rev/min]	Max 210000.00 [rev/min]	Factory setting 210000.00 [rev/min]
Description:	Sets the upper adaptation speed of the speed controller. No adaptation is effective above this speed. For P gain, p1460 * p1461 is effective. For the integral time, p1462 * p1463 is effective.		
Dependency:	Refer to: p1460, p1461, p1462, p1463, p1464		
Note:	If the upper transition point p 1465 of the speed controller adaptation is set to values less than the lower transition point p1464, then the controller below p1465 is adapted with p1461 or p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1466[0...n]	CI: Velocity controller P gain scaling / v_ctrl Kp scal		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the scaling of the P gain of the velocity controller. This also makes the effective P gain (including adaptations) scalable.		
p1466[0...n]	CI: Speed controller P-gain scaling / n_ctrl Kp scal		
SERVO	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the scaling of the P gain of the speed controller. This also makes the effective P gain (including adaptations) scalable.		
p1466[0...n]	CI: Speed controller P-gain scaling / n_ctrl Kp scal		
VECTOR (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the scaling of the P gain of the speed controller. This also makes the effective P gain (including adaptations) scalable.		
r 1468	Velocity controller P gain effective / v_ctrl Kp eff		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5040, 5042, 5210
	P-Group: Closed-loop control	Units group: 24_2	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Ns/m]	Max - [Ns / m]	Factory setting - [Ns/m]
Description:	Displays the effective P gain of the velocity controller.		
r1468	Speed controller P-gain effective	/ n_ctrl Kp eff	
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5040, 5042, 5210
	P-Group: Closed-loop control	Units group: 17_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Nms/rad]	Max - [Nms/rad]	Factory setting - [Nms/rad]
Description:	Displays the effective P gain of the speed controller.		

r1468	CO: Speed controller P-gain effective / n_ctrl Kp eff		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the effective P gain of the speed controller.		
Dependency:	For p0528 = 1, the speed controller gain is represented without any dimensions. In this case, connector output signal r1468 is increased by a factor of 100 in order to improve the resolution.		
r1469	Velocity controller integral time effective / v_ctrl Tn eff		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5040, 5042
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min - [ms]	Max - [ms]	Factory setting - [ms]
Description:	Displays the effective integral time of the velocity controller.		
r1469	Speed controller integral time effective / n_ctrl Tn eff		
SERVO, VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5040, 5042, 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min - [ms]	Max - [ms]	Factory setting - [ms]
Description:	Displays the effective integral time of the speed controller.		
p1470[0...n]	Velocity controller encoderless operation P-gain / v_ctrl SLVC Kp		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5210
	P-Group: Closed-loop control	Units group: 24_2	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.000 [Ns / m]	$\begin{aligned} & \operatorname{Max} \\ & 999999.000[\mathrm{Ns} / \mathrm{m}] \end{aligned}$	Factory setting 10.000 [Ns / m]
Description:	Sets the P gain for encoderless operation for the velocity controller.		
Note:	When automatically calculating the velocity controller, only the motor inertia is taken into account (p 0341). For higher inertias ($\mathrm{p} 0342>1$ or p1498 > 0) we recommend that the velocity controller gain is checked.		
p1470[0...n]	Speed controller encoderless operation P-gain / n_ctrl SLVC Kp		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5210
	P-Group: Closed-loop control	Units group: 17_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.000 [$\mathrm{Nms} / \mathrm{rad}]$	Max 999999.000 [$\mathrm{Nms} / \mathrm{rad}]$	Factory setting 0.300 [$\mathrm{Nms} / \mathrm{rad}$]
Description:	Sets the P gain for encoderless operation for the speed controller.		

Note:	When automatically calculating the speed controller, only the motor moment of inertia is taken into account (p 0341). For higher load moments of inertia ($\mathrm{p} 0342>1$ or $\mathrm{p} 1498>0$) we recommend that the speed controller gain is checked.		
p1470[0...n]	Speed controller encoderless operation P-gain / n_ctrl SLVC Kp		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1700, 6040, 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min 0.000	Max 999999.000	Factory setting 0.300
Description:	Sets the P gain for encoderless operation for the speed controller.		
Dependency:	For $00528=1$, the speed controller gain is represented without any dimensions.		
Note:	The product p $0341^{*} \mathrm{p} 0342$ is taken into account when automatically calculating the speed controller ($\mathrm{p} 0340=1,3$, 4).		
p1472[0...n]	Velocity controller encoderless operation integral time / v_ctrl SLVC Tn		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5210
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [ms] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 100000.0[\mathrm{~ms}] \end{aligned}$	Factory setting 20.0 [ms]
Description:	Set the integral time for encoderless operation for the velocity controller.		
p1472[0...n]	Speed controller encoderless operation integral time / n_ctrl SLVC Tn		
SERVO, VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1700, 5210, 6040, 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [ms] } \end{aligned}$	Max $100000.0 \text { [ms }]$	Factory setting 20.0 [ms]
Description:	Set the integral time for encoderless operation for the speed controller.		
p1476[0...n]	BI: Velocity controller hold integrator / v_ctrl integ stop		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2520, 5040, 5042, 5210
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to hold the integrator for the velocity controller.		

p1476[0...n]	BI: Speed controller hold integrator / n_ctrl integ stop		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2520, 5040, 5042, 5210, 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to hold the integrator for the speed controller.		
p1477[0...n]	BI: Velocity controller set integrator value / v_ctrl integ set		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2520, 5040, 5042, 5210
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to set the integrator setting value (p1478).		
Dependency:	Refer to: p1478, p1479		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For the interface mode "SIMODRIVE 611 universal" (p2038 = 1), p1477 and p1478 are used for the signal STW2.6 (integrator inhibit, speed controller).		
p1477[0...n]	BI: Speed controller set integrator value / n_ctrl integ set		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2520, 5040, 5042, 5210, 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to set the integrator setting value (p1478).		
Dependency:	Refer to: p1478, p1479		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For the interface mode "SIMODRIVE 611 universal" (p2038 = 1), p1477 and p1478 are used for the signal STW2.6 (integrator inhibit, speed controller).		
p1478[0...n]	CI: Velocity controller integrator value / v_ctr integ_setVal		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5040, 5042, 5210
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the integrator setting value for the velocity controller. The signal to set this integrator setting value is interconnected via p1477.		
Dependency:	Refer to: p1477, p1479		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

Note:	For the interface mode "SIMODRIVE 611 universal" (p2038 = 1), p1477 and p1478 are used for the signal STW2.6 (integrator inhibit, speed controller).		
p1478[0...n]	CI: Speed controller integrator setting value / n_ctr integ_setVal		
SERVO	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5040, 5042, 5210
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list:
	$\underline{\text { Min }}$	Max	Factory setting 0
Description:	Sets the signal source for the integrator setting value for the velocity controller. The signal to set this integrator setting value is interconnected via p1477.		
Dependency:	Refer to: p1477, p1479		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For the interface mode "SIMODRIVE 611 universal" (p2038 = 1), p1477 and p1478 are used for the signal STW2.6 (integrator inhibit, speed controller).		
p1478[0...n]	CI: Speed controller integrator setting value / n_ctr integ_setVal		
VECTOR (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the integrator setting value for the velocity controller. The signal to set this integrator setting value is interconnected via p 1477.		
Dependency:	The setting value of the speed controller in If p1478 is interconnected to the integral o (r0346) and if the speed controller is enabl the pulse inhibit. This value is set if no setting were inhibited, a setting command is availa inhibited. For sensorless vector control, in integral component of the speed controller In order that when setting the integrator out ing torque is completely pre-controlled (e.g If p1478 is interconnected to another outpu the integral output is set once if the setting Refer to: p1477, p1479	grator is weighted with the scaling put of the speed controller (r1482) , the integral component of the command (p 1477) is interconn e, which is not de-activated up dition p1400.1 should be set to not controlled down to zero. ut, only the static torque is detec 1496). other than r 1482 , then after mag mmand is not interconnected	en after the magnetizing time oller is set to the last value before or, at the instant that the pulses next time that the pulses are hat when the drive is stopped, the we recommend that the accelerat- ing and speed controller enable, $=0$).
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1479[0...n]	CI: Speed controller integrator setting value scaling / n_ctrl I_val scal		
VECTOR (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5040, 5210, 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		
	Min	Max	Factory setting 1
Description: Dependency:	Sets the signal source for scaling the integrator setting value (p 1478) of the speed controller. Refer to: p1477, p1478		

$\mathbf{r 1 4 8 0}$	CO: Velocity controller PI force output / v_ctrl PI-F_output		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1590, 5040, 5042, 5060, 5210
	P-Group: Closed-loop control	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[N] \end{gathered}$	$\begin{gathered} \text { Max } \\ -[N] \end{gathered}$	Factory setting - [N]
Description:	Displays the force setpoint at the output of the PI velocity controller.		
r1480	CO: Speed controller PI torque output / n_ctrl PI-M_output		
SERVO, VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1590, 5040, 5042, 5060, 5210, 6060
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min $-[\mathrm{Nm}]$	Max $-[\mathrm{Nm}]$	Factory setting - [Nm]
Description:	Displays the torque setpoint at the output of the PI speed controller.		
r1481	CO: Velocity controller P force output / v_ctrl P-F_output		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5040, 5042, 5210
	P-Group: Closed-loop control	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[N] \end{gathered}$	$\begin{gathered} \text { Max } \\ -[\mathrm{N}] \end{gathered}$	Factory setting - [N]
Description:	Displays the force setpoint at the output of the P velocity controller.		
r1481	CO: Speed controller P torque output / n_ctrl P-M_output		
SERVO, VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5040, 5042, 5210, 6040
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & -[\mathrm{Nm}] \end{aligned}$	Factory setting - [Nm]
Description:	Displays the torque setpoint at the output of the P speed controller.		
$\overline{\mathbf{1 4 8 2}}$	CO: Velocity controller I force output / v_ctrl I-F_output		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5040, 5042, 5210
	P-Group: Closed-loop control	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[\mathrm{N}] \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ -[\mathrm{N}] \end{gathered}$	Factory setting - [N]
Description:	Displays the force setpoint at the output of the I velocity controller.		

r1482	CO: Speed controller I torque output / n_ctrl I-M_output		
SERVO, VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5040, 5042, 5210, 6030, 6040
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Nm}] \end{aligned}$	Factory setting - [Nm]
Description:	Displays the torque setpoint at the output of the I speed controller.		
p1486[0...n]	CI: Droop compensation torque / Droop M_comp		
VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 6030
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the compensation torque to be output within the droop calculation.		
p1487[0...n]	Droop compensation torque scaling / Droop M_comp scal		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6030
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\operatorname{Min}_{-2000.0} \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 2000.0 \text { [\%] } \end{aligned}$	Factory setting $100.0 \text { [\%] }$
Description:	Sets the scaling for the compensation torque within the droop calculation.		
p1488[0...n]	Droop input source / Droop input source		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 6030
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{3}{\operatorname{Max}}$	Factory setting 0
Description:	Sets the source for droop feedback.		
Value:	0: Droop feedback not connected 1: Droop from torque setpoint 2: Droop from speed controller output 3: Droop from integral output, speed controller		
Dependency:	Refer to: p1489, r1490, p1492		
p1489[0...n]	Droop feedback scaling / Droop scaling		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6030
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0} \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 0.500 \end{aligned}$	Factory setting 0.050
Description:	Sets the scaling for the droop feedback		

Dependency:	Refer to: p1488, r1490, p1492		
Note:	Example:		
	A value of 0.05 means that for a torque equal to the rated motor torque, the rated motor speed is reduced by 5%.		
r1490	CO: Droop feedback speed reduction / Droop n_reduction		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6030
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the output signal of the droop calculation. The droop feedback result is subtracted from the speed setpoint when activated (p 1492).		
Dependency:	Refer to: p1488, p1489, p1492		
p1492[0...n]	BI: Droop feedback enable / Droop enable		
VECTOR (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Enables the droop to be applied to the speed/velocity setpoint.		
Dependency:	Refer to: p1488, p1489, r1490		
Note:	Even when not enabled, the droop speed is calculated but not subtracted from the setpoint speed. This makes it possible to subtract the result of this calculation from the speed of another drive.		
r1493	CO: Load mass / Load mass		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5042, 5210
	P-Group: Closed-loop control	Units group: 27_1	Unit selection: p0100
	Not for motor type: FEM		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{kg}] \end{aligned}$	Max - [kg]	Factory setting - [kg]
Description:	Displays the parameterized total weight (p 0341 * p 0342$)+\mathrm{p} 1498)$ without evaluation by the scaling via p1497.		
Dependency:	Refer to: p1300, p1402, p1404, p1497		
Note:	The parameterized total weight, taking into account p1497, influences the force-velocity pre-control in encoderless operation or when activated, force-velocity pre-control with encoder (p1402.4).		

$\overline{\mathbf{1 4 9 3}}$	CO: Moment of inertia, total / M_inertia total		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5042, 5210
	P-Group: Closed-loop control	Units group: 25_1	Unit selection: p0100
	Not for motor type: FEM		Expert list: 1
	Min - [kgm ${ }^{2}$]	Max - [kgm²]	Factory setting - [kgm ${ }^{2}$]
Description:	Displays the parameterized total moment of inertia ($\left.\left(\mathrm{p} 0341^{*} \mathrm{p} 0342\right)+\mathrm{p} 1498\right)$ without evaluation by the scaling via p1497.		
Dependency:	Refer to: p1300, p1402, p1404, p1497		
Note:	The parameterized total moment of inertia, taking into account p1497, influences the torque pre-control.		
	In encoderless operation or when the torque-speed pre-control with encoder (p1402.4 $=1$) is activated, then torquespeed pre-control is activated.		

$\overline{\mathbf{r 1 4 9 3}}$	CO: Moment of inertia, total / M_inertia total		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6031
	P-Group: Closed-loop control	Units group: 25_1	Unit selection: p0100
	Not for motor type: FEM		Expert list: 1
	Min - [kgm²]	Max - [kgm $\left.{ }^{2}\right]$	Factory setting - [kgm ${ }^{2}$]
Description:	Displays the parameterized total moment of inertia ($\mathrm{p} 0341^{*} \mathrm{p} 0342$) + p1496) without evaluation by the scaling via p1497.		
p1494[0...n]	Velocity controller integrator feedback time constant / v_ctr integ_fdbk T		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5040, 5042, 5210
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [ms] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description:	Sets the time constant of the PT1 filter for integrator feedback.		
	The integrator of the speed/velocity controller is re-parameterized to become a PT1 filter through a feedback element (1st Order low pass filter characteristics).		
	The following applies:		
	p1494 < 0.25 (2^{*} p0115[1]) --> the PT1 filter is not active - the pure integrator is effective. p1494 >= 0.25 (2^{*} p0115[1]) --> the PT1 filter is active and has replaced the pure integrator.		
Note:	Applications:		
	Motion at zero setpoint and dominant stiction can be suppressed but this has a negative impact on the remaining setpoint-actual value difference. This can be used, for example, to avoid oscillation of a position-controlled axis at standstill (stick-slip effect) or overshoot when traversing (moving) in micrometer steps.		
	Also prevents tension/stressing for axes that are mechanically and rigidly coupled with one another (e.g. for synchronous spindles, master - slave axes).		
p1494[0...n]	Speed controller integrator feedback time constant / n_ctr integ_fdbk T		
SERVO	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5040, 5042, 5210
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description:	Sets the time constant of the PT1 filter for integrator feedback.		
	The integrator of the speed/velocity controller is re-parameterized to become a PT1 filter through a feedback element (1st Order low pass filter characteristics).		
	The following applies:		
	$\mathrm{p} 1494<0.25$ (2 * 0 0115[1]) --> the PT1 filter is not active - the pure integrator is effective.		
	p1494 >= 0.25 (2 * 0115[1]) --> the PT1 filter is active and has replaced the pure integrator.		
Note:	Applications:		
	Motion at zero setpoint and dominant stiction can be suppressed but this has a negative impact on the remaining setpoint-actual value difference. This can be used, for example, to avoid oscillation of a position-controlled axis at standstill (stick-slip effect) or overshoot when traversing (moving) in micrometer steps.		
	Also prevents tension/stressing for axes that are mechanically and rigidly coupled with one another (e.g. for synchronous spindles, master - slave axes).		

p1495[0...n]	CI: Acceleration pre-control / a_prectrl		
VECTOR (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 6031
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the acceleration pre-control.		
Dependency:	The signal source for the acceleration is activated with p1400.2 $=1$.		
	For p1400.2 = 0, the acceleration pre-control is calculated from the speed setpoint change from r0062.		
	For $\mathrm{p} 1400.2=0$ and activate reference model $(\mathrm{p} 1400.3=1)$ the acceleration pre-control is switched out. Refer to: p1400, p1496		
Note:	If the acceleration is entered as external signal, then the accelerating torque is calculated as follows (r1518): r1518 = acceleration (\% of p2007) / 100 \% * (p2007 * 60 s) / p0311 * r0345 / 1 s * r0333		
p1496[0...n]	Acceleration pre-control scaling / a_prectrl scal		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6031
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 10000.0 \text { [\%] } \end{aligned}$	Factory setting 0.0 [\%]
Description:	Sets the scaling for the acceleration pre-control of the speed/velocity controller.		
Dependency:	When the reference model is activated ($\mathrm{p} 1400.3=1$) and for an internal acceleration pre-control ($\mathrm{p} 1400.2=0$), the acceleration pre-control is switched out (disabled). The reference model (p1400.3 = 1) and external acceleration pre-control (p1400.2 = 1) can be operated together.		
Note:	The parameter is set to 100% by the rotating measurement (refer to p1960).		
	The acceleration pre-control may not be used if the speed setpoint manifests significant ripple (e.g. analog setpoint) and the rounding-off in the speed ramp-function generator is disabled.		
	We also recommend that the pre-control mode is not used if there is gearbox backlash.		
p1497[0...n]	CI: Motor weight scaling / Mot_weight scal		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5042, 5210
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for scaling the motor weight.		
p1497[0...n]	CI: Moment of inertia, scaling / M_mom inert scal		
SERVO, VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5042, 5210, 6030, 6031
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for scaling the moment of inertia.		

p1498[0...n]	Load mass / Load mass		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5042, 5210
	P-Group: Closed-loop control	Units group: 27_1	Unit selection: p0100
	Not for motor type: -		Expert list: 1
	Min $0.00000[\mathrm{~kg}]$	Max 10000.00000 [kg]	Factory setting 0.00000 [kg]
Description: Note:	(p0341 * p0342) + p1498 influence the velocity/force pre-control in encoderless operation.		
p1498[0...n]	Load moment of inertia / Load mom of inert		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5042, 5210
	P-Group: Closed-loop control	Units group: 25_1	Unit selection: p0100
	Not for motor type: -		Expert list: 1
	Min 0.00000 [$\left.\mathrm{kgm}^{2}\right]$	Max $100000.00000\left[\mathrm{kgm}^{2}\right]$	Factory setting $0.00000\left[\mathrm{kgm}^{2}\right]$
Description: Note:	(p0341 * p0342) + p1498 influence the speed/torque pre-control in encoderless operation.		
p1499[0...n]	Accelerating for torque control, scaling / a for M_ctrl scal		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min $0.0 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 400.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description: Dependency:	Sets the scaling for the acceleration integrator at low speeds (only for encoderless torque control). Refer to: p0341, p0342		
p1500[0...n]	Macro Connector Inputs (CI) for force setpoints / Macro CI F_set		
SERVO (Lin)	Can be changed: $\mathrm{C} 2(1)$, T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: CDS, p0170	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	Max 999999	Factory setting 0
Description:	Runs the appropriate ACX file on the CompactFlash card.		
	The Connector Inputs (CI) for the torque setpoints of the appropriate Command Data Set (CDS) are appropriately interconnected.		
	The selected ACX file must be located in the following directory: ... /PMACROS/<drive object>/P1500/PMxxxxxx.ACX		
Dependency:	The ACX file to be run must be created according to the definition for ACX macros and must be saved in the directory intended on the CompactFlash card.		
Notice:	No errors were issued during quick commissioning (p3900 = 1) when writing to parameters of the QUICK_IBN group!		

Note:	The macros in the specified directory are displayed in r8573. r8573 is not in the expert list of the commissioning software. Macros available as standard are described in the technical documentation of the particular product. CI: Connector Input
p1500[0...n]	Macro Connector Inputs (CI) for torque setpoints / Macro CI M_set
SERVO, VECTOR	Can be changed: C2(1), T Calculated: - Access level: 1
	Data type: Unsigned32 Dynamic index: CDS, p0170 Func. diagram: -
	P-Group: Commands Units group: - Unit selection: -
	Not for motor type: REL Expert list: 1
	Min Max Factory setting 0 999999 0
Description:	Runs the appropriate ACX file on the CompactFlash card.
	The Connector Inputs (CI) for the torque setpoints of the appropriate Command Data Set (CDS) are appropriately interconnected.
	The selected ACX file must be located in the following directory: ... /PMACROS/<drive object>/P1500/PMxxxxxx.ACX
	Example:
	p1500 = 6 --> the file PM000006.ACX is run.
Dependency:	The ACX file to be run must be created according to the definition for ACX macros and must be saved in the directory intended on the CompactFlash card.
Notice:	No errors were issued during quick commissioning ($\mathrm{p} 3900=1$) when writing to parameters of the QUICK_IBN group!
Note:	The macros in the specified directory are displayed in r8573. r8573 is not in the expert list of the commissioning software.
	Macros available as standard are described in the technical documentation of the particular product.
p1501[0..n]	BI: Change over velocity/force control / Changeov n/F_ctrl
SERVO (Lin)	Can be changed: U, T Calculated: - Access level: 3
	$\begin{array}{lll}\text { Data type: Unsigned32 / Binary } & \text { Dynamic index: CDS, p0170 } & \text { Func. diagram: 2520, 5060, } \\ & 6060\end{array}$
	P-Group: Closed-loop control Units group: - Unit selection: -
	Not for motor type: REL Expert list: 1
	Min Max Factory setting - - 0
Description:	Sets the signal source for toggling between velocity and force control.
Dependency:	The input connectors to enter the force are provided using p1511, p1512 and p1513.
	Refer to: p1300
Caution:	If the closed-loop force control is not activated (p 1300) and a change is made to closed-loop force control (p 1501), OFF1 (p0840) does not have its own braking response but pulse suppression when standstill is detected (p 1226 , p1227).
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	0 signal: Velocity control
	1 signal: Force control

p1501[0...n]	BI: Change over between closed-loop speed/torque control / Changeov n/M_ctrl		
SERVO, VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2520, 5060, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for toggling between speed and torque control.		
Dependency:	The input connectors to enter the torque are provided using p1511, p1512 and p1513. Refer to: p1300		
Caution:	If the closed-loop torque control is not activated (p 1300) and a change is made to closed-loop torque control (p 1501), OFF1 (p 0840) does not have its own braking response but pulse suppression when standstill is detected (p1226, p1227).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	0 signal: Closed-loop speed control		
	1 signal: Closed-loop torque control		
p1503[0...n]	CI: Torque setpoint / M_set		
VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the torque setpoint for torque control.		
Note:	A change is made to closed-loop torque control if, in p1300, closed-loop torque control was selected or if the selection was made using the changeover source in p1501. it is also possible to change over in operation using p1501.		
r1508	CO: Torque setpoint before supplementary torque / M_set bef. M_suppl		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6030, 6060, 6722
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	For closed-loop speed control, r1508 corresponds to the speed controller output; for closed-loop torque control, r1508 corresponds to the torque setpoint of the signal source assigned in p1503.		

r1509	CO: Force setpoint before force limiting / F_set before F_lim		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1590, 5060, 5610
	P-Group: Closed-loop control	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[N] \end{aligned}$	$\begin{gathered} \operatorname{Max} \\ -[N] \end{gathered}$	Factory setting $-[\mathrm{N}]$
Description:	Displays the total torque setpoint before the force limiting (total of the controller output, supplementary force and if required, the pre-control force, encoderless operation).		
	In the closed-loop speed controlled mode, r1509 = p1480 + r1515 + pre-control force, encoderless operation. r1509 and r1515 are identical for closed-loop force control.		

r1509	CO: Torque setpoint before torque limiting / M_set before M_lim		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1590, 5060, 5610
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Nm}] \end{aligned}$	Factory setting - [Nm]
Description:	Displays the total torque setpoint before the torque limiting (total of the controller output, supplementary torque and if required, the pre-control torque, encoderless operation).		
	In the closed-loop speed controlled mode, r1509 = p1480 +r1515 + pre-controlled torque, encoderless operation.		

p1511[0...n]	Cl: Supplementary force 1/F_suppl 1		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
	-	0	

p1511[0...n]	CI: Supplementary torque $1 / \mathrm{M}$ _suppl 1		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1700, 5060, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for supplementary to	que 1.	

p1512[0...n]	CI: Supplementary force 1 scaling / F_suppl 1 scal		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for scaling the supplementary force 1.		
p1512[0...n]	CI: Supplementary torque 1 scaling / M_suppl 1 scal		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1700, 5060, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for scaling the supplementary torque 1.		

p1513[0...n]	Cl: Supplementary force 2 / F_suppl 2		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
	-	0	
Description:	Sets the signal source for supplementary force 2.		

p1513[0...n]	CI: Supplementary torque 2 / M_suppl 2		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1700, 5060, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for supplementary tord	que 2.	

p1514[0...n]	Supplementary torque 2 scaling / M_suppl 2 scal		
VECTOR $(\mathrm{n} / \mathrm{M})$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
	$-2000.0[\%]$	$100.0[\%]$	
Description:	Sets the scaling for supplementary torque 2.		

r1515	Supplementary force total / F_suppl total		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5040, 5060
	P-Group: Closed-loop control	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [N]	Max - [N]	Factory setting - [N]
Description:	Displays the total supplementary force.		
r1515	Supplementary torque total / M_suppl total		
SERVO, VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1700, 5040, 5060, 6060, 6721
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	The displayed value is the total of supplementary torque values 1 and 2 ($\mathrm{p} 1511, \mathrm{p} 1512, \mathrm{p} 1513, \mathrm{p} 1514$).		
r1516	CO: Supplementary torque and acceleration torque / M_suppl + M_accel		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6060
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	The displayed value is the total of the smoothed supplementary torque and the accelerating torque (p1516 = p1518[1] + r1515).		
p1517[0...n]	Acceleration force smoothing time constant / F_accel T_smooth		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5042, 5210
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.00[\mathrm{~ms}] \end{aligned}$	Factory setting 4.00 [ms]
Description:	Sets the smoothing time constant of the accelerating force. For servo drives, the parameter is only effective in encoderless operation.		
Note:			

p1517[0...n]	Accelerating torque smoothing time constant / M_accel T_smooth		
SERVO, VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5042, 5210, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.00[\mathrm{~ms}] \end{aligned}$	Factory setting 4.00 [ms]
Description:	Sets the smoothing time constant of the accelerating torque.		
Note:	For servo drives, the parameter is only effective in encoderless operation.		
	For vector drives, the acceleration pre-control is inhibited if the smoothing is set to the maximum value.		
r1518[0...1]	CO: Accelerating force / F_accel		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5042, 5210
	P-Group: Closed-loop control	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [N]	Max - [N]	Factory setting - [N]
Description:	Displays the accelerating torque to pre-control the velocity controller for force- velocity pre-control (p1402.4 = 1 or in encoderless operation).		
Index:	[0] = Unsmoothed [1] = Smoothed		
Dependency:	Refer to: p0341, p0342, p1300, p1402, r1493, p1497, p1498		
r1518[0...1]	CO: Accelerating torque / M_accel		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5042, 5210
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	Displays the accelerating torque to pre-control the speed controller for torque-speed pre-control (p1402.4 = 1 or in encoderless operation).		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed }} \end{aligned}$		
Dependency:	Refer to: p0341, p0342, p1300, p1402, r1493, p1497, p1498		
r1518[0...1]	CO: Accelerating torque / M_accel		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1700, 6060, 6721
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description: Index:	Displays the accelerating torque for pre-control of the speed controller. [0] = Unsmoothed [1] = Smoothed		
Dependency:	Refer to: p0341, p0342, p1496		

p1520[0...n]	CO: Force limit upper/motoring / F_max upper/mot		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5620, 5630
	P-Group: Closed-loop control	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -1000000.00[\mathrm{~N}] \end{aligned}$	Max $20000000.00[\mathrm{~N}]$	Factory setting 0.00 [N]
Description:	Sets the fixed upper or force limit when motoring.		
Dependency:	p1400 bit 4 = 0: Upper / lower		
	p1400 bit $4=1$: Motoring / generating		
	Refer to: p0500, p1521, p1522, p1523, p1532, r1538, r1539		
Danger:	For p1400.4 = 0 (torque limiting, upper/lower) the following applies:		
	Negative values when setting the upper torque limit (p1520 < 0) can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
Note:	For VECTOR the following applies (p0107):		
	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p 0340), the torque limit is set to match the current limit (p 0640).		
p1520[0...n]	CO: Torque limit upper/motoring / M_max upper/mot		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5620, 5630
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -1000000.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 20000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Nm]
Description:	Sets the fixed upper torque limit or the torque limit when motoring.		
Dependency:	p1400 bit 4 = 0: Upper / lower		
	p1400 bit $4=1$: Motoring / generating		
	Refer to: p0500, p1521, p1522, p1523, p1532, r1538, r1539		
Danger:	For p1400.4 = 0 (torque limiting, upper/lower) the following applies:		
	Negative values when setting the upper torque limit (p1520 < 0) can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
Note:	For VECTOR the following applies (p0107):		
	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p 0340), the torque limit is set to match the current limit (p 0640).		
p1520[0...n]	CO: Torque limit upper / M_max upper		
VECTOR (n/M)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1700, 6630
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -1000000.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 20000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Nm]
Description:	Sets the fixed, upper torque limit. Refer to: p1521, p1522, p1523, r1538, r1539		
Dependency:			

Danger:	Negative values when setting the upper torque limit (p1520<0) can result in the motor accelerating in an uncontrollable fashion.
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.
Note:	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p 0340), the torque limit is set to match the current limit (p0640).
p1521[0...n]	CO: Force limit lower/regenerative / F_max lower/regen
SERVO (Lin)	$\begin{array}{ll}\text { Can be changed: U, T } & \text { Calculated: } \\ \text { CALC_MOD_LIM_REF }\end{array} \quad$ Access level: 2
	Data type: FloatingPoint32 Dynamic index: DDS, p0180 Func. diagram: 5620,5630
	P-Group: Closed-loop control Units group: 8_1 Unit selection: p0505
	Not for motor type: REL Expert list: 1
	Min Max Factory setting $-20000000.00[\mathrm{~N}]$ $1000000.00[\mathrm{~N}]$ $0.00[\mathrm{~N}]$
Description:	Sets the fixed lower or force limit when regenerating.
Dependency:	p1400 bit 4 = 0: Upper / lower
	p1400 bit $4=1$: Motoring / generating
	Refer to: p0500, p1520, p1522, p1523, p1532
Danger:	For p1400.4 = 0 (torque limiting, upper/lower) the following applies:
	Positive values when setting the lower torque limit (p1521 < 0) can result in the motor accelerating in an uncontrollable fashion.
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.
Note:	For VECTOR the following applies (p0107):
	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p 0340), the torque limit is set to match the current limit (p0640).

p1521[0...n]	CO: Torque limit lower/regenerative / M_max lower/regen		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5620, 5630
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -20000000.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Nm]
Description:	Sets the fixed lower torque limit or the torque limit when regenerating.		
Dependency:	p1400 bit 4 = 0: Upper / lower		
	p1400 bit $4=1$: Motoring / generating		
	Refer to: p0500, p1520, p1522, p1523, p1532		
Danger:	For p1400.4 = 0 (torque limiting, upper/lower) the following applies:		
	Positive values when setting the lower torque limit (p1521 < 0) can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
Note:	For VECTOR the following applies (p0107):		
	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p 0340), the torque limit is set to match the current limit (p 0640).		

p1521[0...n]	CO: Torque limit lower / M_max lower		
VECTOR (n/M)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1700, 6630
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min $-20000000.00[\mathrm{Nm}]$	$\begin{aligned} & \operatorname{Max} \\ & 1000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Nm]
Description:	Sets the fixed, lower torque limit.		
Dependency:	Refer to: p1520, p1522, p1523, p1532		
Danger:	Positive values when setting the lower torque limit (p1521 < 0) can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
Note:	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p0340), the torque limit is set to match the current limit (p0640).		
p1522[0...n]	CI: Force limit upper/motoring / F_max upper/mot		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1610, 5620, 5630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1520[0]
Description: Dependency:	Sets the signal source for the upper or torq p1400 bit $4=0$: Upper / lower p1400 bit $4=1$: Motoring / generating Refer to: p1520, p1521, p1523, p1532	/force limit when motoring.	
Danger:	Negative values that are obtained as a result of the signal source and the scaling can cause the motor to accelerate in an uncontrollable fashion.		
p1522[0...n]	CI: Torque limit upper/motoring / M_max upper/mot		
SERVO	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1610, 5620, 5630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1520[0]
Description: Dependency:	Sets the signal source for the upper or torq p1400 bit 4 = 0: Upper / lower p1400 bit $4=1$: Motoring / generating Refer to: p1520, p1521, p1523, p1532	/force limit when motoring.	
Danger:	Negative values that are obtained as a result of the signal source and the scaling can cause the motor to accelerate in an uncontrollable fashion.		

p1523[0...n]	CI: Torque limit lower / M_max lower		
VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1700, 6630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1521[0]
Description:	Sets the signal source for the lower torque limit.		
Dependency:	Refer to: p1520, p1521, p1522		
Danger:	Positive values that are obtained as a result of the signal source and the scaling can cause the motor to accelerate in an uncontrollable fashion.		
p1524[0...n]	CO: Force limit upper/motoring scaling / F_max up/mot scal		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5620, 5630, 6630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -2000.0[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2000.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description: Dependency:	Sets the scaling for the upper force limit or the force limit when motoring. p1400 bit $4=0$: Upper / lower p1400 bit $4=1$: Motoring / generating		
Notice: Note:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set. This parameter can be freely interconnected.		
p1524[0...n]	CO: Torque limit upper/motoring scaling / M_max up/mot scal		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5620, 5630, 6630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		
	$\begin{aligned} & \operatorname{Min} \\ & -2000.0[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2000.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description: Dependency:	Sets the scaling for the upper torque limit or the torque limit when motoring. p1400 bit $4=0$: Upper / lower p1400 bit $4=1$: Motoring / generating		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
Note:	This parameter can be freely interconnected.		

p1524[0...n]	CO: Torque limit upper scaling / M_max upper scal		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5620, 5630, 6630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -2000.0[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2000.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description:	Sets the scaling for the upper torque limit.		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
Note:	This parameter can be freely interconnected.		
	The value has the above significance if it is interconnected from connector input p1528.		
p1525[0...n]	CO: Force limit lower/regenerative scaling / F_max low/gen scal		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5620, 5630, 6630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\operatorname{Min}_{-2000.0}$	$\begin{aligned} & \operatorname{Max} \\ & 2000.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description: Dependency:	Sets the scaling for the lower force limit or the force limit when regenerating. p1400 bit 4 = 0: Upper / lower p1400 bit $4=1$: Motoring / generating		
Notice: Note:	The value has the above significance if it is interconnected from connector input p1528.		
p1525[0...n]	CO: Torque limit lower/regenerating scaling / M_max low/gen scal		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5620, 5630, 6630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -2000.0[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2000.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description: Dependency:	Sets the scaling for the lower torque limit or the torque limit when regenerating. p1400 bit 4 = 0: Upper / lower p1400 bit $4=1$: Motoring / generating		
Notice: Note:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set. This parameter can be freely interconnected.		
p1525[0...n]	CO: Torque limit lower scaling / M_max lower scal		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -2000.0[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2000.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description:	Sets the scaling for the lower torque limit.		

r 1527	Torque limit lower/regenerative without offset / M_max low w/o offs		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5620, 5630
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Nm]	Max $-[\mathrm{Nm}]$	Factory setting - [Nm]
Description: Dependency:	Displays the lower torque limit of all torque limits without offset. p1400 bit 4 = 0: Upper / lower p1400 bit $4=1$: Motoring / generating Refer to: p1520, p1521, p1522, p1523, p1528, p1529		
$\overline{\mathrm{r} 1527}$ VECTOR (n/M)	Torque limit lower without offset / M_max low w/o offs		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6060, 6630, 6640
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description: Dependency:	Displays the lower torque limit of all torque limits without offset. Refer to: p1520, p1521, p1522, p1523, p1528, p1529		
p1528[0...n]	CI: Force limit upper/motoring scaling / F_max up/mot scal		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1610, 3617, 5620, 5630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1524[0]
Description: Dependency:	Sets the signal source for the scaling of the upper or motoring force limit in p1522. p1400 bit 4 = 0: Upper / lower p1400 bit $4=1$: Motoring $/$ generating		
Danger:	Negative values that are obtained as a result of the signal source and the scaling can cause the motor to accelerate in an uncontrollable fashion.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1528[0...n]	CI: Torque limit upper/motoring	caling / M_max up/mot	
SERVO	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1610, 3617, 5620, 5630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		
	Min	Max	Factory setting 1524[0]
Description: Dependency:	Sets the signal source for the scaling of the upper or motoring torque limit in p1522. p1400 bit $4=0$: Upper / lower p1400 bit $4=1$: Motoring $/$ generating		

Danger:	For p1400.4 = 0 (torque limiting, upper/lower) the following applies:		
!	Negative values that are obtained as a result of the signal source and the scaling can cause the motor to accelerate in an uncontrollable fashion.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1528[0...n]	CI: Torque limit upper scaling /	_max upper scal	
VECTOR (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 6630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1524[0]
Description:	Sets the signal source for the scaling of the upper torque limit in p1522.		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
	Negative values that are obtained as a result of the signal source and the scaling can cause the motor to accelerate in an uncontrollable fashion.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1529[0...n]	CI: Force limit lower/regenerative scaling / F_max low/gen scal		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1610, 3617, 5620, 5630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1525[0]
Description:	Sets the signal source for the scaling of the lower force limit or the regenerative force limit in p1523.		
Dependency:	p1400 bit $4=0$: Upper / lower		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
	Positive values that are obtained as a result of the signal source and the scaling can cause the motor to accelerate in an uncontrollable fashion.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1529[0...n]	CI: Torque limit lower/regenerating scaling / M_max low/gen scal		
SERVO	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1610, 3617, 5620, 5630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
		Max	Factory setting 1525[0]
Description:	Sets the signal source for the scaling of the lower torque limit or the regenerative torque limit in p1523.		
Dependency:	p1400 bit 4 = 0: Upper / lower		
	p1400 bit $4=1$: Motoring / generating		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
	Positive values that are obtained as a result of the signal source and the scaling can cause the motor to accelerate in an uncontrollable fashion.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p1529[0...n]	CI: Torque limit lower scaling / M_max lower scal		
VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 6630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1525[0]
Description:	Sets the signal source for the scaling of the lower torque limit in p 1523.		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
	Positive values that are obtained as a result of the signal source and the scaling can cause the motor to accelerate in an uncontrollable fashion.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1530[0...n]	Power limit motoring / P_max mot		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1700, 5640, 6640
	P-Group: Closed-loop control	Units group: 14_8	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~kW}] \end{aligned}$	Max $100000.00[\mathrm{~kW}]$	Factory setting 0.00 [kW]
Description:	Sets the power limit when motoring.		
Dependency:	Refer to: p0500, p1531		
Note:	For VECTOR the following applies (p0107):		
	The power limit is limited to 300% rated motor power.		
p1530[0...n]	Power limit motoring / P_max mot		
SERVO, VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1700, 5640, 6640
	P-Group: Closed-loop control	Units group: 14_5	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~kW}] \end{aligned}$	Max $100000.00[\mathrm{~kW}]$	Factory setting 0.00 [kW]
Description:	Sets the power limit when motoring.		
Dependency:	Refer to: p0500, p1531		
Note:	For VECTOR the following applies (p0107):		
	The power limit is limited to 300\% rated motor power.		
p1531[0...n]	Power limit regenerating / P_max gen		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1700, 5640, 6640
	P-Group: Closed-loop control	Units group: 14_8	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -100000.00[\mathrm{~kW}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -0.01[\mathrm{~kW}] \end{aligned}$	Factory setting $-0.01[\mathrm{~kW}]$
Description:	Sets the regenerative power limit.		

Dependency: Note:	Refer to: p0500, p1530		
	For VECTOR the following applies (p0107):		
	The power limit is limited to 300% rated motor power.		
p1531[0...n]	Power limit regeneratin	gen	
SERVO, VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1700, 5640, 6640
	P-Group: Closed-loop control	Units group: 14_5	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -100000.00[\mathrm{~kW}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -0.01[\mathrm{~kW}] \end{aligned}$	Factory setting -0.01 [kW]
Description:	Sets the regenerative power limit.		
Dependency:	Refer to: p0500, p1530		
Note:	For VECTOR the following applies (p0107):		
	The power limit is limited to 300% rated motor power.		
p1532[0...n]	CO: Force offset, force limit / F_max offset		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5620, 5630, 8012
	P-Group: Closed-loop control	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -100000.00[\mathrm{~N}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100000.00[\mathrm{~N}] \end{aligned}$	Factory setting 0.00 [N]
Description:	Sets the force offset for the force limit.		
Dependency:	Refer to: p1520, p1521, p1522, p1523, p1528, p1529		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p1532[0...n]	CO: Torque limit offset / M_max offset		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5620, 5630, 8012
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -100000.00[\mathrm{Nm}] \end{aligned}$	Max $100000.00[\mathrm{Nm}]$	Factory setting 0.00 [Nm]
Description:	Sets the torque offset for the torque limit.		
Dependency:	Refer to: p1520, p1521, p1522, p1523, p1528, p1529		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
r1533	Current limit force-generating total / Iq_max total		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5640, 5722, 6640
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the maximum torque/force generating current as a result if all current limits.		

r 1533	Current limit torque-generating total / Iq_max total		
SERVO, VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5640, 5722, 6640
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the maximum torque/force generating current as a result if all current limits.		
$\overline{\mathbf{1 5 3 4}}$	CO: Force limit upper total / F_max upper total		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1610, 5060, 5640
	P-Group: Closed-loop control	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min $-[\mathrm{N}]$	$\begin{aligned} & \operatorname{Max} \\ & -[N] \end{aligned}$	Factory setting - [N]
Description:	Displays the upper force limit of all force limits.		
Dependency:	Refer to: p1520, p1521, p1522, p1523, p1528, p1529, p1532		
r1534	CO: Torque limit upper total / M_max upper total		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1610, 5060, 5640
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	Displays the upper torque limit of all torque limits.		
Dependency:	Refer to: p1520, p1521, p1522, p1523, p1528, p1529, p1532		
r1535	CO: Force limit lower total / F_max lower total		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1610, 5060, 5640
	P-Group: Closed-loop control	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [N]	Max - [N]	Factory setting - [N]
Description:	Displays the lower force limit of all force limits.		
Dependency:	Refer to: p1520, p1521, p1522, p1523, p1528, p1529, p1532		

r1535	CO: Torque limit lower total / M_max lower total		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1610, 5060, 5640
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	Displays the lower torque limit of all torque limits.		
Dependency:	Refer to: p1520, p1521, p1522, p1523, p1528, p1529, p1532		
$\overline{\mathbf{1 5 3 6}}$	Current limit maximum torque-generating current / Isq_max		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6640, 6710
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the maximum limit for the torque-generating current component.		
$\overline{\mathbf{1 5 3 7}}$	Current limit minimum torque-generating current / Isq_min		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6640, 6710
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the minimum limit for the torque-generating current component.		
$\overline{1538}$	CO: Upper force limit effective / F_max upper eff		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	$\begin{aligned} & \text { Func. diagram: 1610, 1750, } \\ & 5060,5610,5650,5714,7010, \\ & 8012 \end{aligned}$
	P-Group: Closed-loop control	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [N]	Max - [N]	Factory setting - [N]
Description:	Displays the currently effective upper force limit.		
Note:	The effective, upper force limit is reduced with respect to the selected upper force limit p1520 if the current limit p0640 is reduced.		

r 1538	CO: Upper effective torque limit / M_max upper eff		
SERVO, VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	$\begin{aligned} & \text { Func. diagram: 1610, 1700, } \\ & \text { 1750, 5060, 5610, 5650, 5714, } \\ & 6040,6060,6640,6721,7010, \\ & 8012 \end{aligned}$
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	Displays the currently effective upper torque limit.		
Note:	The effective upper torque limit reduced or the rated magnetizin For vector drives (refer to p0107) The torque limit p1520 can be	th respect to the up he induction motor sibly the case for rot using p0340 $=1,3$ or	1520 , if the current limit p0640 is d. nts (refer to p1960).
r1539	CO: Lower force limit effective / F_max lower eff		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	$\begin{aligned} & \text { Func. diagram: } 1610,1750, \\ & 5060,5610,5650,5714,7010 \text {, } \\ & 8012 \end{aligned}$
	P-Group: Closed-loop control	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[N] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & -[N] \end{aligned}$	Factory setting - [N]
Description:	Displays the currently effective lower force limit.		
Note:	The effective lower force limit is reduced with respect to the selected lower force limit p1521 if the current limit p0640 is reduced.		
	The force limit p1520 can be re-calculated using p0340 $=1,3$ or 5 .		
$\overline{\mathbf{1 5 3 9}}$	CO: Lower effective torque limit / M_max lower eff		
SERVO, VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1610, 1700, 1750, 5060, 5610, 5650, 5714, 6040, 6060, 6640, 6721, 7010, 8012
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	Displays the currently effective lower torque limit.		
Note:	The effective lower torque limit p0640 is reduced or the rated For vector drives (refer to p0107) The torque limit p1520 can be	The effective lower torque limit is reduced with respect to the selected lower torque limit p1521 if the current limit p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.	e limit p1521 if the current limit increased. nts (refer to p1960).

p1540[0...n]	CI: Torque limit speed controller upper scaling / M_max n-ctr upScal		
VECTOR (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1700, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the scaling of the upper torque limiting to limit the speed controller output.		
p1541[0...n]	CI: Torque limit. speed controller lower scaling / M_max nctr lowScal		
VECTOR (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 1700, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the scaling of the lower torque limiting to limit the speed controller output.		
p1542[0...n]	CI: Travel to fixed stop force reduction / TfS F_red		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5610
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the torque/force reduction when traversing to a fixed stop. This value is converted into a factor and is interconnected to the scaling of the torque/force limits.		
Dependency:	Refer to: p1528, p1529, r1543, p1544, p1545		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1542[0...n]	CI : Travel to fixed stop torque re	duction / TfS M_red	
SERVO	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5610
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the torque/force reduction when traversing to a fixed stop. This value is converted into a factor and is interconnected to the scaling of the torque/force limits.		
Dependency:	Refer to: p1528, p1529, r1543, p1544, p1545		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
r1543	CO: Travel to fixed stop force sc	ling / TfS F scal	
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5610
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the internally converted factor to interconnect to the scaling of the torque/force limits.		

Dependency:	Refer to: p1528, p1529, p1542, p1544, p1545		
r1543	CO: Travel to fixed stop torque scaling / TfS M scal		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5610
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the internally converted factor to interconnect to the scaling of the torque/force limits.		
Dependency:	Refer to: p1528, p1529, p1542, p1544, p1545		
p1544	Travel to fixed stop evaluation force reduction / TfS F_red eval		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5610
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [\%]	Max 65535 [\%]	Factory setting 100 [\%]
Description:	Sets the evaluation for the torque/force reduction when traversing to a fixed stop.		
Dependency:	Refer to: p1528, p1529, p1542, r1543, p1545		
Note:	4000 hex (16384 dec) in the MOMRED control word corresponds to a reduction by the percentage specified in this parameter.		
p1544	Travel to fixed stop evaluation torque reduction / TfS M_red eval		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5610
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [\%]	Max 65535 [\%]	Factory setting 100 [\%]
Description:	Sets the evaluation for the torque/force reduction when traversing to a fixed stop.		
Dependency:			
Note:	4000 hex (16384 dec) in the MOMRED control word corresponds to a reduction by the percentage specified in this parameter.		
p1545[0...n]	BI: Activates travel to a fixed stop / TfS activation		
SERVO	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2520, 3617, 8012
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to activate 1: Travel to fixed stop is active 0 : Travel to fixed stop is inactive	the "travel to fixed stop" functio	
Dependency:	Refer to: p1542, r1543, p1544		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

Note: \quad When traveling to fixed stop, the fault F07900 "motor locked" is suppressed.
When the function module "basic positioner" $(\mathrm{rO108.4}=1)$ is activated, this binector input is interconnected as fol-
lows as standard:
BI: p1545 = r2683.14

p1545[0...n]	BI: Activates travel to a fixed stop / TfS activation		
VECTOR (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2520, 3617, 8012
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to activate/de-activate the "travel to fixed stop" function 1: Travel to fixed stop is active 0 : Travel to fixed stop is inactive		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	When traveling to fixed stop, the fault F07900 "motor locked" is suppressed.		
	When the function module "basic positioner" (r0108.4 = 1) is activated, this binector input is interconnected as follows as standard:BI: p1545 = r2683.14		

p1546	Velocity threshold motoring/regenerating / v_thresh mot/regen		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.0 [$\mathrm{m} / \mathrm{min}$]	$\begin{aligned} & \operatorname{Max} \\ & 1000.0[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.2 [m/min]
Description:	Sets the velocity threshold for the motoring/regenerating limit.		
	For velocities where the absolute value is less than p 1546 , then the following applies:		
	- For p1400.13 = 0: Motoring limit (velocity threshold is compared to the velocity actual value).		
	- For p 1400.13 = 1: Regenerative limiting (velocity threshold is compared to the velocity setpoint).		

p1546	Speed threshold motoring/regenerating / n_thresh mot/regen		
SERVO	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.0 [rev/min]	$\begin{aligned} & \operatorname{Max} \\ & 210000.0[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 20.0 [rev/min]
Description:	Sets the speed threshold for the motoring/regenerating limit.		
	For speeds where the absolute value is less than p1546, then the following applies:		
	- For p1400.13 = 0: Motoring limit (speed threshold is compared to the speed actual value).		
	- For p1400.13 = 1: Regenerative limiting (speed threshold is compared to the speed setpoin		

r1547[0...1]	CO: Torque limit for speed controller output / M_max outp n_ctrl		
VECTOR $(\mathrm{n} / \mathrm{M})$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6060
	P-Group: Closed-loop control	Units group: $7 _1$	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min		Max
	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$
Description:	Displays the torque limit to limit the speed controller output.		
Index:	$[0]=$ Upper limit		
	$[1]=$ Lower limit		

r1548[0...1]	CO: Stall current limit torque-generating maximum / Isq_max stall		
VECTOR $(\mathrm{n} / \mathrm{M})$	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: 6 _2	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min	Max	$-[$ Arms $]$

r1549	CO: Stall power actual value / P_stall		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: 14_8	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{kW}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{kW}] \end{aligned}$	Factory setting - [kW]
Description:	Displays the instantaneous stall power.		
Dependency:	Refer to: p0326		
r1549	CO: Stall power actual value / P_stall		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: 14_5	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[k W] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{kW}] \end{aligned}$	Factory setting - [kW]
Description: Dependency:	Displays the instantaneous stall power. Refer to: p0326		

p1552[0...n]	CI: Force limit upper scaling without offset / F_max up offs scal		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5060, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the scaling of the upper force limiting to limit the velocity controller output without taking into account the current and power limits.		
p1552[0...n]	CI: Torque limit upper scaling without offset / M_max up w/o offs		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5060, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the scaling of the upper torque limiting to limit the speed controller output without taking into account the current and power limits.		
p1554[0..n]	CI: Force limit lower scaling without offset / M_max low w/o offs		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5060, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the scaling of the lower force limiting to limit the velocity controller output without taking into account the current and power limits.		
p1554[0...n]	CI: Torque limit lower scaling without offset / M_max low w/o offs		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5060, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the scaling of the lower torque limiting to limit the speed controller output without taking into account the current and power limits.		
p1555[0...n]	CI: Power limit / P_max		
VECTOR (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 6640
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the motoring and negative regenerative power limit. Refer to: p1530, p1531		
Dependency:			

Note: \quad The resulting power limit when motoring is the minimum from p1530 and the signal that is read in, the resulting regenerative power limit is the maximum from p1531 and the negative signal that is read in.

p1556[0...n]	Power limit scaling / P_max_scale		
VECTOR (n/M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6640
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 340.28235 E 36 \end{aligned}$	Factory setting 0.00
Description:	Sets the scaling of the signal source for the motoring and negative regenerative power limit. 0 signifies no power limiting.		
p1569[0...n]	CI: Supplementary force 3 / F_suppl 3		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5610, 5650, 7010
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\underline{M i n}$	Max	Factory setting 3841[0]
Description:	Sets the signal source for supplementary force 3.		
Dependency:	Refer to: p3842		
Notice:	The signal input is after the force limit (r1538, r1539). For vector drives, the signals that are entered are only limited by the current and power limits.		
Note:	The signal input is preferably used to enter the friction characteristic. The friction compensation is also effective if the velocity controller output reaches its force limits, but the current limits have still not been reached (this only applies to vector drives).		

p1569[0...n]	CI: Supplementary torque 3 / M_suppl 3		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 5610, 5650, 6710, 7010
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\underline{M i n}$	Max	Factory setting 3841[0]
Description:	Sets the signal source for supplementary torque 3.		
Dependency:	Refer to: p3842		
Notice:	The signal input is after the torque limit ($\mathbf{r 1 5 3 8}$, r 1539). For vector drives, the signals that are entered are only limited by the current and power limits.		
Note:	The signal input is preferably used to enter the friction characteristic. The friction compensation is also effective if the speed controller output reaches its torque limits, but the current limits have still not been reached (this only applies to vector drives).		

p1570[0...n] CO: Flux setpoint / Flux setpoint
$\operatorname{VECTOR}(n / M) \quad$ Can be changed: $U, T \quad$ Calculated:

Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: PEM, REL

Min	Max
50.0 [\%]	200.0 [\%]

Description: Sets the flux setpoint referred to rated motor flux.

Calculated: -
Dynamic index: DDS, p0180
Units group: -

Max
200.0 [\%]

Access level: 2

Func. diagram: 6722
Unit selection: -
Expert list: 1
Factory setting
100.0 [\%]

Notice: A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.
Note: \quad For p1570 $>100 \%$, the flux setpoint increases as a function of the load from 100% (no-load operation) to the set- ting in p1570 (above rated motor torque).

p1571[0...n]	CI: Supplementary flux setpoint / Suppl flux setp		
VECTOR (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 6725
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the supplementary flux setpoint.		
Notice:	Low flux setpoints can cause the drive to stall at higher loads. This is the reason that the flux setpoint should only be adapted for slow load changes.		
Note:	The supplementary flux setpoint is limited to +/-50\%.		
p1572[0...n]	Supplementary flux setpoint / Suppl flux setp		
VECTOR (n/M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min $0.0 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [\%] } \end{aligned}$	Factory setting 0.0 [\%]
Description:	Sets the supplementary flux setpoint for the flux controller. The value is referred to the rated motor flux.		
Notice:	The parameter should be set back to 0\% again for normal closed-loop control operation.		
Note:	The parameter is used to optimize the flux controller. The current model is not influenced by the setting.		
p1573[0...n]	Flux threshold value magnetizing / Flux thresh mag		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6722
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 10.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description:	Sets the flux threshold value for enabling the speed setpoint and the end of the magnetizing display r0056.4.		
Note:	The parameter only has an influence if the flux actual value reaches the threshold value p1573 more quickly during magnetizing than the time set in p0346. During flying restart (refer to p1200) the parameter has no influence.		

p1574[0...n]	Voltage reserve dynamic / V_reserve dyn		
VECTOR $(\mathrm{n} / \mathrm{M})$	Can be changed: U, T	Calculated:	
	CALC_MOD_LIM_REF	Access level: 3	

p1576[0...n]	Flux boost, adaptation speed, lower / Flux boost n lower		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min 0.00 [rev/min]	Max 210000.00 [rev/min]	Factory setting 0.00 [rev/min]
Description:	Sets the lower adaptation speed of the flux boost. Below this speed, p1570 is set as reference (setpoint) flux.		
p1577[0...n]	Flux boost adaptation speed, upper / Flux boost \mathbf{n} upper		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 1.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10000.0 \text { [\%] } \end{aligned}$	Factory setting 200.0 [\%]
Description:	Sets the upper adaptation speed of the flux boost. Above this speed, the rated motor flux (100%) is set as reference (setpoint) flux.		
Dependency:	The parameter value refers to the lower adaptation speed of the flux boost. Refer to: p1576		
p1578[0...n]	Flux reduction flux decrease smoothing time / Flux red dec t_sm		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5722
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min_{20}	$\begin{aligned} & \text { Max } \\ & 5000 \text { [ms] } \end{aligned}$	Factory setting 200 [ms]
Description: Dependency:	Sets the smoothing time for the flux setpoint when decreasing the flux due to flux reduction ($\mathrm{p} 1581<100 \%$). Refer to: p1579, p1581		
p1579[0...n]	Flux reduction flux build-up smoothing time / Flux red up t_sm		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5722
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min 0 [ms]	$\begin{aligned} & \text { Max } \\ & 5000 \text { [ms] } \end{aligned}$	Factory setting 4 [ms]
Description:	Sets the smoothing time for the flux setpoint for the flux build-up due to flux reduction ($\mathrm{p} 1581<100 \%$). Refer to: p1578, p1581		
Dependency:			
Note:	An excessively long smoothing time extends the time until the maximum torque is reached from the no-load phase.		

p1580[0...n]	Efficiency optimization / Efficiency opt.		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6722
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min 0 [\%]	$\begin{aligned} & \text { Max } \\ & 100 \text { [\%] } \end{aligned}$	Factory setting 0 [\%]
Description:	Sets the efficiency optimization. When optimizing the efficiency, the flux setpoint of the closed-loop control is adapted as a function of the load.		
	For p1580 = 100%, under no-load operating conditions, the flux setpoint is reduced to 50% of the rated motor flux.		
Note:	It only makes sense to activate this function if the dynamic response requirements of the speed controller are low. In order to avoid oscillations, if required, the speed controller parameters should be adapted (increase Tn, reduce Kp).		
	Further, the smoothing time of the flux setpoint filter (p1582) should be increased.		

p1581[0...n]	Flux reduction factor / Flux red factor	
SERVO	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180
	P-Group: Closed-loop control	Func. diagram: 5722
	Not for motor type: PEM, REL, FEM	Unit selection: -
	Min	Expert list: 1

p1582[0...n]	Flux setpoint smoothing time / Flux setp T_smth		
VECTOR $(\mathrm{n} / \mathrm{M})$	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6722
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
	$4[\mathrm{~ms}]$	$5000[\mathrm{~ms}]$	$15[\mathrm{~ms}]$

Note: If the start of field weakening is shifted to lower speeds, then the voltage reserve is increased for partial load situations.

If the start of field weakening is shifted to higher speeds, the voltage reserve is appropriately reduced so that for fast load changes, it can be expected that this will have a negative impact on the dynamic performance.

p1592[0...n]	Flux controller integral.action time / Flux controller Tn		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6726
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	$\operatorname{Min}_{0[\mathrm{~ms}]}$	$\begin{aligned} & \text { Max } \\ & 10000 \text { [ms] } \end{aligned}$	Factory setting 30 [ms]
Description: Note:	The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned. When calculating controller parameter ($\mathrm{p} 0340=4$), this value is re-calculated.		
r1593[0...1]	CO: Field weakening controller / flux controller output / Field/FI_ctrl outp		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6723, 6724, 6726
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the output of the field weakening controller (synchronous motor) or the output of the flux controller (sepa-rately-excited synchronous motor, induction motor).		
Index:	$\begin{aligned} & {[0]=\text { Pl output }} \\ & {[1]=\text { I output }} \end{aligned}$		
p1594[0...n]	Field-weakening controller, P gain / Field_ctrl Kp		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6724
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00 \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 0.00 \end{aligned}$
Description:	Sets the P gain of the field-weakening controller.		
p1596[0...n]	Field weakening controller integral-action time / Field_ctrl Tn		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6723, 6724
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min 10 [ms]	$\begin{aligned} & \text { Max } \\ & 10000 \text { [ms] } \end{aligned}$	Factory setting 50 [ms]
Description:	Sets the integral-action time of the field-weakening controller.		
$\overline{\mathbf{1 5 9 7}}$	CO: Field weakening controller output / Field_ctrl output		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6723
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\%] \end{aligned}$	$\begin{gathered} \operatorname{Max} \\ -[\%] \end{gathered}$	Factory setting - [\%]
Description:	Displays the output of the field weakening controller. The value is referred to the rated motor flux.		

$\mathbf{r 1 5 9 8}$	CO: Total flux setpoint / Flux setp total		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6714, 6723, 6724, 6725, 6726, 8018
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the effective flux setpoint.		
p1599[0...n]	Flux controller, excitation current difference / Flux ctr I_exc_dif		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min $0.0 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [\%] } \end{aligned}$	Factory setting $3.0 \text { [\%] }$
Description:	Sets the permissible difference between the actual excitation current and the excitation current setpoint. The excitation current flux controller is active within this difference. If the difference lies outside the specified limit value, then the I component of the excitation current flux controller is kept. Instead of this, for the flux controller of the field-generating current, an additional I controller is switched in (integral time according to p1592). If the difference again lies within the bandwidth, the I component of the excitation current flux controller is re-activated and the I component of the flux controller of the field-generating current is reduced as an exponential function with respect to time. The reduction of the I component over time depends on the rotor time constant (r0384).		
p1600[0...n]	P flux controller, P gain / P flux ctrl Kp		
VECTOR (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.0 \end{aligned}$	Max 999999.0	Factory setting 10.0
Description: Note:	Sets the proportional gain of the P flux controller for separately-excited synchronous motors. The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned. When calculating controller parameter (p0340 = 4), this value is re-calculated.		
r1602	CO: Flux controller P output / Flux ctrl P outp		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the output of the P flux controller for separately-excited synchronous motors (FEM).		

p1609[0...n]	Current setpoint for I/f operation / I_set I/f oper		
VECTOR (n/M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min 0.00 [Arms]	Max 10000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Sets the stator current setpoint for operation of separately-excited synchronous motors (FEM) in the operating mode I/f (p1300 = 18).		
p1610[0...n]	Torque setpoint static (SLVC) / M_set static		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	$\begin{aligned} & \text { Func. diagram: 1710, 6721, } \\ & 6722 \end{aligned}$
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0} \\ & 0.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.0 \text { [\%] } \end{aligned}$	Factory setting 50.0 [\%]
Description:	Sets the static torque setpoint for sensorless vector control (SLVC). This parameter is entered as a percentage referred to the rated motor torque (r0333).		
	For sensorless vector control, when the motor model is shut down, an absolute current is impressed. p1610 represents the maximum load that occurs at a constant setpoint speed.		
Notice:	p1610 should always be set to at least 10% higher than the maximum steady-state load that can occur. For p1610 $=0 \%$, a current setpoint is calculated that corresponds to the no-load case (rated magnetizing current). For p1610 $=100 \%$, a current setpoint is calculated that corresponds to the rated motor torque.		
Note:			
p1611[0...n]	Supplementary accelerating torque (SLVC) / M_suppl_accel		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1710, 6721, 6722
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM		Expert list: 1
	Min 0.0 [\%]	Max 200.0 [\%]	Factory setting 0.0 [\%]
Description:	Enters the dynamic torque setpoint for the low-speed range for sensorless vector control (SLVC). This parameter is entered as a percentage referred to the rated motor torque (r0333).		
Note:	When accelerating and braking p1611 is added to p1610 and the resulting total torque is converted into an appropriate current setpoint and controlled. For pure accelerating torques, it is always favorable to use the torque pre-control of the speed controller (p1496).		
p1612[0...n]	Current setpoint, open-loop control, encoderless / I_setCtrEncoderl		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [Arms] } \end{aligned}$	Max 10000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Sets the current setpoint for controlled (open-loop) encoderless operation. The value is effective at speeds less than p1755 and represents a reserve for a possibly existing load torque or torque error in the moment of inertia.		
Note:			

p1616[0...n]	Current setpoint smoothing time / I_set T_smooth		
VECTOR (n/M)	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6721, 6722
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM		Expert list: 1
	$\underset{4[\mathrm{~ms}]}{\mathrm{Min}^{2}}$	Max 10000 [ms]	Factory setting 40 [ms]
Description:	Sets the smoothing time for the current setpoint.		
	The current setpoint is generated from p1610 and p1611.		
Note:	This parameter is only effective in the range where current is impressed for sensorless vector control.		
r1618	Current model controller, pre-control / I_mod_ctrl prectrl		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the pre-control value of the current model controller. It involves a magnetizing current in the d-direction.		

p1619[0...n]	Setpoint/actual value tracking threshold / SetAct track thrsh		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min 0.00 [Arms]	Max 10000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	Threshold for setpoint - actual value tracking of the stator current in the q direction of the current model.		
p1620[0...n]	Stator current, minimum / I_stator min		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\operatorname{Min}_{-10000.00} \text { [Arms] }$	Max 10000.00 [Arms]	Factory setting 0.00 [Arms]
Description:	A negative value means that the field-generating stator current (d-axis) has a negative sign. The valid value is inter nally limited to 50% of the rated motor current (p0305).		

p1621[0...n]	Changeover speed, inner cos phi = 1 / n_chngov cos phi=1		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min 0.00 [rev/min]	Max 210000.00 [rev/min]	Factory setting 0.00 [rev/min]
Description:	Sets the speed where a change is mad If the value that is entered exceeds the plete speed range.	the inner to the outer cos phi = speed, then a change is made to	inner cos phi = 1 over

r1627	CO: Current model load angle / I_mod load angle		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -\left[{ }^{\circ}\right] \end{gathered}$	$\begin{gathered} \text { Max } \\ -\left[{ }^{\circ}\right] \end{gathered}$	Factory setting - [${ }^{\circ}$]
Description:	Displays the load angle of the current		

p1628[0...n]	Current model controller, dynamic factor / I_mod_ctr dyn_fact		
VECTOR $(\mathrm{n} / \mathrm{M})$	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6727
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min	Max	Factory setting
	$1[\%]$	$400[\%]$	$50[\%]$
Description:	Dynamic factor of the model controller in the current model		

p1629[0...n]	Current model controller P gain / I_mod_ctrl Kp		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100000.000 \end{aligned}$	Factory setting 0.000
Description:	Sets the proportional gain of the current model controller. This value is automatically preset using p3900 or p0340 when commissioning has been completed.		
p1630[0...n]	Current model controller integral time / I_ctrl Tn		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 10000.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description:	Sets the proportional gain of the current model controller. This value is automatically preset using p3900 or p0340 when commissioning has been completed.		
$\overline{\mathbf{r 1 6 3 1}}$	Current model controller, P gain effective / I_mod ctrl Kp eff		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	${ }_{-} \mathbf{M i n}$	Max	Factory setting
Description:	Displays the effective P gain of the current model controller.		

r1632	Current model controller integral time effective / I_mod_ctrl Tn eff		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min - [ms]	Max - [ms]	Factory setting - [ms]
Description:	Displays the effective integral time of the current model controller.		
r1633	Current model, flux setpoint / I_mod flux setp		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the effective flux setpoint of the current model. The value is referred to the rated motor flux.		
r1634	Current model, flux actual value / I_mod flux act val		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min - [\%]	$\begin{aligned} & \text { Max } \\ & -[\%] \end{aligned}$	Factory setting - [\%]
Description:	Displays the effective flux actual value of the current model. The value is referred to the rated motor flux.		
$\overline{\mathbf{1 6 3 5}}$	Current model controller, I component / I_mod_ctrl I_comp		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the I component of the current model controller.		
$\mathbf{r 1 6 3 6}$	Current model controller outp	I_mod_ctrl out	
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the output of the current model controller.		

r 1637	Current model, magnetizing current, d axis / I_mod I_mag d-ax		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the magnetizing current of the current model in the d-axis.		
r1638	Current model, magnetizing current, q axis / I_mod I_mag q-ax		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the magnetizing current of the current model in the q-axis.		
r1639	CO: Current model Isq after actual value tracking / I_mod Isq track		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the stator current in the q axis after current actual value tracking.		
p1640[0...n]	CI: Excitation current actual value / I_exc_act val		
VECTOR (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the excitation current actual value		
$\mathbf{r 1 6 4 1}$	Excitation current actual value / I_exc_act val		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6727, 6497
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the excitation current actual value that is read in. Refer to: p0390		
Dependency:			

p1642[0...n]	Minimum excitation current / Min I_exc		
VECTOR (n/M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.1}^{[\%]} \end{aligned}$	Max 50.0 [\%]	Factory setting 5.0 [\%]
Description:	Sets the minimum excitation current. This means that negative excitation currents can be avoided.		
p1643[0...n]	Gain factor, minimum excitation current closed-loop control / Min I_exc Kp		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 5.00 \end{aligned}$	Factory setting 0.40
Description:	Sets the gain factor for the minimum excitation current, closed-loop control. This is active if the excitation current is below 75\% of p1642.		
Dependency:	Refer to: p1642		
$\overline{\mathbf{1 6 4 4}}$	Excitation current monitoring output / I_exc_monit outp		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the output of the excitation current monitoring for separately excited synchronous motors.		
p1645[0...6]	BI: Excitation feedback signals signal source / Exc FS S_src		
VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 6495
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the individual feedback signals from the excitation.		
Index:	$\begin{aligned} & {[0]=\text { Excitation ready to be powered up }} \\ & {[1]=\text { Excitation ready }} \\ & {[2]=\text { Excitation operational }} \\ & {[3]=\text { Excitation group signal fault }} \\ & {[4]=\text { Excitation group signal alarm }} \\ & {[5]=\text { Not used }} \\ & {[6]=\text { Not used }} \end{aligned}$		
Dependency:	Refer to: r1649		

p1646	Excitation monitoring time / Excit t_monit		
VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6495
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\operatorname{Min}_{2.0}$	$\begin{aligned} & \operatorname{Max} \\ & 1300.0 \text { [s] } \end{aligned}$	Factory setting 20.0 [s]
Description:	Sets the monitoring time of the excitation.		
Note:	After the on command for the excitation (r1648.0 = 1) , its feedback signal must be available at r1649.1 within this monitoring time (BI: p1645[1]).		
	The same monitoring time is effective after the excitation is enabled for operation (r1648.3 = 1) up to the feedback signal "excitation operational" (r1649.2 = 1, BI: p1645[2]).		
$\overline{\mathrm{p} 1647}$	Excitation switch-off delay time / Exc t_off		
VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6495
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\operatorname{Min}_{0.5}^{\operatorname{ss]}}$	$\begin{aligned} & \operatorname{Max} \\ & 5.0 \text { [s] } \end{aligned}$	Factory setting 0.8 [s]
Description:	Sets the switch-off delay time to shut down the excitation equipment.		
Note:	The delay time starts if, when powering down, r0863.0 $=0$. r1648.0 and r1648.3 are reset at the end of the delay time.		

r1649.0... 7
VECTOR (n/M)

p1653[0...n]	Current setpoint torque-generating smoothing time minimum / Isq_s T_smth min		
VECTOR $(\mathrm{n} / \mathrm{M})$	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	Min	Max	Factory setting
	$0.1[\mathrm{~ms}]$	$20.0[\mathrm{~ms}]$	0.1 [ms]
Description:	Sets the minimum smoothing time constant for the setpoint of the torque-generating current components.		

p1654[0...n]	Curr. setpoint torque-gen. smoothing time field weakening range / Isq_s T_smth FW		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.1 \text { [ms] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 50.0[\mathrm{~ms}] \end{aligned}$	Factory setting 4.8 [ms]
Description: Note:	Sets the smoothing time constant for the setpoint of the torque-generating current components. The smoothing time does not become effective until the field-weakening range is reached.		
p1655[0...1]	CI: Current setpoint filter natural frequency tuning / I_set_filt f_n		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: -	Func. diagram: 1710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 1
Description: Index:	$\begin{aligned} & {[0]=\text { Filter } 1} \\ & {[1]=\text { Filter } 2} \end{aligned}$		

p1656[0...n]	Activates current setpoint filter / I_setp_filt act			
SERVO	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3	
	Data type: Unsigned16	Dynamic index: DDS, p0180	Func. diagram: 5710	
	P-Group: Closed-loop control	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting 0001 bin	
Description:	Setting for activating/de-activating the current setpoint filter.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Filter 1	Active	Inactive	
	01 Filter 2	Active	Inactive	
	02 Filter 3	Active	Inactive	

Dependency: The individual current setpoint filters are parameterized as of p1657.
Note: If not all of the filters are required, then the filters should be used consecutively starting from filter 1.

p1660[0...n]	Current setpoint filter 1 numerator natural frequency / I_set_filt 1 fn_z		
SERVO, VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min $0.5 \text { [Hz] }$	$\begin{aligned} & \text { Max } \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 1999.0 [Hz]
Description:	Sets the numerator natural frequency for current setpoint filter 1 (general filter).		
Dependency:	Current setpoint filter 1 is activated via p1656.0 and parameterized via p1657 ... p1661.		
p1661[0...n]	Current setpoint filter 1 numerator damping / I_set_filt 1 D_z		
SERVO, VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description:	Sets the numerator damping for current setpoint filter 1.		
Dependency:	Current setpoint filter 1 is activated via p1656.0 and parameterized via p1657 .. p1661.		
p1662[0...n]	Current setpoint filter 2 type / I_set_filt 2 Typ		
SERVO, VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 1
Description:	Sets the current setpoint filter 2 as low pass (PT2) or as extended general 2nd-order filter.		
Value:	1: Low pass: PT2		
Dependency:	Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666.		
Note:	For an extended general 2nd-order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed.		
	The denominator damping can be determined from the equation for the 3 dB bandwidth: f_3dB bandwidth = 2 * D_denominator * f_bandstop frequency		
p1663[0...n]	Current setpoint filter 2 denominator natural frequency / I_set_filt $\mathbf{2}$ fn_n		
SERVO, VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.5}[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 1999.0 [Hz]
Description:	Sets the denominator natural frequency for current setpoint filter 2 (PT2, general filter).		
Dependency:	Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666.		

p1664[0...n]	Current setpoint filter 2 denominator damping / I_set_filt 2 D_n		
SERVO, VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.001 \end{aligned}$	Max 10.000	Factory setting 0.700
Description:	Sets the denominator damping for current setpoint filter 2.		
Dependency:	Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 .. p1666.		
p1665[0...n]	Current setpoint filter 2 numerator natural frequency / I_set_filt 2 fn_z		
SERVO, VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 1999.0 [Hz]
Description:	Sets the numerator natural frequency for current setpoint filter 2 (general filter).		
Dependency:	Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666.		
p1666[0...n]	Current setpoint filter 2 numerator damping / I_set_filt 2 D_z		
SERVO, VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description:	Sets the numerator damping for current setpoint filter 2.		
Dependency:	Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666.		
p1667[0...n]	Current setpoint filter 3 type / I_set_filt 3 Typ		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \text { Min } \\ 1 \end{gathered}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 1
Description:	Sets the current setpoint filter 3 as low pass (PT2) or as extended general 2nd-order filter.		
Value:	1: Low pass: PT2 2: General 2nd-order filter		
Dependency:	Current setpoint filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671.		
p1668[0...n]	Current setpoint filter 3 denominator natural frequency / I_set_filt $\mathbf{3} \mathbf{f n} \mathbf{n}$		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 1999.0 [Hz]
Description:	Sets the denominator natural frequency for current setpoint filter 3 (PT2, general filter).		

Dependency:	Current setpoint filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671.		
p1669[0...n]	Current setpoint filter 3 denominator damping / I_set_filt 3 D_n		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.001 \end{aligned}$	Max 10.000	Factory setting 0.700
Description:	Sets the denominator damping for current setpoint filter 3.		
Dependency:	Current setpoint filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671.		
p1670[0...n]	Current setpoint filter 3 numerator natural frequency / I_set_filt 3 fn_z		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.5[\mathrm{~Hz}]$	$\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 1999.0 [Hz]
Description:	Sets the numerator natural frequency for current setpoint filter 3 (general filter).		
Dependency:	Current setpoint filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671.		
p1671[0...n]	Current setpoint filter 3 numerator damping / I_set_filt 3 D_z		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.000 \end{aligned}$	Max 10.000	Factory setting 0.700
Description:	Sets the numerator damping for current setpoint filter 3.		
Dependency:	Current setpoint filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671.		
p1672[0...n]	Current setpoint filter 4 type / I_set_filt 4 Typ		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 1
Description:	Sets the current setpoint filter 4 as low pass (PT2) or as extended general 2nd-order filter.		
Value:	1: Low pass: PT2 2: General 2nd-order filter		
Dependency:	Current setpoint filter 4 is activated via p1656.3 and parameterized via p1672 ... p1676.		

p1673[0...n]	Current setpoint filter 4 denominator natural frequency / I_set_filt 4 fn_n		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 1999.0 [Hz]
Description:	Sets the denominator natural frequency for current setpoint filter 4 (PT2, general filter).		
Dependency:	Current setpoint filter 4 is activated via p1656.3 and parameterized via p1672 ... p1676.		
p1674[0...n]	Current setpoint filter 4 denominator damping / I_set_filt 4 D_n		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.001 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description:	Sets the denominator damping for current setpoint filter 4.		
Dependency:	Current setpoint filter 4 is activated via p1656.3 and parameterized via p1672 ... p1676.		
p1675[0...n]	Current setpoint filter 4 numerator natural frequency / I_set_filt 4 fn_n		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.5} \\ & 0 . \mathrm{Hz}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 1999.0 [Hz]
Description:	Sets the numerator natural frequency for current setpoint filter 4 (general filter).		
Dependency:	Current setpoint filter 4 is activated via p1656.3 and parameterized via p1672 ... p1676.		
p1676[0...n]	Current setpoint filter 4 numerator damping / I_set_filt 4 D_z		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \end{aligned}$	Max 10.000	Factory setting 0.700
Description:	Sets the numerator damping for current setpoint filter 4.		
Dependency:	Current setpoint filter 4 is activated via p1656.3 and parameterized via p1672 ... p1676.		
p1699	Filter data acceptance / Filt data accept		
SERVO, VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{1}{\text { Max }}$	Factory setting 0
Description:	Activates data acceptance for parameter changes for the filter. p1699 = 0: The new filter data are immediately accepted.		

p1705[0...n]	Isq Controller setpoint/actual value tracking threshold / Isq ctrl trk thrsh		
VECTOR (n/M)	Can be changed: U, C	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6714,6726
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1

$\mathbf{r 1 7 1 8}$	CO: Isq controller output / Isq_ctrl outp		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the current output of the Isq current controller (torque/force generating current, PI controller). The value contains the proportional and integral components of the PI controller.		
r1719	Isq controller integral component / Isq_ctrl I_comp		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the integral component of the Isq current controller (torque/force-generating current, PI controller).		
r1723	CO: Isd controller output / Isd_ctrl outp		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the current output of the Isd current controller (flux-generating current, PI controller). The value contains the proportional and integral components of the PI controller.		
r1724	Isd controller integral component / Isd_ctrl I_comp		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the integral component of the Isd current controller (flux-generating current, PI controller).		
r1725	Isd controller integral component limit / Isd_ctrl I_limit		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the limit value for the integral component of the Isd current controller.		

p1726[0...n]	Quadrature arm decoupling, scaling / Transv_decpl scal		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min 0.0 [\%]	$\begin{aligned} & \text { Max } \\ & 200.0 \text { [\%] } \end{aligned}$	Factory setting 75.0 [\%]
Description:	Sets the scaling of the quadrature arm decoupling		
Note:	This parameter is ineffective for sensorless vector control. In this case, p1727 is always used. If p1726 is set to 0 , then the quadrature de-coupling is de-activated. The integral component of the Isd current controller remains effective in the complete speed control range.		
	For the closed-loop control of synchronous motors, this parameter is used to scale the current controller de-coupling.		
p1727[0...n]	Quadrature arm decoupling at voltage limit scaling / TrnsvDecpIVmaxScal		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 200.0 \text { [\%] } \end{aligned}$	Factory setting 50.0 [\%]
Description:	Sets the scaling of quadrature arm decoupling when the voltage limit is reached.		
$\mathbf{r 1 7 2 8}$	De-coupling voltage, in-line axis / V_dir-axis_decoupl		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the current output of the quadrature channel de-coupling for the d axis.		
r1729	De-coupling voltage, quadrature axis / V_quad_decoupl		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the current output of the quadrature channel de-coupling for the q axis.		
r1732	CO: Direct-axis voltage setpoint / Direct V set		
SERVO, VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1590, 1630, 5714, 5730, 6714, 6731
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the direct-axis voltage setpoint Ud.		

r1733	CO: Quadrature-axis voltage setpoint / Quad V set		
SERVO, VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1590, 1630, 5714, 5730, 6714, 6731
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the quadrature-axis component of voltage setpoint Uq.		
p1740[0...n]	Gain resonance damping for encoderless closed loop control / Gain res_damp		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.000} \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.025
Description:	Defines the gain of the controller for resonance damping for operation with sensorless vector control in the range that current is impressed.		
p1744[0...n]	Motor model speed threshold stall detection / MotMod n_thr stall		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL, FEM		Expert list: 1
	Min 0.00 [rev/min]	$\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 100.00 [rev/min]
Description:	Sets the speed threshold value to detect a stalled motor. If the adaptation controller output exceeds the parameterized speed difference, then bit 11 in status word p1408 is set.		
Dependency:	If a stalled drive is detected (p1408.11 set), fault 7902 is output after the delay time in p2178. Refer to: p2178		
Note:	Speed monitoring is only effective in operation with a speed encoder (refer to p1300).		
p1745[0...n]	Motor model error threshold stall detection / MotMod ThreshStall		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.0 \end{aligned}$	Factory setting 5.0 [\%]
Description:	Sets the fault threshold in order to detect a motor that has stalled. If the error signal (r1746) exceeds the parameterized error threshold, then bit 12 in status word p1408 is set.		
Dependency:	If a stalled drive is detected (p1408.12 set), fault 7902 is output after the delay time set in p2178. Refer to: p2178		
Note:	Monitoring is only effective in the low-speed range (below p1755 * (100\% - p1756)).		

r1746	Motor model error signal stall detection / MotMod sig stall					
VECTOR (n/M)	Can be changed: -		Calculated: -		Access level: 4	
	Data type: FloatingPoint32		Dynamic index: -		Func. diagram: -	
	P-Group: Closed-loop control		Units group: -		Unit selection: -	
	Not for motor type: REL				Expert list: 1	
	Min - [\%]		Max - [\%]		Factory setting- [\%]	
Description: Note:	Signal to initiate stall detection					
	The signal is not calculated while magnetizing and only in the low speed range (below p1755 * $100 \%-\mathrm{p} 1756$)).					
p1750[0...n]	Motor model configuration / MotMod config					
VECTOR (n/M)	Can be changed: U, T			ulated: C_MOD_LIM_REF	Access level: 3	
	Data type: Unsigned8		Dynamic index: DDS, p0180		Func. diagram: -	
	P-Group: Closed-loop control		Units group: -		Unit selection: -	
	Not for motor type: PEM, REL, FEM				Expert list: 1	
	Min		Max		Factory setting 0000 bin	
Description:	Sets the configuration for the motor model.					
	Bit $0=1$: Forces open-loop speed controlled starting.					
	Bit 1 = 1: Forces the system to pass through frequency zero, open-loop controlled.					
	Bit 2 = 1: Drive remains in full closed-loop control mode, even at zero frequency.					
	Bit 3 = 1: Motor model evaluates the saturation characteristic.					
	Bit 4 = 1: Time-controlled change between the current and observer model.					
Bit field:	$\begin{aligned} & \text { Bit } \\ & 00 \\ & 01 \\ & 02 \end{aligned}$	Signal name		1 signal	0 signal	FP
		Controlled start		Yes	No	-
		Controlled through 0 Hz		Yes	No	-
		Closed-loop ctrl oper. do passive loads		Yes	No	-
	03	Motor model Lh_pre $=\mathrm{f}($		Yes	No	-
	04	Model changeover		Time controlled	Freq. controlled	-

Note: Bit $0 \ldots$ Bit 2 only have influence for sensorless vector control, bit 4 only for vector control with encoder. Bit 2 is preassigned depending on p0500.
Re bit $02=1$:
The sensorless vector control is effective down to zero frequency. A change is not made into the open-loop speed controlled mode.
This operating mode is possible for passive loads. These include applications where the load itself does not generate any active torque and therefore only acts reactively to the drive torque of the induction motor.

If bit 2 is set to 1 , then bit 3 is also automatically activated. Manual de-selection is possible and can make sense if, for third-party motors, the saturation characteristic (p1960) was not carried out. Generally, for standard SIEMENS motors, the already pre-assigned (default value) saturation characteristic is adequate.
For bit $2=1$, the selection of bits 0 and 1 is ignored.

r1751	Motor model status / MotMod status	
VECTOR (n/M)	Can be changed: -	Calculated: -
	Data type: Unsigned16	Dynamic index: -
	P-Group: Closed-loop control	Units group: -
	Not for motor type: PEM, REL, FEM	
	Min	Max
	-	-
Description:	Displays the status of the motor model.	

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Description: Displays the status of the motor model.

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Controlled operation	Active	Inactive	6721
	01	Set ramp-function generator	Active	Inactive	-
	02	Stop RsLh adaptation	Yes	No	-
	03	Feedback	Active	Inactive	-
	04	Encoder operation	Active	Inactive	-
	05	Holding angle	Yes	No	-
	06	Acceleration criteria	Active	Inactive	-
	07	Set angular integrator PEM	No	Yes	-
	08	Stop Kt adaptation PEM	No	Yes	-
	09	PollD active PEM SLVC	No	Yes	-
	10	1 injection PEM	No	Yes	-
	11	Speed controller output cannot be set to zero	Yes	No	-
	12	Rs adapt waits	Yes	No	-
	13	Motor operation	Yes	No	-
	14	Stator frequency sign	Positive	Negative	-
	15	Torque sign	Motor mode	Regenerative mode	-

p1752[0...n]	Motor model with encoder changeover velocity/MotMod v_chgov enc		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: 4_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1

Not for motor type: REL
Max
$1000.0[\mathrm{~m} / \mathrm{min}]$
Factory setting

Min	Max	Factory setting
$0.0[\mathrm{~m} / \mathrm{min}]$	$1000.0[\mathrm{~m} / \mathrm{min}]$	$1000.0[\mathrm{~m} / \mathrm{min}]$

Description: Sets the velocity to change over the motor model for operation with encoder.
Dependency: Refer to: p1756
Note: Induction motor (ASM):
The motor model is influenced for speeds/velocities greater than p 1752 .
Synchronous motor (SRM):
A monitoring (F07412) is activated for speeds/velocities greater than p1752.
The motor model is additionally influenced when kT adaptation is activated ($\mathrm{p} 1780.3=1$).

p1756	Motor model changeover speed hysteresis encoderless operation / MotMod n_chgov hys		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 95.0 \text { [\%] } \end{aligned}$	Factory setting 50.0 [\%]
Description:	Sets the hysteresis for the changeover speed of the motor model for encoderless operation.		
Dependency:	Refer to: p1755		
Note:	The parameter value refers to p1755.		
p1757[0...n]	Motor model w/o enc. op./cl.-loop controlled stab. controller Kp / MotMod w/o enc Kp		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ 0.01 \end{gathered}$	$\begin{aligned} & \text { Max } \\ & 10.00 \end{aligned}$	Factory setting 0.70
Description:	Sets the gain of the transient response controller when the motor model changes over from open-loop controlled operation to closed-loop controlled operation.		
Note:	Only for ASM and PSM in encoderless operation: The settling range starts at 0.5 * p1755 * p1756. For ASM it ends at p1755 * p1756 or at p1755, if p1759 is at the maximum value. For PSM it always ends at p1755 * p1756.		
p1758[0...n]	Motor model changeover delay time closed/open-loop control / MotMod t cl_op		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 100 \text { [ms] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10000 \text { [ms] } \end{aligned}$	Factory setting 1000 [ms]
Description:	Sets the minimum time for falling below the changeover speed when changing from closed-loop controlled operation to open-loop controlled operation.		
Dependency:	Refer to: p1755, p1756		
p1759[0...n]	Motor model changeover delay time open/closed loop control / MotMod t op_cl		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min 0 [ms]	$\begin{aligned} & \text { Max } \\ & 2000 \text { [ms] } \end{aligned}$	Factory setting 0 [ms]
Description:	Sets the minimum time for exceeding the changeover speed when changing from open-loop controlled operation to closed-loop controlled operation.		
Dependency:	Refer to: p1755, p1756		

p1760[0...n]	Motor model with encoder speed adaptation Kp / MotMod wE n_ada Kp		
VECTOR (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 100000.000 \end{aligned}$	Factory setting 1000.000
Description:	Sets the proportional gain of the controller for speed adaptation with encoder		
p1761[0...n]	Motor model with encoder speed adaptation Tn / MotMod wE n_ada Tn		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM		Expert list: 1
	Min 0 [ms]	$\begin{aligned} & \text { Max } \\ & 1000 \text { [ms] } \end{aligned}$	Factory setting 4 [ms]
Description:	Sets the integral-action time of the controller for speed adaptation with encoder		
r1762	Motor model deviation component 1 / MotMod dev comp 1		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6721, 6730, 6731
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM		Expert list: 1
	Min	Max	Factory setting
Description:	Induction motor (ASM):		
	Displays the referred imaginary system deviation for the adaptation circuit of the motor model. Permanent magnet synchronous motor (PEM):		

r1763	Motor model deviation component $2 /$ / MotMod dev comp 2		
VECTOR $(\mathrm{n} / \mathrm{M})$	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM	Max	Expert list: 1
	Min	-	Factory setting
Description:	-		
	Induction motor (ASM):		
	Displays the referred real system deviation for the adaptation circuit of the motor model.		
	Permanent magnet synchronous motor (PEM):		

p1764[0...n]	Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp		
VECTOR (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6730
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM		Expert list: 1
	Min	Max	Factory setting
	0.000	1000.000	

$\overline{\mathbf{1 7 7 1}}$	Motor model speed adaptation I comp. / MotMod n_adapt Tn		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 6730
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL, FEM		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the I component of the controller for speed adaptation.		
r1773[0...1]	Motor model slip speed / MotMod slip		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL, FEM		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays estimated (speed) signals of the motor model: r1773.0: Displays the estimated (mechanical) slip of the motor model. r1773.1: Displays the estimated input speed of the motor model.		
Index:	$\begin{aligned} & {[0]=\text { Estimated slip speed }} \\ & {[1]=\text { Estimated speed }} \end{aligned}$		
p1774[0...n]	Motor model, offset voltage compensation alpha / MotMod offs comp A		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	$\operatorname{Min}_{-5.000[V]}$	Max 5.000 [V]	Factory setting 0.000 [V]
Description:	Sets the offset voltage in the alpha direction; this compensates the offset voltages of the drive converter/inverter at low speeds. The value is valid for the rated (nominal) pulse frequency of the Motor Module.		
Note:	The value is pre-set during the rotating measurement.		
p1775[0...n]	Motor model, offset voltage compensation beta / MotMod offs comp B		
VECTOR (n / M)	Can be changed: \cup, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	$\operatorname{Min}_{-5.000[V]}$	Max 5.000 [V]	Factory setting 0.000 [V]
Description:	Sets the offset voltage in the beta direction; this compensates the offset voltages of the drive converter/inverter at low speeds. The value is valid for the rated (nominal) pulse frequency of the Motor Module.		
Note:	The value is pre-set during the rotating measurement.		

r1776[0...2]	Motor model status signals / MotMod status sig		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the internal status signals of the motor model: r1776.0: Status, transition I/f operation in the closed-loop controlled mode. r1776.1: Status, activation state feedback.		
Index:	$\begin{aligned} & {[0]=\text { rampTrans }} \\ & {[1]=\text { rampFB }} \\ & {[2]=\text { rampFZero }} \end{aligned}$		
r1778	Motor model flux angle difference / MotMod ang. diff.		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min - [${ }^{\circ}$]	$\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ}\right] \end{aligned}$	Factory setting - [${ }^{\circ}$]
Description:	Induction motor (ASM): Displays the difference between Permanent magnet synchronou Displays the difference between	odel flux angle and): odel angle and the	angle.
Notice:	The display only makes sense f Example: Moving in encoderless operatio --> Check the sign of r0061 and --> Check the stationary value (p0408) or pole pair number (p031	actual value inversio not equal to zero and sign is not equal, th 0063. If the value is	number and pole 0. e the encoder puls
$\mathbf{r 1 7 7 8}$	Motor model flux angle difference / MotMod ang. diff.		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min - [${ }^{\circ}$]	$\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ}\right] \end{aligned}$	Factory setting - [${ }^{\circ}$]
Description:	Induction motor (ASM): Displays the difference between Permanent magnet synchronou Displays the difference between	odel flux angle and): odel angle and the	angle.

$\mathbf{r 1 7 7 9}$	Motor model absolute flux / MotMod abs flux				
VECTOR (n / M)	Can be changed: - C	Calculated: -	Acce		
	Data type: FloatingPoint32 Dy	Dynamic index: -	Fun		
	P-Group: Closed-loop control U	Units group: -			
	Not for motor type: PEM, REL, FEM		Exp		
	$\begin{aligned} & \operatorname{Min} \\ & -[\%] \end{aligned}$	$\begin{gathered} \operatorname{Max} \\ -[\%] \end{gathered}$	Fact - [\%]		
Description:	Displays the absolute value of the flux of the motor model.				
p1780[0...n]	Motor/converter model adaptation configuration / MotMod adapt conf				
SERVO (Exp M_ctrl)	Can be changed: U, T	Calculated: - Dynamic index: DDS, p0180	Acce		
	Data type: Unsigned16 D		Func		
	P-Group: Closed-loop control U	Units group: -			
	Not for motor type: REL		Expe		
	Min	Max			
Description:	Sets the configuration for the adaptation circuit Induction motor (ASM): Rs, Rr (only for operation Permanent magnet synchronous motor (PEM):	it of the motor model. tion with encoder), Lh and offs) kT	compens		
Bit field:	Bit Signal name	1 signal	0 signal	FP	
	03 Select motor model PEM kT adaptation	Yes	No	-	
	05 Select ASM Rr adaptation (only with encoder)	Yes	No	-	
	07 Select T(valve) with Rs adaptation	Yes	No		
	08 Compensation voltage emulation error in the drive converter	in Yes	No	-	
	09 kT (iq) characteristic active	Yes	No		
	For the PEM kT adaptation (p1780.3) as well as the compensation of the voltage emulation error (p1780.8) and the kT (iq) characteristic (p1780.9), the function module "Extended torque control" (r0108.1) should be activated.				
Note:	ASM: Induction motor				
	PEM: Permanent magnet synchronous motor				
	The kT adaptation and the kT characteristic can be simultaneously selected.				
	Re kT adaptation (p1780.3 = 1):				
	- the kT adaptation is only active at a speed greater than the changeover speed with encoder (p1752).				
	- beforehand, an identification of the voltage emulation error must be started (p1909.14 = 1). - If the electrical configuration (e.g. Motor Module, cable routing) or the pulse frequency (p 1800) changes, then a new identification run must be carried out.				
	- To identify the voltage emulation error the Motor Module should still be warm.				
	- the motor temperature (r0035) should not change significantly (i.e. it should not be identified immediately after load duty cycle).				
	Re kT (iq) characteristic (p1780.9 = 1):				
	- for the $\mathrm{kT}(\mathrm{iq})$ characteristic $\mathrm{kT}(\mathrm{iq})=\mathrm{kT}+\mathrm{kT3} \mathrm{iq}^{\wedge} 2+\mathrm{kT5}{ }^{*} \mathrm{iq} \wedge 4+\mathrm{kT7}{ }^{*} \mathrm{iq}$ ^ 6 the parameters must first be identified (p1959.6 = 1) (kT: p0316, kT3: p0646, kT5: p0647, kT7: p0647).				

p1780[0...n]	Motor model adaptation configuration / MotMod adapt conf			
SERVO	Can be changed: U, T Calder	Calculated: -	Access level: 3	
	Data type: Unsigned16 D	Dynamic index: DDS, p0180	Func. diagram: -	
	P-Group: Closed-loop control U	Units group: -	Unit selection: -	
	Not for motor type: REL		Expert list: 1	
	Min	Max	Factory setting 00100000 bin	
Description:	Sets the configuration for the adaptation circuit Induction motor (ASM): Rs, Rr (only for operatio Permanent magnet synchronous motor (PEM):	it of the motor model. tion with encoder), Lh and offs) kT	compens	
Bit field:	Bit Signal name	1 signal	0 signal	FP
	03 Select motor model PEM kT adaptation	Yes	No	-
	05 Select ASM Rr adaptation (only with encoder)	Yes	No	-
	07 Select T(valve) with Rs adaptation	Yes	No	-
	08 Compensation voltage emulation error in the drive converter	Yes	No	-
	09 kT (iq) characteristic active	Yes	No	-
	For the PEM kT adaptation (p1780.3) as well as the compensation of the voltage emulation error (p1780.8) and for the $\mathrm{kT}(\mathrm{iq}$) characteristic (p 1780.9), the function module "Extended torque control" (r0108.1) should be activated.			
Note:	ASM: Induction motor			
	PEM: Permanent magnet synchronous motor			
	The kT adaptation is only active at a speed greater than the changeover speed with encoder (p1752). Near the cur rent limit when strongly saturating motors are operated.			
p1780[0...n]	Motor model adaptation configuration / MotMod adapt conf			
VECTOR	Can be changed: U, T Cald	Calculated: -	Access level: 3	
	Data type: Unsigned16 Dym	Dynamic index: DDS, p0180	Func. diagram: -	
	P-Group: Closed-loop control U	Units group: -	Unit selection: -	
	Not for motor type: REL		Expert list: 1	
	Min M	Max	Factory setting 01111100 bin	
Description:	Sets the configuration for the adaptation circuit Induction motor (ASM): Rs, Rr (only for operatio Permanent magnet synchronous motor (PEM):	it of the motor model. tion with encoder), Lh and offs) kT	compens	
Bit field:	Bit Signal name	1 signal	0 signal	FP
	01 Select motor model ASM Rs adaptation	Yes	No	-
	02 Select motor model ASM Lh adaptation	Yes	No	-
	03 Select motor model PEM kT adaptation	Yes	No	-
	04 Select motor model, offset adaptation	Yes	No	-
	05 Select ASM Rr adaptation (only with encoder)	Yes	No	-
	06 Select pole wheel identification PEM encoderless	Yes	No	-
	07 Select T(valve) with Rs adaptation	Yes	No	-
Note:	ASM: Induction motor			
	PEM: Permanent magnet synchronous motor			
	In order to ensure that the corrective values of the Rs, Lh and kT adaptation (selected with bits 0 to 2) are correctly transferred on drive data set changeover, a separate motor number for each different motor must be entered in p0826.			

p1781[0...n]	Motor model Rs adaptation integral time / MotMod Rs Tn		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min 10 [ms]	Max 10000 [ms]	Factory setting 100 [ms]
Description:	Sets the integral time for the Rs adaptation of the motor model for an induction motor (ASM).		
r1782[0...n]	Motor model Rs adaptation corrective value / MotMod Rs corr		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min - [Ohm]	Max - [Ohm]	Factory setting - [Ohm]
Description: Dependency:	Displays the corrective value for the Rs adaptation of the motor model for an induction motor (ASM). Refer to: p0826, p1780		
Note:	The display of inactive data sets is refreshed only when data sets are changed over.		
p1783[0...n]	Motor model Rs adaptation Kp / MotMod Rs Kp		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1.000 \end{aligned}$	Factory setting 0.100
Description:	Sets the proportional gain for the Rs adaptation of the motor model for an induction motor (ASM).		
p1785[0...n]	Motor model Lh adaptation Kp / MotMod Lh Kp		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1.000 \end{aligned}$	Factory setting 0.100
Description:	Sets the proportional gain for the Lh adaptation of the motor model for an induction motor (ASM).		
p1786[0...n]	Motor model Lh adaptation in	al time / MotMod Lh Tn	
VECTOR (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min 10 [ms]	$\begin{aligned} & \text { Max } \\ & 10000 \text { [ms] } \end{aligned}$	Factory setting 100 [ms]
Description:	Sets the integral time for the Lh adaptation of the motor model for an induction motor (ASM).		

r1787[0...n]	Motor model Lh adaptation corrective value / MotMod Lh corr		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min - [mH]	Max - [mH]	Factory setting - [mH]
Description:	Displays the corrective value for the Lh adaptation of the motor model for an induction motor (ASM).		
Dependency:			
Note:	The adaptation result is reset if the magnetizing inductance setting for the induction motor is changed (p0360, r0382). This also happens on data set changeover if a different motor is not parameterized (p 0826).		
	The display of inactive data sets is refreshed only when data sets are changed over.		
$\mathbf{r 1 7 8 9}$	Motor model Rs adaptation switch-in frequency / MotMod Rs f_on		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min - [Hz]	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Hz}] \end{aligned}$	Factory setting $-[H z]$
Description:	Displays the power-on stator frequency for the Rs adaptation for the induction motor (ASM).		
r1790	Motor model Rs adaptation power-on slip / MotMod Rs fslip		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min $-[\mathrm{Hz}]$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Hz}] \end{aligned}$	Factory setting $-[\mathrm{Hz}]$
Description:	Displays the power-on slip frequency for the Rs adaptation for the induction motor (ASM).		
r1791	Motor model Lh adaptation power-on frequency / MotMod Lh f_on		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min - [Hz]	$\begin{aligned} & \text { Max } \\ & -[H z] \end{aligned}$	Factory setting - [Hz]
Description:	Displays the power-on stator frequency/ primary section frequency for the Lh adaptation for the induction motor (ASM).		
r1792	Motor model Lh adaptation power-on slip / MotMod Lh fslip		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM		Expert list: 1
	Min - [Hz]	$\begin{aligned} & \text { Max } \\ & -[H z] \end{aligned}$	Factory setting - [Hz]
Description:	Displays the power-on slip frequency for the Lh adaptation for the induction motor (ASM).		

p1795[0...n]	Motor model kT adaptation smoothing time / MotMod kT T_smth		
SERVO (Exp M_ctrl)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min 1 [ms]	$\begin{aligned} & \text { Max } \\ & 10000 \text { [ms] } \end{aligned}$	Factory setting 100 [ms]
Description:	Sets the smoothing time of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PEM).		
Dependency:	Refer to: p1780, r1797		
p1795[0...n]	Motor model kT adaptation integral time / MotMod kT Tn		
VECTOR (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6731
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min 10 [ms]	$\begin{aligned} & \text { Max } \\ & 10000 \text { [ms] } \end{aligned}$	Factory setting 100 [ms]
Description:	Sets the integral time of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PEM).		
r1797	Motor model kT adaptation corrective value / MotMod kT corr		
SERVO (Exp M_ctrl, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min - [N/Arms]	Max - [N/Arms]	Factory setting - [N/Arms]
Description:	Displays the corrective value of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PEM).		
Dependency:	Refer to: p1780, p1795		
r1797	Motor model kT adaptation corrective value / MotMod kT corr		
SERVO (Exp M_ctrl)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min - [Nm/A]	Max - [Nm/A]	Factory setting - [Nm/A]
Description:	Displays the corrective value of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PEM).		
Dependency:	Refer to: p1780, p1795		

r1797[0...n]	Motor model kT adaptation corrective value / MotMod kT corr		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6731
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min - [Nm/A]	Max - [Nm/A]	Factory setting - [Nm / A]
Description:	Displays the corrective value of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PEM).		
Dependency:	Refer to: p0826, p1780		
Note:	The display of inactive data sets is refreshed only when data sets are changed over.		
p1800[0...n]	Pulse frequency / Pulse frequency		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		xpert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 1.000[\mathrm{kHz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 32.000[\mathrm{kHz}] \end{aligned}$	Factory setting $4.000[\mathrm{kHz}]$
Description:	Sets the drive converter switching frequency.		
Dependency:	The pulse frequency can, depending o ues. a) $\mathrm{p} 1800=1000 /\left(\mathrm{p} 0115[0]^{*} n\right)$ with n b) $\mathrm{p} 1800=1000$ * $\mathrm{n} / \mathrm{p} 0115[0]$ with $\mathrm{n}=$ Example: p0115[0] = $125 \mu \mathrm{~s}$--> p1800 = 2, 2.6, p0115[0] $=125 \mu \mathrm{~s}$--> p1800 $=8,16 \mathrm{kH}$ Possible setting values can be taken from Refer to: r0110, r0111, p0112, p0113,	current controller sampling time , 4 $3,4, \ldots$ (from equation a) m equation b) $\begin{aligned} & 114 \text { (if p0009 = p0010 = 0). } \\ & \text {, p0115, p0230, p1817 } \end{aligned}$	$5[0]$) assume the following val-
Note:	The maximum possible pulse frequenc When the pulse frequency is increased reduced (de-rating, refer to r0067). If p1800 is changed while commissioni able to be set. The reason for this is th set when the drive was commissioned For encoderless operation (p1404 = 0 p1800 = $1 /$ (2^{*} p0115[0]) or p1800 >= n / p0115[0], $n=1,2, \ldots$ For motors with a low power rating (<300	so determined by the power unit nding on the particular power unit 009, p0010 > 0), then it is possib dynamic limits of p1800 have be 1082). $00=20)$, the following conditions we recommend that p1800 is	g used. maximum output current can be at the old value will no longer be hanged by a parameter that was ly: c. to the second condition.
p1800[0...n]	Pulse frequency / Pulse frequency		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $1.000[\mathrm{kHz}]$	$\begin{aligned} & \operatorname{Max} \\ & 16.000[\mathrm{kHz}] \end{aligned}$	Factory setting $4.000[\mathrm{kHz}]$
Description:	This parameter is preset to the rated converter value when the drive is first commissioned.		

Dependency: The pulse frequency can, depending on the current controller sampling time (p0115[0]) assume the following values.
a) p1800 $=1000 /(p 0115[0]$ * 2) and
b) $\mathrm{p} 1800=1000$ * $\mathrm{n} / \mathrm{p} 0115[0]$ with $\mathrm{n}=1,2,3, \ldots$

Example:
p0115[0] $=250 \mu \mathrm{~s}$--> p1800 $=2,4,8,12,16 \mathrm{kHz}$
Possible setting values can be taken from r0114 (if p0009 = p0010 = 0).
If wobbulation is selected via parameter P1810.2, while the pulses are being enabled, the pulse frequency can only be changed to values that correspond to the following ratio: a) p1800 <= 1000/p0115[0] for p1811>0\% b) p1800 $<=1000$ * $2 / p 0115[0]$ for $p 1811=0 \%$ under pulse inhibit p1800 > $1000 / p 0115[0]->p 1811=0$ p1800 > 1000 * 2 / p0115[0] -> 1810.2 = 0 and p1811 = 0 (this is valid for all indices) Refer to: r0110, r0111, p0112, p0113, r0114, p0115, p0230, p1817
Note: \quad The maximum possible pulse frequency is also determined by the power unit being used.
When the pulse frequency is increased, depending on the particular power unit, the maximum output current can be reduced (de-rating, refer to r0067).
If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3$), then the pulse frequency cannot be changed below the minimum value required for the filter.
If $p 1800$ is changed while commissioning ($p 0009, \mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of $p 1800$ have been changed by a parameter that was set when the drive was commissioned (e.g. p1082).

r1801	Current pulse frequency / Pulse freq current		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -[\mathrm{kHz}] \end{aligned}$	Max - [kHz]	Factory setting - [kHz]
Description:	Displays the current converter switching frequency.		
Note:	The selected pulse frequency (p 1800) may be reduced if the drive converter has overload condition (p0290).		
	The pulse frequency can also be reduced when changing over the modulator to an optimized pulse pattern. This is used to avoid overdriving.		

Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), or if the power unit firmware is not able to calculate edge modulation (r 0192 bit0 $=0$), then only space vector modulation without overcontrol can be set as modulation type (p1802 = 3).
	$\mathrm{p} 1802>6$: Wobbulation is de-activated, p1810.2 $=0$ and p1811 $=0$ (is valid for all indices)
	Refer to: r0192, p0230, p7003
Notice:	If the edge modulation is enabled ($\mathrm{p} 1802>6$), then the current actual value correction should be activated (p 1840.0 $=0$), if the Motor Module is connected to a controlled (regulated) DC link (Active Infeed).
Note:	When modulation modes are enabled that could lead to overmodulation ($p 1802=0,1,2,5,6$), the modulation depth must be limited using p1803 (pre-assignment, p1803 = 98\%). The higher the overmodulation, the greater the current ripple and torque ripple.
	When changing p1802[x], the values for all of the other existing indices are also changed.
	p1802 = 7, 8 should be used if the drive is operated below 100 Hz or 60 Hz , and it is necessary to avoid changing over to edge modulation. Above these output frequencies, the modulation depth remains limited so that there the full output voltage of the edge modulation is not reached.

p1803[0...n]	Maximum modulation depth / Modulat depth max		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 6723
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 20.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 150.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description:	Defines the maximum modulation depth.		
Note:	p1803 $=100 \%$ is the overcontrol limit for space vector modulation (or an ideal drive converter without any switching delay).		
	If an optimized pulse pattern is enabled (edge modulation), then the modulation depth is limited to below the output frequency of 28 Hz as there is no optimized pulse pattern in this range.		

p1804[0...n]	Filter time constant smoothed modulation index / T_filt mod_idxSmth		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{~ms}]$	$10000.0[\mathrm{~ms}]$	$10.0[\mathrm{~ms}]$
Description:	Filter time constant for the smoothed modulation index to change over the modulator mode.		

p1806[0...n]	Filter time constant Vdc correction / T_filt Vdc_corr		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{~ms}]$	$10000.0[\mathrm{~ms}]$	$0.0[\mathrm{~ms}]$

Description: Sets the filter time constant of the DC link voltage used to calculate the modulation depth.

r1807	Actual DC link voltage to calculate the modulation depth / VdcActValMod_depth		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: 5_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[V] \end{gathered}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{V}] \end{aligned}$	Factory setting - [V]
Description: Note:	DC link voltage that is used to convert the setpoint voltage into an equivalent modulation depth. p1737 can be used for filtering.		

r1808	DC link voltage actual value for V_max calculation / Vdc act val V_max		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: 5_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[\mathrm{V}] \end{gathered}$	$\begin{aligned} & \text { Max } \\ & -[\mathrm{V}] \end{aligned}$	Factory setting - [V]
Description:	DC link voltage used to dete	um possible output	

r1809	Modulator mode current / Modulator mode act		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 8 \end{aligned}$	Factory setting
Description:	Displays the effective modulator mode.		
Value:	1: Flat top modulation (FLB)		
	2: Space vector modulation (SVM)		
	3: Edge modulation from $28 \mathrm{~Hz} ; 23: 3$		
	4: Edge modulation from $28 \mathrm{~Hz} ; 19: 1$		
	5: Edge modulation from $60 \mathrm{~Hz} ; 17: 3$		
	6: Edge modulation from $60 \mathrm{~Hz} ; 17: 1$		
	7: Edge modulation from 100 Hz ; 9:2		
	8: Edge modulation from 100 Hz ; 9:1		

Notice:	Bit $1=0$ can only be set under a pulse inhibit and with r0192 bit $14=1$.
	Bit $2=1$ is only possible if the following is fulfilled:
	- p1800 (pulse frequency) <=2* 1000/p115[0]
	- p1802 (modulator mode) <= 6 (no optimized pulse pattern)
	- no parallel circuit configuration
	- under pulse inhibit
	- r0192 Bit $16=1$.
Note:	Bit $0=0$:
	Voltage limitation from the minimum of the DC link voltage (lower ripples in output current, reduced output voltage).
	Bit $0=1$:
	Voltage limitation from averaged DC link voltage (higher output voltage with increased ripple in the output current).
	The selection is only valid if the DC link compensation is not performed in the CU (bit $1=0$).
	Bit $1=0$:
	DC link voltage compensation in the modulator.
	Bit 1 = 1:
	DC link voltage compensation in the current control.
	Bit2 $=0$:
	A gating unit that does not permit wobbulation is used
	Bit2 = 1:
	A gating unit that permits wobbulation is used.
	For a wobbulation amplitude $(\mathrm{p} 1811)==0$, the maximum possible pulse frequency $(\mathrm{P} 1800)==2^{*}$ current controller clock cycle (p115[0]),
	For a wobbulation amplitude $(\mathrm{p} 1811)>0$, the maximum possible pulse frequency $(\mathrm{P} 1800)==$ current controller clock cycle (p115[0]).
p1811[0...n]	Pulse frequency wobbulation amplitude / f_Puls_wob Ampl
VECTOR	Can be changed: U, T Calculated: - Access level: 3
	Data type: FloatingPoint32 Dynamic index: DDS, p0180 Func. diagram: -
	P-Group: - Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
	Min Max Factory setting $0[\%]$ $20[\%]$ $0[\%]$
Description:	Sets the amplitude of the steady-state wobbulation signal with which the pulse frequency is varied in order to generate a more pleasant noise.
Note:	It is only possible to modify the parameter when wobbulation (p1810.2 = 1) is active.
	If an amplitude greater than 0 is entered and the pulse frequency (p 1800) is greater than $1 /$ current controller clock cycle (1/p0115[0]), then the pulse frequency is automatically reduced.
	If a sine-wave filter is selected, wobbulation is decitvated.
p1817	Minimum ratio, pulse frequency to the output frequency / Min f_puls / f_max
VECTOR	Can be changed: C2(2) Calculated: - Access level: 4
	Data type: FloatingPoint32 Dynamic index: - Func. diagram: -
	P-Group: Converter Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
	Min Max Factory setting 8.3 15.0 12.0
Description:	Sets the minimum ratio between the pulse frequency and the output frequency.
Notice:	If the ratio between the pulse frequency and the output frequency is reduced, then oscillations can occur in the output current that can result in significant levels of current ripple with the appropriate negative effects.
Note:	When the maximum speed is changed, the pulse frequency p1800 is automatically limited to this minimum ratio. It is not permissible to reduce the pulse frequency if this would result in this ratio being undershot.

p1818	Phase for PWM generation configuration / Ph for PWM config	
CU_CX32, CU_I,	Can be changed: T Calculated: -	Access level: 3
CU_S	Data type: Integer16 Dynamic index:-	Func. diagram: -
	P-Group: Modulation Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1
	Min 0 Max 1	Factory setting 1
Description:	For the first active power unit, it is specified whether clocking is to start at 0° (value $=0$) or $180^{\circ}($ value $=1)$. All other active power units are clocked alternately according to the setting made here.	
Note:	A change only becomes effective after a POWER ON.	
p1820[0...n]	Reverse the output phase sequence / Outp_ph_seq rev	
VECTOR	Can be changed: C2(3) Calculated: -	Access level: 3
	Data type: Integer16 Dynamic index: DDS, p0180	Func. diagram: 6732
	P-Group: Motor Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1
	Min Max 0 1	Factory setting 0
Description:	If the motor does not rotate in the required direction, then the output phase sequence can be reversed using this parameter. This means that with the same setpoint, the motor direction is reversed without reversing the encoder actual value.	
	When a speed encoder is being used, it may be necessary to also invert the encoder actual value (p0410).	
Value:	$\begin{array}{ll} 0: & \text { Off } \\ \text { 1: } & \text { On } \end{array}$	
Dependency:	Refer to: p1821	
Note:	This setting can only be changed when the pulses are inhibited. p1821 can be used to reverse the phase sequence and encoder actual value.	

p1821[0...n]	Direction / Direction		
SERVO (Lin)	Can be changed: $\mathrm{C} 2(3)$	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 4704, 4710, 4711, 4715, 5730, 6730, 6731, 6732
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	If the parameter is changed, it reverses the direction of the motor and the encoder actual value without changing the setpoint.		
Value:	0: Clockwise		
Dependency:	Refer to: F07434		
Notice:	For a drive data set changeover with differently set direction and pulse enable, an appropriate fault is output.		
Note:	For operation with the phase sequence U/V/W, the direction is defined when viewing the face side of the motor output shaft.		
	When changing the direction, the field direction of the current controller is reversed. The velocity actual value (e.g. r0063) is also reversed so that the control sense is kept and internally causing the direction to be reversed with the same setpoint. Further, the position actual values of the current encoder are reversed (e.g. r0482[0...2]).		

For VECTOR, the following applies:
p1820 can be used to reverse the direction of the motor without reversing the encoder actual value.

p1821[0...n]	Dir of rot / Dir of rot		
SERVO, VECTOR	Can be changed: C2(3)	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 4704, 4710, 4711, 4715, 5730, 6730, 6731, 6732
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	If the parameter is changed, it reverses the direction of the motor and the encoder actual value without changing the setpoint.		
Value:	$\begin{array}{ll}\text { 0: } & \text { Clockwise } \\ \text { 1: } & \text { Counter-clockwise }\end{array}$		
Dependency:	Refer to: F07434		
Notice:	An appropriate fault is output for a drive data set changeover where the direction of rotation changes and the pulses are enabled.		
Note:	For operation with the phase sequence U/V/W, the direction of rotation is defined when viewing the face side of the motor output shaft.		
	When changing the direction of rotation, the rotating field direction of the current controller is reversed. The speed actual value (e.g. r0063) is also reversed so that the control sense is kept and internally causing the direction of rotation to be reversed with the same setpoint. Further, the position actual values of the current encoder are reversed (e.g. r0482[0...2]).		
p1825	Converter valve threshold voltage / Threshold voltage		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0[\mathrm{Vrms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [Vrms] } \end{aligned}$	Factory setting 0.6 [Vrms]
Description: Note:	Sets the threshold voltage drop of the valves (power semiconductor devices) to be compensated. The value is automatically calculated in the motor data identification routine.		
p1827	Infeed compensation valve lockout time operating mode / INFcomp t_lockMode		
A_INF, S_INF	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets the operating mode for the compensation of the valve lockout time.		
Value:	0 : Compensation valve lockout time de-activated 1: Compensation valve lockout time activated		
Note:	The compensation is always active, independent of the value of this parameter if the closed-loop control is activated to suppress circulating currents (p7035) for power units connected in parallel.		

p1828	Compensation valve lockout time phase U / Comp t_lock ph U		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mu \mathrm{s}$]	Max $1000000.00[\mu \mathrm{~s}]$	Factory setting 0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase U. The value is automatically calculated in the motor data identification routine. For type PM340 power units, the parameter is limited to $3.98 \mu \mathrm{~s}$.		
Note:			
p1829	Compensation valve lockout time phase V / Comp t_lock ph V		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mu \mathrm{s}$]	$\begin{aligned} & \operatorname{Max} \\ & 1000000.00[\mu \mathrm{~s}] \end{aligned}$	Factory setting 0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase V .		
Note:	For type PM340 power units, the parameter is limited to $3.98 \mu \mathrm{~s}$.		
p1830	Compensation valve lockout time phase W / Comp t_lock ph W		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mu \mathrm{~s}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000000.00[\mu \mathrm{~s}] \end{aligned}$	Factory setting 0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase W .		
Note:	For type PM340 power units, the parameter is limited to $3.98 \mu \mathrm{~s}$.		
p1832	Dead time compensation current level / t_dead_comp I_lev		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.0 [Arms]	$\begin{aligned} & \text { Max } \\ & 10000.0 \text { [Arms] } \end{aligned}$	Factory setting 0.0 [Arms]
Description:	Above the current level, the dead time - resulting from the converter switching delays - is compensated by a previously calculated constant value. If the relevant phase current setpoint falls below the absolute value defined by p 1832 , the corrective value for this phase is continuously reduced.		
Dependency:	The factor setting of p1832 is automatically set to 0.02 * rated drive converter current (r0207).		

p1845[0...n]	Actual value correction evaluation factor Lsig / ActV_corr FactLsig		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	10.00	Factory setting
	0.00	1.00	
Description:	Sets the weighting factor for the leakage inductance of the L-R element of the actual value correction.		
Dependency:	Refer to: p0391, p0392, p0393		
Note:	The load-dependent adaptation of the leakage inductance of the current actual value correction is defined using		
	p0391 ...p0393.		

p1846[0...n]	Actual value correction damping factor / ActV_corr D_factor		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Max
	Min	10.00	Factory setting
	0.00	1.00	
Description:	Sets the damping factor for the actual value correction.		
	The factor multiplies the TO/Tsig ratio in the feedback branch of the LR element		

r1848[0...5]	Actual value correction phase currents / ActVal_corr I_corr		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -	Max	Fxpert list: 1
	Min	-	Factory setting
	-		
Description:	Displays phase correction currents as well as the drive converter phase currents		
Index:	$[0]=$ Harmonics, phase U		
	$[1]=$ Harmonics, phase V		
	$[2]=$ Harmonics, phase W		
	$[3]=$ Measured value phase U		
	$[4]=$ Measured value phase V		
	$[5]=$ Measured value phase W		

r1849[0...5]	Actual value correction phase voltages / ActVal_corr V_corr		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	-	Factory setting
	-		
Description:	Displays the phase correction voltages and and the drive converter phase voltages		
Index:	$[0]=$ Harmonics, phase U		
	$[1]=$ Harmonics, phase V		
	$[2]=$ Harmonics, phase W		
	$[3]=$ Measured value phase U		
	$[4]=$ Measured value phase V		
	$[5]=$ Measured value phase W		

p1900	Motor data identification and rotating measurement / MotID and rot meas		
VECTOR (n/M)	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 2
Description:	Sets the motor data identification and speed controller optimization. p1900 = 0:		
	Function inhibited.		
	Induction motors --> set p1910 $=1$ and p1960 $=0$		
	Permanent-magnet or separately-excited synchronous motors --> set p1910 = 1, p1990 = 1 and p1960 $=0$		
	When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next power-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution.		
	For permanent-magnet or separately-excited synchronous motors, the encoder is adjusted with the next power-on command. The motor must be free to rotate and rotates through 1.5 revolutions of the motor encoder.		
Value:	$0:$ Inhibited 1: Motor data identificatio $2:$ Motor data identificatio	motor	
Dependency:	In the simulation mode, the parameter cannot be written into. When selecting the motor data identification routine, the drive data set changeover is suppressed.		
	Refer to: p1272, p1300, p1910, p1990		
	Refer to: F07990, A07991		
Notice:	In order to permanently accept the determined settings they must be saved in a non-volatile fashion (p 0971 , p0977).		
Note:	An appropriate alarm is output when the parameter is set.		
	The power-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it.		
	The duration of the measurements can lie between 0.3 s and several minutes. This time is, for example, influenced by the motor size and the mechanical conditions.		
	p 1900 is automatically set to 0 after the motor data identification routine has been completed.		
p1900	Motor data identification and rotating measurement / MotID and rot meas		
VECTOR	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 2
Description:	Sets the motor data identification and speed controller optimization. p1900 = 0:		
	Function inhibited.		
	p1900 = 2:		
	Induction motors --> set p1910 = 1 and p1960 $=0$		
	Permanent-magnet or separately-excited synchronous motors --> set p1910 = 1, p1990 = 1 and p1960 $=0$		
	When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next power-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution.		
	For permanent-magnet or separately-excited synchronous motors, the encoder is adjusted with the next power-on command. The motor must be free to rotate and rotates through 1.5 revolutions of the motor encoder.		

Value:	0: Inhibited
	2: Motor data identification at standstill
Dependency:	In the simulation mode, the parameter cannot be written into. When selecting the motor data identification routine, the drive data set changeover is suppressed.
	Refer to: p1272, p1300, p1910, p1990
	Refer to: F07990, A07991
Notice:	In order to permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).
Note:	An appropriate alarm is output when the parameter is set.
	The power-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it.
	The duration of the measurements can lie between 0.3 s and several minutes. This time is, for example, influenced by the motor size and the mechanical conditions.
	p1900 is automatically set to 0 after the motor data identification routine has been completed.

p1909[0...n]	Motor data identification control word / MotID STW		
SERVO (Exp M_crrl)	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: Unsigned16	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	0110011100000000 bin

| Description: | Sets the configuration of the motor data identification. |
| :--- | :--- | :--- | :--- |
| Recommend.: | For the stationary motor data identification, if a motor holding brake is being used it should be opened and the |
| motor finely synchronized before the measurement. This should only be done if it can be safely carried out and n | |
| external forces can act on the motor. This determines the angular commutation offset (p1909.13, p0431). | |

Dependency: Refer to: p1910, r1912, r1913, r1915, r1925, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953

Note: \quad For an induction motor (ASM), the following bits are effective: 8, 9, 10, 13
For a synchronous motor (SRM), the following bits are effective: $8,9,13,14$ Re bit 14:

- after successfully determining the voltage emulation error, the display of the phase voltage actual values r0089 and the active power actual value r0082 and the torque actual value r0080 are significantly more accurate.
- the voltage emulation errors should be identified with the Motor Module in the warm state.
- the motor temperature (r0035) should not change significantly (i.e. it should not be identified immediately after a load duty cycle)

p1909[0...n]	Motor data identification control word / MotID STW		
SERVO (Lin)	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: Unsigned16	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0010011100000000 bin
Description:	Sets the configuration of the motor data identification.		
Recommend.:	For the stationary motor data motor finely synchronized befo external forces can act on the	a motor holding brake is being ement. This should only be done termines the angular commutation	it should be opened and the can be safely carried out and no set (p1909.13, p0431).

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	08	Measure D inductance	Yes	No	-
	09	Measure Q inductance	Yes	No	-
	10	Magnetizing field inductance and measure rotor resistance	Yes	No	-
		Measure commutation angle and direction	Yes	No	-
	14	Determining the voltage emulation error	Yes	No	-
Dependency:	Refer to: p1910, r1912, r1913, r1915, r1925, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953				
Note:	For an induction motor (ASM), the following bits are effective: 8, 9, 10, 13				
	For a synchronous motor (SRM), the following bits are effective: 8, 9, 13, 14				
	Re bit 14:				
	- after successfully determining the voltage emulation error, the display of the phase voltage actual values r0089 and the active power actual value r0082 and the force actual value r0080 are significantly more accurate.				
	- the voltage emulation errors should be identified with the Motor Module in the warm state.				
	- the motor temperature (r 0035) should not change significantly (i.e. it should not be identified immediately after a load duty cycle).				

p1909[0...n]	Motor data identification control word / MotID STW		
SERVO	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: Unsigned16	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0010011100000000 bin
Description:	Sets the configuration of the motor data identification.		
Recommend.:	For the stationary motor data identification, if a motor holding brake is being used it should be opened and the motor finely synchronized before the measurement. This should only be done if it can be safely carried out and no external forces can act on the motor. This determines the angular commutation offset (p1909.13, p0431).		

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	08	Measure D inductance	Yes	No	-
	09	Measure Q inductance	Yes	No	-
	10	Magnetizing field inductance and measure rotor resistance	Yes	No	-
	13	Measure commutation angle and direction of rotation	Yes	No	-
	14	Determining the voltage emulation error	Yes	No	-
Dependency:	Refer to: p1910, r1912, r1913, r1915, r1925, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953				
Note:	For an induction motor (ASM), the following bits are effective: 8, 9, 10, 13				
	For a synchronous motor (SRM), the following bits are effective: $8,9,13,14$				
	Re bit 14:				
	- after successfully determining the voltage emulation error, the display of the phase voltage actual values r0089 and the active power actual value r0082 and the torque actual value r0080 are significantly more accurate.				
	- the voltage emulation errors should be identified with the Motor Module in the warm state.				
	- the motor temperature (r0035) should not change significantly (i.e. it should not be identified immediately after a load duty cycle).				

p1909[0...n]	Motor data identification control word / MotID STW		
VECTOR	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: Unsigned16	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	0000 bin	

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Stator inductance estimate no measurement	Yes	No	-
	01	Cl.-loop current control w/ dead-beat controller	Yes	No	-
	02	Rotor time constant estimate no measurement	Yes	No	-
	03	Leakage inductance estimate no measurement	Yes	No	-
	04	Activates the identification dynamic leakage inductance	Yes	No	-
	05	Determine Tr and Lsig evaluation in the time range	Yes	No	-
	06	Activate vibration damping	Yes	No	-
	07	De-activate vibration detection	Yes	No	-
	11	De-activate pulse measurement Lq Ld	Yes	No	-
	12	De-activate rotor resistance Rr measurement	Yes	No	-
	14	De-activate valve interlocking time measurement	Yes	No	-
	15	Only measure stator resistance and valve voltage error	Yes	No	-
Note:	Note for PEM:				
	When de-selecting with bit 11 or in the V/f mode, the stator inductance is measured at half the rated motor current. If the stator is inductance is not measured but is to be estimated, then bit 0 should be set and bit 11 should be deselected.				

p1910	M
SERVO	Ca
	Da
	N
	Mi
	-3

Motor data identification routine, stationary (standstill) / MotID standstill

Can be changed: T
Data type: Integer16
P-Group: Motor identification
Not for motor type: -

Min	Max
-3	

Access level: 2
Func. diagram: -
Unit selection: Expert list: 1

Factory setting 0

Description: Setting to control the motor data identification with the motor stationary.

Value:
-3: Accept identified parameters
-2: Acknowledge encoder inversion actual value (F07993)
-1: \quad Start motor data identification without acceptance
0 : Inactive/inhibit
1: Start motor data identification with acceptance
Recommend.: For motors with brakes, the brake should be opened before carrying out the stationary motor data identification routine (p1215 = 2) as long as this can be done without incurring any danger. The commutation angle and the direction of rotation are also determined.

Dependency: Refer to: p1909, r1912, r1913, r1915, r1925, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953 Refer to: F07990, A07991, F07993
Caution: For motors without brake or with the brake open (p1215=2), for the stationary (zero speed) measurement, the motor may rotate slightly.

Motor data identification can only be selected when the pulses of all of the drive objects of the Control Unit have been suppressed. After selection, all of the other drive objects of the Control Unit are interlocked so that they cannot be powered up until the motor data identification has been completed or de-selected.
After a started motor identification is ended, the parameter is automatically reset to 0 .
A motor data identification that is presently being carried out can be terminated with p1910 $=0$.

p1910	Motor data identification selection / MotID selection		
VECTOR	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 20 \end{aligned}$	Factory setting 1
Description:	Sets the motor data identification routine.		
	The motor data identification routine is carried out after the next power-on command. p1910 = 1 :		
	All motor data and the drive converter characteristics are identified and then transferred to the following parameters:		
	p0350, p0354, p0356, p0357, p0358, p0360, p1825, p1828, p1829, p1830		
	After this, the control parameter $\mathrm{p} 0340=3$ is automatically calculated.		
Value:	0 : Inhibited		
	1: Complete identification (ID) and acceptance of motor data		
	2: Complete identification (ID) of motor data without accept		
	3: ID of the saturation cha	acceptance	
	4: ID of the saturation cha	out acceptance	
	5: ID of dynamic leakage	g (r1920) without ac	
	6: ID of lockout time (r192	eptance	
	7: ID of stator resistance	out acceptance	
	8: ID of stator inductance	Rr (r1927) w/o acc	
	9: ID of rotor time constan	thout acceptance	
	10: ID of static leakage ind	1914) without accep	
	20: Voltage vector input		
Dependency:	"Quick commissioning" must be carried out (p0010 $=1$) before executing the motor data identification routine!		
	In the simulation mode, the parameter cannot be written into. When selecting the motor data identification routine, the drive data set changeover is suppressed.		
	Refer to: p1272, p1900		
Caution:	After the motor data identification (p1910 >0) has been selected, alarm A07991 is output and a motor data identification routine is carried out as follows at the next power-on command:		
	- current flows through the motor and a voltage is present at the drive converter output terminals.		
	- during the identification routine, the motor shaft can rotate through a maximum of half a revolution.		
	- however, no torque torque is generated.		
Notice:	In order to permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).		
Note:	When setting p1910, the following should be observed: 1. "With transfer" means:		
	The parameters specified in the description are overwritten with the identified values and therefore have an influence on the controller setting.		
	2. "Without transfer" means:		
	The identified parameters are only displayed in the range r1912 ... r1926. The controller settings remain unchanged.		
	3. p1910 $=3,4,5$ can only be selected for induction motors.		
p1911	Number of phases to be identified / Qty ph to ident		
VECTOR	Can be changed: T	Calculated: -	Access level: 4
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
			Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 3 \end{aligned}$	Factory setting 1
Description:	Sets the number of phases to b		

r1913[0...2]	Identified rotor time constant / T_rotor ident		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: PEM		Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{ms}]$	$-[\mathrm{ms}]$	
Description:	Displays the identified rotor time constant.		
Index:	$[0]=$ Phase U		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1914[0...2]	Identified total leakage inductance / L_total_leak ident		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $-[\mathrm{mH}]$	Max $-[\mathrm{mH}]$	Factory setting - [mH]
Description: Index:	Displays the identified total le $\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase } \mathrm{V}} \\ & {[2]=\text { Phase W }} \end{aligned}$		
r1915	Stator inductance identified / L_stator ident		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $-[\mathrm{mH}]$	Max $-[\mathrm{mH}]$	Factory setting - [mH]
Description: Dependency:	Refer to: p1909, p1910, r1912, r1913, r1925, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953		
r1915[0...2]	Identified nominal stator inductance / L_stator ident		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $-[\mathrm{mH}]$	Max $-[\mathrm{mH}]$	Factory setting - [mH]
Description: Index:	Displays the nominal stator in $\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase } \mathrm{V}} \\ & {[2]=\text { Phase W }} \end{aligned}$	fied.	
r1916[0...2]	Identified stator inductance 1 / L_stator 1 ident		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $-[\mathrm{mH}]$	Max $-[\mathrm{mH}]$	Factory setting - [mH]
Description: Index:	$\begin{aligned} {[0] } & =\text { Phase } U \\ {[1] } & =\text { Phase } V \\ {[2] } & =\text { Phase } \mathrm{W} \end{aligned}$		

r1917[0...2]	Identified stator inductance 2 / L_stator 2 ident		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{mH}] \end{aligned}$	Factory setting - [mH]
Description: Index:	Displays the nominal stator in $\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase } V} \\ & {[2]=\text { Phase } W} \end{aligned}$	fied for the 2nd poin	characteristic.

r1918[0...2]	Identified stator inductance 3 / L_stator 3 ident		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [mH]	Max - [mH]	Factory setting - [mH]
Description:	Displays the nominal stator inductance identified for the 3rd point of the saturation characteristic.		
Index:	[0] = Phase U		
	[1] = Phase V		

r1919[0...2]	Identified stator inductance $4 / \mathrm{L}$ stator 4 ident		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting

Description: Displays the nominal stator inductance identified for the 4th point of the saturation characteristic.

Index: \quad| $[0]$ | $=$ Phase U |
| ---: | :--- |
| $[1]$ | $=$ Phase V |
| | $[2]$ |$=$ Phase W

r1920[0...2] Identified dynamic leakage inductance / L_leak dyn ident
Can be changed: -
Data type: FloatingPoint32

Calculated: -
Dynamic index: -
Units group: -

Max

- [mH]

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
[mH]

Description: Displays the identified dynamic total leakage inductance.
Index:
[0] = Phase U
[1] = Phase V
[2] = Phase W

r1921[0...2]	Identified dynamic leakage inductance 1 / L_leak 1 dyn id		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{mH}] \end{aligned}$	Factory setting - [mH]
Index:	$\begin{aligned} & {[0]=\text { Phase } U} \\ & {[1]=\text { Phase } V} \\ & {[2]=\text { Phase } \mathrm{W}} \end{aligned}$		
r1922[0...2]	Identified dynamic leakage inductance 2 / L_leak 2 dyn id		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{mH}] \end{aligned}$	Factory setting - [mH]
Index:	$\begin{aligned} & {[0]=\text { Phase } U} \\ & {[1]=\text { Phase } V} \\ & {[2]=\text { Phase } \mathrm{W}} \end{aligned}$		

r1923[0...2]	Identified dynamic leakage inductance 3 / L_Ieak 3 dyn id		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type:		Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$
Index:	$[0]=$ Phase U		
	$[1]=$ Phase V		
	$[2]=$ Phas W		

r1924[0...2]	Identified dynamic leakage inductance 4 / L_Ieak 4 dyn id		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	
Index:	$[0]=$ Phase \cup		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

Dependency: \quad| Refer to: p1909, p1910, r1912, r1913, r1915, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, |
| :--- |
| p1953 |

r1925[0...2]	Identified threshold voltage / V_threshold ident		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the identified IGBT threshold voltage.		
Index:	$\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase } V} \\ & {[2]=\text { Phase W }} \end{aligned}$		

r1926[0...2]	Identified effective valve lockout time / t_lock_valve id		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [$\mu \mathrm{s}$]	Max - [$\mu \mathrm{s}$]	Factory setting - [$\mu \mathrm{s}$]
Description:	Displays the identified effective valve lockout time.		
Index:	$\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase V }} \\ & {[2]=\text { Phase W }} \end{aligned}$		

r1927	Rotor resistance identified / R_rotor ident		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Ohm]	Max - [Ohm]	Factory setting - [Ohm]
Description:	Displays the identified rotor resistance.		
Dependency:	Refer to: p1909, p1910, r1912, r1913, r1915, r1925, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953		

r1927[0...2] Identified rotor resistance / R_rotor ident

Data type: FloatingPoint32
P-Group: Motor identification
Not for motor type: -
Min

- [Ohm]

Displays the identified rotor resistance
Description:
[0] = Phase U
[1] = Phase V
[2] = Phase W

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
[Ohm]

Calculated: -
Dynamic index: -
Units group: -

Max

- [Ohm]

r1929[0...2]	Identified cable resistance / R_cable ident		
VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Ohm]	Max - [Ohm]	Factory setting - [Ohm]
Description:	Displays the identified cable resistance.		
Index:	[0] = Phase U		
	[1] = Phase V		
	[2] = Phase W		
r1932[0...19]	d inductance identified / Ld ident		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [mH]	$\begin{aligned} & \text { Max } \\ & -[\mathrm{mH}] \end{aligned}$	Factory setting - [mH]
Description:	Displays the identified (differential) d-inductance.		
Dependency:	Refer to: p1909, p1910, r1912, r1913, r1915, r1925, r1927, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953		
Note:	The Ld characteristic consists of the value pairs from p1932 and p1933 with the same index. This value corresponds to the value of the total leakage inductance (r0377).		
r1933[0...19]	d inductance identification current / Ld I_ident		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the identification current of the d inductance.		
Dependency:	Refer to: p1909, p1910, r1912, r1913, r1915, r1925, r1927, r1932, r1934, r1935, r1936, r1950, r1951, p1952, p1953		
Note:	The Ld characteristic consists of the value pairs from p1932 and p1933 with the same index.		
r1934[0...9]	q inductance identified / Lq ident		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [mH]	Max $-[\mathrm{mH}]$	Factory setting - [mH]
Description:	Displays the identified (differential) q-inductance.		
Dependency:	Refer to: p1909, p1910, r1932, r1933		
Note:	The Lq characteristic consists of the value pairs from p1934 and p1935 with the same index. This value corresponds to the value of the total leakage inductance (r0377).		

r1934[0...9]	q inductance identified		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{mH}] \end{aligned}$	Max - [mH]	Factory setting - [mH]
Description:	Displays the identified (differential) q-inductance.		
Dependency:	Refer to: r1935, p1959, p1960		
Note:	The Lq characteristic consists of the value pairs from p1934 and p1935 with the same index.		
	This value corresponds to the value of the total leakage inductance (r0377).		
r1935[0...20]	Identification current /		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the identification current for the identification of the q-inductance ($[0 \ldots .9]$) as well as the force constant ([10]) and the force characteristic ([11...20]).		
Index:	[0] = q inductance identification current measuring point 1		
	[1] = q inductance identification current measuring point 2		
	[2] $=\mathrm{q}$ inductance identification current measuring point 3		
	[3] $=\mathrm{q}$ inductance identification current measuring point 4		
	[4] $=\mathrm{q}$ inductance identification current measuring point 5		
	[5] $=\mathrm{q}$ inductance identification current measuring point 6		
	[6] = q inductance identification current measuring point 7		
	[7] = q inductance identification current measuring point 8		
	[8] = q inductance identification current measuring point 9		
	[9] = q inductance identification current measuring point 10		
	[10] = Torque constant identification current		
	[11] = Torque characteristic identification current measuring point 1		
	[12] = Torque characteristic identification current measuring point 2		
	[13] = Torque characteristic identification current measuring point 3		
	[14] = Torque characteristic identification current measuring point 4		
	[15] = Torque characteristic identification current measuring point 5		
	[16] = Torque characteristic identification current measuring point 6		
	[17] = Torque characteristic identification current measuring point 7		
	[18] = Torque characteristic identification current measuring point 8		
	[19] $=$ Torque characteristic identification current measuring point 9		
	[20] = Torque characteristic identification current measuring point 10		
Dependency:	Refer to: p1909, p1910, r1934		
Note:	- the Lq characteristic consists of the value pairs from r1934 and r1935 with the same index.		
	- the force constant is identified with the current r1935[10] and displayed in r1937[0]. If the reluctance force constant is identified ($p 1959.7=1$), the force constant is identified with 150% rated current ($p 0305$), otherwise with 100% rated current.		

- the force characteristic (r1937[1...10]) is identified in the range between the rated current (p0305) and the maximum current (p0640) (r1935[11...20]).

r1935[0...20]	Identification current /		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the identification current for the identification of the q-inductance ([0...9]) as well as the torque constant ([10]) and the torque characteristic ([11...20]).		
Index:	[0] = q inductance identification current measuring point 1 [1] = q inductance identification current measuring point 2 [2] $=q$ inductance identification current measuring point 3 [3] = q inductance identification current measuring point 4 [4] = q inductance identification current measuring point 5 [5] = q inductance identification current measuring point 6 [6] $=q$ inductance identification current measuring point 7 [7] = q inductance identification current measuring point 8 [8] = q inductance identification current measuring point 9 [9] = q inductance identification current measuring point 10 [10] = Torque constant identification current [11] = Torque characteristic identification current measuring point 1 [12] $=$ Torque characteristic identification current measuring point 2 [13] = Torque characteristic identification current measuring point 3 [14] = Torque characteristic identification current measuring point 4 [15] = Torque characteristic identification current measuring point 5 [16] = Torque characteristic identification current measuring point 6 [17] = Torque characteristic identification current measuring point 7 [18] $=$ Torque characteristic identification current measuring point 8 [19] = Torque characteristic identification current measuring point 9 [20] = Torque characteristic identification current measuring point 10		
Dependency:	Refer to: p1909, p1910, r1934, p1959, p1960		
Note:	- the torque constant is identified with the current r1935[10] and displayed in r1937[0]. If the reluctance torque constant is identified ($\mathrm{p} 1959.7=1$), the torque constant is identified with 150% rated current (p 0305), otherwise with 100\% rated current.		
r1935[0...9]	q inductance identification current / Lq I_ident		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification		Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the identification current to identify the q inductance ([0...9]).		
Dependency:	Refer to: r1934, p1959, p1960		
Note:	The Lq characteristic consists of the value pairs from r1934 and r1935 with the same index.		

r1936	Magnetizing inductance identified / L_H ident		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{mH}] \end{aligned}$	Factory setting - [mH]
Description:	Displays the identified magnetizing inductance(gamma equivalent circuit diagram).		
Dependency:	Refer to: p1909, p1910, r1913, r1915, r1927, p1959, p1960, r1962, r1963		
Note:	This value corresponds to the value of the transformed magnetizing inductance (r0382).		
r1937[0...10]	Force constant identified / kT ident		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: 29_1	Unit selection: p0100
	Not for motor type: -		Expert list: 1
	Min - [N/Arms]	Max - [N/Arms]	Factory setting - [N/Arms]
Description:	Displays the identified force constant.		
Index:	[0] = Force constant identified		
	[1] = Force constant identified measuring point 1		
	[2] = Force constant identified measuring point 2		
	[3] = Force constant identified measuring point 3		
	[4] = Force constant identified measuring point 4		
	[5] = Force constant identified measuring point 5		
	[6] = Force constant identified measuring point 6		
	[7] = Force constant identified measuring point 7		
	[8] = Force constant identified measuring point 8		
	[9] = Force constant identified measuring point 9		
	[10] = Force constant identified measuring point 10		
Dependency:	Refer to: r1938, r1939, p1959, p1960, r1969		
Note:	- the value in r1937[0] corresponds to the force constant (p 0316) and was identified with the current in r1935[10]. If the reluctance force constant is identified (p1959.7 = 1), the force constant is identified with 150% rated current (p0305), otherwise with 100% rated current.		

r1937[0...10]	Torque constant identified / kT ident	
SERVO	Can be changed: - Calculated: -	Access level: 3
	Data type: FloatingPoint32 Dynamic index: -	Func. diagram: -
	P-Group: Motor identification Units group: 28_1	Unit selection: p0100
	Not for motor type: -	Expert list: 1
	Min Max $-[\mathrm{Nm} / \mathrm{A}]$ $-[\mathrm{Nm} / \mathrm{A}]$	Factory setting - [Nm / A]
Description:	Displays the identified torque constant/torque characteristic over the q current.	
Index:	[0] = Torque constant identified	
	[1] = Torque characteristic identified measuring point 1	
	[2] = Torque characteristic identified measuring point 2	
	[3] = Torque characteristic identified measuring point 3	
	[4] = Torque characteristic identified measuring point 4	
	[5] = Torque characteristic identified measuring point 5	
	[6] = Torque characteristic identified measuring point 6	
	[7] $=$ Torque characteristic identified measuring point 7	
	[8] = Torque characteristic identified measuring point 8	
	[9] = Torque characteristic identified measuring point 9	
	[10] = Torque characteristic identified measuring point 10	

Dependency:	Refer to: r1938, r1939, p1959, p1960, r1969		
Note:	- if indices r1937[1...10] are not equal to zero, they show the values of the torque characteristic identified for the current in $\mathrm{r} 1935[11 \ldots 20$]. The torque characteristic is identified in the range between rated current (p 0305) and maximum current (p0640).		ied with the current with 150% rated cur haracteristic identifi rated current (p0305)
r1938	Voltage constant identified / kE ident		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Vrms s/m]	Max - [Vrms s/m]	Factory setting - [Vrms s/m]
Description:	Displays the identified voltage constant.		
Dependency:	Refer to: r1937, r1939, p1959, p1960, r1969		
Note:	This value corresponds to the voltage constant (p0317).		
r1938	Voltage constant identified / kE ident		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the identified voltage constant.		
Dependency:	Refer to: r1937, r1939, p1959, p1960, r1969		
Note:	This value corresponds to the voltage constant (p0317).		
r1939	Reluctance force constant identified / kT_reluct ident		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [mH]	Max - [mH]	Factory setting - [mH]
Description:	Displays the identified reluctance force constant.		
Dependency:	Refer to: r1937, r1938, p1959, p1960, r1969		
Note:	This value corresponds to the reluctance force constant (p0328).		
r1939	Reluctance torque constant identified / kT_reluct ident		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [mH]	Max $-[\mathrm{mH}]$	Factory setting - [mH]
Description:	Displays the identified reluctance torque constant.		
Dependency:	Refer to: r1937, r1938, p1959, p1960, r1969		
Note:	This value corresponds to the reluctance torque constant (p0328).		

r1947	Optimum load angle identified / phi_load ident		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underset{-\left[{ }^{\circ}\right]}{\operatorname{Min}}$	$\begin{aligned} & \text { Max } \\ & -\left[{ }^{[0]}\right] \end{aligned}$	Factory setting - [${ }^{\circ}$]
Description:	Displays the identified, optimum load angle.		
Note:	This value corresponds to the optimum load angle (p0327).		
r1948	Magnetizing current identified / I_mag ident		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the identified magnetizing current.		
Dependency:	Refer to: r1936, p1959, p1960		
Note:	This value corresponds to the magnetizing current ($\mathrm{p} 0320 / \mathrm{r} 0331$).		
r1950[0...19]	Voltage emulation error voltage values / V_error V_values		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[V] \end{aligned}$	$\begin{gathered} \text { Max } \\ -[V] \end{gathered}$	Factory setting - [V]
Description: Dependency:	The identified characteristic of the voltage emulation error is displayed $\mathrm{r} 1950[0 . . .19]$ and r 1951 [0...19].		
r1951[0...19]	Voltage emulation error current values / V_error I_error		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[A] \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ -[A] \end{gathered}$	Factory setting $-[A]$
Description: Dependency:	The identified characteristic of the voltage emulation error is displayed $\mathrm{r} 1950[0 \ldots 19]$ and r 1951 [0...19].		
p1952[0...n]	Voltage emulation error final value / V_error final val		
SERVO (Exp M_ctrl)	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[V] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.000[\mathrm{~V}] \end{aligned}$	Factory setting $0.000 \text { [V] }$
Description: Dependency:	Sets the final value to compensate the voltage emulation error. Refer to: p1953		

The voltage emulation error is calculated and compensated for every phase according to the following formula:
u_{-}error $=u 0 * i /(a b s(i)+i 0)$
$u 0:$ This is set in p 1952.
i0: This is set in p1953.
i: Phase current to which the emulation error u_error belongs.

p1953[0...n]	Voltage emulation error current offset / V_error I_offset		
SERVO (Exp M_ctrl)	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{0.000[A]}$	$\begin{aligned} & \text { Max } \\ & 100.000[\mathrm{~A}] \end{aligned}$	Factory setting 0.000 [A]
Description:	Sets the current offset to compensate the voltage emulation error.		
Dependency:	Refer to: p1952		
Note:	The voltage emulation error is calculated and compensated for every phase according to the following formula: u_error $=\mathrm{u} 0$ * $\mathrm{i} /(\operatorname{abs}(\mathrm{i})+\mathrm{i} 0)$		
	u 0 : This is set in p1952.		
	i0: This is set in p1953.		
	i: Phase current to which the e	u_error belongs.	

p1958[0...n]	Moving measurement ramp-up/ramp-down time / Mov meas t_r up/dn		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1.00[s] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 999999.00[\mathrm{~s}] \end{aligned}$	Factory setting -1.00 [s]
Description:	Sets the ramp-up/ramp-down time for the moving measurement.		
	The following applies for negative values:		
	When the function module "extended setpoint channel" is activated ($\mathrm{r0108.8}=1$), the maximum of the ramp-up/ramp-down time of the setpoint channel becomes effective. When this function module is inactive, then no ramp-up/ramp-down time is effective.		
	The following applies for positive values:		
	The selected ramp-up/ramp-down time becomes effective.		
Recommend.:	A ramp-up/ramp-down time should not be activated for the motor data identification (p1958 = 0) as long as this can be safely done without incurring any danger. This means that the identification is complete and more accurate. When the ramp-up/ramp-down time is activated, the following steps of the moving motor data identification are not executed:		
	- p1959.5 (identifying the q inductance)		
	- p1959.7 (identifying the reluctance force constant)		
Dependency:	Refer to: p1959, p1960		

p1958[0...n] Rotating measurement ramp-up/ramp-down time / Rot meas t_r up/dn
Data type: FloatingPoint32 Dynamic index: MDS, p0130 Func. diagram: -
P-Group: Motor identification Units group: - Unit selection: -

Not for motor type: -
Max
999999.00 [s]

Sets the ramp-up/ramp-down time for the rotating measurement.

Re bit 10 :
If the motor holding brake is set just the same as the sequence control (p1215=1 or 3), the commutation angle and the direction of rotation are not measured. Before carrying out the rotation measurement for motors with brake, the brake should be opened (p1215 = 2) - as long as this can be done without incurring any danger.
Re bit 14 and 15:
The following applies for bit 14 and $15=0$:
When the function module "extended setpoint channel" is activated (r0108.8 = 1), the direction inhibit of the setpoint channel becomes effective. No direction of inhibit is effective if the function module is inactive.
The following applies for minimum bit $14=1$ or bit $15=1$:
The direction inhibit set in p1959 becomes effective.

Re bit 14 and 15 :
The following applies for bit 14 and $15=0$:
When the function module "extended setpoint channel" is activated ($\mathrm{r0108.8}=1$), the direction inhibit of the setpoint channel becomes effective. No direction of inhibit is effective if the function module is inactive.
The following applies for minimum bit $14=1$ or bit $15=1$:
The direction inhibit set in p1959 becomes effective.

Recommend.:	Before carrying out the moving measurement for motors with brake, the brake should be opened (p1215=2) - as long as this can be done without incurring any danger. The commutation angle and the direction of rotation are also determined.
Dependency:	Refer to: r1934, r1935, r1936, r1937, r1938, r1939, r1947, r1948, p1958, p1959, r1962, r1963, r1969 Refer to: F07990, A07991, F07993
	For the moving measurement, the motor is accelerated up to the maximum velocity. Only the parameterized current limit (p 0640) and the maximum velocity (p 1082) are effective. The behavior of the motor can be influenced using the direction inhibit (p 1959.14 , p 1959.15) and the ramp-up/ramp-down time (p1958).
Notice:	In order to permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).
Note:	The moving measurement can only be selected when the pulses of all of the drive objects of the Control Unit have been suppressed. After selection, all of the other drive objects of the Control Unit are interlocked so that they cannot be powered up until the moving measurement has been completed or de-selected. When the moving measurement is activated ($\mathrm{p} 1960=1$), it is not possible to save the parameters ($\mathrm{p} 0971, \mathrm{p} 0977$).
p1960	Rotating measurement selection / Rot meas sel
SERVO	Can be changed: T Calculated: - Access level: 2
	Data type: Integer16 Dynamic index: - Func. diagram: -
	P-Group: Motor identification Units group: - Unit selection: -
	Not for motor type: REL Expert list: 1
	Min Max Factory setting -3 1 0
Description:	Activates the rotating measurement.
Value:	$-3:$ Accept identified parameters $-2:$ Acknowledge encoder inversion actual value (F07993) $-1:$ Start motor data identification without acceptance $0:$ Inactive/inhibit 1: Start motor data identification with acceptance
Recommend.:	Before carrying out the rotation measurement for motors with brake, the brake should be opened (p1215 = 2) - as long as this can be done without incurring any danger. The commutation angle and the direction are also determined.
Dependency:	Refer to: r1934, r1935, r1936, r1937, r1938, r1939, r1947, r1948, p1958, p1959, r1962, r1963, r1969 Refer to: F07990, A07991, F07993
Danger:	For the rotating measurement, the motor is accelerated up to the maximum speed. Only the parameterized current limit (p 0640) and the maximum speed (p 1082) are effective. The behavior of the motor can be influenced using the direction inhibit (p 1959.14 , p 1959.15) and the ramp-up/ramp-down time (p1958).
Notice:	In order to permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).
Note:	The rotating measurement can only be selected when the pulses of all of the drive objects of the Control Unit have been suppressed. After selection, all of the other drive objects of the Control Unit are interlocked so that they cannot be powered up until the rotating measurement has been completed or de-selected.
	When the rotating measurement is activated (p1960 $=1$), it is not possible to save the parameters (p 0971 , p 0977).
p1960	Rotating measurement selection / Rot meas sel
VECTOR	Can be changed: T Calculated: - Access level: 2
	Data type: Integer16 Dynamic index: - Func. diagram: -
	P-Group: Motor identification Units group: - Unit selection: -
	Min Max Factory setting 0 4 0
Description:	Sets the rotating measurement. The rotating measurement is carried out after the next power-on command. The setting possibilities of the parameter depend on the open-loop/closed-loop control mode (p1300).

	p1300 < 20 (V/f open-loop control):
	It is not possible to select rotating measurement or speed controller optimization.
	p1300 = 20, 22 (encoderless operation):
	Only rotating measurement or speed controller optimization can be selected in the encoderless mode. p1300 = 21, 23 (operation with encoder):
	Both versions (encoderless and with encoder) of the rotating measurement and speed controller optimization can be selected.
Value:	0: Inhibited
	1: Rotating measurement in encoderless operation
	2: Rotating measurement with encoder
	3: Speed controller optimization for encoderless operation
	4: Speed controller optimization with encoder
Dependency:	Before the rotating measurement is carried out, the motor data identification routine (p 1900 , p 1910 , r3925) should have already been done.
	In the simulation mode, a value of 1 cannot be written into the parameter.
	When selecting the rotating measurement, the drive data set changeover is suppressed.
	Refer to: p1272, p1300, p1900, p1959
	Refer to: A07987
Danger:	For drives with a mechanical system that limits the distance moved, it must be ensured that this is not reached during the rotating measurement. If this is not the case, then it is not permissible that the measurement is carried out.
Notice:	In order to permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).
Note:	When the rotating measurement is activated, it is not possible to save the parameters (p0971, p0977).
	Parameter changes are automatically made for the rotating measurement (e.g. p1120); this is the reason that up to the end of the measurement, and if no faults are present, no manual changes should be made.
	The ramp-up and ramp-down times (p1120, p1121) are limited, for the rotating measurement, to 900 s .
	For speed controller optimization with encoder ($\mathrm{p} 1960=2,4$), the speed controller for encoderless operation is also pre-assigned (p1470, p1472).
	Depending on whether the speed controller optimization is carried out with or without encoder, different $\mathrm{Kp} / \mathrm{Tn}$ adaptations of the speed controller are set ($\mathrm{p} 1464, \mathrm{p} 1465$). If the drive should be controlled with as well as without speed encoder, then we recommend the use of two drive data sets (p 0180). These can then be executed with different speed controller adaptations.

p1961	Saturation characteristic speed to determine / Sat_char n determ		
VECTOR (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 26 \text { [\%] } \end{aligned}$	Max $75 \text { [\%] }$	Factory setting 40 [\%]
Description:	Sets the speed to determine the saturation characteristic and the encoder test. The percentage value is referred to p 0310 (rated motor frequency).		
Dependency:	Refer to: p0310, p1959		
	Refer to: F07983		
Note:	The saturation characteristics	rmined at an opera	lowest possible load

r1962[0...9]	Saturation characteristic magnetizing current identified / Sat_char I_mag		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the magnetizing currents of the identified saturation characteristic. The values are referred to r0331.		
Dependency:	Refer to: p1959, p1960, r1963		
Note:	The saturation characteristic consists of the value pairs from p1962 and p1963 with the same index.		
r1962[0...4]	Saturation characteristic magnetizing current / Sat_char I_mag		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the magnetizing currents of the identified saturation characteristic. The values are referred to r0331.		
Index:	$\begin{aligned} & {[0]=\text { Value } 1} \\ & {[1]=\text { Value } 2} \\ & {[2]=\text { Value } 3} \\ & {[3]=\text { Value } 4} \\ & {[4]=\text { Value } 5} \end{aligned}$		
Dependency:	Refer to: r0331		
r1963[0...9]	Saturation characteristic stator flux identified / Sat_char flux		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the stator flux of the identified saturation characteristic. The values are referred to the stator flux at the magnetizing current (r0331).		
Dependency:	Refer to: p1959, p1960, r1962		
Note:	The saturation characteristic consists of the value pairs from p1962 and p1963 with the same index.		
r1963[0...4]	Saturation characteristic magnetizing inductance / Sat_char L_main		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the magnetizing inductances of the identified saturation characteristic. The values are referred to r0382.		

Note:	For a rotating measurement, this parameter can be used to optimize the speed controller. p1967 = 100%--> speed controller optimization according to a symmetric optimum. p1967 > 100 \% --> optimization with a higher dynamic response (Kp higher, Tn lower).		
r1968	Speed_ctrl_opt dynamic factor current / n_opt dyn_fact act		
VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the dynamic factor which is actually achieved for the vibration test		
Dependency:	Refer to: p1959, p1967		
	Refer to: F07985		
Note:	This dynamic factor only refers to the control mode of the speed controller set in p1960.		
r1969	High load inertia identified / High load inert id		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: 27_1	Unit selection: p0100
	Not for motor type: REL		Expert list: 1
	Min - [kg]	Max - [kg]	Factory setting - [kg]
Description:	Displays the identified high load inertia.		
Dependency:	Refer to: p0341, p0342, p1498, p1959, p1960		
r1969	Moment of inertia identified / M_inertia ident		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: 25_1	Unit selection: p0100
	Not for motor type: REL		Expert list: 1
	Min - [kgm ${ }^{2}$]	Max - $\left[\mathrm{kgm}^{2}\right]$	Factory setting - [kgm ${ }^{2}$]
Description:	Displays the identified moment of inertia.		
Dependency:	Refer to: p0341, p0342, p1498, p1959, p1960		
r1969	Speed_ctrl_opt moment of inertia determined / n_opt M_inert det		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: 25_1	Unit selection: p0100
	Not for motor type: REL		Expert list: 1
	Min - [kgm ${ }^{2}$]	Max - [kgm $\left.{ }^{2}\right]$	Factory setting - [kgm ${ }^{2}$]
Description:	Displays the determined moment of inertia of the drive. After it has been determined, the value is transferred to p0341, p0342.		
Dependency:	Refer to: p0341, p0342, p1959		
	Refer to: F07984		

r1970[0...1]	Speed_ctrl_opt vibration test vibration frequency determined / n_opt f_vibration		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min - [Hz]	$\begin{aligned} & \text { Max } \\ & -[H z] \end{aligned}$	Factory setting - [Hz]
Description: Index:	Displays the vibration frequencies determined by the vibration test. [0] = Frequency low [1] = Frequency high		
Dependency:	Refer to: p1959		
	Refer to: F07985		
$\overline{\mathrm{r} 1971[0 . . .1]}$	Speed_ctrl_opt vibration test standard deviation determined / n_opt std. deviat.		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min $-[\mathrm{Hz}]$	Max - [Hz]	Factory setting - [Hz]
Description: Index:	Displays the standard deviations of the vibration frequencies determined by the vibration test [0] = Standard deviation of low frequency [1] = Standard deviation of high frequency		
Dependency:	Refer to: p1959		
	Refer to: F07985		
r1972[0...1]	Speed_ctrl_opt vibration test number of periods determined / n_opt period qty		
VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
Description: Index:	Displays the number of periods determined by the vibration test. [0] = No. of periods of the low frequency [1] = No. of periods of the high frequency		
Dependency:	Refer to: p1959		
	Refer to: F07985		
r1973[0...1]	Encoder, pulse number identified / Pulse No. ident		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
Description:	Index 0: Rotating motors: Displays the Linear motors: Encoder pulse	der pulse number eter. Grid division $=$	

Dependency: Notice: Note:	99: No technique selected		
	Refer to: p0325, p0329, p1981, p1982, p1983, r1984, r1985, r1987		
	If the incorrect technique is applied, this can cause the motor to accelerate in an uncontrolled fashion.		
	When commissioning a catalog motor, the technique is automatically selected depending on the motor type being used.		
	The following applies for 1FN3 motors:		
	A technique with 2nd harmonic may not be used (do not use p1980 $=0,4$).		
	For 1FN7 motors, the following applies:		
	A two-stage technique may not be used (do not use p1980 = 4).		
	The automatically set value in p0329 may not be changed.		
p1980[0...n]	Pole position identification technique / Polld technique		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10 \end{aligned}$	Factory setting 4
Description:	Sets the pole position identification technique.		
Value:	$\begin{array}{ll}\text { 1: } & \text { Voltage pulsing, first h } \\ \text { 4: } & \text { Voltage pulsing, 2-sta } \\ \text { 10: } & \text { DC current impression }\end{array}$		
Dependency:	In the simulation mode, the parameter cannot be written into.		
	Refer to: p1272		
Note:	Voltage pulse technique ($p 1980=1,4$) cannot be applied to separately-excited synchronous motors (p0300=5) and for for operation with sine-wave output filters (p0230).		
p1981[0...n]	Pole position identification maximum distance / PollD distance max		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [${ }^{\circ}$]	$\begin{aligned} & \operatorname{Max} \\ & 180\left[{ }^{\circ}\right] \end{aligned}$	Factory setting 10 [${ }^{\circ}$]
Description:	Sets the maximum distance (electrical angle) when carrying out the pole position identification routine. If this distance (travel) is exceeded, an appropriate fault is output.		
Dependency:	Refer to: p0325, p0329, p1980, p1982, p1983, r1984, r1985, r1987, p1990		
	Refer to: F07995		
Notice:	The value 180° de-activates distance monitoring.		
p1982[0...n]	Pole position identific	ion / PollD selection	
SERVO	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 0
Description:	Activates the pole position identification routine to determine the commutation angle and to carry out a plausibility check.		
Value:	0: Pole position identific		
	1: Pole position identifica	tation	
	2: Pole position identifica	ility check	

Recommend.:	Re p1982 = 1:		
	This is used for synchronous motors with motor encoder without absolute data.		
	The information/data regarding the absolute commutation angle is supplied via a track C/D, Hall sensors, an absolute encoder or from the pole position identification routine.		
	Re p1982 = 2:		
	This is used for synchronous motor with motor encoder with absolute data to check this data.		
Dependency:	Refer to: p0325, p0329, p1980, p1981, p1983, r1984, r1985, r1987, p1990		
p1982[0...n]	Pole position identification selection / PollD selection		
VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 0
Description:	Activates the pole position identification routine to determine the commutation angle and to carry out a plausibility check.		
Value:	0: Pole position identification off 1: Pole position identification for commutation 2: Pole position identification for plausibility check		
Recommend.:	Re p1982 = 1:		
	This is used for synchronous motors with motor encoder without absolute data.		
	The information/data regarding the absolute commutation angle is supplied via a track C/D, Hall sensors, an absolute encoder or from the pole position identification routine.		
	Re p1982 = 2:		
	This is used for synchronous motor with motor encoder with absolute data to check this data.		
	For VECTOR, the following applies:		
	With p1982 $=2$, each time the pulses are enabled it is checked whether the absolute position supplied from the encoder does not exceed a deviation of 45 degrees to the identified pole wheel position.		
	With separately excited synchronous motors (p0300 = 5), pole position identification cannot be selected if an encoder exists with position information (e.g. SSI encoder).		
Dependency:	Refer to: p0325, p0329, p1980, p1981, p1983, r1984, r1985, r1987, p1990		
Note:	For encoderless operation, the pole position identification routine is selected with p1780.6		
p1983	Pole position identification, test / Polld test		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Starts the pole position identification routine for test purposes. p1983 = 1: Start - is automatically set to zero after being carried out.		
Dependency:	Refer to: p0325, p0329, p1980, p1981, p1982, r1984, r1985, r1987, p1990		
Notice:	For p1983 = 1 and if the pulses are not enabled, then the function is only executed the next time that the pulses are enabled.		
Note:	When this test is executed, it does not influence the commutation angle.		

r1984	Pole position identification, angular difference / PollD ang diff		
SERVO, VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [${ }^{\circ}$]	$\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ}\right] \end{aligned}$	Factory setting - [${ }^{\circ}$]
Description:	Displays the angular difference between the current electrical commutation angle and the angle determined by the pole position identification.		
Dependency:	Refer to: p0325, p0329, p1980, p1981, p1982, p1983, r1985, r1987, p1990		
Note:	When the pole position identification routine is executed several times using p1983, the spread of the measured values can be determined using this value. At the same position, the spread should be less than 2 degrees electrical.		
r1985	Pole position identification, saturation characteristic / PollD sat_char		
SERVO, VECTOR (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		xpert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the saturation characteristic of the pole position identification routine.		
	The values for the characteristic of the last saturation-based pole position identification routine are output every 1 ms in order to record signals (e.g. trace).		
Dependency:	Refer to: p0325, p0329, p1980, p1981, p1982, p1983, r1984, r1987, p1990		
r1987	Pole position identification trigger characteristic / PollD trig_char		
SERVO, VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [\%]	$\begin{aligned} & \operatorname{Max} \\ & -[\%] \end{aligned}$	Factory setting - [\%]
Description:	Displays the trigger characteristic of the pole position identification routine. The values for the characteristic of the last pole position identification routine are output every 1 ms in order to record signals (e.g. trace).		
	The values for the trigger characteristic and the saturation characteristic are always output in synchronism from a time perspective.		
Dependency:	Refer to: p0325, p0329, p1980, p1981, p1982, p1983, r1984, r1985		
Note:	The following information and data can be taken from the trigger characteristic. - the value -100% marks the angle at the start of the measurement. - the value $+100 \%$ marks the commutation angle determined from the pole position identification routine.		

p1990	Encoder adjustment, determine angular commutation offset / Enc_adj det ang		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	This function is only required for synchronous motors and can be started when commissioning for the first time or after replacing an encoder. The function acts on the active motor data set.		
	When adjusting the encoder, the angular commutation offset is determined and transferred into p0431. Alarm A07971 is output while the angular commutation offset is being determined. p1990 is automatically set to 0 after the angular commutation offset has been determined.		
Dependency:	Refer to: p0325, p0329, p0431, p1980, p1981, p1982, p1983, r1984, r1985, r1987, p1999		
Caution:	In order to prevent an incorrect orientation of the electrical pole position (uncontrolled motor movement), the automatically determined angular commutation offset (p0431) should, for reasons of safety, be checked using one of the following recommendations:		
	Recommendation 1:		
	Set encoderless operation (p1300 = 20 or p1404 = 0), deselect pole position identification (p1982 = 0), operate under no-load conditions with a speed > p1755, correct the actual value inversion (p0410.0) (e.g. r0061 = r0063), read the angular error in r1778; the result in r1778 should be approximately 0 , for $\|r 1778\|>2$ degrees, add the value to p0431 - taking into account the sign - and enter in p0431.		
	Set the current limit to 0 ($\mathrm{p} 0640=0$), activate travel to fixed stop ($\mathrm{p} 1545=1$), record r0089[0] (phase voltage) and r0093 (electrically normalized pole position) (e.g. trace) while the motor is externally moved; in this case, the rising zero crossover of the phase voltage must coincide with the $360^{\circ}-->0^{\circ}$ step (jump) from r0093.		
	Recommendation 3:		
	Measure the phase voltage V (measure phase U with respect to the virtual star point using 3 resistors) and r0093 (electrically normalized pole position); the rising zero crossover of the phase voltage must coincide with the 360°-. $>0^{\circ}$ step (jump) of r0093.		
	Recommendation 4:		
	Determine the average value from several results of a pole position identification routine executed as test (p1983) at various electrical angles and add the value to p0431- taking into account the sign and enter into p0431.		
Notice:	For p1990 = 1 and with the pulses not enabled, the function is only executed the next time that the pulses are enabled.		
Note:	If fault F07414 is present, the following applies:		
	First set p1990 to 1, then acknowledge the fault and then issue the enable signals.		
p1990	Encoder adjustment, determine angular commutation offset / Enc_adj det ang		
VECTOR	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 0
Description:	This function is only required for synchronous motors and can be started when commissioning for the first time or after replacing an encoder. The function acts on the active motor data set.		
	Alarm A07971 is output while the angular commutation offset is being determined. p1990 is automatically set to 0 after the angular commutation offset has been determined.		

p1995[0...n]	Pole position identification gain,	motion-based / PolID kp mot_bas	
SERVO	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: 17_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$0.000[\mathrm{Nms} / \mathrm{rad}]$	$999999.000[\mathrm{Nms} / \mathrm{rad}]$	$0.300[\mathrm{Nms} / \mathrm{rad}]$
Description:	Sets the gain when executing the motion-based pole position identification.		

p1996[0...n]	Pole position identification, integral time motion-based / PollD Tn mot_bas		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{~ms}]$	$500.0[\mathrm{~ms}]$	$2.0[\mathrm{~ms}]$
Description:	Sets the integral time when executing the motion-based pole position identification.		

p1997[0...n]	Pole position identification, smoothing time motion-based / PollD t_sm mot_bas		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	Max	Factory setting
	$0.0[\mathrm{~ms}]$	$50.0[\mathrm{~ms}]$	0.0 [ms]
Description:	Sets the smoothing time when executing the motion-based pole position identification.		

p2000	Reference frequency / Ref freq		
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S INF } \end{aligned}$	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{0.10[\mathrm{~Hz}]}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00[\mathrm{~Hz}] \end{aligned}$	Factory setting 50.00 [Hz]
Description:	Sets the reference quantity for the frequen All frequencies specified as relative value The reference quantity in this parameter co The following applies: Reference frequency	referred to this reference quant esponds to 100% or 4000 hex or in Hz)	00000 hex.
p2000	Reference velocity, reference frequency / Ref_v Ref_f		
SERVO (Lin)	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type:		Expert list: 1
	Min 0.60 [$\mathrm{m} / \mathrm{min}$]	Max 600.00 [$\mathrm{m} / \mathrm{min}$]	Factory setting 120.00 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the reference quantity for velocity and All velocities or frequencies specified as re The reference quantity in this parameter co The following applies: Reference frequency	equency. espends are referred to this refe 100% or 4000 hex or in Hz) = reference velocity (in (m	le quantity.
Dependency:	Refer to: p0500, p2001, p2002, p2003, r2004		
Note:	For the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) an appropriate pre-assignment is only made if the parameter is at the factory setting.		
	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	Example 1:		
	The signal of an analog input (e.g. r4055[0]) is connected to a velocity setpoint (e.g. p1070[0]). The current percentage input value is cyclically converted into the absolute velocity setpoint using the reference velocity (p 2000).		
	The setpoint from PROFIBUS (r2050[1]) is connected to a velocity setpoint (e.g. p1070[0]). The current input value is cyclically converted into a percentage value via the pre-specified normalization 4000 hex. This percentage value is converted to the absolute velocity setpoint via reference velocity (p 2000).		

p2000	Reference speed reference frequency / Ref_n Ref_f	
SERVO	Can be changed: T	Access level: 2
	Data type: FloatingPoint32	Func. diagram: -
	P-Group: Communications	Unit selection: -
	Not for motor type: -	Expert list: 1
	Min 6.00 [rev/min]	Factory setting 3000.00 [rev/min]
Description:	Sets the reference quantity for speed and frequency.	
	All speeds or frequencies specified as relative value are referred to this reference quantity.	
	The reference quantity in this parameter corresponds to 100% or 4000 hex or 40000000 hex.	
	The following applies: Reference frequency (in Hz) = reference speed (in (RPM) / 60)	
Dependency:	Refer to: p0500, p2001, p2002, p2003, r2004	
Note:	For the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$.	
	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.	

Example 1:

The signal of an analog input (e.g. r4055[0]) is connected to a speed setpoint (e.g. p1070[0]). The current percentage input value is cyclically converted into the absolute speed setpoint using the reference speed (p2000).
Example 2:
The setpoint from PROFIBUS (r2050[1]) is connected to a speed setpoint (e.g. p1070[0]). The current input value is cyclically converted into a percentage value via the pre-specified normalization 4000 hex. This percentage value is converted to the absolute speed setpoint via reference speed (p2000).

Example 2:

The setpoint from PROFIBUS (r2050[1]) is connected to a speed setpoint (e.g. p1070[0]). The current input value is cyclically converted into a percentage value via the pre-specified normalization 4000 hex. This percentage value is converted to the absolute speed setpoint via reference speed (p2000).

p2007 Reference acceleration / Ref accel

SERVO, TM41, VEC- Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3	
TOR	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Fax	Factory setting

$0.01\left[\mathrm{rev} / \mathrm{s}^{2}\right] \quad 500000.00\left[\mathrm{rev} / \mathrm{s}^{2}\right] \quad 0.01\left[\mathrm{rev} / \mathrm{s}^{2}\right]$

Description: Sets the reference quantity for acceleration rates.
All acceleration rates specified as relative value are referred to this reference quantity. The reference quantity in this parameter corresponds to 100% or 4000 hex or 40000000 hex.
Note: \quad For the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 = 1. If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.
The reference acceleration is calculated as follows:
Reference speed (p 2000) converted from $1 / \mathrm{min}$ to $1 / \mathrm{s}$ divided by 1 s
--> p2007 = p2000 [rpm] / (60 [s/min] * 1 [s])

r2032	Master control, control word effective / PcCtrl STW eff				
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$	Can be changed: -		Calculated: - Acc		Access level: 2
	Data type: Unsigned16		Dynamic index: - Fu		Func. diagram: -
	P-Group: Displays, signals		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the effective control word 1 (STW1) of the drive for the master control.				
Bit field:		Signal name	1 signal	0 signal	FP
		ON/OFF1	Yes	No	-
		OC / OFF2	Yes	No	-
		Operation enable	Yes	No	-
		Acknowledge fault	Yes	No	-
		Master control by PLC	Yes	No	-
Notice:	The master control only influences control word 1 and speed setpoint 1 . Other control words/setpoints can be trans ferred from another automation device.				
Note:	The master control is used from the commissioning software (drive control panel) and from the Advanced Operator Panel (AOP, LOCAL mode).				
	OC: Operating condition				
r2032	Master control, control word effective / PcCtrl STW eff				
SERVO (Lin)	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dynamic index: -	Func. diagram: -	
	P-Group: Displays, signals		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	Displays the effective control word 1 (STW1) of the drive for the master control.				
Description:					
Bit field:		Signal name	1 signal	0 signal	FP
		ON/OFF1	Yes	No	-
		OC / OFF2	Yes	No	-
		OC / OFF3	Yes	No	-
		Operation enable	Yes	No	-
		Ramp-function generator enable	Yes	No	-
		Start ramp-function generator	Yes	No	-
		Velocity setpoint enable	Yes	No	-
		Acknowledge fault	Yes	No	-
		Jog bit 0	Yes	No	3030
		Jog bit 1	Yes	No	3030
		Master control by PLC	Yes	No	-
Notice:	The master control only influences control word 1 and speed setpoint 1 . Other control words/setpoints can be transferred from another automation device.				
Note:	The master control is used from the commissioning software (drive control panel) and from the Advanced Operator Panel (AOP, LOCAL mode).				
	OC: Operating condition				

r2032	Master control, control word effective / PcCtrl STW eff				
SERVO, VECTOR		be changed: -	Calculated: -	Access level: 2	
		type: Unsigned16	Dynamic index: -	Func. diagram: -	
		oup: Displays, signals	Units group: -	Unit selection: -	
		or motor type: -		Expert list: 1	
	Min			Factory setting	
	-				
Description:	Displays the effective control word 1 (STW1) of the drive for the master control.				
Bit field:		Signal name	1 signal	0 signal	FP
		ON/OFF1	Yes	No	-
		OC / OFF2	Yes	No	-
		OC / OFF3	Yes	No	-
		Operation enable	Yes	No	-
		Ramp-function generator enable	Yes	No	-
		Start ramp-function generator	Yes	No	-
		Speed setpoint enable	Yes	No	-
		Acknowledge fault	Yes	No	-
		Jog bit 0	Yes	No	3030
		Jog bit 1	Yes	No	3030
		Master control by PLC	Yes	No	-
Notice:	The master control only influences control word 1 and speed setpoint 1. Other control words/setpoints can be transferred from another automation device.				
Note:	The master control is used from the commissioning software (drive control panel) and from the Advanced Operator Panel (AOP, LOCAL mode).				
	OC: Operating condition				
p2037	PROFIdrive STW1.10 = 0 mode / PD STW1.10=0 mode				
A_INF, B_INF, S_INF, SERVO, TM41, VECTOR	Can be changed: T		Calculated: -	Access level: 3	
	Data type: Integer16		Dynamic index: -	Func. diagram: -	
	P-Group: Communications		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$		$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 0	
Description:	Sets the processing mode for PROFIdrive STW1.10 "master control by PLC".				
	Generally, control world 1 is received with the first receive word (PZD1) (this is in conformance to the PROFIdrive profile). The behavior of STW1.10 = 0 corresponds to that of the PROFIdrive profile. For other applications that deviate from this, the behavior can be adapted using this particular parameter.				
Value:	0 : \quad Freeze setpoints and continue to process sign-of-life 1: Freeze setpoints and sign-of-life 2. Setpoints are not frozen				
Recommend.:	Do not change the setting p2037 $=0$.				
Note:	If the STW1 is not transferred according to the PROFIdrive with PZD1 (with bit 10 "master control by PLC"), then p2037 should be set to 2 .				
p2038	PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode				
SERVO (EPOS, Pos ctrl), VECTOR (EPOS, Pos ctrl)	Can be changed: T		Calculated: -	Access level: 3	
	Data type: Integer16		Dynamic index: -	Func. diagram: -	
	P-Group: Communications			Unit selection: -	
	Not for motor type: -				
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$		$\begin{aligned} & \text { Max } \\ & 0 \end{aligned}$	Factory setting 0	
Description:	Displays the interface mode of the PROFIdrive control words and status words.				
Value:	0 : SINAMICS				

Dependency:	Refer to: p0922, p2079		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For p0922 (p2079) = 7, 9, 110, 111, p2038 is automatically set to 0 and cannot be changed.		
p2038	PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2 \end{aligned}$	Factory setting 0
Description:	When selecting a telegram via p0922 (p2079), this parameter influences the device-specific assignment of the bits in the control and status words.		
Value:	0: SINAMICS 1: SIMODRIVE 611 un 2: VIK-NAMUR		
Dependency:	Refer to: p0922, p2079		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For p0922 (p2079) $=100$... 199, p2038 is automatically set to 1 and p2038 can no longer be changed. This means that for these telegrams, the "SIMODRIVE 611 universal" interface mode is set and cannot be changed.		
p2039	Select debug monitor interface / Sel. debug monitor		
CU_S	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	The serial interface for the debug monitor is COM1 (X140) or COM2 (internal). Value $=0$: COM2 (internal) Value $=1:$ COM1 (X140), PPI is de-activated		
p2039	Select debug monitor interface / Sel. debug monitor		
CU_I	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 1
Description:	The serial interface for the debug monitor is COM1 (X140) or COM2 (internal). Value =0: COM2 (internal) Value = 1: COM1 (X140), PPI is de-activated		
Note:	A change only becomes effective after a POWER ON.		

	[4] = PZD 5		
Note:	IF1: Interface 1		
r2050[0..15]	CO: IF1 PROFldrive PZD receive word / IF1 PZD recv word		
SERVO, TM41	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 2440, 2468
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output to interconnect PZD (setpoints) with word format received from the PROFIBUS master.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
Dependency:	Refer to: r2060		
Note:	IF1: Interface 1		
r2050[0..31]	CO: IF1 PROFldrive PZD receive word / IF1 PZD recv word		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 2440, 2468
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Connector output to interconnect PZD (setpoints) with word format received from the PROFIBUS master.		
Index:	$[0]=$ PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		

	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
	[28] = PZD 29		
	[29] = PZD 30		
	[30] = PZD 31		
	[31] = PZD 32		
Dependency:	Refer to: r2060		
Note:	IF1: Interface 1		
p2051[0...14] CI: IF1 PROFldrive PZD send word / IF1 PZD send word			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description: Index:	Selects the PZD (actual values) with word format to be sent to the PROFIBUS master.		
	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	IF1: Interface 1		
p2051[0...7] CI: IF1 PROFIdrive PZD send word / IF1 PZD send word			
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description: Index:	Selects the PZD (actual values) with word format to be sent to the PROFIBUS master.		
	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		

Notice: The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: IF1: Interface 1

p2051[0...18]	CI: IF1 PROFIdrive PZD send word / IF1 PZD send word		
SERVO, TM41	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dynamic index: -	Func. diagram: 2470
	P-Group: Communications	Units group: -	
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Selects the PZD (actual values) with word format to be sent to the PROFIBUS master.		
Index:	$[0]=$ PZD 1 $[1]=$ PZD 2 $[2]=$ PZD 3 $[3]=$ PZD 4 $[4]=$ PZD 5 $[5]=$ PZD 6 $[6]=$ PZD 7 $[7]=$ PZD 8 $[8]=$ PZD 9 $[9]=$ PZD 10 [10] = PZD 11 $[11]=$ PZD 12 $[12]=$ PZD 13 $[13]=$ PZD 14 $[14]=$ PZD 15 [15] = PZD 16 [16] = PZD 17 $[17]=$ PZD 18 [18] = PZD 19		
Dependency:	Refer to: p2061		
Notice: Note:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2051[0...31]	CI: IF1 PROFldrive PZD send word / IF1 PZD send word		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dynamic index: -	Func. diagram: 2470
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Index:	Selects the PZD (actual values) with $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & {[8]=\text { PZD } 9} \\ & {[9]=\text { PZD } 10} \\ & \text { [10] = PZD } 11 \\ & \text { [11] = PZD } 12 \\ & \text { [12] = PZD } 13 \\ & {[13]=\text { PZD } 14} \\ & {[14]=\text { PZD } 15} \\ & {[15]=\text { PZD } 16} \end{aligned}$	mat to be sent to the	ster.

$[16]=$ PZD 17	
$[17]=$ PZD 18	
$[18]=$ PZD 19	
$[19]=$ PZD 20	
$[20]=$ PZD 21	
$[21]=$ PZD 22	
$[22]=$ PZD 23	
$[23]=$ PZD 24	
$[24]=$ PZD 25	
	$[25]=$ PZD 26
	$[26]=$ PZD 27
	$[27]=$ PZD 28
	$[28]=$ PZD 29
	$[29]=$ PZD 30
	$[30]=$ PZD 31
	$[31]=$ PZD 32
	Refer to: p2061
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Dependency:	IF1: Interface 1

p2051[0...4] CI: IF1 PROFIdrive PZD send word / IF1 PZD send word

$\begin{aligned} & \text { TB30, TM15DI_DO, } \\ & \text { TM31 } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Selects the PZD (actual values) with word format to be sent to the PROFIBUS master.		
Index:	[0] = PZD 1		
	$\text { [1] = PZD } 2$		
	$\text { [2] = PZD } 3$		
	[3] = PZD 4		
	[4] = PZD 5		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.IF1: Interface 1		
Note:			

r2053[0...14]	IF1 PROFIdrive diagnostics PZD send word / IF1 diag send word		
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 3
CU_S	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting

Description: Displays the PZD (actual values) with word format sent to the PROFIBUS master.
Index:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
$[7]=$ PZD 8
[8] = PZD 9
[9] $=$ PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13

	$\begin{aligned} & \text { [13] }=\text { PZD } 14 \\ & \text { [14] }=\text { PZD } 15 \end{aligned}$				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	On	Off	-
	01	Bit 1	On	Off	-
	02	Bit 2	On	Off	-
	03	Bit 3	On	Off	-
	04	Bit 4	On	Off	-
	05	Bit 5	On	Off	-
	06	Bit 6	On	Off	-
	07	Bit 7	On	Off	-
	08	Bit 8	On	Off	-
	09	Bit 9	On	Off	-
	10	Bit 10	On	Off	-
	11	Bit 11	On	Off	-
	12	Bit 12	On	Off	-
	13	Bit 13	On	Off	-
		Bit 14	On	Off	-
	15	Bit 15	On	Off	-
Note:	IF1: Interface 1				
r2053[0..7]	IF1 PROFIdrive diagnostics PZD send word / IF1 diag send word				
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dynamic index: -	Func. diagram: -	
	P-Group: Communications		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Displays the PZD (actual values) with word format sent to the PROFIBUS master.				
Index:	[0] = PZD 1				
	[1] = PZD 2				
	[2] = PZD 3				
	[3] = PZD 4				
	[4] = PZD 5				
	[5] = PZD 6				
	[6] = PZD 7				
	[7] = PZD 8				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	On	Off	-
	01	Bit 1	On	Off	-
	02	Bit 2	On	Off	-
	03	Bit 3	On	Off	-
	04	Bit 4	On	Off	-
	05	Bit 5	On	Off	-
	06	Bit 6	On	Off	-
	07	Bit 7	On	Off	-
	08	Bit 8	On	Off	-
	09	Bit 9	On	Off	-
	10	Bit 10	On	Off	-
	11	Bit 11	On	Off	-
	12	Bit 12	On	Off	-
	13	Bit 13	On	Off	-
	14	Bit 14	On	Off	-
	15	Bit 15	On	Off	-
Note:	IF1: Interface 1				

r2053[0...18]	IF1 PROFIdrive diagnostics PZD send word / IF1 diag send word			
SERVO, TM41	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: -	Func	, 2470
	P-Group: Communications	Units group: -	Unit	
	Not for motor type: -		Exp	
	$\underline{M i n}$	Max	Facto	
Description:	Displays the PZD (actual values) with word format sent to the PROFIBUS master.			
Index:	[0] = PZD 1			
	[1] = PZD 2			
	[2] = PZD 3			
	[3] = PZD 4			
	[4] = PZD 5			
	[5] = PZD 6			
	[6] = PZD 7			
	[7] = PZD 8			
	[8] = PZD 9			
	[9] P PZD 10			
	[10] = PZD 11			
	[11] = PZD 12			
	[12] = PZD 13			
	[13] = PZD 14			
	[14] = PZD 15			
	[15] = PZD 16			
	[16] = PZD 17			
	[17] = PZD 18			
	[18] = PZD 19			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Bit 0	On	Off	-
	01 Bit 1	On	Off	-
	02 Bit 2	On	Off	-
	03 Bit 3	On	Off	-
	04 Bit 4	On	Off	-
	05 Bit 5	On	Off	-
	06 Bit 6	On	Off	-
	07 Bit 7	On	Off	-
	08 Bit 8	On	Off	-
	09 Bit 9	On	Off	-
	10 Bit 10	On	Off	-
	11 Bit 11	On	Off	-
	12 Bit 12	On	Off	-
	13 Bit 13	On	Off	-
	14 Bit 14	On	Off	-
	15 Bit 15	On	Off	-
Dependency:	Refer to: p2051, p2061			
Note:	IF1: Interface 1			
r2053[0...31]	IF1 PROFIdrive diagnostics PZD send word / IF1 diag send word			
VECTOR	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dynamic index: -	Func	, 2470
	P-Group: Communications	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting	
Description:	Displays the PZD (actual values) with word format sent to the PROFIBUS master.			
Index:	$\text { [0] = PZD } 1$			

Bit field:	$\begin{aligned} & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \end{aligned}$			
	Bit	Signal name	0 signal	FP
	00	Bit 0	Off	-
	01	Bit 1	Off	-
	02	Bit 2	Off	-
	03	Bit 3	Off	-
	04	Bit 4	Off	-
	05	Bit 5	Off	-
	06	Bit 6	Off	-
	07	Bit 7	Off	-
	08	Bit 8	Off	-
	09	Bit 9	Off	-
	10	Bit 10	Off	-
	11	Bit 11	Off	-
	12	Bit 12	Off	-
		Bit 13	Off	-
		Bit 14	Off	-
	15	Bit 15	Off	-
Note:	IF1: Interface 1			
r2054	PROFIBUS status / PB status			
CU_S		be changed: -	Acc	
		type: Integer16	Func	
		roup: Communications	Unit	
		for motor type: -	Expe	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$		Fact	
Description:	Status display for the PROFIBUS interface.			
Value:	Off No connection (search for baud rate) Connection OK (baud rate found) Cyclic connection with master (data exchange) Cyclic data OK			
Note:	Re r2054 = 3:			
	In s one - N Only - Th Re In th bein Thi ters	ate 3 (the LED flashes g of the following prerequi setpoints are being rece for clock-cycle synchro drive is not in synchron $2054=4:$ e status 4 (LED green), g received. The clock cy state does not provide on the drive objects.	the PRO ndition. s been est is error-fr cle synchr	owever, points are charac-
r2054		MM INT state / C IN		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_LINK } \end{aligned}$	Can be changed: -		Access level: 3	
	Data type: Integer16		Func. diagram: -	
	P-Group: Communications		Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min0		Factory setting	
Description:	Status display for the internal communications interface.			

Index 5: Firmware date (year).
Index 6: Firmware date (day/month).

r2060[0..14]	CO: IF1 PROFIdrive PZD receive double word / IF1 PZD recv DW		
SERVO, TM41	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dynamic index: -	Func. diagram: 2440, 2468
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Connector output to interconnect PZD (setpoints) with double word format received from the PROFIBUS master.		
Index:	[0] = PZD $1+2$		
	[1] = PZD $2+3$		
	[2] = PZD $3+4$		
	[3] $=$ PZD $4+5$		
	[4] $=$ PZD $5+6$		
	[5] = PZD 6 + 7		
	[6] $=$ PZD $7+8$		
	[7] = PZD $8+9$		
	[8] = PZD $9+10$		
	[9] = PZD $10+11$		
	[10] = PZD $11+12$		
	[11] = PZD $12+13$		
	[12] = PZD $13+14$		
	[13] = PZD $14+15$		
	[14] = PZD 15 + 16		
Dependency:	Refer to: r2050		
Note:	IF1: Interface 1		

r2060[0...30] CO: IF1 PROFIdrive PZD receive double word / IF1 PZD recv DW

VECTOR
Can be changed: -

Calculated: -
Dynamic index: -
Units group: -

Max
Max

Access level: 3
Func. diagram: 2440, 2468
Unit selection: -
Expert list: 1
Factory setting

Description: Connector output to interconnect PZD (setpoints) with double word format received from the PROFIBUS master. Index:
[0] = PZD $1+2$
[1] = PZD $2+3$
[2] $=$ PZD $3+4$
[3] $=$ PZD $4+5$
[4] $=$ PZD $5+6$
[5] = PZD $6+7$
[6] $=$ PZD $7+8$
[7] = PZD $8+9$
[8] = PZD $9+10$
[9] = PZD $10+11$
[10] = PZD $11+12$
[11] = PZD $12+13$
[12] = PZD $13+14$
[13] = PZD $14+15$
[14] = PZD $15+16$
[15] = PZD $16+17$
[16] = PZD $17+18$
[17] = PZD $18+19$
[18] = PZD $19+20$
[19] = PZD $20+21$
[20] = PZD $21+22$

	[21] = PZD $22+23$		
	[22] $=$ PZD $23+24$		
	[23] $=$ PZD $24+25$		
	[24] P PZD $25+26$		
	[25] = PZD $26+27$		
	[26] P PZD $27+28$		
	[27] = PZD $28+29$		
	[28] = PZD $29+30$		
	[29] = PZD $30+31$		
	[30] = PZD $31+32$		
Dependency:	Refer to: r2050		
Note:	IF1: Interface 1		
p2061[0...14]	CI: IF1 PROFIdrive PZD send double word / IF1 PZD send DW		
SERVO, TM41	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer32	Dynamic index: -	Func. diagram: 2470
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Selects the PZD (actual values) with double word format to be sent to the PROFIBUS master.		
Index:	[0] = PZD $1+2$		
	[1] = PZD $2+3$		
	$[2]=$ PZD $3+4$		
	[3] $=$ PZD $4+5$		
	[4] = PZD $5+6$		
	[5] = PZD $6+7$		
	$[6]=$ PZD $7+8$		
	[7] = PZD $8+9$		
	[8] = PZD $9+10$		
	[9] P PZD 10 + 11		
	[10] = PZD 11-12		
	[11] = PZD 12 + 13		
	$[12]=$ PZD $13+14$		
	$[13]=$ PZD $14+15$$[14]=$ PZD $15+16$		
Dependency:	Refer to: p2051		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	IF1: Interface 1		
VECTOR	CI: IF1 PROFIdrive PZD send double word / IF1 PZD send DW		
	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer32	Dynamic index: -	Func. diagram: 2470
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underline{M i n}$	Max	Factory setting 0
Description:	Selects the PZD (actual values) with double word format to be sent to the PROFIBUS master.		
Index:	$[0]=$ PZD $1+2$		
	[1] = PZD $2+3$		
	[2] $=$ PZD $3+4$		
	[3] $=$ PZD $4+5$		
	[4] $=$ PZD $5+6$		
	[5$]=$ PZD $6+7$		
	$[6]=$ PZD $7+8$		
	$\begin{aligned} & {[7]=\operatorname{PZD} 8+9} \\ & {[8]=\operatorname{PZD} 9+10} \end{aligned}$		

r2065	PROFIdrive master sign-of-life, diagnostics / PD mast-SoL diag		
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 3
CU_S, SERVO,	Data type: Unsigned16	Dynamic index: -	Func. diagram: 2410
TM41, VECTOR (n / M)	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays how often the sign-of-life from the clock synchronous PROFIBUS/PROFINET master failed. An appropriate fault is output when the tolerance, specified in p0925, is exceeded.		
Dependency:	Refer to: F01912		
p2066	SYNC automatic warm restart / SYNC warm restart		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Activates an automatic warm restart after changing the DP clock cycle has been changed. p2066 = 0: An attempt to change the DP clock cycle is rejected, and Alarm A01902 is output with alarm value $=9$. In order that the DP clock cycle becomes effective, a warm restart or POWER ON must be carried out. p2066 = 1: When the DP clock cycle is changed, an automatic warm restart is initiated ($\mathrm{p} 0009=30, \mathrm{p} 0976=3$). After booting the modified DP clock cycle becomes effective. The automatic warm restart is only carried out if for all of the drives the pulses have been suppressed. Otherwise p0009 $=30$ cannot be executed and an attempt to change the DP clock cycle is rejected as for p2066 $=0$.		
Dependency:	Refer to: A01902		
r2074[0...4]	IF1 PROFIdrive diagnostics bus address PZD receive / IF1diag addr recv		
A_INF, B_INF,	Can be changed: -	Calculated: -	Access level: 3
CU_CX32, CU_I,	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underline{M i n}$	Max	Factory setting
Description:	Displays the PROFIBUS address of the sender from which the process data (PZD) is received.		
Index:	$\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & \text { [3] }=\text { PZD } 4 \\ & {[4]=\text { PZD } 5} \end{aligned}$		
Note:	IF1: Interface 1		
	$0-125$: Bus address of the sender255 : Not occupied		

Note:	$\begin{aligned} & \text { [14] = PZD } 15 \\ & \text { [15] = PZD } 16 \end{aligned}$		
	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not occupied		
r2075[0...31]	IF1 PROFIdrive diagnostics telegram offset PZD receive / IF1 diag offs recv		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-		
Description:	Displays the PZD byte offset in the PROFIdrive receive telegram (master output).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
	[28] = PZD 29		
	[29] = PZD 30		
	[30] = PZD 31		
	[31] = PZD 32		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not occupied		

r2076[0..14]	IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send		
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 3
CU_S	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the PZD byte offset in the PROFIdrive send telegram (master output).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not occupied		
r2076[0...7] IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send			
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PZD byte offset in the PROFIdrive send telegram (master output).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not occupied		

r2076[0...18]	IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send		
SERVO, TM41	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the PZD byte offset in the PROFIdrive send telegram (master output).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	$\text { [8] = PZD } 9$		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not occupied		
r2076[0...31]	IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PZD byte offset in the PROFIdrive send telegram (master output).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	$\text { [6] = PZD } 7$		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		

Dependency: Notice:	[15] $=$ Bit 15		
	Refer to: p2088, r2089		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2083[0...15]	BI: Binector-connector converter status word 4 / Bin/con ZSW4		
A_INF, B_INF,	Can be changed: U, T	Calculated: -	Access level: 3
CU_CX32, CU_I,	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2472
SERVO, TB30,	P-Group: Communications	Units group: -	
TM15DI_DO, TM31,	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Selects bits to be sent to the PROFIBUS/PROFINET master. The individual bits are combined to form free status word 4.		
Index:	$\begin{aligned} & {[0]=\text { Bit } 0} \\ & {[1]=\text { Bit } 1} \\ & {[2]=\text { Bit } 2} \\ & {[3]=\text { Bit } 3} \\ & {[4]=\text { Bit } 4} \\ & {[5]=\text { Bit } 5} \\ & {[6]=\text { Bit } 6} \\ & {[7]=\text { Bit } 7} \\ & {[8]=\text { Bit } 8} \\ & {[9]=\text { Bit } 9} \\ & {[10]=\text { Bit } 10} \\ & {[11]=\text { Bit } 11} \\ & {[12]=\text { Bit } 12} \\ & {[13]=\text { Bit } 13} \\ & {[14]=\text { Bit } 14} \\ & {[15]=\text { Bit } 15} \end{aligned}$		
Dependency:	Refer to: p2088, r2089		
p2084[0...15]	BI: Binector-connector converter status word 5 / Bin/con ZSW5		
A_INF, B_INF, CU_CX32, CU_I, CU_S, S_INF, SERVO, TB30, TM15DI_DO, TM31, TM41, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2472
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Selects bits to be sent to the PROFIBUS/PROFINET master. The individual bits are combined to form free status word 5 .		
Index:	$\begin{aligned} & {[0]=\text { Bit } 0} \\ & {[1]=\text { Bit } 1} \\ & {[2]=\text { Bit } 2} \\ & {[3]=\text { Bit } 3} \\ & {[4]=\text { Bit } 4} \\ & {[5]=\text { Bit } 5} \\ & {[6]=\text { Bit } 6} \\ & {[7]=\text { Bit } 7} \\ & {[8]=\text { Bit } 8} \\ & {[9]=\text { Bit } 9} \\ & {[10]=\text { Bit } 10} \\ & {[11]=\text { Bit } 11} \\ & {[12]=\text { Bit } 12} \\ & {[13]=\text { Bit } 13} \\ & {[14]=\text { Bit } 14} \end{aligned}$		

r2089[0..4]	CO: Send binector-connector converter status word / Bin/con ZSW send		
A_INF, B_INF,	Can be changed: -	Calculated: -	Access level: 3
CU_CX32, CU_I,	Data type: Unsigned16	Dynamic index: -	Func. diagram: 2472
CU_S, S_INF,	P-Group: Communications	Units group: -	Unit selection: -
SERVO, TB30,		Expert list: 1	

TM41, VECTOR

Description: Connector output to interconnect the status words to a PZD send word.
Index:
[0] = Status word 1
[1] = Status word 2
[2] = Free status word 3
[3] = Free status word 4
[4] = Free status word 5
Bit field:

Bit	Signal name	$\mathbf{1}$ signal	0 signal	FP
00	Bit 0	On	Off	-
01	Bit 1	On	Off	-
02	Bit 2	On	Off	-
03	Bit 3	On	Off	-
04	Bit 4	On	Off	-
05	Bit 5	On	Off	-

	06	Bit 6	On	Off	-
	07	Bit 7	On	Off	-
	08	Bit 8	On	Off	-
	09	Bit 9	On	Off	-
	10	Bit 10	On	Off	-
	11	Bit 11	On	Off	-
	12	Bit 12	On	Off	-
		Bit 13	On	Off	-
		Bit 14	On	Off	-
	15	Bit 15	On	Off	-
Dependency:	Refer to: p2051, p2080, p2081, p2082, p2083				
Note:	r2089 together with p2080 to p2083 forms four binector-connector converters.				
r2090.0...15	B0: IF1 PROFIBUS PZD1 receive bit-serial / IF1 PZD1 recv bitw				
A_INF, B_INF,	Can be changed: -		Calculated: -	Access level: 3	
CU_CX32, CU_I,	Data type: Unsigned16		Dynamic index: -	Func. diagram: 2468	
SERVO, TB30,	P-Group: Communications		Units group: -	Unit selection: -	
TM15DI_DO, TM31,	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD1 (normally control word 1) received from the PROFIBUS master.				
Bit field:		Signal name	1 signal	0 signal	FP
		Bit 0	On	Off	-
		Bit 1	On	Off	-
		Bit 2	On	Off	-
	03	Bit 3	On	Off	-
	04	Bit 4	On	Off	-
	05	Bit 5	On	Off	-
	06	Bit 6	On	Off	-
	07	Bit 7	On	Off	-
	08	Bit 8	On	Off	-
	09	Bit 9	On	Off	-
	10	Bit 10	On	Off	-
	11	Bit 11	On	Off	-
		Bit 12	On	Off	-
		Bit 13	On	Off	-
		Bit 14	On	Off	-
		Bit 15	On	Off	-
Note:	IF1: Interface 1				
r2091.0...15	B0: IF1 PROFldrive PZD2 receive bit-serial / IF1 PZD2 recv bitw				
A_INF, B_INF,	Can be changed: -		Calculated: -	Access level: 3	
CU_CX32, CU_I,	Data type: Unsigned16		Dynamic index: -	Func. diagram: 2468	
SERVO, TB30,	P-Group: Communications		Units group: -	Unit selection: -	
TM15DI_DO, TM31,	Not for motor type: -			Expert list: 1	
			Max		
Description:	Binector output for bit-serial interconnection of PZD2 received from the PROFIBUS master.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	On	Off	-
	01	Bit 1	On	Off	-
	02	Bit 2	On	Off	-
	03	Bit 3	On	Off	-
	04	Bit 4	On	Off	-

	05	Bit 5	On	Off	-
	06	Bit 6	On	Off	-
	07	Bit 7	On	Off	-
	08	Bit 8	On	Off	-
	09	Bit 9	On	Off	-
	10	Bit 10	On	Off	-
	11	Bit 11	On	Off	-
	12	Bit 12	On	Off	-
	13	Bit 13	On	Off	-
	14	Bit 14	On	Off	-
	15	Bit 15	On	Off	-
Note: IF	IF1: Interface 1				
r2092.0..15	BO: IF1 PROFldrive PZD3 receive bit-serial / IF1 PZD3 recv bitw				
SERVO, TM41, VEC- C	Can be changed: -		Calculated: -	Access level: 3	
TOR D	Data type: Unsigned16		Dynamic index: -	Func. diagram: 2468	
	P-Group: Communications		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description: B	Binector output for bit-serial interconnection of PZD3 received from the PROFIBUS master.				
Bit field: \quad B	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	On	Off	-
	01	Bit 1	On	Off	-
	02	Bit 2	On	Off	-
	03	Bit 3	On	Off	-
	04	Bit 4	On	Off	-
	05	Bit 5	On	Off	-
	06	Bit 6	On	Off	-
	07	Bit 7	On	Off	-
	08	Bit 8	On	Off	-
	09	Bit 9	On	Off	-
	10	Bit 10	On	Off	-
	11	Bit 11	On	Off	-
	12	Bit 12	On	Off	-
	13	Bit 13	On	Off	-
	14	Bit 14	On	Off	-
	15	Bit 15	On	Off	-
Note: IF	IF1: Interface 1				
r2093.0..15	BO: IF1 PROFIdrive PZD4 receive bit-serial / IF1 PZD4 recv bitw				
SERVO, TM41, VEC- C	Can be changed: -		Calculated: -	Access level: 3	
TOR D	Data type: Unsigned16		Dynamic index: -	Func. diagram: 2468	
	P-Group: Communications		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description: \quad b	Binector output for bit-serial interconnection of PZD4 (normally control word 2) received from the PROFIBUS master.				
Bit field: \quad B	Bit	Signal name	1 signal	0 signal	FP
		Bit 0	On	Off	-
	01	Bit 1	On	Off	-
	02	Bit 2	On	Off	-
	03	Bit 3	On	Off	-
	04	Bit 4	On	Off	-
	05	Bit 5	On	Off	-
	06	Bit 6	On	Off	-

	07	Bit 7	On	Off	-
	08	Bit 8	On	Off	-
	09	Bit 9	On	Off	-
	10	Bit 10	On	Off	-
	11	Bit 11	On	Off	-
	12	Bit 12	On	Off	-
	13	Bit 13	On	Off	-
	14	Bit 14	On	Off	-
	15	Bit 15	On	Off	-
Note:	IF1: Interface 1				
r2094.0... 15	BO: Connector-binector converter binector output / Con/bin outp				
A_INF, B_INF,	Can be changed: -		Calculated: -	Access level: 3	
CU_CX32, CU_I,	Data type: Unsigned16		Dynamic index: -	Func. diagram: 2468	
CU_S, S_INF,	P-Group: Communications		Units group: -	Unit selection: -	
TM15DI_DO, TM31,	Not for motor type: -			Expert list: 1	
TM41, VECTOR					
	Min		Max	Factory setting	
	-		-	Factory setting	
Description:	Binector output for bit-serial onward interconnection of a PZD word received from the PROFIBUS/PROFINET master .				
	The PZD is selected via p2099[0].				
Bit field:		Signal name	1 signal	0 signal	FP
		Bit 0	On	Off	-
		Bit 1	On	Off	-
		Bit 2	On	Off	-
	03	Bit 3	On	Off	-
	04	Bit 4	On	Off	-
	05	Bit 5	On	Off	-
	06	Bit 6	On	Off	-
	07	Bit 7	On	Off	-
	08	Bit 8	On	Off	-
	09	Bit 9	On	Off	-
		Bit 10	On	Off	-
		Bit 11	On	Off	-
		Bit 12	On	Off	-
		Bit 13	On	Off	-
		Bit 14	On	Off	-
		Bit 15	On	Off	-
Dependency:	Refer to: p2099				
r2095.0... 15	BO: Connector-binector converter binector output / Con/bin outp				
A_INF, B_INF,	Can be changed: -		Calculated: -	Access level: 3	
CU_CX32, CU_I,	Data type: Unsigned16		Dynamic index: -	Func. diagram: 2468	
CU_S, S_INF, SERVO, TB3O,	P-Group: Communications		Units group: -	Unit selection: -	
TM15DI_DO, TM31,	Not for motor type: -			Expert list: 1	
TM41, VECTOR					
	Min		Max	Factory setting	
Description:	Binector output for bit-serial interconnection of a PZD word received from the PROFIBUS/PROFINET master. The PZD is selected via p2099[1].				
Bit field:		Signal name	1 signal	0 signal	FP
	00	Bit 0	On	Off	-
	01	Bit 1	On	Off	-
	02	Bit 2	On	Off	-
	03	Bit 3	On	Off	-
	04	Bit 4	On	Off	-

p2101[0...19]	Setting the fault response / Fault response		
CU_CX32, CU_I, CU_LINK, CU_S, HUB, TB30, TM15, TM15DI_DO, TM17, TM31, TM54F_MA, TM54F_SL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 1750, 8075
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 0 \end{aligned}$	Factory setting [0] 0
			[1] 0
			[2] 0
			[3] 0
			[4] 0
			[5] 0
			[6] 0
			[7] 0
			[8] 0
			[9] 0
			[10] 0
			[11] 0
			[12] 0
			[13] 0
			[14] 0
			[15] 0
			[16] 0
			[17] 0
			[18] 0
			[19] 0
Description:	Sets the fault response for the selected fault.		
Value:	0: NONE		
Dependency:	The fault is selected and	se is set under the samer	

p2102	BI: Acknowledge all faults / Ackn all faults		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2546, 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source to acknowledge all faults at all drive objects of the drive system. A fault acknowledgement is triggered with a $0 / 1$ signal.		
p2103	BI: 1. Acknowledge faults / 1. Acknowledge		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 3
CU_LINK, CU_S, HUB TB30 TM15	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
TM15DI_DO, TM17,	P-Group: Messages	Units group: -	Unit selection: -
TM31, TM54F_MA,	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the first signal source to acknowledge faults.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	A fault acknowledgement is triggered with a $0 / 1$ signal.		
p2103[0...n]	BI: 1. Acknowledge faults / 1. Acknowledge		
A INF, B INF, S_INF, SERVO, TM41, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2441, 2442, 2443, 2447, 2475, 2546, 9220, 9677, 9678
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the first signal source to acknowledge faults.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	A fault acknowledgement is triggered with a $0 / 1$ signal.		
p2104	BI: 2. Acknowledge faults / 2. Acknowledge		
CU_CX32, CU_I, CU_LINK, CU_S, HUB, TB30, TM15, TM15DI_DO, TM17, TM31, TM54F_MA, TM54F_SL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
		Max	Factory setting 0
Description:	Sets the second signal source to acknowledge faults. A fault acknowledgement is triggered with a $0 / 1$ signal.		
Note:			

p2104[0...n]	BI: 2. Acknowledge faults / 2. Acknowledge		
A_INF, B_INF,	Can be changed: U, T	Calculated: -	Access level: 3
S_INF, SERVO,	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2546, 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the second signal source to acknowledge faults.		
Note:	A fault acknowledgement is triggered with a $0 / 1$ signal.		
p2105	BI: 3. Acknowledge faults / 3. Acknowledge		
CU_CX32, CU_I, CU_LINK, CU_S, HUB, TB30, TM15, TM15DI_DO, TM17, TM31, TM54F_MA, TM54F_SL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the third signal source to acknowledge faults.		
Note:	A fault acknowledgement is triggered with a $0 / 1$ signal.		
p2105[0...n]	BI: 3. Acknowledge faults / 3. Acknowledge		
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF, SERVO, } \\ & \text { TM41, VECTOR } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2546, 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the third signal source to acknowledge faults.		
Note:	A fault acknowledgement is triggered with a 0/1 signal.		
p2106	BI: External fault 1 / External fault 1		
CU_CX32, CU_I, CU_LINK, CU_S, HUB, TB30, TM15, TM15DI_DO, TM17, TM31, TM54F_MA, TM54F_SL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for external fault 1.		
Dependency:	Refer to: F07860		
Note:	An external fault is triggered with a $1 / 0$ signal.		

p2106[0...n]	BI: External fault 1 / External fault 1		
A_INF, B_INF, S_INF, SERVO, TM41, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2546
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for external fault 1.		
Dependency:	Refer to: F07860		
Note:	An external fault is triggered with a $1 / 0$ signal.		
	If this fault is output at the Control Unit, then it is transferred to all existing drive objects.		
p2107	BI: External fault 2 / External fault 2		
CU_CX32, CU_I, CU_LINK, CU_S, HUB, TB30, TM15, TM15DI_DO, TM17, TM31, TM54F_MA, TM54F_SL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for external fault 2.		
Dependency:	Refer to: F07861		
Note:	An external fault is triggered with a $1 / 0$ signal.		
	If this fault is output at the Control Unit, then it is transferred to all existing drive objects.		
p2107[0...n]	BI: External fault 2 / External fault 2		
A_INF, B_INF, S_INF, SERVO, TM41, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2546
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for external fault 2.		
Dependency:	Refer to: F07861		
Note:	An external fault is triggered with a $1 / 0$ signal.		
	If this fault is output at the Control Unit, then it is transferred to all existing drive objects.		
p2108	BI: External fault 3 / External fault 3		
CU_CX32, CU_I, CU_LINK, CU_S, HUB, TB30, TM15, TM15DI_DO, TM17, TM31, TM54F_MA, TM54F_SL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for external fault 3.		
	External fault 3 is initiated by the following AND logic operation:		
	- BI: p2108 negated		
	- BI: p3111		
	- BI: p3112 negated		

Dependency:	Refer to: p3110, p3111, p3112
	Refer to: F07862
Note:	An external fault is triggered with a $1 / 0$ signal.
	If this fault is output at the Control Unit, then it is transferred to all existing drive objects.

p2108[0...n] BI: External fault 3 / External fault 3

A_INF, B_INF,
S_INF, SERVO,
TM41, VECTOR

Can be changed: U, T
Data type: Unsigned32 / Binary
P-Group: Messages
Not for motor type: -
Min
Max

Sets the signal source for external fault 3.
External fault 3 is initiated by the following AND logic operation:

- BI: p2108 negated
- BI: p3111
- BI: p3112 negated

Dependency: Refer to: p3110, p3111, p3112
Refer to: F07862

Note: \quad An external fault is triggered with a $1 / 0$ signal.
If this fault is output at the Control Unit, then it is transferred to all existing drive objects.

r2109[0...63]	Fault time removed in milliseconds / t_fit resolved ms		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 1750, 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [ms]	Max - [ms]	Factory setting - [ms]
Description:	Displays the system runtime in milliseconds when the fault was removed.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2114, r2130, r2133, r2136, r3115		
Notice:	The time comprises r2136 (days) and r2109 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		

r2110[0...63]	Alarm number / Alarm number		
All objects	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 8065
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type:		Expert list: 1
	Min	Max	Factory setting

Description: This parameter is identical to r2122.

Note: \quad The time in r 2114 is used to display the fault and alarm times.
When the electronics power supply is switched out, the counter value is saved.
After the drive unit is powered up, the counter continues to run with the value that was saved the last time that the
drive unit was powered down.

p2116	Bl: External alarm 2 / External alarm $\mathbf{2}$		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 3
CU_LINK, CU_S,	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
HUB, TB30, TM15,	P-Group: Messages	Units group: -	Unit selection: -
TM15DI_DO, TM17,	Not for motor type: -		Expert list: 1
TM31, TM54F_MA,		Max	Factory setting
TM54F_SL	Min	1	
	-		
Description:	Sets the signal source for external alarm 2.		
Dependency:	Refer to: A07851		
Note:	An external alarm is triggered with a $1 / 0$ signal.		

p2116[0...n]	BI: External alarm 2 / External alarm 2		
A_INF, B_INF, S_INF, SERVO, TM41, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2546
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for external alarm 2.		
Dependency:	Refer to: A07851		
Note:	An external alarm is triggered with a $1 / 0$ signal.		
p2117	BI: External alarm 3 / External alarm 3		
CU_CX32, CU_I, CU_LINK, CU_S, HUB, TB30, TM15, TM15DI_DO, TM17, TM31, TM54F_MA, TM54F_SL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for external alarm 3.		
Dependency:	Refer to: A07852		
Note:	An external alarm is triggered with a $1 / 0$ signal.		
p2117[0...n]	BI: External alarm 3 / External alarm 3		
A_INF, B_INF, S_INF, SERVO, TM41, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 2546
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for external alarm 3.		
Dependency:	Refer to: A07852		
Note:	An external alarm is triggered with a $1 / 0$ signal.		

Dependency:	Refer to: $\mathrm{r} 2110, \mathrm{r} 2122, \mathrm{r} 2123, \mathrm{r} 2125, \mathrm{r} 2134, \mathrm{r} 2145, \mathrm{r} 2146$
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.

r2125[0...63]	Alarm time removed in milliseconds / t_alarm res ms		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 1750, 8065
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [ms]	Max - [ms]	Factory setting - [ms]
Description:	Displays the system runtime in milliseconds when the alarm was cleared.		
Dependency:	Refer to: r2110, r2114, r2122, r2123, r2124, r2134, r2145, r2146		
Notice:	The time comprises r2146 (days) and r2125 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.		

p2126[0..19]	Setting fault number for acknowledge mode / Fault_no ackn_mode		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 1750, 8075
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$	Factory setting 0
Description:	Selects the faults for which the acknowledge mode is to be changed		
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same index Refer to: p2127		
Notice:	It is not possible to re-pa - if there is no existing fa - the message type is no - when a fault is present.	owledge mode of a	ng cases:
p2127[0...19]	Sets acknowledgement mode / Acknowledge mode		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 1750, 8075
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 3 \end{aligned}$	Factory setting 1
Description:	Sets the acknowledge mode for selected fault.		
Value:	$\begin{array}{ll}\text { 1: } & \text { Acknowledgeme } \\ \text { 2: } & \text { IMMEDIATE ack } \\ \text { 3: } & \text { Acknowledgeme }\end{array}$	R ON fault cause has bee HIBIT	
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same index Refer to: p2126		
Notice:	It is not possible to re-parameterize the acknowledge mode of a fault in the following cases: - if there is no existing fault number. - the message type is not "fault" (F). - when a fault is present.		
Note:	The acknowledge mode can only be changed for faults with the appropriate identification.		

	Example: F12345 and acknowledge mode = POWER ON (IMMEDIATELY) --> The acknowledge mode can be changed from POWER ON to IMMEDIATELY.				
p2128[0...15]	Selecting fault/alarm code for trigger / Message trigger				
All objects	Can	be changed: U, T	Calculated: -	Acce	
	Dat	type: Unsigned16	Dynamic index: -	Func	807
	P-G	oup: Messages	Units group: -	Unit	
	Not	for motor type: -		Expe	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$		Max 65535	Fact 0	
Description:	Selects faults or alarms which can be used as trigger. Refer to: r2129				
Dependency:					
r2129.0... 15	CO/BO: Trigger word for faults and alarms / Trigger word				
All objects	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dynamic index: -	Func. diagram: 1530, 8070	
	P-Group: Messages		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Trigger signal for the selected faults and alarms				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Trigger signal p2128[0]	On	Off	-
		Trigger signal p2128[1]	On	Off	-
		Trigger signal p2128[2]	On	Off	-
		Trigger signal p2128[3]	On	Off	-
		Trigger signal p2128[4]	On	Off	-
		Trigger signal p2128[5]	On	Off	-
		Trigger signal p2128[6]	On	Off	-
		Trigger signal p2128[7]	On	Off	-
		Trigger signal p2128[8]	On	Off	-
		Trigger signal p2128[9]	On	Off	-
		Trigger signal p2128[10]	On	Off	-
		Trigger signal p2128[11]	On	Off	-
		Trigger signal p2128[12]	On	Off	-
		Trigger signal p2128[13]	On	Off	-
		Trigger signal p2128[14]	On	Off	-
		Trigger signal p2128[15]	On	Off	-
Dependency:	If one of the faults or alarms selected in $\mathrm{p} 2128[\mathrm{n}]$ occurs, then the particular bit of this binector output is set.				
Note:	CO: r2129 = 0 --> None of the selected messages has occurred.				
	CO: r2129 > 0 --> At least one of the selected messages has occurred.				
r2130[0..63]	Fault time received in days / t_fault recv days				
All objects	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dynamic index: -	Func. diagram: 8060	
	P-Group: Messages		Units group: -	Unit selection: -	
	Min		Max	Factory setting	
Description:	Displays the system runtime in days when the fault occurred.				
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2114, r2133, r2136, r3115				
Notice:	The time comprises r2130 (days) and r0948 (milliseconds).				

Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
r2131	CO: Current fault code / Current fault code		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-		
Description:	Displays the code of the oldest active fault.		
Note:	0 : No fault present.		
r2132	CO: Current alarm code / Current alarm code		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 8065
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the code of the last alarm that occurred.		
Note:	0: No alarm present.		
r2133[0...63]	Fault value for float values / Fault val float		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays additional information about the fault that occurred for float values.		
Dependency:			
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r 2139).		
r2134[0...63]	Alarm value for float values / Alarm value float		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8065
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays additional information about the active alarm for float values.		
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2145, r2146		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		

r2135.0... 15	CO/BO: Status word faults/alarms 2 / ZSW fault/alarm 2				
A_INF, B_INF, CU_CX32, CU_I, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL	Not for motor type: -		Calculated: - Dynamic index: - Units group: -	Expert list: 1	
$\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$	Min		Max	Facto	
Description:	Displays the second status word of faults and alarms.				
Bit field:		Signal name	1 signal	0 signal	FP
		Fault encoder 1	Yes	No	-
		Fault encoder 2	Yes	No	-
		Fault encoder 3	Yes	No	-
		Fault transformer overtemperature	Yes	No	-
		Alarm transformer overtemperature	Yes	No	-
		Fault motor overtemperature	Yes	No	-
		Fault thermal overload power unit	Yes	No	-
		Alarm motor overtemperature	Yes	No	-
		Alarm power unit thermal overload	Yes	No	-
r2135.0... 15	CO/BO: Status word faults/alarms 2 / ZSW fault/alarm 2				
VECTOR	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dynamic index: -	Func. diagram: 1530, 2548	
	P-Group: Displays, signals		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Displays the second status word of faults and alarms.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Fault encoder 1	Yes	No	-
	01	Fault encoder 2	Yes	No	-
	02	Fault encoder 3	Yes	No	-
	12	Fault motor overtemperature	Yes	No	-
	13	Fault thermal overload power unit	Yes	No	-
	14	Alarm motor overtemperature	Yes	No	-
	15	Alarm power unit thermal overload	Yes	No	-

r2136[0...63]	Fault time removed in days / t_flt resolv. days		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the system runtime in days when the fault was removed.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2114, r2130, r2133, r3115		
Notice:	The time comprises r2136 (days) and r2109 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		

r2138.7... 15	CO/BO: Control word faults/alarms / STW fault/alarm				
All objects	Can	be changed: -	Calculated: -	Acce	
		type: Unsigned16	Dynamic index: -	Func	2546
		oup: Displays, signals	Units group: -	Unit	
		for motor type: -		Expe	
	Min		Max	Facto	
	-		-		
Description:	Displays the control word of the faults and alarms.				
Bit field:		Signal name	1 signal	0 signal	FP
		Acknowledge fault	Yes	No	-
		External alarm 1 (A07850) effective	Yes	No	-
		External alarm 2 (A07851) effective	Yes	No	-
		External alarm 3 (A07852) effective	Yes	No	-
		External fault 1 (F07860) effective	Yes	No	-
		External fault 2 (F07861) effective	Yes	No	-
		External fault 3 (F07862) effective	Yes	No	-
Dependency:	Refer to: p2103, p2104, p2105, p2106, p2107, p2108, p2112, p2116, p2117, p3110, p3111, p3112				
r2139.0... 12	CO/BO: Status word faults/alarms 1 / ZSW fault/alarm 1				
All objects	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dynamic index: -	Func. diagram: 1530, 2548	
	P-Group: Displays, signals		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the first status word of faults and alarms.				
Bit field:		Signal name	1 signal	0 signal	FP
		Being acknowledged	Yes	No	-
		Fault present	Yes	No	-
		Safety message present	Yes	No	-
		Internal message 1 present	Yes	No	-
		Alarm present	Yes	No	-
		Internal message 2 present	Yes	No	-
		Alarm class bit 0	High	Low	-
		Alarm class bit 1	High	Low	-
Note:	Re bit 03, 05, 07:				
	These bits are set if at least one fault/alarm occurs. Data is entered into the fault/alarm buffer with delay. This is the reason that the fault/alarm buffer should only be read if, after "fault present"/"alarm present" has occurred, a change in the buffer was also detected (r0944, r9744, r2121).				
	Re bit 06, 08:				
	These status bits are used for internal diagnostic purposes only.				
	Re bit 11, 12:				
	These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only for automation systems with SINAMICS functionality (e.g. SINUMERIK).				
	Bits 12, $11=0,0-->$ Alarm class 0				
	Bits 12, $11=0,1$--> Alarm class A				
	Bits 12, $11=1,0$--> Alarm class B				
	Bits 12, $11=1,1$--> Alarm class C				

p2140[0...n]	Hysteresis velocity 2 / v_hysteresis 2					
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3			
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010			
	P-Group: Messages	Units group: 4_1	Unit selection: p0505			
	Not for motor type: -		Expert list: 1			
	Min 0.00 [$\mathrm{m} / \mathrm{min}$]	$\begin{aligned} & \text { Max } \\ & 10.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.90 [$\mathrm{m} / \mathrm{min}$]			
Description:	Sets the hysteresis velocity (bandwidth) for the following signals: "\|n_act	< = speed threshold value 2" (BO: r2197.1) "	n_act	> speed threshold value 2" (BO: r2197.2)		
Dependency:	Refer to: p2155, r2197					
p2140[0...n]	Hysteresis speed 2 / n_hysteresis 2					
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3			
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010			
	P-Group: Messages	Units group: 3_1	Unit selection: p0505			
	Not for motor type: -		Expert list: 1			
	Min 0.00 [rev/min]	Max 300.00 [rev/min]	Factory setting 90.00 [rev/min]			
Description:	Sets the hysteresis speed (bandwidth) for the following signals: "\|n_act	< = speed threshold value 2" (BO: r2197.1) "	n_act	> speed threshold value 2" (BO: r2197.2)		
Dependency:	Refer to: p2155, r2197					
p2141[0...n]	Velocity threshold value 1 / v_thresh val 1					
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3			
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010			
	P-Group: Messages	Units group: 4_1	Unit selection: p0505			
	Not for motor type: -		Expert list: 1			
	Min 0.00 [$\mathrm{m} / \mathrm{min}$]	Max 1000.00 [m/min]	Factory setting 0.05 [$\mathrm{m} / \mathrm{min}$]			
Description: Dependency:	Sets the velocity threshold value for the signal "f or n comparison value reached or exceeded" (BO: r2199.1). Refer to: p2142, r2199					
p2141[0...n]	Speed threshold 1 / n_thresh val 1					
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3			
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010			
	P-Group: Messages	Units group: 3_1	Unit selection: p0505			
	Not for motor type: -		Expert list: 1			
	Min 0.00 [rev/min]	Max 210000.00 [rev/min]	Factory setting 5.00 [rev/min]			
Description: Dependency:	Sets the speed threshold value for the signal "f or n comparison value reached or exceeded" (BO: r2199.1). Refer to: p2142, r2199					

p2142[0...n]	Hysteresis velocity 1 / v_hysteresis 1		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mathrm{m} / \mathrm{min}$]	Max 10.00 [$\mathrm{m} / \mathrm{min}$]	Factory setting 0.02 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the hysteresis velocity (bandwidth) for the signal "f or n / v comparison value reached or exceeded" (BO: r2199.1).		
Dependency:	Refer to: p2141, r2199		
p2142[0...n]	Hysteresis speed 1 / n_hysteresis 1		
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.00 [rev/min]	Max 300.00 [rev/min]	Factory setting 2.00 [rev/min]
Description:	Sets the hysteresis speed (bandwidth) for the signal "f or n / v comparison value reached or exceeded" (BO: r2199.1).		
Dependency:	Refer to: p2141, r2199		
p2144[0...n]	BI: Motor stall monitoring enable (negated) / Mot stall enab neg		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 8012
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the negated enable ($0=$ enable) of the motor stall monitoring.		
Dependency:	Refer to: p2163, p2164, p2166, r2197, r2198		
	Refer to: F07900		
Note:	If the enable signal is connected to r 2197.7 then the stall signal is suppressed if there is no speed setpoint - actual value deviation.		
r2145[0..63]	Alarm time received in days / t_alarm recv days		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 8065
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the system runtime in days when the alarm occurred.		
Dependency:	Refer to: r2110, r2114, r2122, r2123, r2124, r2125, r2134, r2146		
Notice:	The time comprises r2145 (days) and r2123 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		

r2146[0...63]	Alarm time removed in days / t_alarm res days		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 8065
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the system runtime in days when the alarm was cleared.		
Dependency:	Refer to: r2110, r2114, r2122, r2123, r2124, r2125, r2134, r2145		
Notice:	The time comprises r2146 (days) and r2125 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
p2147	Delete fault buffer of all drive objects / Del fault buffer		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Integer16	Dynamic index: -	Func. diagram: 8060
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Setting to delete the fault buffer of all existing drive objects.		
Value:	0 : Inactive		
	1: Start to delete the fault buffer of all drive objects		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136		
Note:	p2147 is automatically set to 0 after execution.		
p2148[0...n]	BI: Ramp-function generator active / HLG active		
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 8010
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the signal "ramp-function generator active" for the following signals/messages: "Speed setpoint - actual value deviation within tolerance t_on" (BO: r2199.4) "Ramp-up/ramp-down completed" (BO: r2199.5)		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The binector input is automatically pre-assigned to r1199.2.		
	The following applies for SERVO:		
	The pre-assignment is only made when the function module "setpoint channel" is activated (r0108.8 = 1) .		
p2149[0...n]	Monitoring configuration / Monit config		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0000 bin
Description:	Configuration word for signals and monitoring functions.		

p2151[0...n]	CI: Velocity setpoint for messages/signals / v_set for msg			
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3	
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 8010	
	P-Group: Messages	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting 1438[0]	
Description:	```Sets the signal source for the velocity setpoint for the following messages: "Velocity setpoint - actual value deviation within tolerance t_off" (BO: r2197.7) "Ramp-up/ramp-down completed" (BO: r2199.5) "\|v_set	< p2161" (BO: r2198.4) "v_set > 0" (BO: r2198.5)```		
Dependency:	Refer to: r2197, r2198, r2199			
p2151[0...n]	CI: Speed setpoint for messages/signals / n_set for msg			
SERVO	Can be changed: T	Calculated: -	Access level: 3	
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 8010	
	P-Group: Messages	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting 1438[0]	
Description:	```Sets the signal source for the speed setpoint for the following messages: "Speed setpoint - actual value deviation within tolerance t_off" (BO: r2197.7) "Ramp-up/ramp-down completed" (BO: r2199.5) "\|n_set	< p2161" (BO: r2198.4) "n_set > 0" (BO: r2198.5)```		
Dependency:	Refer to: r2197, r2198, r2199			
p2151[0...n]	CI: Speed setpoint for messages/signals / n_set for msg			
VECTOR	Can be changed: T	Calculated: -	Access level: 3	
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 8010	
	P-Group: Messages		Unit selection: -	
	Not for motor type: -			
	Min	Max	Factory setting 1170[0]	
Description:	```Sets the signal source for the speed setpoint for the following messages: "Speed setpoint - actual value deviation within tolerance t_off" (BO: r2197.7) "Ramp-up/ramp-down completed" (BO: r2199.5) "\|n_set	< p2161" (BO: r2198.4) "n_set > 0" (BO: r2198.5)```		
Dependency:	Refer to: r2197, r2198, r2199			

p2153[0...n]	Velocity actual value filter time constant / v_act_filt T		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [ms]	Max 1000000 [ms]	Factory setting 0 [ms]
Description:	The smoothed actual speed/velocity is compared with the threshold values and is only used for messages and signals.		
Dependency:	Refer to: r2169		
p2153[0...n]	Speed actual value filter time constant / n_act_filt T		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [ms]	Max 1000000 [ms]	Factory setting 0 [ms]
Description:	The smoothed actual speed/velocity is compared with the threshold values and is only used for messages and signals.		
Dependency:	Refer to: r2169		
p2154[0...n]	CI: Velocity setpoint 2 / v_set 2		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 8010
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the velocity setpoint 2. The sum of Cl : p2151 and Cl : p2154 is used for the following messages/signals: "Velocity setpoint - actual value deviation within tolerance t_off" (BO: r2197.7) "Velocity setpoint - actual value deviation within tolerance t_on" (BO: r2199.4) "Ramp-up/ramp-down completed" (BO: r2199.5)		
Dependency:	Refer to: p2151, r2197, r2199		
p2154[0...n]	CI: Speed setpoint 2 / n_set 2		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 8010
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		
	Min	Max	Factory setting 0
Description:	Sets the signal source for speed setpoint 2 The sum of CI: p2151 and Cl : p 2154 is us "Speed setpoint - actual value deviation with "Speed setpoint - actual value deviation with "Ramp-up/ramp-down completed" (BO: r2	for the following messages/sign tolerance t_off" (BO: r2197.7) in tolerance t_on" (BO: r2199.4) .5)	

Dependency:	Refer to: p2151, r2197, r2199					
p2155[0...n]	Velocity threshold value 2 / v_thresh val 2					
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3			
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010			
	P-Group: Messages	Units group: 4_1	Unit selection: p0505			
	Not for motor type: -		Expert list: 1			
	Min 0.00 [$\mathrm{m} / \mathrm{min}$]	Max 1000.00 [$\mathrm{m} / \mathrm{min}$]	Factory setting 9.00 [$\mathrm{m} / \mathrm{min}$]			
Description:	Sets the velocity threshold value for the following messages: "\|v_act	< = velocity threshold value 2" (BO: r2197.1) "	v_act	> velocity threshold value 2" (BO: r2197.2)		
Dependency:	Refer to: p2140, r2197					
p2155[0...n]	Speed threshold 2 / n_thresh val 2					
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3			
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010			
	P-Group: Messages	Units group: 3_1	Unit selection: p0505			
	Not for motor type: -		Expert list: 1			
	Min 0.00 [rev/min]	Max 210000.00 [rev/min]	Factory setting 900.00 [rev/min]			
Description:	Sets the speed threshold value for the following messages: "\|n_act	< = speed threshold value 2" (BO: r2197.1)				
Dependency:	Refer to: p2140, r2197					
p2156[0...n]	On delay, comparison value reached / t_on cmpr val rchd					
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 2			
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010			
	P-Group: Messages	Units group: -	Unit selection: -			
	Not for motor type: -		Expert list: 1			
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [ms] } \end{aligned}$	Max 10000.0 [ms]	Factory setting 0.0 [ms]			
Description: Dependency:	Sets the switch-in delay time for the signal "comparison value reached" (BO: r2199.1). Refer to: p2141, p2142, r2199					
p2161[0...n]	Velocity threshold value 3 / v_thresh val 3					
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3			
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010			
	P-Group: Messages	Units group: 4_1	Unit selection: p0505			
	Not for motor type: -		Expert list: 1			
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Max 1000.00 [$\mathrm{m} / \mathrm{min}$]	Factory setting 0.05 [$\mathrm{m} / \mathrm{min}$]			
Description: Dependency:	Sets the velocity threshold value for the signal "\|v_act	< velocity threshold value 3" (BO: r2199.0). Refer to: p2150, r2199				

p2161[0...n]	Speed threshold 3 / n			
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3	
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010	
	P-Group: Messages	Units group: 3_1	Unit selection: p0505	
	Not for motor type: -		Expert list: 1	
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{rev} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 210000.00[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 5.00 [rev/min]	
Description: Dependency:	Sets the speed threshold value for the signal "\|n_act	< speed threshold value 3" (BO: r2199.0). Refer to: p2150, r2199		
p2162[0...n]	Hysteresis velocity v_act > v_max / Hyst v_act>v_max			
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2	
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010	
	P-Group: Messages	Units group: 4_1	Unit selection: p0505	
	Not for motor type: -		Expert list: 1	
	Min 0.00 [$\mathrm{m} / \mathrm{min}$]	Max 1000.00 [m/min]	Factory setting 6.00 [$\mathrm{m} / \mathrm{min}$]	
Description:	Sets the hysteresis velocity (bandwidth) for the signal "v_act > v_max" (BO: r2197.6).			
Dependency:	Refer to: r1084, r1087, r2197			
Notice:	For p0322 = 0, the following applies: p2162 <= 0.1 * p0311			
	If one of the conditions is violated, p2162 is appropriately and automatically reduced when exiting the commissioning mode.			
Note:	For a negative velocity limit (r1087) the hysteresis is effective below the limit value and for a positive velocity limit (r1084) above the limit value.			
p2162[0...n]	Hysteresis speed n_act > n_max / Hyst n_act>n_max			
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2	
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010	
	P-Group: Messages	Units group: 3_1	Unit selection: p0505	
	Not for motor type: -		Expert list: 1	
	Min 0.00 [rev/min]	Max 60000.00 [rev/min]	Factory setting 0.00 [rev/min]	
Description:	Sets the hysteresis speed (bandwidth) for the signal "n_act > n_max" (BO: r2197.6).			
Dependency:	Refer to: r1084, r1087, r2197			
Notice:	For p0322 = 0, the following applies: p2162 <= 0.1 * p0311			
	If one of the conditions is violated, p2162 is appropriately and automatically reduced when exiting the commissioning mode.			
Note:	For a negative speed limit (r1087) the hysteresis is effective below the limit value and for a positive speed limit (r1084) above the limit value.			

p2163[0...n]	Velocity threshold value 4 / v_thresh val 4		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mathrm{m} / \mathrm{min}$]	Max 1000.00 [m/min]	Factory setting 0.90 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the velocity threshold value for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2164, p2166, r2197		
p2163[0...n]	Speed threshold 4 / n_thresh val 4		
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.00 [rev/min]	Max 210000.00 [rev/min]	Factory setting 90.00 [rev/min]
Description:	Sets the speed threshold value for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2164, p2166, r2197		
p2164[0...n]	Hysteresis velocity 4 / v_hysteresis 4		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Max 10.00 [$\mathrm{m} / \mathrm{min}$]	Factory setting 0.02 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the hysteresis velocity (bandwidth) for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2163, p2166, r2197		
p2164[0...n]	Hysteresis speed 4 / n_hysteresis 4		
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		
	Min 0.00 [rev/min]	Max 200.00 [rev/min]	Factory setting 2.00 [rev/min]
Description:	Sets the hysteresis speed (bandwidth) for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2163, p2166, r2197		

p2166[0...n]	Switch-off delay v_act = v_set / t_del_off v_i=v_se		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.0 [ms]	$\begin{aligned} & \operatorname{Max} \\ & 10000.0 \text { [ms] } \end{aligned}$	Factory setting 200.0 [ms]
Description:	Sets the switch-off delay time for the "velocity setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2163, p2164, r2197		
p2166[0...n]	Off delay n_act = n_set / t_del_off n_i=n_se		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.0[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10000.0 \text { [ms] } \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 200.0 \text { [ms] } \end{aligned}$
Description:	Sets the switch-off delay time for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2163, p2164, r2197		
p2167[0...n]	Switch-on delay v_act = v_set / t_on v_act=v_set		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.0 \text { [ms] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10000.0 \text { [ms] } \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 200.0 \text { [ms] } \end{aligned}$
Description:	Sets the switch-on delay for the "velocity setpoint - actual value deviation in tolerance t_on" signal/message (BO: r2199.4).		
p2167[0...n]	Switch-on delay n_act = n_set / t_on n_act=n_set		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [ms] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 10000.0[\mathrm{~ms}] \end{aligned}$	Factory setting 200.0 [ms]
Description:	Sets the switch-on delay for the "speed setpoint - actual value deviation in tolerance t_on" signal/message (BO: r2199.4).		

r2169	CO: Velocity actual value, smoothed signals / v_act smth message		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1750, 8010, 8012, 8013
	P-Group: Messages	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description: Dependency:	Displays the smoothed actual velocity for messages/signals. Refer to: p2153		
r2169	CO: Speed actual value smoothed signals / n_act smth message		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1750, 8010, 8012, 8013
	P-Group: Messages	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description: Dependency:	Displays the smoothed actual speed for messages/signals.		
p2174[0...n]	Force threshold value 1 / F_thresh val 1		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Units group: 8_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{0.00[N]}$	$\begin{aligned} & \operatorname{Max} \\ & 20000000.00[\mathrm{~N}] \end{aligned}$	Factory setting 1000.00 [N]
Description: Dependency:	Sets the force threshold value for the signal "Torque setpoint < torque threshold value 1" (BO: r2198.10). Refer to: p2195, r2198		
p2174[0...n]	Torque threshold value 1 / M_thresh val 1		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Units group: 7_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 20000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 5.13 [Nm]
Description: Dependency:	Sets the torque threshold value for the signal "Torque setpoint < torque threshold value 1" (BO: r2198.10). Refer to: p2195, r2198		

p2175[0...n]	Motor locked, velocity threshold / Mot lock v_thresh		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mathrm{m} / \mathrm{min}$]	Max 1000.00 [m/min]	Factory setting 1.20 [$\mathrm{m} / \mathrm{min}$]
Description: Dependency:	Sets the velocity threshold for the message "Motor locked" (BO: r2198.6). Refer to: p0500, p2177, r2198		
p2175[0...n]	Motor locked speed threshold / Mot lock n_thresh		
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.00 [rev/min]	$\begin{aligned} & \operatorname{Max} \\ & 210000.00[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 120.00 [rev/min]
Description: Dependency:	Sets the speed threshold for the message "Motor locked" (BO: r2198.6). Refer to: p0500, p2177, r2198		
p2177[0...n]	Motor locked delay time / Mot lock t_del		
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \text { [s] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 65.000[\mathrm{~s}] \end{aligned}$	Factory setting 1.000 [s]
Description:	Sets the delay time for the message "Motor locked" (BO: r2198.6). If "Motor locked" is identified within this time, then ZSW2.6 is set and an appropriate fault is output.		
Dependency:			
p2178[0...n]	Motor stalled delay time / Mot stall t_del		
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \text { [s] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \text { [s] } \end{aligned}$	Factory setting 0.010 [s]
Description:	Sets the delay time for the message "Motor stalled" (BO: r2198.7). If "Motor stalled" is identified within this time, then ZSW2.7 is set and an appropriate fault is output.		
Dependency:			

p2181[0...n]	Load monitoring response / Load monit resp		
SERVO (Extended	Can be changed: U, T	Calculated: -	Access level: 3
msg), VECTOR	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 6 \end{aligned}$	Factory setting 0
Description:	Sets the response when evaluating the load monitoring.		
Value:	$\begin{array}{ll}\text { 0: } & \text { Load monitoring disa } \\ \text { 1: } & \text { A07920 for torque/sp } \\ \text { 2: } & \text { A07921 for torque/sp } \\ 3: & \text { A07922 for torque/sp } \\ \text { 4: } & \text { F07923 for torque/sp } \\ \text { 5: } & \text { F07924 for torque/sp } \\ \text { 6: } & \text { F07925 for torque/sp }\end{array}$	nce	
Dependency:	Refer to: p2182, p2183, p2184, p2185, p2186, p2187, p2188, p2189, p2190, r2198		
Note:	The response to the faults F07923 ... F07925 can be set.		
p2182[0...n]	Load monitoring velocity threshold 1 / n_thresh 1		
SERVO (Extended	Can be changed: U, T	Calculated: -	Access level: 3
m	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mathrm{m} / \mathrm{min}$]	Max 1000.00 [$\mathrm{m} / \mathrm{min}$]	Factory setting 0.05 [$\mathrm{m} / \mathrm{min}$]
Description:	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower) p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower) p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p218 Refer to: p2183, p2184, p2 Refer to: A07926		
p2182[0...n]	Load monitoring speed threshold value 1 / n_thresh 1		
SERVO (Extended msg), VECTOR (Extended msg)	Can be changed: U, T Data type: FloatingPoint32 P-Group: Messages Not for motor type: - Min 0.00 [rev/min]	Calculated: - Dynamic index: DDS, p0180 Units group: 3_1 Max 210000.00 [rev/min]	Access level: 3 Func. diagram: 8013 Unit selection: p0505 Expert list: 1 Factory setting 150.00 [rev/min]
Description:	Sets the speed/torque enve The envelope curve (upper p2182 (n_threshold 1) --> p2 p2183 (n_threshold 2) --> p2 p2184 (n_threshold 3) --> p	load monitoring. pe curve) is defined as follows ld 1, upper), p2186 (M_threshold Id 2, upper), p2188 (M_threshold Id 3, upper), p2190 (M_threshold	on 3 speed thresholds: wer) wer) wer)
Dependency:	The following applies: p2182 Refer to: p 2183 , p2184, p2185 Refer to: A 07926		

p2183[0...n]	Load monitoring velocity threshold 2 / n_thresh 2		
SERVO (Extended msg , Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [m/min] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.05 [m/min]
Description:	Sets the speed/torque envelop curve for the load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2182, p2184, p2187, p2188		
	Refer to: A07926		

p2183[0...n]	Load monitoring speed threshold value 2 / n_thresh 2		
SERVO (Extended msg), VECTOR (Extended msg)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.00 [rev/min]	$\underset{210000.00[\mathrm{rev} / \mathrm{min}]}{\operatorname{Max}}$	Factory setting 900.00 [rev/min]
Description:	Sets the speed/torque envelop curve for the load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2182, p2184, p2187, p2188		

p2184[0...n]	Load monitoring velocity threshold 3/ n_thresh 3		
SERVO (Extended msg , Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.00[\mathrm{~m} / \mathrm{min}]} \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.05 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the speed/torque envelop curve for the load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2182, p2183, p2189, p2190		
	Refer to: A07926		

$\overline{p 2184[0 \ldots n]}$ SERVO (Extended msg), VECTOR (Extended msg)	Load monitoring speed threshold value 3 / n_thresh 3		
	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.00 [rev/min]	$\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 1500.00 [rev/min]
Description:	Sets the speed/torque envelop curve for the load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2182, p2183, p2189, p2190		
	Refer to: A07926		

p2185[0...n]	Load monitoring force threshold 1, upper / M_thresh 1 upper		
SERVO (Extended	Can be changed: U, T	Calculated: -	Access level: 3
msg, Lin)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: $8 _1$	Unit selection: p0505
	Not for motor type: -		Max
	Min	$100000.00[\mathrm{~N}]$	Factory setting
	$0.00[\mathrm{~N}]$	$100000.00[\mathrm{~N}]$	

p2185[0...n]	Load monitoring torque threshold 1, upper / M_thresh 1 upper		
SERVO (Extended msg), VECTOR (Extended msg)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 7_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm}] \end{aligned}$	Max $20000000.00[\mathrm{Nm}]$	Factory setting 10000000.00 [Nm]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2185 > p2186		
	Refer to: p2182, p2186		
	Refer to: A07926		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2186[0...n]	Load monitoring force threshold 1, lower / M_thresh 1 lower		
SERVO (Extended msg , Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 8_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~N}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100000.00[\mathrm{~N}] \end{aligned}$	Factory setting 0.00 [N]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		

Dependency:	The following applies: p2186 < p2185		
	Refer to: p2182, p2185		
	Refer to: A07926		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2186[0...n]	Load monitoring torque threshold 1, lower / M_thresh 1 lower		
SERVO (Extended msg), VECTOR (Extended msg)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 7_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	0.00 [Nm]	20000000.00 [Nm]	0.00 [Nm]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2186 < p2185		
	Refer to: p2182, p2185		
	Refer to: A07926		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2187[0...n]	Load monitoring force threshold 2, upper / M_thresh 2 upper		
SERVO (Extended msg, Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 8_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	0.00 [N]	100000.00 [N$]$	100000.00 [N]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2187 > p2188		
	Refer to: p2183, p2188		
	Refer to: A07926		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2187[0...n]	Load monitoring torque threshold 2, upper / M_thresh 2 upper		
SERVO (Extended msg), VECTOR (Extended msg)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 7_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 20000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 10000000.00 [Nm]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2187 > p2188		
	Refer to: p2183, p2188		
	Refer to: A07926		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		

p2188[0...n]	Load monitoring force threshold 2, lower / M_thresh 2 lower		
SERVO (Extended	Can be changed: U, T	Calculated: -	Access level: 3
msg, Lin)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 8_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~N}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100000.00[\mathrm{~N}] \end{aligned}$	Factory setting 0.00 [N]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2188 < p2187		
	Refer to: p2183, p2187		
	Refer to: A07926		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2188[0...n]	Load monitoring torque threshold 2, lower / M_thresh 2 lower		
SERVO (Extended msg), VECTOR (Extended msg)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 7_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm}] \end{aligned}$	Max $20000000.00[\mathrm{Nm}]$	Factory setting 0.00 [Nm]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2188 < p2187		
	Refer to: p2183, p2187		
	Refer to: A07926		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2189[0...n]	Load monitoring force threshold 3, upper / M_thresh 3 upper		
SERVO (Extended msg , Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 8_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~N}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100000.00[\mathrm{~N}] \end{aligned}$	Factory setting 100000.00 [N]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2189 > p2190		
	Refer to: p2184, p2190		
	Refer to: A07926		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2189[0...n]	Load monitoring torque threshold 3, upper / M_thresh 3 upper		
SERVO (Extended msg), VECTOR (Extended msg)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 7_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm}] \end{aligned}$	Max $20000000.00[\mathrm{Nm}]$	Factory setting 10000000.00 [Nm]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2189 > p2190		
	Refer to: p2184, p2190		
	Refer to: A07926		

Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2190[0...n]	Load monitoring forc	3, lower / M_thresh 3 low	
SERVO (Extended msg , Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 8_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~N}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100000.00[\mathrm{~N}] \end{aligned}$	Factory setting 0.00 [N]
Description: Dependency:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
	The following applies: p2190<p2189		
	Refer to: p2184, p2189		
	Refer to: A07926		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2190[0...n] SERVO (Extended msg), VECTOR (Extended msg)	Load monitoring torque threshold 3, lower / M_thresh 3 lower		
	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 7_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 20000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Nm]
Description: Dependency:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
	The following applies: p 2190 < p2189		
	Refer to: p2184, p2189		
	Refer to: A07926		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2192[0...n] SERVO (Extended msg), VECTOR (Extended msg)	Load monitoring delay time / Load monit t_del		
	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~s}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 65.00 \text { [s] } \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 10.00 \text { [s] } \end{aligned}$
Description:	Sets the delay time to evaluate the load monitoring.		
$\overline{\text { p2194[0...n] }}$ SERVO (Lin)	Force threshold value 2 / F_thresh val 2		
	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 100.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 90.00 \text { [\%] } \end{aligned}$
Description:	Sets the torque/force threshold value for the signal "Torque/force utilization < torque/force threshold value 2" (BO: r2199.11).		
	The message "torque/force setpoint < p2174" (BO: r2198.10) and "torque/force utilization < p2194" (BO: r2199.11) are only evaluated after the run-up and the delay time has expired.		
Dependency:	Refer to: r0033, p2195, r2199		

Note:
Re bit 00:
The velocity threshold value 3 is set in p2161.
Re bit 01:
The comparison value is set in p2141.
Re bit 11:
The force threshold value 2 is set in p2194.

p2200[0...n]	BI: Technology controller enable / Tec_ctrl enable		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to switch in/switch out the technology controller. The technology controller is switched in with a 1 signal.		
p2201[0...n]	CO: Technology controller, fixed value 1 / Tec_ctrl fix val 1		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 10.00 [\%]
Description:	Sets the value for fixed value 1 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		

p2202[0...n]	CO: Technology controller, fixed value 2 / Tec_ctrl fix val 2		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \end{aligned}$	Factory setting 20.00 [\%]
Description:	Sets the value for fixed value 2 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a	longs to a drive object alway	the effective data set.

p2203[0...n]	CO: Technology controller, fixed value 3 / Tec_ctrl fix val 3		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$-200.00[\%]$	$30.00[\%]$	
Description:	Sets the value for fixed value 3 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		

p2204[0...n]	CO: Technology controller, fixed value 4 / Tec_ctrl fix val 4		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\underset{-200.00[\%]}{\operatorname{Min}^{[2}}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 40.00 [\%]
Description:	Sets the value for fixed value 4 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p2205[0...n]	CO: Technology controller, fixed value 5 / Tec_ctrl fix val 5		
SERVO (Tech_ctri),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\underset{-200.00[\%]}{\operatorname{Min}^{[2}}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 50.00 [\%]
Description:	Sets the value for fixed value 5 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p2206[0...n]	CO: Technology controller, fixed value 6 / Tec_ctrl fix val 6		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\underset{-200.00[\%]}{\operatorname{Min}^{[2}}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 60.00 [\%]
Description:	Sets the value for fixed value 6 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p2207[0...n]	CO: Technology controller, fixed value 7 / Tec_ctrl fix val 7		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{-200.00[\%]}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 70.00 [\%]
Description:	Sets the value for fixed value 7 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		

p2208[0...n]	CO: Technology controller, fixed value 8 / Tec_ctrl fix val 8		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 80.00 [\%]
Description:	Sets the value for fixed value 8 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p2209[0...n]	CO: Technology controller, fixed value 9 / Tec_ctrl fix val 9		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 90.00 [\%]
Description:	Sets the value for fixed value 9 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p2210[0...n]	CO: Technology controller, fixed value 10 / Tec_ctrl fix val10		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 100.00 [\%]
Description:	Sets the value for fixed value 10 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p2211[0...n]	CO: Technology controller, fixed value 11 / Tec_ctrl fix val11		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 110.00 [\%]
Description:	Sets the value for fixed value 11 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		

p2212[0...n]	CO: Technology controller, fixed value 12 / Tec_ctrl fix val12		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\underset{-200.00[\%]}{\operatorname{Min}^{[2}}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 120.00 [\%]
Description:	Sets the value for fixed value 12 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p2213[0...n]	CO: Technology controller, fixed value 13 / Tec_ctrl fix val13		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\underset{-200.00[\%]}{\operatorname{Min}^{[2}}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 130.00 [\%]
Description:	Sets the value for fixed value 13 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p2214[0...n]	CO: Technology controller, fixed value 14 / Tec_ctrl fix val14		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\underset{-200.00[\%]}{\operatorname{Min}^{[2}}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 140.00 [\%]
Description:	Sets the value for fixed value 14 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
p2215[0...n]	CO: Technology controller, fixed value 15 / Tec_ctrl fix val15		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{-200.00[\%]}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 150.00 [\%]
Description:	Sets the value for fixed value 15 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		

p2220[0...n]	BI: Technology controller fixed value selection bit 0 / Tec_ctrl sel bit 0		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 7950
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the fixed value of the technology controller. Refer to: p2221, p2222, p2223		
Dependency:			
p2221[0...n]	BI: Technology controller fixed value selection bit 1 / Tec_ctrl sel bit 1		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 7950
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source to select the fixed value of the technology controller. Refer to: p2220, p2222, p2223		
p2222[0...n]	BI: Technology controller fixed value selection bit 2 / Tec_ctrl sel bit 2		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 7950
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source to select the fixed value of the technology controller. Refer to: p2220, p2221, p2223		
p2223[0...n]	BI: Technology controller fixed value selection bit 3 / Tec_ctrl sel bit 3		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 7950
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source to select the fixed value of the technology controller. Refer to: p2220, p2221, p2222		
r2224	CO: Technology controller, fixed value effective / Tec_ctr FixVal eff		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description: Dependency:	Displays the selected and effective fixed value of the technology controller. Refer to: r2229		

r2231	Technology controller motorized potentiometer setpoint memory / Tec_ctrl mop mem		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7954
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[\%] \end{gathered}$	$\underset{-[\%]}{\operatorname{Max}}$	Factory setting - [\%]
Description:	Displays the setpoint memory for the motorized potentiometer of the technology controller. For p2230.0 $=1$, the last setpoint that was saved is entered after ON.		
Dependency:	Refer to: p2230		
p2235[0...n]	BI: Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise		
SERVO (Tech_ctrl),	Can be changed: T	Calculated: -	Access level: 3
VECTOR (Tech_ctrl)	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 7954
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source to increase the setpoint for the motorized potentiometer of the technology controller. Refer to: p2236		
p2236[0...n]	BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower		
SERVO (Tech_ctrl),	Can be changed: T	Calculated: -	Access level: 3
VECTOR (Tech_ctrl)	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 7954
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source to reduce the setpoint for the motorized potentiometer of the technology controller. Refer to: p2235		
p2237[0...n]	Technology controller motorized potentiometer maximum value / Tec_ctrl mop max		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7954
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{-200.00}[\%]$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 100.00 \text { [\%] } \end{aligned}$
Description: Dependency:	Sets the maximum value for the motorized potentiometer of the technology controller. Refer to: p2238		

p2238[0...n]	Technology controller motorized potentiometer minimum value / Tec_ctrl mop min		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7954
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\underset{200.00 \text { [\%] }}{\operatorname{Max}^{2}}$	Factory setting -100.00 [\%]
Description:	Sets the minimum value for the motorized potentiometer of the technology controller.Refer to: p2237		
Dependency:	Refer to: p2237		
p2240[0...n]	Technology controller motorized potentiometer starting value / Tec_ctrl mop start		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7954
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{-200.00}[\%]$	$\begin{aligned} & \operatorname{Max} \\ & 200.00[\%] \end{aligned}$	Factory setting 0.00 [\%]
Description:	Sets the starting value for the motorized potentiometer of the technology controller. For p2230.0 $=0$, this setpoint is entered after ON.		
Dependency:	Refer to: p2230		
r2245	CO: Technology controller mot. potentiometer setpoint before RFG / Tec_ctr mop befRFG		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7954
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{-[\%]} \end{aligned}$	$\underset{-[\%]}{\operatorname{Max}}$	Factory setting - [\%]
Description:	Sets the effective setpoint in front of the internal motorized potentiometer ramp-function generator of the technology controller.		
Dependency:	Refer to: r2250		
p2247[0...n]	Technology controller motorized potentiometer ramp-up time / Tec_ctr mop t_r-up		
SERVO (Tech_ctr), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7954
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.0} \\ & 0 . \mathrm{s}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.0 \text { [s] } \end{aligned}$	Factory setting 10.0 [s]
Description:	Sets the ramp-up time for the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: p2248		
Note:	The time is referred to 100%.		
	When the initial rounding-off is activated (p2230.2 = 1) the ramp-up is correspondingly extended.		

p2248[0...n]	Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7954
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0[\mathrm{~s}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.0[s] \end{aligned}$	Factory setting 10.0 [s]
Description:	Sets the ramp-down time for the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: p2247		
Note:	The time is referred to 100%.		
	When the initial rounding-off is activated (p2230.2 = 1) the ramp-down is correspondingly extended.		
r2250	CO: Technology controller motorized potentiometer setpoint after RFG / Tec_ctr mop aftRFG		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7954
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	Min - [\%]	$\begin{aligned} & \text { Max } \\ & -[\%] \end{aligned}$	Factory setting - [\%]
Description:	Displays the effective setpoint after the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: r2245		
p2253[0...n]	CI: Technology controller setpoint 1 / Tec_ctrl setp 1		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source for the setpoint 1 of the technology controller. Refer to: p2254, p2255		
p2254[0...n]	CI: Technology controller setpoint 2 / Tec_ctrl setp 2		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (Tech_ctrl)	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source for the setpoint 2 of the technology controller. Refer to: p2253, p2256		

p2255	Technology controller setpoint 1 scaling / Tec_ctrl set1 scal		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.00} \\ & \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.00 \text { [\%] } \end{aligned}$	Factory setting 100.00 [\%]
Description:	Sets the scaling for the setpoint 1 of the technology controller. Refer to: p2253		
Dependency:			
p2256	Technology controller setpoint 2 scaling / Tec_ctrl set2 scal		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.00} \\ & \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.00 \text { [\%] } \end{aligned}$	Factory setting 100.00 [\%]
Description:	Sets the scaling for the setpoint 2 of the technology controller.		
Dependency:	Refer to: p2254		
p2257	Technology controller, ramp-up time / Tec_ctrl t_ramp-up		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.00 \text { [s] }$	$\begin{aligned} & \operatorname{Max} \\ & 650.00 \text { [s] } \end{aligned}$	Factory setting 1.00 [s]
Description:	Sets the ramp-up time of the technology controller.		
Dependency:	Refer to: p2258		
Note:	The ramp-up time is referred to 100%.		
p2258	Technology controller ramp-down time / Tec_ctrl t_ramp-dn		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.00 \text { [s] }$	$\begin{aligned} & \text { Max } \\ & 650.00 \text { [s] } \end{aligned}$	Factory setting 1.00 [s]
Description:	Sets the ramp-down time of the technology controller.		
Dependency:	Refer to: p2257		
Note:	The ramp-down time is referred to 100%.		

r2260	CO: Technology controller setpoint after ramp-function generator / Tec_ctr set aftRFG		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[\%] \end{gathered}$	$\begin{gathered} \text { Max } \\ -[\%] \end{gathered}$	Factory setting - [\%]
Description:	Sets the setpoint after the ramp-function generator of the technology controller.		
p2261	Technology controller setpoint filter time constant / Tec_ctrl set T		
SERVO (Tech_crrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [s] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 60.00 \text { [s] } \end{aligned}$	Factory setting 0.00 [s]
Description:	Sets the time constant for the setpoint filter (PT1) of the technology controller.		
r2262	CO: Technology controller setpoint after filter / Tec_ctr set aftFlt		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\%] \end{aligned}$	$\underset{-[\%]}{\operatorname{Max}}$	Factory setting - [\%]
Description:	Displays the smoothed setpoint after the setpoint filter (PT1) of the technology controller.		
p2263	Technology controller type / Tec_ctrl type		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{1}{\operatorname{Max}}$	Factory setting 0
Description:	Sets the technology controller type.		
Value:	0 : $\quad \mathrm{D}$ component in the actual value signal 1: D component in the fault signal		
p2264[0...n]	CI: Technology controller actual value / Tec_ctrl act val		
SERVO (Tech_crrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underline{M i n}$	Max	Factory setting 0
Description:	Sets the signal source for the actual value of the technology controller.		

p2265	Technology controller actual value filter time constant / Tec_ctrl act T		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [s] } \end{aligned}$	Max $60.00 \text { [s] }$	Factory setting 0.00 [s]
Description:	Sets the time constant for the actual value filter (PT1) of the technology controller.		
r2266	CO: Technology controller actual value after filter / Tec_ctr act aftFlt		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the smoothed actual value after the filter (PT1) of the technology controller		
r2273	CO: Technology controller error / Tec_ctrl error		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description: Dependency:	Displays the error (system deviation) between the setpoint and actual value of the technology controller. Refer to: p2263		
p2274	Technology controller differentiation, time constant / Tec_ctrl D comp T		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \text { [s] } \end{aligned}$	Max $60.000 \text { [s] }$	Factory setting 0.000 [s]
Description: Note:	Sets the time constant for the differentiation (D component) of the technology controller. p2274 = 0: Differentiation is disabled.		
p2280	Technology controller proportional gain / Tec_ctrl Kp		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.000 \end{aligned}$	Factory setting 1.000
Description: Note:	Sets the proportional gain (P component) of the technology controller. p2280 $=0$: The proportional gain is disabled.		

p2285	Technology controller integral time / Tec_ctrl Tn		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.000 \text { [s] }$	Max $60.000 \text { [s] }$	Factory setting 0.000 [s]
Description: Note:	Sets the integral time (I component, integrating time constant) of the technology controller. p2285 = 0: The integral time is disabled.		
p2289[0...n]	Cl : Technology controller pre-control signal / Tec_ctrl prectrl		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the pre-control signal of the technology controller.		
p2291	CO: Technology controller maximum limiting / Tec_ctrl max_limit		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 100.00 [\%]
Description:	Sets the maximum limit of the technology controller.		
Dependency:	Refer to: p2292		
Caution:	The maximum limit must always be greater than the minimum limit (p2291 > p2292).		
p2292	CO: Technology controller minimum limiting / Tec_ctrl min_lim		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -200.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	Sets the minimum limit of the technology controller.		
Dependency:	Refer to: p2291		
Caution:	The maximum limit must always be greater than the minimum limit (p2291 > p 2292)		

p2293	Technology controller ramp-up/ramp-down time / Tec_ctr ramp up/dn		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.00 \text { [s] }$	$\begin{aligned} & \operatorname{Max} \\ & 100.00 \text { [s] } \end{aligned}$	Factory setting 1.00 [s]
Description:	Sets the ramp-up and ramp-down time for the maximum and minimum limiting (p2291 and p2292) of the technology controller.		
Dependency:	Refer to: p2291, p2292		
Note:	The ramp-up/ramp-down times are referred to 100 \%.		
r2294	CO: Technology controller output signal / Tec_ctrl outp_sig		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [\%]	$\begin{aligned} & \text { Max } \\ & -[\%] \end{aligned}$	Factory setting - [\%]
Description:	Displays the output signal of the technology controller.		
Dependency:	Refer to: p2295		
p2295	CO: Technology controller output scaling / Tec_ctrl outp scal		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -100.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.00 \text { [\%] } \end{aligned}$	Factory setting 100.00 [\%]
Description:	Sets the scaling for the output signal of the technology controller.		
p2296[0...n]	Cl: Technology controller output scaling / Tec_ctrl outp scal		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 2295[0]
Description: Dependency:	Sets the signal source for the scaling value of the technology controller. Refer to: p2295		
p2297[0...n]	CI: Technology controller maximum limiting / Tec_ctrl max_limit		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min -	Max	Factory setting 2291[0]
Description:	Sets the signal source for the maximum limiting of the technology controller. Refer to: p2291		
Dependency:			

p2298[0...n]	CI: Technology controller minimum limiting / Tec_ctrl min_lim		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl)	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	-	Factory setting
	-	2292[0]	
Description:	Sets the signal source for the minimum limiting of the technology controller.		
Dependency:	Refer to: p2292		

p2369	BI: Staging control word / Staging STW		
VECTOR (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	-	Faxtory setting

Description: Sets the signal source to select the "staging" function.
If staging is selected, monitoring of the switch for the bypass function is deactivated. This enables the Motor Module to be connected to further moters via an external controller, without triggering the switch monitoring functions.

p2502[0...n]	LR encoder assignment / Encoder assignment		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: $\mathrm{C} 2(25)$	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 4010
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$	$\underset{3}{\operatorname{Max}}$	Factory setting 1
Description:	Sets the assigned encoder.		
	The actual value preprocessing and the closed-loop position control are carried out using the assigned encoder.		
Value:			
	3: Encoder 3		
Dependency:	Refer to: p0187, p0188, p0189		

p2505[0...n]	LR motor/load load path / Mot/load load path		
SERVO (APC, Lin, Pos ctrl)	Can be changed: C 2 (25)	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: DDS, p0180	Func. diagram: 4010, 4704, 4711
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1048576 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1048576 \end{aligned}$	Factory setting 1
Description:	Sets the load path for the gearbox factor between the motor shaft and load shaft. Gearbox factor = motor path (p2504) / load path (p2505)		
Dependency:	Refer to: p0432, p0433, p2504		
Note:	The gearbox factor between the encoder shaft and the motor shaft is set using p0432 and p0433.		
p2505[0...n]	LR motor/load load revolutions / Mot/load load rev		
SERVO (APC, Pos ctrl), VECTOR (Pos ctrl)	Can be changed: C2(25)	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: DDS, p0180	Func. diagram: 4010, 4704, 4711
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1048576 \end{aligned}$	Max 1048576	Factory setting 1
Description:	Sets the load revolutions for the gearbox factor between the motor shaft and load shaft. Gearbox factor = motor revolutions (p2504) / load revolutions (p2505)		
Dependency:	Refer to: p0432, p0433, p2504		
Note:	The gearbox factor between the encoder shaft and the motor shaft is set using p0432 and p0433.		
p2506[0...n]	LR length unit LU per load path / LU per load path		
SERVO (APC, Lin, Pos ctrl)	Can be changed: C 2 (25)	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: DDS, p0180	Func. diagram: 4010
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 1 [LU]	Max $2147483647 \text { [LU] }$	Factory setting 10000 [LU]
Description:	Sets the neutral length unit LU per load path.		
	Therefore, for a rotary encoder, a refere units LU used in the drive. Example: Rotary encoder, ballscrew with 10 mm/ --> One load path corresponds to 1000 $\text { --> p2506 = } 10000$	Rotary encoder, ballscrew with $10 \mathrm{~mm} /$ revolution, 10 mm should be broken down to units of $\mu \mathrm{m}$ (i.e. $1 \mathrm{LU}=1 \mu \mathrm{~m}$) --> One load path corresponds to 10000 LU$\text { --> p2506 = } 10000$	
Note:	The position controller can only proces length units (LU, Length Unit). This is th clock cycle can only be realized as an loop gain or when the pre-control is act	ion setpoints in the interpolator son that speed setpoints that are e. The result speed setpoint step creasing p2506 counteracts thi	cycle (IPO clock cycle) in inte a multiple integer of 1 LU per IPO e especially noticeable for a hi avior.

p2506[0...n]	LR length unit LU per load revolution / LU per load rev		
SERVO (APC, Pos ctrl), VECTOR (Pos ctrl)	Can be changed: C 2 (25)	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: DDS, p0180	Func. diagram: 4010
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 1 [LU]	$\begin{aligned} & \operatorname{Max} \\ & 2147483647 \text { [LU] } \end{aligned}$	Factory setting 10000 [LU]
Description:	Sets the neutral length units LU per load revolution.		
	Therefore, for a rotary encoder, a reference is established between the physical arrangement and the neutral length units LU used in the drive.		
	Example:		
	Rotary encoder, ballscrew with $10 \mathrm{~mm} /$ revolution, 10 mm should be broken down to units of $\mu \mathrm{m}$ (i.e. $1 \mathrm{LU}=1 \mu \mathrm{~m}$). --> One load revolution corresponds to 10000 LU		
Note:	The position controller can only process position setpoints in the interpolator clock cycle (IPO clock cycle) in integer length units (LU, Length Unit). This is the reason that speed setpoints that are not a multiple integer of 1 LU per IPO clock cycle can only be realized as an average. The result speed setpoint steps are especially noticeable for a high loop gain or when the pre-control is active. Increasing p2506 counteracts this behavior.		
p2507[0...n]	LR absolute encoder adjustment status / Abs_enc_adj stat		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: EDS	Func. diagram: 4010
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 3 \end{aligned}$	Factory setting 1
Description:	Activating the adjustment and display of the status of the adjustment for absolute encoders.		
Value:	0: Error occurred while adjusting 1: Absolute encoder not adjusted 2: Absolute encoder not adjusted 3: Absolute encoder adjusted	ncoder adjustment initiated	
Dependency:	Refer to: p2525, p2598, p2599		
Caution:	For rotating absolute encoders, when adjusting, a range is set up symmetrically around zero with half of the encoder range, within which the position must be re-established after powering down/powering up. In this range, it is only permissible that the encoder overflows.		
	After the adjustment has been completed, it must be guaranteed that the range is not exited. The reason for this is that outside the range, there is no clear reference any longer between the encoder actual value and mechanical system.		
	If the reference point (Cl : p 2598) lies in this range, then the position actual value is set when adjusting to the reference point. Otherwise, adjustment is canceled with F07443.		
	There is no overflow for linear absolute encoders. This means that after the adjustment, the position can be reestablished in the complete traversing range after powering down/powering up. When adjusting, the position actual value is set to the reference point.		
Note:	The encoder adjustment is initiated with p2507 $=2$. The status is displayed using the other values. In order to permanently save the determined position offset (p2525) it must be saved in a non-volatile fashion (p0971, p0977).		
	This adjustment can only be initiated for an absolute encoder.		

p2508[0...3]	BI: LR activate reference mark search / Ref_mark act		
SERVO (Pos ctrl),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (Pos ctrl)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 4010
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the function "activate reference mark search".		
Index:	$\begin{aligned} & {[0]=\text { Closed-loop position control }} \\ & {[1]=\text { Encoder } 1} \\ & {[2]=\text { Encoder } 2} \\ & {[3]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p0490, p0495, p2502, p2509, r2684		
	Refer to: A07495		
Notice:	When activating the function "set position actual value" while the function "reference mark search" is activated, then the function "reference mark search" is automatically de-activated.		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established: BI: p2508[0] = r2684.0		
	If "reference mark search" and "measuring probe evaluation" are simultaneously activated, then no function is activated and the actual function is interrupted.		

p2510[0...3]	BI: LR selecting measuring probe evaluation / MT_eval select		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3615, 4010
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the measuring probe. 1 signal = measuring probe 2 is activated for BI : $\mathrm{p} 2509=0 / 1$ edge. 0 signal = measuring probe 1 is activated for $\mathrm{BI}: \mathrm{p} 2509=0 / 1$ edge.		
Index:	$\begin{aligned} & {[0]=\text { Closed-loop position control }} \\ & {[1]=\text { Encoder } 1} \\ & {[2]=\text { Encoder } 2} \\ & {[3]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p2502, p2509, p2511		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is estab lished: BI: p2509[0] = r2684.1		
p2511[0...3]	BI: LR measuring probe evaluation edge / MT_eval edge		
SERVO (Pos ctrl),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (Pos ctrl)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3615, 4010
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the edge evaluation of the measuring probe. 1 signal = falling edge of the measuring probe (p2510) is activated for $\mathrm{BI}: \mathrm{p} 2509=0 / 1$ edge . 0 signal = rising edge of the measuring probe (p 2510) is activated for $\mathrm{BI}: \mathrm{p} 2509=0 / 1$ edge .		
Index:	$\begin{aligned} & {[0]=\text { Closed-loop position control }} \\ & {[1]=\text { Encoder } 1} \\ & {[2]=\text { Encoder } 2} \\ & {[3]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p2502, p2509, p2510		
p2512[0...3]	BI: LR pos. actual value preprocessing activate corr. value (edge) / ActVal_prepCorrAct		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 4010, 4015
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		
	Min	Max	Factory setting 0
Description:	Sets the signal source for the function "activate position actual value preprocessing, corrective value (edge)". $0 / 1$ signal: The corrective value available through CI: p2513 is activated.		
Index:	$\begin{aligned} & {[0]=\text { Closed-loop position control }} \\ & {[1]=\text { Encoder } 1} \\ & {[2]=\text { Encoder } 2} \\ & {[3]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p2502, p2513, r2684		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established: BI: p2512[0] = r2684.7		

p2514[0...3]	BI: LR activate position actual value setting / s_act setting act		
SERVO (Pos ctrl),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (Pos ctrl)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 4010
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting

Description: Index:	Sets the signal source to activate the function "set position actual value".
	$\begin{aligned} & {[0]=\text { Closed-loop position control }} \\ & {[1]=\text { Encoder } 1} \end{aligned}$
	[2] = Encoder 2
	[3] = Encoder 3
Dependency:	Refer to: p2502, p2515
	Refer to: A07495, A07497
Warning: 1	As long as the position actual value is set, encoder increments that are received are not evaluated. In this state, any position difference cannot be corrected!

Notice: \quad When the function "set position actual value" is activated while the function "reference mark search" or "measuring probe evaluation" is activated, then the corresponding function is de-activated.
Note: \quad BI: p2514 = 1 signal:
The position actual value is set to the setting value in CI: p2515. Alarm A07497 "position setting value activated" is output. Encoder increments that are received in the meantime, are not taken into account.
BI: p2514 = 1/0 signal:
The position actual value preprocessing is activated and is based on the setting value.

p2515[0...3]	CI: LR position actual setting, setting value / s_act set setVal		
SERVO (Pos ctrl),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (Pos ctrl)	Data type: Unsigned32 / Integer32	Dynamic index: -	Func. diagram: 4010
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setting value of the function "setting position actual value".		

Notice:	To the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
	To select the values:		
	For CU310, CX32, NX10 and NX15, only DI/DO 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual).		
Note:	DI/DO: Bidirectional Digital Input/Output		
	The terminal must be set as input (p0728).		
	If parameter change is rejected, it should be checked whether the input terminal is not already being used in p0488 p0489, p0495, p0580 or p0680.		
	Direct measurement via p2517 has a higher priority than measurements via p0488.		
	For the direct measuring probe evaluation, the DP clock cycle must be integer multiple of the position controller clock cycle.		
p2518[0...2]	LR direct measuring probe 2 / Direct MT 2		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 4010
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 16 \end{aligned}$	Factory setting 0
Description:	Sets the input terminal for direct measuring probe 2.		
	The direct measuring probe can neither be parameterized as non-cyclic (value 1 ... 6) nor as cyclic (value 11 ... 16) measuring probe.		
	After it has been activated via BI: p2509 = 0/1 signal, the non-cyclic measuring probe measures once and can be used with EPOS.		
	After it has been activated via the p2509 = 1 signal, the cyclic measuring probe measures cyclically and cannot be used with EPOS.		
	In order to process signals faster, the direct measuring probe bypasses the handshake technique via the encoder control and status word.		
Value:	0: No meas probe		
	1: DI/DO 9 (X122.8/X121.8)		
	2: DI/DO 10 (X122.10/X121.10)		
	3: DI/DO 11 (X122.11/X121.11)		
	4: DI/DO 13 (X132.8)		
	5: DI/DO 14 (X132.10)		
	6: DI/DO 15 (X132.11)		
	11: DI/DO 9 cyclic		
	12: DI/DO 10 cyclic		
	13: DI/DO 11 cyclic		
	14: DI/DO 13 cyclic		
	15: DI/DO 14 cyclic		
	16: DI/DO 15 cyclic		
Index:	[0] = Encoder 1		
	[1] = Encoder 2		
	[2] = Encoder 3		
Dependency:	Refer to: p0490, p0728, p2509, p2510		
Notice:	To the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
	To select the values:		
	For CU310, CX32, NX10 and NX15, only DI/DO 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual).		
Note:	DI/DO: Bidirectional Digital Input/Output		
	The terminal must be set as input (p0728).		
	If parameter change is rejected, it should be checked whether the input terminal is not already being used in p0488, p0489, p0495, p0580 or p0680.		
	Direct measurement via p2518 has a higher priority than measurements via p0489.		

For the direct measuring probe evaluation, the DP clock cycle must be integer multiple of the position controller clock cycle.

r2522[0...3] CO: LR velocity actual value / v_act

SERVO (Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrl)	Data type: Integer32	Dynamic index: -	Func. diagram: 4010
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$-[1000 \mathrm{LU} / \mathrm{min}]$	$-[1000 \mathrm{LU} / \mathrm{min}]$	$-[1000 \mathrm{LU} / \mathrm{min}]$

Description: Displays the velocity actual value determined by the position actual value preprocessing.
Index: $\quad[0]=$ Closed-loop position control
[1] = Encoder 1
[2] = Encoder 2
[3] = Encoder 3
Dependency: Refer to: p2502, r2526
Note: $\quad r 2526.0=1$--> The velocity actual value in r2522[0] for the position control is valid.
r2527.0 = 1 --> The velocity actual value in r2522[1] for encoder 1 is valid.
$\mathrm{r} 2528.0=1$--> The velocity actual value in $\mathrm{r} 2522[2]$ for encoder 2 is valid.
$\mathrm{r} 2529.0=1$--> The velocity actual value in $\mathrm{r} 2522[3]$ for encoder 3 is valid.

r2529.2 = 1 --> The measured value in r2523[3] for encoder 3 is valid.

		Position controller output limited	Yes	No	4015
		Request tracking mode	Yes	No	-
		Clamping active when traveling to fixed stop	Yes	No	4025
	09	Setting value for adjustment valid	Yes	No	-
Dependency:	Refe	r to: r2521, r2522, r2523			
Note:	Re	it 04:			
	The	signal is influenced via p2634.			
	Re	it 05:			
	The	signal is influenced via p2635.			
r2527.0... 2	CO	BO: LR actual value sensing statu	s word en	ActValSe	
SERVO (Pos ctrl),	Can	be changed: - Calc	ulated: -	Acce	
VECTOR (Pos ctrl)		type: Unsigned16 Dy	amic index: -	Fun	
	P-G	oup: Closed loop position control Unit	group: -	Unit	
		for motor type: -		Expe	
	Min	Max		Fact	
	-	-		-	
Description:	Disp	lays the status word of the position actual valu	e sensing for e		
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Position actual value valid	Yes	No	-
	01	Referencing active	Yes	No	-
	02	Measured value valid	Yes	No	-

r2528.0...2	CO/BO: LR actual value sensing status word encoder $\mathbf{2}$ / ActValSensZSW enc2		
SERVO (Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrl)	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status word of the position actual value sensing for encoder 2.		
Bit field:	Bit Signal name	1 signal	0 signal
	00	Position actual value valid	Yes
	01	Referencing active	Yes

r2529.0...2	CO/BO: LR actual value sensing status word encoder 3 / ActValSensZSW enc3		
SERVO (Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrl)	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status word of the position actual value sensing for encoder 3.		
Bit field:	Bit Signal name	1 signal	O signal
	00	Position actual value valid	Yes
	01	Referencing active	Yes

p2534[0...n]	LR velocity pre-control factor / v_prectrl fact		
SERVO (Lin, Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 4015, 4025
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.00 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	Setting to activate and weight the velocity pre-control value. Value $=0 \%$--> The pre-control is de-activated.		
Dependency:	Refer to: p2535, p2536, r2563		
Note:	When the axis control loop is optimally set as well as a precisely determined equivalent time constant of the velocity control loop, the pre-control factor is 100%.		
p2534[0...n]	LR speed pre-control factor / n_prectrl fact		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 4015, 4025
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 200.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	Setting to activate and weight the speed pre-control value. Value $=0 \%$--> The pre-control is de-activated.		
Dependency:	Refer to: p2535, p2536, r2563		
Note:	When the axis control loop is optimally set as well as a precisely determined equivalent time constant of the speed control loop, the pre-control factor is 100%.		
p2535[0...n]	LR velocity pre-control balancing filter dead time / v_prectrFlt t_dead		
SERVO (Lin, Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2.00 \end{aligned}$	Factory setting 0.00
Description:	Sets the "fractional" dead time to emulate the timing behavior of the velocity control loop. The selected multiplier refers to the position controller clock cycle (deadtime $=\mathrm{p} 2535$ * p0115[4]).		
Dependency:	Refer to: p0115, p2536		
Notice:	When velocity pre-control is active (p2534>0\%), the following applies:		
	In addition to the set dead time (p2535), internally two position controller clock cycles are effective.		
	When velocity pre-control is inactive (p2534 = 0 \%) , the following applies:		
	No dead time is effective (p2535 and internal).		
Note:	Together with p2536, the timing behavior of the closed velocity control loop can be emulated.		

p2535[0...n]	LR speed pre-control balancing filter dead time / n_prectrFlt t_dead		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2.00 \end{aligned}$	Factory setting 0.00
Description:	Sets the "fractional" dead time to emulate the timing behavior of the speed control loop. The selected multiplier refers to the position controller clock cycle (deadtime $=$ p2535 * p0115[4]).		
Dependency:	Refer to: p0115, p2536		
Notice:	When speed pre-control is active (p2534 > In addition to the set dead time (p2535), in When speed pre-control is inactive (p2534 No dead time is effective (p2535 and intern	\%), the following applies: nnally two position controller clo 0%), the following applies:).	les are effective.
Note:	Together with p2536, the timing behavior of the closed-loop control loop can be emulated.		
p2536[0...n]	LR velocity pre-control, symmetrizing filter PT1 / n_prectrl filt PT1		
SERVO (Lin, Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [ms]	$\begin{aligned} & \operatorname{Max} \\ & 100.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description:	Sets a PT1 filter to emulate the timing behavior of the closed velocity control loop.		
Dependency:	Refer to: p2535		
Notice:	When velocity pre-control is inactive (p2534 = 0%), the following applies: If a PT1 filter has been set, it is not effective.		
Note:	Together with p2535, the timing behavior of the closed velocity control loop can be emulated.		
p2536[0...n]	LR speed pre-control, symmetrizing filter PT1 / n_prectrl filt PT1		
SERVO (Pos ctrl),	Can be changed: U, T	Calculated: -	Access level: 1
VECTOR (Pos ctrl)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00 \text { [ms] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 100.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description:	Sets a PT1 filter to emulate the timing behavior of the closed-speed control loop.		
Dependency:	Refer to: p2535		
Notice:	When speed pre-control is inactive (p2534 = 0%), the following applies: If a PT1 filter has been set, it is not effective.		
Note:	Together with p2535, the timing behavior of the closed-loop control loop can be emulated.		
p2537	CI: LR position controller adaptation / Adaptation		
SERVO (Pos ctrl),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (Pos ctrl)	Data type: Unsigned32 / FloatingPoint32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the adaptation of the proportional gain of the position controller.		

Dependency:	Refer to: p2538		
p2538[0...n]	LR proportional gain / Kp		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	0.000 [1000/min]	300.000 [1000/min]	1.000 [1000/min]
Description:	Sets the proportional gain (P gain, position loop gain, Kv factor) of the position controller.		
Dependency:	Refer to: p2537, p2539, p2555, r2557, r2558		
Note:	The proportional gain is used define at which traversing velocity which following error is obtained (without pre-control)		
	Low proportional gain:		
	Slow response to a setpoint - actual value difference, the following error becomes large.		
	High proportional gain:		
	Fast response to the setpoint - actual value difference, the following error becomes small.		
p2539[0...n]	LR integral time / Tn		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~ms}] \end{aligned}$	Max 100000.00 [ms]	Factory setting 0.00 [ms]
Description:	Setting to activate the integral time of the position controller. Value $=0 \mathrm{~ms}$--> The I component of the position controller is de-activated.		
Dependency:	Refer to: p2538, r2559		
p2540	CO: LR position controller output, velocity limit / LR_outp limit		
SERVO (Lin, Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [$\mathrm{m} / \mathrm{min}$]	Max 1000.000 [m/min]	Factory setting 1000.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the velocity limit of the position controller output.		
Dependency:	Refer to: p2541		
p2540	CO: LR position controller output, speed limit / LR_outp limit		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.000 [rev/min]	Max 210000.000 [rev/min]	Factory setting 210000.000 [rev/min]
Description:	Sets the speed limit of the position controller output. Refer to: p2541		
Dependency:			

p2544	LR positioning window / Pos_window		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 4020
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [LU]	$\begin{aligned} & \text { Max } \\ & 2147483647 \text { [LU] } \end{aligned}$	Factory setting 40 [LU]
Description:	After the positioning monitoring time expires, it is checked once as to whether the difference between the setpoint and actual position lies within the positioning window and if required an appropriate fault is output.		
Dependency:	Refer to: p2542, p2545, r2684 Refer to: F07451	,	
Note:	The following applies for the setting of the standstill and positioning window: Standstill window (p2542) >= positioning window (p2544)		
p2545	LR positioning monitoring time / t_pos_monit		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4020
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		xpert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	Max 100000.00 [ms]	Factory setting 1000.00 [ms]
Description:	After the positioning monitoring time expires, it is checked once as to whether the difference between the setpoint and actual position lies within the positioning window and if required an appropriate fault is output.		
Dependency:	Refer to: F07451		
Note:	The following applies for the setting of the standstill and positioning monitoring time: Standstill monitoring time (p2543) <= positioning monitoring time (p2545)		
p2546[0...n]	LR dynamic following error monitoring tolerance / s_delta_monit tol		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: DDS, p0180	Func. diagram: 4025
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [LU]	$\begin{aligned} & \text { Max } \\ & 2147483647 \text { [LU] } \end{aligned}$	Factory setting 1000 [LU]
Description:	Sets the tolerance for the dynamic following error monitoring. If the dynamic following error (r2563) exceeds the selected tolerance, then an appropriate fault is output. Value $=0$--> The dynamic following error monitoring is de-activated.		
Dependency:	Refer to: r2563, r2684		
Note:	The tolerance bandwidth is intended to prevent the dynamic following error monitoring incorrectly responding due to operational control sequences (e.g. during load surges).		

p2547	LR cam switching position $1 /$ Cam position 1		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 4025
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -2147483648 \text { [LU] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2147483647 \text { [LU] } \end{aligned}$	Factory setting 0 [LU]
Description:	Sets the cam switching position 1.		
Dependency:	Refer to: p2548, r2683		
	Only after the axis has been referenced can it be guaranteed that the cam switching signals when output have a "true" position reference.		
Note:	Position actual value <= cam switching position $1-$-> r2683.8 $=1$ signal		
	Position actual value > cam switching position 1 --> r2683.8 $=0$ signal		
p2548	LR cam switching position 2 / Cam position 2		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 4025
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -2147483648 \text { [LU] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2147483647 \text { [LU] } \end{aligned}$	Factory setting 0 [LU]
Description:	Sets the cam switching position 2.		
Dependency:	Refer to: p2547, r2683		
	Only after the axis has been referenced can it be guaranteed that the cam switching signals when output have a "true" position reference.		
Note:	Position actual value <= cam switching position 2 --> r2683.9 $=1$ signal		
	Position actual value > cam switching position $2-$-> r2683.9 $=0$ signal		
p2549	BI: LR enable 1 / Enable 1		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 899.2
Description:	Sets the signal source for the position controller enable 1.		
Dependency:	Refer to: r0899, p2550		
Note:	The position controller is enabled by ANDing BI: p 2549 and BI: p 2550.		
p2550	BI: LR enable 2 / Enable 2		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the position controller enable 2. Refer to: p2549		
Dependency:			

Note: \quad The position controller is enabled by ANDing BI: p2549 and BI: p2550. When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established: BI: p2550 = 1

p2551	BI: LR setpoint signal present / Sig s_set pres		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 4020
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the "setpoint present" signal. BI: p2551 = 1 signal:		
	The end of the positioning operation on the setpoint side is signaled and the positioning and standstill monitoring activated.		
	BI: p2551 = 0 signal:		
	The start of a positioning operation or tracking mode on the setpoint side is signaled and the positioning and standstill monitoring de-activated.		
Dependency:	Refer to: p2554, r2683		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is estab lished: BI: p2551 = r2683.2		
p2552	BI: LR signal travel to fixed stop active / Signal TfS act		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 4025
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Sets the signal source for the signal "travel to fixed stop active".		
	BI: p2552 = 1 signal:		
	The activity associated with travel to fixed stop is signaled and the detection of the fixed stop is started via the maximum following error (p2634).		
Dependency:	Refer to: r2683		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is estab lished: BI: p2552 = r2683.14		
p2553	BI: LR signal fixed stop reached / Signal fixed stop		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 4025
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the signal "fixed stop reached". BI: p2553 = 1 signal:		
	When the fixed stop is reached, this is signaled and the fixed stop monitoring window is activated.		
Dependency:	Refer to: r2683		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established: BI: p2553 = r2683.12		

p2554	BI: LR signal traversing command active / Sig trav_cmnd act		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index:-	Func. diagram: 4020
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underline{M i n}$	Max	Factory setting 0
Description:	Sets the signal source for the signal "traversing command active". BI: p2554 = 1 signal:		
	It is signaled that positioning is active and therefore the positioning monitoring is not activated with the signal "setpoint present" (p2551).		
Dependency:	Refer to: p2551, r2684		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established: BI: p2554 = r2684.15		
p2555	CI: LR LU/revolution LU/mm / LU/rev LU/mm		
SERVO (Pos ctrl),	Can be changed: T	Calculated: -	Access level: 3
VECTOR (Pos ctrl)	Data type: Unsigned32 / FloatingPoint32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 2524[0]
Description:	Sets the signal source for the reference of the internal length units LU to motor revolution for rotary encoders and to mm for linear encoders.		
Dependency:	Refer to: p0404, r2524		
Note:	The signal value is used to convert the length unit to the speed or velocity setpoint.		
r2556	CO: LR position setpoint after setpoint smoothing / s_set after interp		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[L U] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & -[L U] \end{aligned}$	Factory setting - [LU]
Description:	Displays the position setpoint after the setpoint smoothing.		
r2557	CO: LR position controller input, system deviation / LR_inp sys dev		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[L U] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[L U] \end{aligned}$	Factory setting - [LU]
Description:	Displays the difference between the position setpoint and the position actual value at the position controller input.		

r2558	CO: LR position controller output, P component / LR_outp P comp		
SERVO (Lin, Pos	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the P component at the output of the position controller for the velocity setpoint.		

r2558	CO: LR position controller output, P component / LR_outp P comp		
SERVO (Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrl)	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$-[r e v / m i n]$	$-[r e v / m i n]$	$-[r e v / \mathrm{min}]$

r2559	CO: LR position controller output, I component / LR_outp I comp		
SERVO (Lin, Pos	Can be changed: -	Calculated: -	Access level: 1
ctrl)	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: 4_1	Unit selection: p0505
	Not for motor type: -	Expert list: 1	
	Min	Max	$-[\mathrm{m} / \mathrm{min}]$

r2559	CO: LR position controller output, I component / LR_outp I comp		
SERVO (Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrl)	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$-[r e v / m i n]$	$-[r e v / m i n]$	$-[r e v / m i n]$
		Displays the I component at the output of the position controller for the speed setpoint.	

r2560	CO: LR velocity setpoint / v_set		
SERVO (Lin, Pos ctrl)	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the velocity setpoint after limiting (l: p2541).	

CO: LR velocity setpoint / v_set

Can be changed: -
Data type: FloatingPoint32
P-Group: Closed loop position control
Not for motor type: -
$\begin{array}{ll}\text { Min } & \text { Max } \\ -[\mathrm{m} / \mathrm{min}] & -[\mathrm{m} / \mathrm{min}] \\ \text { Displays the velocity setpoint after limiting }(\mathrm{Cl}: \mathrm{p} 2541) .\end{array}$
Description: \quad Displays the velocity setpoint after limiting (CI: p2541).

Access level: 1
Func. diagram: 4015
Unit selection: p0505
Expert list:
Factory setting
[m/min]

Calculated: -
Dynamic index: -
Units group: 4_1

Max
 -

Access level: 1
func. diagram: 4015

Expert list: 1
Factory setting

- [rev/min]

Description: Displays the I component at the output of the position controller for the speed setpoint.

r2560	CO: LR speed setpoint / n_set		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the speed setpoint after limiting (CI: p2541).		
r2561	CO: LR velocity pre-control value / v_prectrl val		
SERVO (Lin, Pos ctrl)	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the velocity setpoint due to the pre-control.		
r2561	CO: LR speed pre-control value / n_prectrl val		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the speed setpoint due to the pre-control.		
r2562	CO: LR velocity setpoint, total / v_set total		
SERVO (Lin, Pos ctrl)	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the total velocity setpoint.		
Dependency:	Refer to: r2560, r2561		
r2562	CO: LR total speed setpoint / n_set total		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the total speed setpoint		
Dependency:	Refer to: r2560, r2561		

r2563	CO: LR following error dynamic model / Follow error dyn		
SERVO (Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrl)	Data type: Integer32	Dynamic index: -	Func. diagram: 4025
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{-[\mathrm{LU}]}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{LU}] \end{aligned}$	Factory setting - [LU]
Description:	This value is the deviation, corrected by the velocity-dependent component, between the position setpoint and the position actual value.		
Note:	For p2534 >= 100% (pre-control activa The dynamic following error (r2563) co For 0% < p2534 < 100% (pre-control The dynamic following error (r2563) is calculated from the position setpoint via system deviation for a P controller.	he following applies: onds to the system d ted) or p2534 = 0% viation between the 1 model. This comp	at the position controller input. ctivated) the following applies: nactual value and a value that is m-related velocity-dependent

r2564	CO: LR force pre-control value / F_prectrl val		
SERVO (Lin, Pos	Can be changed: -	Calculated: -	Access level: 1
ctrl)	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: 8_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[N] \end{aligned}$	$\begin{gathered} \operatorname{Max} \\ -[N] \end{gathered}$	Factory setting - [N]
Description:	Displays the force pre-control value.		
Dependency:	Refer to: p1511, p1512		
Note:	The force pre-control value is the derivation over time of the velocity pre-control value and is referred to a high inertia mass of 1000.0 kg . When using the pre-control, then this should be evaluated corresponding to the actual mass.		

r2564	CO: LR torque pre-control value / M_prectrl val		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index:-	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: 7_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Nm}] \end{aligned}$	Factory setting - [Nm]
Description:	Displays the torque pre-control value.		
Dependency:	Refer to: p1511, p1512		
Note:	The torque pre-control value is the derivation over time of the speed pre-control value and is referred to a moment of inertia of $1 \mathrm{kgm}^{\wedge} 2 / 2$ PI. When using the pre-control, then this should be evaluated corresponding to the actual moment of inertia.		
r2565	CO: LR current following error / Following err act		
SERVO (Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrl)	Data type: Integer32	Dynamic index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{-[L U]}$	$\begin{aligned} & \operatorname{Max} \\ & -[L U] \end{aligned}$	Factory setting - [LU]
Description:	Displays the current following error.		

p2567[0...n] LR torque pre-control moment of inertia / M_prectr M_inertia

SERVO (Pos ctrl),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (Pos ctrl)	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 4015
	P-Group: Closed loop position control	Units group: 25_1	Unit selection: p0100
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$0.000000\left[\mathrm{kgm}^{2}\right]$	$0.159155\left[\mathrm{kgm}^{2}\right]$	
Description:	Sets the moment of inertia for the torque pre-control.		
Dependency: Refer to: p2534, r2564 Note: When calculating the torque pre-control value $(\mathrm{r} 2654)$, the time derivation of the speed pre-control value is multi- plied by $2 \mathrm{PI}^{*}$ p2567.			

For reasons associated with the compatibility to earlier firmware versions, the factory setting for p2567 = $1 \mathrm{kgm}{ }^{\wedge} 2 / 2$ PI. This means that CO: r2564 remains as standard the derivation over time of the speed pre-control value and is referred, as before, to a moment of inertia of $1 \mathrm{kgm}^{\wedge} 2 / 2 \mathrm{PI}$. For torque pre-control, the moment of inertia can now be directly entered into p2567 (instead of subsequently evaluating the pre-control value.

p2568	BI: EPOS STOP cam activation / STOP cam act		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3630
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to activate BI: $\mathrm{p} 2568=1$ signal --> The evaluation of the STOP	"STOP cam". BI: p2569) and STO	$2570)$ is active.
Dependency:	Refer to: p2569, p2570		
Note:	The traversing range can also be limited using software limit switches.		
p2569	BI: EPOS STOP cam minus / STOP cam minus		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3630
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the STOP cam in the negative direction of travel.		
Recommend.:	Set the OFF3 ramp-down time (p does not move through a higher Sets message 07491 as alarm (Set the maximum deceleration (p does not move through a higher	at the axis, after rea el than is actually a at the axis, after re el than is actually a	cam at the maximum velocity, cam at the maximum velocity,
Dependency:	Refer to: p1135, p2568, p2570, p2573, r2684		
Caution:	The STOP cams are low active.		
	Sets message 07491 as fault (F07491):		
	For a 0 signal, the axis is stopped with the OFF3 ramp-down time (p 1135), status signal r2684.13 is set to 1 , saved and the appropriate fault is output. After the fault has been acknowledged, only motion moving away from the STOP cam is permitted.		
	For a $0 / 1$ signal and valid travel direction, when the stop cam is exited, this is detected and the status signal r2684.13 is set to 0 .		
	Sets message 07491 as alarm (A07491):		
	For a 0 signal, the axis is stopped with the maximum deceleration (p 2573), status signal r2684.13 is set to 1 , saved and the appropriate alarm is output. Only motion away from the STOP cam is permitted.		
	For a $0 / 1$ signal and valid travel direction, when the stop cam is exited, this is detected and the status signal r2684.13 is set to 0 and the alarm is deleted.		

p2578	CI: EPOS software limit switch minus signal source / SW limSw Min S_src		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Integer32	Dynamic index: -	Func. diagram: 3630
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 2580[0]
Description:	Sets the signal source for the software limit switch minus.		
Dependency:	Refer to: p2579, p2580, p2581, p2582		
	Refer to: A07469, A07477, A07479, F07481		
Notice:	A change to the software limit switch becomes immediately effective. If the software limit switch is changed, then this results in the positions in the traversing blocks being checked.		
Note:	The following applies for the setting of the software limit switch:		
p2579	CI: EPOS software limit switch plus signal source / SW limSwPlus S_src		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned32 / Integer32	Dynamic index: -	Func. diagram: 3630
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 2581[0]
Description:	Sets the signal source for the software limit switch plus.		
Dependency:	Refer to: p2578, p2580, p2581, p2582		
	Refer to: A07470, A07478, A07480, F07482		
Notice:	A change to the software limit switch becomes immediately effective. If the software limit switch is changed, then this results in the positions in the traversing blocks being checked.		
Note:	The following applies for the setting of the software limit switch:		
p2580	CO: EPOS software limit switch minus / SW limSwitch minus		
SERVO (EPOS),	Can be changed: U, T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Integer32	Dynamic index: -	Func. diagram: 3630
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -2147482648 \text { [LU] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2147482647 \text { [LU] } \end{aligned}$	Factory setting -2147482648 [LU]
Description:	Sets the software limit switch in the negative direction of travel.		
Dependency:	Refer to: p2578, p2579, p2581, p2582		
p2581	CO: EPOS software limit switch plus / SW lim switch plus		
SERVO (EPOS),	Can be changed: U, T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Integer32	Dynamic index: -	Func. diagram: 3630
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $-2147482648 \text { [LU] }$	$\begin{aligned} & \operatorname{Max} \\ & 2147482647 \text { [LU] } \end{aligned}$	Factory setting 2147482647 [LU]
Description:	Sets the software limit switch in the positive direction of travel.		
Dependency:	Refer to: p2578, p2579, p2580, p2582		

p2585	EPOS jog 1 setpoint velocity / Jog 1 v_set		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 3610
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min -40000000 [1000 LU/min]	Max 40000000 [1000 LU/min]	Factory setting -300 [1000 LU/min]
Description:	Sets the setpoint velocity for jog 1.		
Dependency:	Refer to: p2587, p2589, p2591		
p2586	EPOS jog 2 setpoint velocity / Jog 2 v_set		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 3610
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min -40000000 [1000 LU/min]	Max 40000000 [1000 LU/min]	Factory setting 300 [1000 LU/min]
Description:	Sets the setpoint velocity for jog 2.		
Dependency:	Refer to: p2588, p2590, p2591		
p2587	EPOS jog 1 traversing distance / Jog 1 distance		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 3610
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [LU]	$\begin{aligned} & \text { Max } \\ & 2147482647 \text { [LU] } \end{aligned}$	Factory setting 1000 [LU]
Description:	Sets the traversing distance for incremental jog 1. Refer to: p2585, p2589, p2591 Incremental jog 1 is started with BI : p2591 = 1 signal and BI : p2589 = 0/1 signal. With BI : p2589 $=0$ signal, incremental jog is interrupted.		
Dependency:			
Note:			
p2588	EPOS jog 2 traversing distance / Jog 2 distance		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 3610
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [LU]	$\begin{aligned} & \text { Max } \\ & 2147482647 \text { [LU] } \end{aligned}$	Factory setting 1000 [LU]
Description:	Sets the traversing distance for incremental jog 2.		
Dependency:	Refer to: p2586, p2590, p2591		
Note:	Incremental jog 2 is started with BI: p2591 = 1 signal and BI: p2590 $=0 / 1$ signal. With BI : p2590 $=0$ signal, incremental jogging is interrupted.		

p2589	BI: EPOS jog 1 signal source / Jog 1 S_src		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3610, 3625
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for jog 1.		
Dependency:	When jogging, the axis is accelera BI: p2591 = 0 signal The axis endlessly moves with the BI: p2591 = 1 signal The axis traverses through a para Refer to: p2572, p2573, p2585, p	ked with the maximu elocity, jog 1 (p2585) distance (p2585) with	eceleration (p2572/p2573). ocity, jog 1 (p2587).
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2590	BI: EPOS jog 2 signal source / Jog 2 S_src		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3610, 3625
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for jog 2.		
Dependency:	When jogging, the axis is accelerat BI: p2591 $=0$ signal The axis endlessly moves with the BI: p2591 = 1 signal The axis traverses through a para Refer to: p2572, p2573, p2586, p	ked with the maximu elocity, jog 2 (p2586) distance (p2586) with 1	eceleration (p2572/p2573). ocity, jog 2 (p2588).
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2591	BI: EPOS jogging incremental / Jog incr		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTO	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3610
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for jogging incremental.		
Dependency:	Refer to: p2585, p2586, p2587, p2588, p2589, p2590		

p2596	BI: EPOS set reference point / Set ref_pt		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3612
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the "set reference point".		
Dependency:	Refer to: p2598, p2599, r2684		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Reference point setting is effective in the following operating states:		
	- in the basic state.		
	- for FIXED STOP with progress condition END (corresponds to the initial state).		
	- for traversing block interrupted via BI: $\mathrm{p} 2640=0$ signal (intermediate stop).		
	- for EPOS not enabled (B1: $\mathrm{p} 2656=0$ signal) and position actual value valid (BI: $\mathrm{p} 2658=1$ signal).		

p2597	BI: EPOS referencing type selection / Ref_typ select		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3612, 3614, 3625
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select referencing type. 1 signal: Flying referencing 0 signal: Search for reference		
Dependency:	Refer to: p2595		
Note:	Referencing is activated as follow - Select the referencing type (BI: - Start referencing (BI: p2595 = 0		

p2598[0...3]	CI: EPOS reference point coordinate, signal source / Ref_pt coord S_src		
SERVO (EPOS, Pos	Can be changed: T	Calculated: -	Access level: 1
ctrr), , VECTOR	Data type: Unsigned32 / Integer32	Dynamic index: -	Func. diagram: 3612,3614
(EPOS, Pos ctrl)	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	$[0] 2599[0]$
			$[1] 0$
		$[3] 0$	

Description:	Sets the signal source for the refer This value is used as reference for - search for reference poing referencing
Index:	- absolute value adjustment
	$[0]=$ Closed-loop position control
	$[1]=$ Encoder 1
$[2]=$ Encoder 2	

	[3] = Encoder 3		
Dependency:	Refer to: p2502, p2507, p2595, p2596, p2597, p2599		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following applies:		
	Incremental measuring system:		
	After the reference point is reached, the drive accepts the current axis position from the position received via the connector input CI: p2598[0].		
	Absolute encoder:		
	When adjusting the encoder, the position received via the connector input is set as the current axis position. The position offset to the actual encoder value is displayed in p2525.		
p2599	CO: EPOS reference point coordinate value / Ref_pt coord val		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 3612
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-2147482648 [LU]	2147482647 [LU]	0 [LU]
Description:	Sets the position value for the reference point coordinate.		
	This value is set as the current axis position after referencing or adjustment.		
Dependency:	Refer to: p2507, p2525, p2595, p2596, p2597, p2598		
p2600	EPOS search for reference, reference point offset / Ref_pt offset		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 3612
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -2147482648[\mathrm{LU}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2147482647 \text { [LU] } \end{aligned}$	Factory setting 0 [LU]
Description:	Sets the reference point offset for search for reference.		
Dependency:	Refer to: p2598		
p2601	EPOS flying referencing, inner window / Inner window		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 3614
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [LU]	$\begin{aligned} & \text { Max } \\ & 2147482647 \text { [LU] } \end{aligned}$	Factory setting 0 [LU]
Description:	Sets the inner window for flying referencing.		
	Value = 0 :		
	The evaluation of the inner window is de-activated.		
Dependency:	Refer to: p2597, p2602, r2684		
Notice:	The inner window must be set so that it is smaller than the outer window.		
Note:	If the difference between the reference point coordinate and detected actual position is less than the inner window, then no correction is executed for a referenced axis.		
	If the difference between the reference point coordinate and detected actual position is greater than the inner window and less than the outer window (p2602), then a correction is executed for a referenced axis.		

p2613	BI: EPOS search for reference reversing cam minus / Rev minus		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3612
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the reversing cam in the negative direction of travel. 1 signal: Reversing cam not reached.		
Dependency:	Refer to: p2614		
Note:	If, during the search for reference from the reversing cam minus and plus, a 0 signal is detected, then the axis remains stationary (at standstill).		

p2614	BI: EPOS search for reference reversing cam plus / Rev plus		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3612
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description:	Sets the signal source for the reversing cam in the negative direction of travel. 1 signal: Reversing cam not reached. 0 signal: Reversing cam reached.		
Dependency:	Refer to: p2613		
Note:	If, during the search for reference from the reversing cam minus and plus, a 0 signal is detected, then the axis remains stationary (at standstill).		

p2615	EPOS maximum number of traversing blocks / Trav_block qty max		
SERVO (EPOS),	Can be changed: C2(17)	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned8	Dynamic index: -	Func. diagram: 3616
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	1	64	
Description:	Sets the maximum number of traversing blocks that are available.		
Dependency:	Refer to: p2616, p2617, p2618, p2619, p2620, p2621, p2622, p2623, p2624		

p2616[0...n]	EPOS traversing block, block number / Trav_blk, blkNo.		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: p2615	Func. diagram: 3616
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underset{-1}{\operatorname{Min}}$	$\begin{aligned} & \text { Max } \\ & 63 \end{aligned}$	Factory setting -1
Description:	Sets a block number. -1: Invalid block number. These blocks are not taken into account. 0 ... 63: Valid block number.		
Dependency:	The number of indices depe Refer to: p2615, p2617, p26	p2621. p2622. p2623	

p2617[0...n]	EPOS traversing block position / Trav_block pos		
SERVO (EPOS),	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: p2615	Func. diagram: 3616
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{-2147482648[L U]}$	$\begin{aligned} & \operatorname{Max} \\ & 2147482647 \text { [LU] } \end{aligned}$	Factory setting 0 [LU]
Description:	Sets the target position for the traversing block. The number of indices depends on 26215		
Dependency:			
	Refer to: p2615, p2616, p2618, p2619, p2620, p2621, p2622, p2623, p2624		
Note:	The target position is approached in either relative or absolute terms depending on p2623.		
p2618[0...n]	EPOS traversing block velocity / Trav_block v		
SERVO (EPOS),	Can be changed: U, T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Integer32	Dynamic index: p2615	Func. diagram: 3616
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 1 [1000 LU/min]	Max 40000000 [1000 LU/min]	Factory setting 600 [1000 LU/min]
Description:	Sets the velocity for the traversing block.		
Dependency:	The number of indices depends on p2615.		
	Refer to: p2615, p2616, p2617, p2619, p2620, p2621, p2622, p2623, p2624, p2646		
Note:	The velocity can be influenced using the velocity override (p2646).		
p2619[0...n]	EPOS traversing block acceleration override / Trav_block a_over		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: p2615	Func. diagram: 3616
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{1.0}$	Max 100.0 [\%]	Factory setting 100.0 [\%]
Description:	Sets the acceleration override for the traversing block.		
Dependency:	The number of indices depends on p2615.		
p2620[0...n]	EPOS traversing deceleration override / Trav_block -a_over		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: p2615	Func. diagram: 3616
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{1.0}$	$\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [\%] } \end{aligned}$	Factory setting $100.0 \text { [\%] }$
Description:	Sets the deceleration override for the traversing block. The override refers to the maximum deceleration (p2573).		
Dependency:	The number of indices depends on p2615.		
Notice:	If, when calculating the traversing profile, it is identified that the target position of the next block with the programmed deceleration override will not be reached without direction reversal (flying block change), then the old (current) deceleration override remains effective.		

p2621[0...n]	EPOS traversing block task / Trav_block task		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: p2615	Func. diagram: 3616
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 9 \end{aligned}$	Factory setting 1
Description: Value:	Sets the required task for the traversing block.		
	1: POSITIONING 2: FIXED STOP 3: ENDLESS_POS 4: ENDLESS_NEG 5: WAITING 6: GOTO 7: SET_O 8: RESET_O 9: JERK		
Dependency:	The number of indices depends on p2615.		
p2622[0...n] SERVO (EPOS), VECTOR (EPOS)	EPOS traversing block task parameter / Trav_blck task_par		
	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: p2615	Func. diagram: 3616
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -2147483648 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2147483647 \end{aligned}$	Factory setting 0
Description: Dependency:	The number of indices depends on p2615. Refer to: p2615, p2616, p2617, p2618, p2619, p2620, p2621, p2623, p2624		
Note:	The following should be set FIXED STOP: Clamping tor WAIT: Delay time [ms] GOTO: Block number SET_O: 1, 2 or 3 - set direc RESET_O: 1, 2 or 3 - set di JERK: 0 - de-activate, 1 - a	task: force (rotary 0... 65536 (both) 3 (both)	near 0... $65536[\mathrm{~N}]$)
p2623[0...n]	EPOS traversing block, task mode / Trav_block mode		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dynamic index: p2615	Func. diagram: 3515, 3616
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	Max 65535	Factory setting 0
Description:	Sets the influence of the task Value $=0000$ cccc bbbb aa cccc: Positioning mode cccc = 0000 --> ABSOLUTE cccc $=0001$--> RELATIVE cccc = 0010 --> ABS_POS cccc $=0011$--> ABS_NEG	ing block. axis with modulo correction axis with modulo correct	

	bbbb: Progression condition		
	bbbb $=0000$--> END		
	bbbb $=0001$--> CONTINUE WITH STOP		
	$\mathrm{bbbb}=0010-\mathrm{-}$ CONTINUE FLYING		
	$\mathrm{bbbb}=0011$--> CONTINUE EXTERNAL		
	$\mathrm{bbbb}=0100-->$ CONTINUE EXTERNAL WAIT		
	$\mathrm{bbbb}=0101$--> CONTINUE EXTERNAL ALARM		
	aaaa: IDs		
	aaaa $=0001$--> Skip block		
Dependency:	The number of indices depends on p2615.		
	Refer to: p2615, p2616, p2617, p2618, p2619, p2620, p2621, p2622, p2624		
p2624	EPOS traversing block, sorting / Trav_block sort		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 3616
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets the traversing blocks for sorting corresponding to their block number.		
	The sorting is started and the parameters are automatically reset to 0 after the sorting operation has been completed.		
Dependency:	Refer to: p2615, p2616, p2617, p2618, p2619, p2620, p2621, p2622, p2623		
Note:	After sorting, the traversing blocks are written at the beginning of the memory in increasing sequence without any gaps.		
p2625	BI: EPOS traversing block selection, bit 0 / Trav_blk sel bit 0		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3616, 3640
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the traversing block, bit 0.		
Dependency:	Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks.		
	Refer to: p2626, p2627, p2628, p2629, p2630		
p2626	BI: EPOS traversing block selection, bit 1 / Trav_blk sel bit 1		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3616, 3640
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the traversing block, bit 1.		
Dependency:	Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks.		
	Refer to: p2625, p2627, p2628, p2629, p2630		

p2627	BI: EPOS traversing block selection, bit 2 / Trav_blk sel bit 2		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3616, 3640
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source to select Binector inputs p2625, p2626, p versing blocks. Refer to: p2625, p2626, p2628,	g block, bit 2. , p2629 and p2630 a 0	one of the maximum of 64 tra-
p2628	BI: EPOS traversing block selection, bit 3 / Trav_blk sel bit 3		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3616, 3640
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the traversing block, bit 3.		
Dependency:	Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks.		

p2629	BI: EPOS traversing block selection, bit 4 / Trav_blk sel bit 4		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3616, 3640
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to select the traversing block, bit 4.		
Dependency:	Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks. Refer to: p2625, p2626, p2627, p2628, p2630		

p2630

BI: EPOS traversing block selection, bit 5 / Trav_blk sel bit 5

SERVO (EPOS),
VECTOR (EPOS)

Can be changed: T
Data type: Unsigned32 / Binary
P-Group: Basic positioner
Not for motor type: -
Min
Sets the signal source to select the traversing block, bit 5 .
Description:
Dependency:

Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks.
Refer to: p2625, p2626, p2627, p2628, p2629

Access level: 1
Func. diagram: 3616, 3640
Unit selection: -
Expert list: 1
Factory setting
0 Refer p2625, p2626, p2627, p2628, p2629

p2631	BI: EPOS activate traversing task (0-> 1) / Trav_task act		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3616, 3625
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for "activa BI: p2631 = 0/1 signal The traversing task, selected usi	ing task". ... p2630, is started	
Dependency: Notice: Note:	Refer to: p2625, p2626, p2627, The parameter may be protected To start a traversing block, the a The status signal r2684.12 $=0 / 1$ A traversing task can be influenced - intermediate stop via BI: p2640 - reject traversing task via BI: p2	, p2630, p2640, p2 of p0922 or p2079 a referenced (r2684.11 for acknowledgem following signals:	anged.
p2632	EPOS external block change evaluation / Ext BlckChg eval		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Integer16	Dynamic index: -	Func. diagram: 3615, 3616
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{1}{\operatorname{Max}}$	Factory setting 0
Description:	Sets the mode to evaluate "external block change".		
Value:	0 : External block change via the measuring probe 1: External block change via BI: p2633		
Dependency:	Refer to: p2623, p2633, r2677, r2678		
Note:	When starting a traversing block with the block change enable CONTINUE_EXTERNAL, CONTINUE_EXTERNAL_WAIT and CONTINUE_EXTERNAL_ALARM an activated "flying referencing" is interrupted. After ending the block, "flying referencing" must be re-activated via BI : $\mathrm{p} 2595=0 / 1$ signal.		
p2633	BI: EPOS external block change (0 -> 1) / Ext BlckChg (0->1)		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3615
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		
	Min	Max	Factory setting 0
Description:	Sets the signal source for "external block change". BI: p2633 = 0/1 signal		
Dependency:	The evaluation of the signal is only active $\mathrm{p} 2632=1$. Refer to: p2623, p2632, p2640, p2641, r2677, r2678		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	A $0 / 1$ edge initiates a flying block change in the subsequent traversing block. When the external block change is identified, the actual position is saved in r2678. A traversing task can be influenced using the following signals: - intermediate stop via BI: p2640. - reject traversing task via BI: p2641.		

p2634[0...n]	EPOS fixed stop maximum following error / Following err max		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: DDS, p0180	Func. diagram: 3617, 4025
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [LU]	$\begin{aligned} & \text { Max } \\ & 2147482647 \text { [LU] } \end{aligned}$	Factory setting 1000 [LU]
Description:	Sets the following error to detect the "fixed stop reached" state (r2526.4).		
Dependency:	Refer to: r2526, p2621, r2675		
Note:	The state "fixed stop reached" is detected if the following error exceeds the theoretically calculated following error value by p2634.		
p2635	EPOS fixed stop monitoring window / Fixed stop monit		
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 3617, 4025
	P-Group: Closed loop position control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [LU]	$\begin{aligned} & \text { Max } \\ & 2147482647 \text { [LU] } \end{aligned}$	Factory setting 100 [LU]
Description:	Sets the monitoring window of the actual position after the fixed stop is reached.		
Dependency:	Refer to: r2526, r2683		
	Refer to: F07484		
Note:	If, after the fixed stop is reached, the end stop shifts in either the positive or negative direction by more than the value set here, then BO: r2526.5 is set to 1 and an appropriate message is output.		
p2637	BI: EPOS fixed stop reached / Fixed stop reached		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3616, 3617
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	2526.4
Description:	Sets the signal source for the feedback signal "fixed stop reached".		
	BI: p 2637 = 1 signal		
	Fixed stop is reached.		
	BI: p2637 = 0 signal		
	Fixed stop is not reached.		
Dependency:	Refer to: r2526, p2634		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The identification of "fixed stop reached" is, for the factory setting, dependent on the signal BO: r2526.4 (fixed stop reached). This signal is influenced via p2634 (EPOS fixed stop, maximum following error).		
p2638	BI: EPOS fixed stop outside the monitoring window / Fixed stop outside		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3616, 3617
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 2526.5
Description:	Sets the signal source for the feedback signal "fixed stop outside the monitoring window".		

p2647	BI: EPOS direct setpoint input/MDI selection / MDI selection		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3620, 3625, 3640
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for selecting the operating mode "direct setpoint input/MDI".		
Dependency: Note:	In this mode, using BI: p2653 it is possible to make a flying changeover between setting-up and positioning. In this mode, even if the axis is not referenced $(\mathrm{r} 2684.11=0)$ relative positioning is possible.		
p2648	BI: EPOS direct setpoint input/MDI positioning type / MDI pos_type		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3620
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the posite $\mathrm{BI}: \mathrm{p} 2648=1$ signal Absolute positioning is selected. BI : $\mathrm{p} 2648=0$ signal Relative positioning is selected.	in the mode "direc	DI'.
Dependency:	Refer to: p2649, p2650, p2654		
Notice:	Absolute positioning: To traverse, the reference point Relative positioning: To traverse, it is not necessary th	r2684.11 = 1). ence point is set.	
Note:	Depending on p2649, the positioning type is either transferred continuously or edge-triggered.		
p2649	BI: EPOS direct setpoint input/MDI transfer type selection / MDI trans_type sel		
SERVO (EPOS),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (EPOS)	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3620
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to define BI: p2649 = 1 signal Values are continually transferre BI: p2649 = 0 signal The values are transferred for BI	are transferred in th arameter under dep 1 signal.	"direct setpoint input/MDI".
Dependency:	Refer to: p2642, p2643, p2644, p2645, p2648, p2650, p2651, p2652		
Caution:	For BI: p2649 = 1 signal, the following applies: Motion starts without any explicit control signal.		
Note:	Parameter p2649 can only be changed for p0922 $(\mathrm{p} 2079)=999$.		

p2655[0..1]	BI: EPOS select tracking mode / Sel tracking mode		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3635
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting [0] 1
			[1] 2526.7
Description:	Sets the signal source to select tracking mode.		
	BI: p2655[0] or BI: p2655[1] = 1 signal		
	Tracking mode after withdrawing the enable signal from EPOS (BI: p2656 = 0 signal).		
	BI: p2655[0] and BI: p2655[1] = 0 signal		
	No tracking mode after withdrawing the enable signal from EPOS (BI: p2656 = 0 signal).		
Dependency:	Refer to: p2656		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For the following events, independent of the signal that is present, tracking mode is selected:- after booting.		
	- after a $0 / 1$ signal at BI: p2658 (EPOS position actual value, valid feedback signal).		
p2656	BI: EPOS enable basic positioner / EPOS enable		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3635
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 2526.3
Description:	Sets the signal source to enable the basic positioner.		
	BI: p2656 = 1 signal		
	The basic positioner is enabled.		
	BI: p2656 = 0 signal		
	The basic positioner is not enabled.		
Dependency:	Refer to: r2526, p2655		
p2657	CI: EPOS position actual value/position setting value / Pos act/set value		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer32	Dynamic index: -	Func. diagram: 3610, 3616, 3620, 3635
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 2521[0]
Description:	Sets the signal source for the position actual value/position setting value.		
Dependency:	Refer to: r2521, p2658		
Note:	In the tracking mode, the position setpoint is taken from this connector input.		

p2658	BI: EPOS pos. actual value valid, feedback signal / Pos valid feedback		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3635
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 2526.0
Description:	Sets the signal source for the feedb BI: p2658 = 1 signal The position actual value received BI: p2658 = 0 signal The position actual value received v	"position actual va 657 is valid. 657 is invalid.	
Dependency:	Refer to: r2526, p2657		
Note:	While a 0 signal is present, the position setpoint (p2665) is held at the value of 0 .		
p2659	BI: EPOS referencing active feedback signal / Ref act fdbk		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3612
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	$\begin{aligned} & \text { Factory setting } \\ & 2526.1 \end{aligned}$
Description:	Sets the signal source for the feedb BI: p2659 = 1 signal Referencing is active. BI: p2659 = 0 signal Referencing is not active.	al "referencing active	
Dependency:	Refer to: r2526		
p2660	Cl : EPOS measured value referencing / Meas val ref		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer32	Dynamic index: -	Func. diagram: 3612, 3614
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 2523[0]
Description: Dependency:	Sets the signal source for the measured value for the function "referencing". Refer to: r2523		
p2661	BI: EPOS measured value valid, feedback signal / MeasVal valid fdbk		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3612, 3614, 3615
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 2526.2
Description:	Sets the signal source for the feedback signal "measured value valid".		

	BI: p2661 = 1 signal		
	The measured value received via Cl : p 2660 is valid.		
	BI: p2661 = 0 signal		
	The measured value received via Cl : p 2660 is invalid.		
Dependency:	Refer to: r2526, p2660		
p2662	BI: EPOS adjustment value valid feedback signal / Adj val valid FS		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	2526.9
Description:	Sets the signal source for the feedback signal "adjustment value valid".		
	$\mathrm{BI}: \mathrm{p} 2662$ = 1 signal		
	The adjustment value received via Cl : p 2660 is valid.		
	BI: p2662 = 0 signal		
	The adjustment value received via Cl : p 2660 is not valid.		
Dependency:	Refer to: r2526, p2660		
p2663	BI: EPOS clamping active feedback signal / Clamping active FS		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 3616
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	2526.8
Description:	Sets the signal source for the feedback signal "clamping active for travel to fixed stop".		
	BI: p2663 = 1 signal		
	Clamping is active		
	$\mathrm{BI}: \mathrm{p} 2663=0$ signal		
	Clamping is not active.		
Dependency:	Refer to: r2526		
Note:	The feedback signal from "terminals active" is, for the factory setting, dependent on the signal BO: r2526.8 (terminals active when moving to a fixed stop).		
r2665	CO: EPOS position setpoint / s_set		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 3635
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [LU]	Max - [LU]	Factory setting - [LU]
Description:	Displays the current absolute position setpoint.		
Dependency:	Refer to: p2530		
Note:	As standard, the following BICO interconnection is established: CI: $\mathrm{p} 2530=\mathrm{r} 2665$		

r2666	CO: EPOS velocity setpoint / v_set		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 3635
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [1000 LU/min]	Max - [1000 LU/min]	Factory setting - [1000 LU/min]
Description:	Displays the current velocity setpoint.		
Dependency:	Refer to: p2531		
Note:	As standard, the following BICO interconnection is established: CI: $22531=$ r2666		
$\begin{aligned} & \hline \mathbf{r 2 6 6 7} \\ & \text { SERVO (EPOS), } \\ & \text { VECTOR (EPOS) } \end{aligned}$	CO: EPOS backlash compensation value / Backlash value		
	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 3635
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -[L U] \end{aligned}$	Max - [LU]	Factory setting - [LU]
Description:	Displays the currently effective value for backlash compensation.		
Dependency:	Refer to: p2516		
Note:	As standard, the following BICO interconnection is established: CI: p2516 = r2667		
r2669	CO: EPOS current operating mode / Op mode act		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 3625, 3630
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the current active operating mode.		
	Value $=00$ hex $->$ no operating mode active		
	Value $=01$ hex -> jogging active		
	Value $=02$ hex -> search for reference active		
	Value $=04$ hex -> traversing blocks active		
	Value $=08$ hex -> Positioning for direct setpoint input/MDI active		
	Value $=10$ hex -> Setting-up for direct setpoint input/MDI active		
	Value $=20$ hex -> flying referencing active		
Dependency:	Refer to: p2589, p2590, p2595, p2631, p2647, p2653		
r2670.0...15	CO/BO: EPOS status word, active traversing block / ZSW act trav_block		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 3615, 3625, 3650
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the status word for the active traversing block. r2670.0: Active traversing block, bit 0		

r2670.5: Active traversing block, bit 5					
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Active traversing block, bit 0	Active	Not active	-
		Active traversing block, bit 1	Active	Not active	-
		Active traversing block, bit 2	Active	Not active	-
		Active traversing block, bit 3	Active	Not active	-
		Active traversing block, bit 4	Active	Not active	-
		Active traversing block, bit 5	Active	Not active	-
	15	MDI active	Active	Not active	-
Dependency:	Refer to: p2631, p2647				
Note:	Re bit $00 . .05$:				
	Displays the active traversing block in the traversing blocks operating mode.				
	Re bit 15:				
	For a 1 signal, the operating mode - direct setpoint input/MDI - is active				
r2671	CO: EPOS current position setpoint / s_set act				
SERVO (EPOS), VECTOR (EPOS)	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Integer32		Dynamic index: -	Func. diagram: 3610, 3616, 3620	
	P-Group: Basic positioner		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min - [LU]		Max - [LU]	Factory setting - [LU]	
Description:	Displays the position setpoint presently being processed.				
Note:	A position of zero is displayed for non position-related tasks (e.g. ENDLESS_POS, ENDLESS_NEG).				
$\begin{aligned} & \hline \mathbf{r 2 6 7 2} \\ & \text { SERVO (EPOS), } \\ & \text { VECTOR (EPOS) } \end{aligned}$	CO: EPOS current velocity setpoint / v_set act				
	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Integer32		Dynamic index: -	Func. diagram: 3610, 3612,$3616,3620$	
	P-Group: Basic positioner		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min - [1000 LU/min]		Max - [1000 LU/min]	Factory setting - [1000 LU/min]	
Description:	Displays the velocity setpoint presently being processed.				
r2673	CO: EPOS current acceleration override / a_over act				
SERVO (EPOS), VECTOR (EPOS)	Can be changed: - Data type: FloatingPoint32		Calculated: -	Access level: 1	
			Dynamic index: -	Func. diagram: 3610, 3612,$3616,3620$	
	P-Group: Basic positioner		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min - [\%]		Max - [\%]	Factory setting - [\%]	
Description:	Displays the acceleration override presently being processed.				
Note:	An override of 100\% is effective in the "jogging" and "search for reference" operating modes.				

r2674	CO: EPOS current deceleration override / -a_over act		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3610, 3612, 3616, 3620
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the deceleration override presently being processed.		
Note:	An override of 100\% is effective in the "jogging" and "search for reference" operating modes.		
r2675	CO: EPOS current task / Task cur		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: 3616
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 9 \end{aligned}$	Factory setting
Description:	Displays the task that is presently being processed.		
Value:	0: Inactive		
	1: POSITIONING		
	2: FIXED STOP		
	3: ENDLESS_POS		
	4: ENDLESS_NEG		
	5: WAITING		
	6: GOTO		
	7: SET_O		
	8: RESET_O		
	9: JERK		
Dependency:	Refer to: p2621		
r2676	CO: EPOS current task parameter / Task para cur		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 3616
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the task parameter presently being processed in the "traversing blocks" operating mode.		
Dependency:	Refer to: p2622		
Note:	The following is displayed depending on the task:		
	FIXED STOP: Clamping torque (0 ... 65536 [0.01 Nm]) or clamping force (0 ... 65536 [N])		
	WAIT: Delay time [ms]		
	GOTO: Block number		
	SET_O: 1, 2, 3 --> direct output 1, 2 or 3 (both) is set		
	RESET_O: 1, 2, 3 --> direct output 1, 2 or 3 (both) is set		

r2677	CO: EPOS current task mode / Task mode cur		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 3616
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the task mode presently being processed.		
Dependency:	Refer to: p2623		
r2678	CO: EPOS external block change / Ext BlckChg s_act		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 3615, 3616, 3620
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [LU]	Max - [LU]	Factory setting - [LU]
Description:	Displays the actual position for the following events: - external block change via measuring probe (p2632 = 0, BI: p2661 $=0 / 1$ signal). - external block change via BI: p2633 (p2632 = 1, BI: p2633 = 0/1 signal). - activate traversing task (BI: p2631 = 0/1 signal).		
Dependency:	Refer to: p2631, p2632, p2633, p2661		
r2680	CO: EPOS clearance, reference cam and zero mark / Clearance cam/ZM		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 3612
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [LU]	Max - [LU]	Factory setting - [LU]
Description:	Displays the clearance determined between the reference cam and zero mark in the search for reference.		
r2681	CO: EPOS velocity override effective / v_over effective		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3630
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [\%]	$\begin{aligned} & \text { Max } \\ & -[\%] \end{aligned}$	Factory setting - [\%]
Description:	Displays the currently effective velocity override.		
Dependency:	Refer to: p2571, p2646		
Note:	The effective override can differ from the specified override due to limits (e.g. p2571, maximum velocity).		

r2683.0.. 14	CO/BO: EPOS status word 1 / POS_ZSW1				
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: - Ca		ulated: -	Acce	
	Data type: Unsigned16 Dy		mic index: -	Fun	
	P-Group: Closed loop position control Un		group: -	Unit	
	Not for motor type: -			Expe	
	Min	Max		Factory setting	
		-			
Description:	Displays status word 1 for the basic positioner (EPOS).				
Bit field:		Signal name	1 signal	0 signal	FP
		Tracking mode active	Yes	No	3635,
					4020
		Velocity limiting active	Yes	No	3630
		Setpoint available	Yes	No	3635
		Target position reached	Yes	No	3635
	04	Axis moves forwards	Yes	No	3635
	05	Axis moves backwards	Yes	No	3635
	06	Software limit switch minus reached	Yes	No	3635
	07	Software limit switch plus reached	Yes	No	3635
	08	Position actual value <= cam switching position 1	Yes	No	4025
	09	Position actual value <= cam switching position 2	Yes	No	4025
	10	Direct output 1 via traversing block	Yes	No	3616
		Direct output 2 via traversing block	Yes	No	3616
	12	Fixed stop reached	Yes	No	3616,
					3617
		Fixed stop clamping torque reached	Yes	No	3616,
					3617
		Travel to fixed stop active	Yes	No	3616,
					3617
Dependency:	Refe	to: r2684			
Note:	Re	it 02, 04, 05, 06, 07 :			
	This	signals designate the state after jerk limiting.			
	Re	08, 09:			
	Thes	signals are generated in the "closed-loop posit	sition control"		

r2684.0... 15	CO/BO: EPOS status word 2 / POS_ZSW2				
SERVO (Pos ctrl), VECTOR (Pos ctrl)	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dynamic index: -	Func	
	P-Group: Closed loop position control		Units group: -	Unit s	
	Not for motor type: -			Exper	
	Min		Max	Factor	
	-		-	-	
Description:	Displays status word 2 for the basic positioner (EPOS).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Search for reference active	Active	Not active	3612
	01	Flying referencing active	Active	Not active	3614
	02	Referencing active	Active	Not active	-
	03	Printing mark outside outer window	Yes	No	3614
	04	Axis accelerating	Yes	No	3635
	05	Axis decelerating	Yes	No	3635
	06	Jerk limiting active	Yes	No	3635
	07	Activate correction	Yes	No	3635
	08	Following error in tolerance	Yes	No	4025
	09	Modulo correction active	Yes	No	-
	10	Target position reached	Yes	No	4020

	11	Reference point set	Yes	No		3612, 3614, 3630	
	12	Acknowledgement, traversing block activated	- Yes	No		$\begin{aligned} & 3616, \\ & 3620 \end{aligned}$	
	13	STOP cam minus active	Yes	No		3630	
	14	STOP cam plus active	Yes	No		3630	
	15	Traversing command active	Yes	No		3635	
Note:	Re bit 02:						
	The "referencing active" signal is an OR logic operation of "search for reference active" and "flying referencing active".						
	Re bit $00 \ldots 07$ and 11... 14:						
	These signals are generated in the function module "basic positioner".						
	Re bit 08:						
	The signal is generated in the "closed-loop position control" function module.						
r2685	CO: EPOS corrective value / Corrective value						
SERVO (EPOS), VECTOR (EPOS)	Can be changed: -		Calculated: -		Access level: 1		
	Data type: Integer32 Der		Dynamic index: -		Func. diagram: 3		
	P-Group: Basic positioner U		Units group: -		Unit selection: -		
	Not for motor type: -				Expert list: 1		
	$\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{LU}] \end{aligned}$		Max - [LU]		Factory setting - [LU]		
Description:	Displays the corrective value for the position actual value.						
Dependency:	Refer to: r2684						
Note:	As standard, the following BICO interconnection is established: CI: $\mathrm{p} 2513=\mathrm{r} 2685$						
	Using this value, e.g. modulo corrections are carried out.						
r2686[0..1]	CO: EPOS force limiting effective / F_limit eff						
SERVO (EPOS, Lin)	Can be changed: -		Calculated: -		Access level: 3		
	Data type: FloatingPoint32		Dynamic index: -		Func. diagram: 3	3617	
	P-Group: Basic positioner U		Units group: -		Unit selection: -		
	Not for motor type: -				Expert list: 1		
	Min		$\begin{aligned} & \text { Max } \\ & -[\%] \end{aligned}$		Factory setting - [\%]		
Description:	Displays the effective force limiting.						
	r2686[0]: Displays the effective upper force limiting when traversing to fixed stop (referred to Cl : $\mathrm{p} 1522, \mathrm{Cl}$: p 1523)						
	r2686[1]: Displays the effective lower force limiting when traversing to fixed stop (referred to Cl : $\mathrm{p} 1522, \mathrm{Cl}$: p1523)						
Dependency: Note:	Refer to: p1520, p1521, p1522, p1523, r2676						
	As standard, the following BICO interconnections are established:						
	Cl : $\mathrm{p} 1528=\mathrm{r} 2686[0]$						
	CI: p1529 = r2686[1]						
$\begin{aligned} & \hline \mathbf{r 2 6 8 6 [0 . . . 1] ~} \\ & \text { SERVO (EPOS), } \\ & \text { VECTOR (EPOS) } \end{aligned}$	CO: EPOS torque limiting effective / M_limit eff						
	Can be changed: -		Calculated: -		Access level: 3		
	Data type: FloatingPoint32		Dynamic index: -		Func. diagram: 3616, 3617		
	P-Group: Basic positioner				Unit selection: -		
	Min- [\%]			Max - [\%]		Factory setting - [\%]	
Description:	r2686[0]: Displays the effective upper torque limiting when traversing to fixed stop (referred to CI : $\mathrm{p} 1522, \mathrm{Cl}$: p1523).						

	r2686[1]: Displays the effective lower torque limiting when traversing to fixed stop (referred to Cl : $\mathrm{p} 1522, \mathrm{Cl}$: p1523).		
Dependency:	Refer to: p1520, p1521, p1522, p1523, r2676		
Note:	As standard, the following BICO interconnections are established:		
	CI: p1528 = r2686[0]		
	CI: p1529 = r2686[1]		
r2687	CO: EPOS force setpoint / F_set		
SERVO (EPOS, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3616, 3617
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [N]	Max - [N]	Factory setting - [N]
Description:	Displays the effective force setpoint when reaching the fixed stop (referred to $\mathrm{Cl}: \mathrm{p} 1522, \mathrm{Cl}$: p1523).		
Dependency:	Refer to: p1520, p1521, p1522, p1523, r2676		
r2687	CO: EPOS torque setpoint / M_set		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3616, 3617
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Nm]	Max - [Nm]	Factory setting - [Nm]
Description:	Displays the effective torque setpoint when reaching the fixed stop (referred to Cl : $\mathrm{p} 1522, \mathrm{CI}$: p 1523).		
Dependency:	Refer to: p1520, p1521, p1522, p1523, r2676		
p2690	CO: EPOS position fixed setpoint / Pos fixed value		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer32	Dynamic index: -	Func. diagram: 3618
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -2147482648 \text { [LU] } \end{aligned}$	Max $2147482647 \text { [LU] }$	Factory setting 0 [LU]
Description:	Sets a fixed setpoint for the position.		
Dependency:	Refer to: p2642, p2648		
Note:	As standard, the following BICO interconnection is established: CI: $\mathrm{p} 2642=\mathrm{r} 2690$		
p2691	CO: EPOS velocity fixed setpoint / v fixed value		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 3618
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 1 [1000 LU/min]	$\begin{aligned} & \text { Max } \\ & 40000000 \text { [1000 LU/min] } \end{aligned}$	Factory setting 600 [1000 LU/min]
Description:	Sets a fixed setpoint for the velocity.		
Dependency:	Refer to: p2643		
Note:	As standard, the following BICO interconnection is established: CI: $2643=\mathrm{r} 2691$		

p2692	CO: EPOS acceleration override, fixed setpoint / a_over fixed val		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3618
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.100 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.000 \text { [\%] } \end{aligned}$	Factory setting 100.000 [\%]
Description:	Sets a fixed setpoint for the acceleration override.		
Dependency:	Refer to: p2572, p2644		
Note:	As standard, the following BICO interconnection is established: CI: p2644 = r2692		
	The percentage value refers to the maximum acceleration (p2572).		
p2693	CO: EPOS deceleration override, fixed setpoint / -a_over fixed val		
SERVO (EPOS), VECTOR (EPOS)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 3618
	P-Group: Basic positioner	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.100[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.000 \text { [\%] } \end{aligned}$	Factory setting 100.000 [\%]
Description:	Sets a fixed setpoint for the deceleration override.		
Dependency:	Refer to: p2573, p2645		
Note:	As standard, the following BICO interconnection is established: CI: p2645 = r2693		
	The percentage value refers to the maximum deceleration (p2573).		
r2700	CO: Reference frequency / Ref_f		
A_INF, B_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Connector output of the current reference quantity for the frequency p2000.		
	All frequencies specified as relative value are referred to this reference quantity. The reference quantity in this parameter corresponds to 100% or 4000 hex or 40000000 hex.		
	This parameter has the unit Hz.		
Dependency:	Refer to: p2000		
Note:	This parameter provides the numerical value of the reference quantity p2000 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.		
r2700	CO: Reference velocity/reference frequency current / Ref_v/Ref_f cur		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Sets the actual reference quantity for velocity and frequency.		
	All velocities or frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity in this parameter corresponds to 100\% or 4000 hex or 40000000 hex.		
	The following applies: Reference frequency (in Hz) = reference velocity (in ($\mathrm{m} / \mathrm{min}$)/60)		

$\overline{\mathrm{r} 2701}$ A_INF, B_INF, S_INF, SERVO, TM41, VECTOR	CO: Reference voltage / Reference voltage		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underline{-}$	Max	Factory setting
Description:	Connector output of the reference quantity for voltages p2001.		
	All voltages specified as relative value are referred to this reference quantity. The reference quantity in this parameter corresponds to 100% or 4000 hex or 40000000 hex.		
	This parameter has the unit Vrms.		
Dependency:	Refer to: p2001		
Note:	This parameter provides the numerical value of the reference quantity p2001 as a connector output for interconnec tion with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.		
r2702	CO: Reference current / Reference current		
A $\operatorname{INF}, \mathrm{B}$ INF, S_INF, SERVO, TM41, VECTOR	Can be changed: - Data type: FloatingPoint32 P-Group: -	Calculated: -	Access level: 3
		Dynamic index: -	Func. diagram: -
		Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Connector output of the reference quantity for currents p2002.		
	All currents specified as relative value are referred to this reference quantity. The reference quantity in this parame ter corresponds to 100% or 4000 hex or 40000000 hex.		
	This parameter has the unit Arms.		
Dependency:	Refer to: p2002		
Note:	This parameter provides the numerical value of the reference quantity p2002 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.		
r2703	CO: Reference force current / Ref force cur		
SERVO (Lin)	Can be changed: - Data type: FloatingPoint32	Calculated: -	Access level: 3
		Dynamic index: -	Func. diagram: -
		Units group: -	Unit selection: -
	Not for motor type:-		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the current reference quantity for forces.		
	All forces specified as relative value are referred to this reference quantity. The reference quantity in this parameter corresponds to 100% or 4000 hex or 40000000 hex.		
Dependency:	p0505, r0108.12		
	Refer to: p2003		
Note:	This parameter represents the numerical value of the reference quantity in the currently selected units and is only available for interconnection with Drive Control Chart (DCC).		
	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	Example:		
	The actual value of the total force (r0079[0]) is connected to a test socket (e.g. p0771[0]). The current force is cyclically converted into a percentage of the reference force (p 2003) and output according to the parameterized scaling.		

r2703	CO: Reference torque / Reference torque		
SERVO, TM41, VEC-	Can be changed: -	Calculated: -	Access level: 3
TOR	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Connector output of the reference quantity p2003 for torque (r0108.12 $=0$) or force (r0108.12 $=1$) .		
	All torques specified as relative values $(r 0108.12=0)$ or forces $(r 0108.12=1)$ are referred to this reference quantity. The reference quantity in this parameter corresponds to 100% or 4000 hex or 40000000 hex.		
	The unit of this parameter is the same as the unit selected for p2003.		
Dependency:	p0505, r0108.12		
	Refer to: p2003		
Note:	This parameter provides the numerical value of the reference quantity p2003 in the currently selected unit as a con nector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.		
r2704	CO: Reference power / Reference power		
A INF, B_INF, S_INF, SERVO, TM41, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Connector output of the reference quantity for powers p2004.		
	All power ratings specified as relative value are referred to this reference quantity. The reference quantity in this parameter corresponds to 100% or 4000 hex or 40000000 hex.		
	The unit of this parameter is the same as the unit selected for p2004.		
Dependency:	This value is calculated as voltage x current for the infeed and as torque x speed for closed-loop controRefer to: r2004		
Note:	This parameter provides the numerical value of the reference quantity p2004 in the currently selected unit as a con nector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.		
	The reference power is calculated as follows:		
	Motor: 2 * Pi * reference speed/ 60 * reference torque		
	Reference: reference voltage * reference current * root(3)		
A_INF, B_INF, S_INF, SERVO, TM41, VECTOR	CO: Reference angle / Reference angle		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Connector output of the reference quantity for angles p2005.		
	All angles specified as relative value are referred to this reference quantity. The reference quantity in this parameter corresponds to 100% or 4000 hex or 40000000 hex.		
	This parameter has the unit degree.		
Dependency:	Refer to: p2005		
Note:	This parameter provides the numerical value of the reference quantity p2005 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.		

r2706	CO: Reference temperature / Reference temp			
A_INF, B_INF, S_INF, SERVO, TM41, VECTOR	Can be changed: -	Calculated: -	Access	
	Data type: FloatingPoint32	Dynamic index: -	Func.	
	P-Group: -	Units group: -	Unit sel	
	Not for motor type: -		Expert	
	Min	Max	Factor	
	-			
Description:	Connector output of the reference quantity for temperatures.			
	All temperatures specified as relative value are referred to this reference quantity. The reference quantity in this parameter corresponds to 100% or 4000 hex or 40000000 hex.			
	This parameter has the unit degree Celsius.			
Note:	This parameter provides the numerical value of the reference quantity for the temperature as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.			
r2707	CO: Reference acceleration / Reference acceler			
SERVO (Lin), SERVO, TM41, VECTOR	Can be changed: -	Calculated: -	Access level: 3	
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -	
	P-Group: -	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Connector output of the reference quantity for accelerations p2007.			
	All acceleration rates specified as relative value are referred to this reference quantity. The reference quantity in this parameter corresponds to 100% or 4000 hex or 40000000 hex.			
	The unit of this parameter is the same as the unit selected for p2007.			
Dependency:	r0108.12, p0505			
	Refer to: p2007			
Note:	This parameter provides the numerical value of the reference quantity p2007 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value in the currently selected unit can be adopted unchanged from this connector output in DCC.			
p2720[0...n]	Load gear configuration / Load gear config			
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(1,4)$	Calculated: -	Access	
	Data type: Unsigned32	Dynamic index: D	Func. d	
	P-Group: Encoder	Units group: -	Unit sel	
	Not for motor type: -		Expert	
	Min	Max	Factory	
	-	-	0000 bin	
Description:	Sets the configuration for position tracking of a load gear.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Load gear, activate position tracking	Yes	No	-
	01 Axis type	Linear axis	Rotary axis	-
	02 Load gear, reset position	Yes	No	-
Note:	For the following events, the non-volatile, saved position values are automatically reset: - when an encoder replacement has been identified. - when changing the configuration of the Encoder Data Set (EDS). - when adjusting the absolute encoder again			

p2721[0...n]	Load gear, rotary absolute gearbox, revolutions, virtual / Abs rot rev
SERVO, VECTOR	Can be changed: C2 $(1,4) \quad$ Calculated: - Access level: 1
	Data type: Unsigned32 Dynamic index: DDS, p0180 Func. diagram: -
	P-Group: Encoder Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
	Min Max Factory setting 0 4194303 0
Description:	Sets the number of rotations that can be resolved for a rotary absolute encoder with activated position tracking of the load gear.
Dependency:	This parameter is only of significance for an absolute encoder (p0404.1 = 1) with activated position tracking of the load gear (p2720.0 = 1).
Note:	The resolution that is set must be able to be represented using r2723.
	For rotary axes/modulo axes, the following applies:
	This parameter is preset with p0421 and can be changed.
	For linear axes, the following applies:
	This parameter is pre-assigned with p0421, expanded by 6 bits for multiturn information (maximum number of overflows) and cannot be changed.
p2722[0...n]	Load gear, position tracking tolerance window / Pos track tol
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(1,4) \quad$ Calculated: - Access level: 3
	Data type: FloatingPoint32 Dynamic index: DDS, p0180 Func. diagram: -
	P-Group: Encoder Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
	Min Max Factory setting 0.00 4294967300.00 0.00
Description:	Sets a tolerance window for position tracking.
	After the system is powered up, the difference between the saved position and the current position is determined, and depending on this, the following is initiated:
	Difference within the tolerance window --> The position is reproduced as a result of the encoder actual value. Difference outside the tolerance window --> An appropriate message is output.
Dependency:	Refer to: F07449
	Rotation, e.g. through a complete encoder range is not detected.
Note:	The value is entered in integer (complete) encoder pulses.
	For p2720.0 $=1$, the value is automatically pre-assigned quarter of the encoder range.
	Example:
	Quarter of the encoder range = (p0408*p0421)/4
	It is possible that the tolerance window may not be able to be precisely set due to the data type (floating point number with 23 bit mantissa).

r2723[0...n]	CO: Load gear absolute value / Load gear abs_val		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: DDS, p0180	Func. diagram: 4010, 4704
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the absolute value after the load gear.		
Notice:	The encoder position actual value must be requested using the encoder control word Gn_STW. 13.		
Note:	The increments are displayed in the format the same as r0483.		

r2817.0	CO/BO: OR logic operation result / OR result			
SERVO, VECTOR	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned32	Dynamic index: -	Func.	
	P-Group: Functions	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min	Max	Facto	
	-	-		
Description:	Displays the result of the OR logic operation.			
Bit field:	Bit Signal name 00 OR logic operation result	1 signal True	0 signal False	FP
Dependency:	Refer to: p2816			
p2900[0...n]	CO: Fixed value 1 [\%] / Fixed value 1 [\%]			
SERVO, VECTOR	Can be changed: U, T Data type: FloatingPoint32 P-Group: Free function blocks Not for motor type: -	Calculated: - Dynamic index: DDS, p0180	Access level: 3	
			Func. diagram: 1021	
		Units group: -	Unit selection:	
			Expert list: 1	
	$\begin{aligned} & \operatorname{Min} \\ & -10000.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 10000.00 \text { [\%] } \end{aligned}$	Factory setting$0.00 \text { [\%] }$	
Description:	Sets a fixed percentage.			
Dependency:	Refer to: p2901, p2930			
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.			
Note:	The value can be used to interconnect a scaling function (e.g. scaling of the main setpoint)			
$\overline{\mathrm{p} 2901[0 \ldots \mathrm{n}]}$ SERVO, VECTOR	CO: Fixed value 2 [\%] / Fixed value 2 [\%]			
	Can be changed: U, T	Calculated: -	Acc	
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func.	
	P-Group: Free function blocks	Units group: -	Unit	
	Not for motor type: -		Expe	
	$\begin{aligned} & \operatorname{Min} \\ & -10000.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 10000.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Facto } \\ & 0.00 \end{aligned}$	
Description:	Sets a fixed percentage.			
Dependency:	Refer to: p2900, p2930			
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.			
Note:	The value can be used to interconnect a scaling function (e.g. scaling of the supplementary setpoint)			
r2902[0...14]	CO: Fixed values [\%] / Fixed values [\%]			
SERVO, VECTOR	Can be changed: -	Calculated: -	Acce	
	Data type: FloatingPoint32	Dynamic index: -	Func.	
	P-Group: Free function blocks	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min - [\%]	Max - [\%]	Fact - [\%]	
Description:	Signal sources for frequently used percentage values.			
Index:	$\begin{aligned} & {[0]=\text { Fixed value +0 \% }} \\ & {[1]=\text { Fixed value +5 \% }} \\ & {[2]=\text { Fixed value +10 \% }} \\ & {[3]=\text { Fixed value +20 \% }} \\ & {[4]=\text { Fixed value +50 \% }} \\ & {[5]=\text { Fixed value +100 \% }} \\ & {[6]=\text { Fixed value +150 \% }} \end{aligned}$			

	$\begin{aligned} & {[7]=\text { Fixed value +200 \% }} \\ & {[8]=\text { Fixed value }-5 \%} \\ & {[9]=\text { Fixed value }-10 \%} \\ & {[10]=\text { Fixed value }-20 \%} \\ & {[11]=\text { Fixed value }-50 \%} \\ & {[12]=\text { Fixed value }-100 \%} \\ & {[13]=\text { Fixed value }-150 \%} \\ & {[14]=\text { Fixed value }-200 \%} \end{aligned}$		
Dependency:	Refer to: p2900, p2901, p2930		
Note:	The signal sources can, for example, be used to interconnect scalings.		
p2930[0...n]	CO: Fixed value F [N] / Fixed value F [N]		
SERVO (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1021
	P-Group: Free function blocks	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -100000.00[\mathrm{~N}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100000.00[\mathrm{~N}] \end{aligned}$	Factory setting 0.00 [N]
Description:	Sets a fixed value for force.		
Dependency:	Refer to: p2900, p2901		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
Note:	The value can, for example, be used to interconnect a supplementary force.		
p2930[0...n]	CO: Fixed value M [Nm] / Fixed value M [Nm]		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 1021
	P-Group: Free function blocks	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -100000.00[\mathrm{Nm}] \end{aligned}$	Max $100000.00[\mathrm{Nm}]$	Factory setting 0.00 [Nm]
Description:	Sets a fixed value for torque.		
Dependency:	Refer to: p2900, p2901		
Notice:	A BICO interconnection to a parameter that belongs to a drive object always acts on the effective data set.		
Note:	The value can, for example, be used to interconnect a supplementary torque.		
p3016	Motd force constant identified / kT ident		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: 29_1	Unit selection: p0100
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min 0.00 [N/Arms]	Max 1000.00 [N/Arms]	Factory setting 0.00 [N/Arms]
Description:	Force constant for a synchronous linear motor determined by the motor data identification. This force constant can be changed after the identification and is accepted in p0316 with p1910/p1960 = -3		
Dependency:	Refer to: p0316, r0334, r1937, p1960		

p3016	Motld torque constant identified / kT ident		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: 28_1	Unit selection: p0100
	Not for motor type: ASM, REL, FEM		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{Nm} / \mathrm{A}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 100.00[\mathrm{Nm} / \mathrm{A}] \end{aligned}$	Factory setting 0.00 [Nm / A]
Description:	Torque constant for the synchronous motor determined by the motor data identification. This torque constant can be changed after the identification and accepted in p0316 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0316, r0334, r1937, p1960		
p3017	Motld voltage constant identified / kE ident		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min 0.0 [Vrms s/m]	$\begin{aligned} & \text { Max } \\ & 1000.0[\mathrm{Vrms} \mathrm{~s} / \mathrm{m}] \end{aligned}$	Factory setting 0.0 [Vrms s/m]
Description:	Voltage constant for a synchronous linear motor determined by the motor data identification. This voltage constant can be changed after the identification and accepted in p0317 with p1910/p1960 $=-3$. Units for linear synchronous motors: Vrms s/m, phase		
Dependency:	Refer to: p0317, r1938, p1960		
p3017	Motld voltage constant identified / kE ident		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min 0.0 [Vrms]	Max 10000.0 [Vrms]	Factory setting 0.0 [Vrms]
Description:	Voltage constant for a synchronous motor determined by the motor data identification. This voltage constant can be changed after the identification and accepted in p0317 with p1910/p1960 $=-3$. Units for rotating synchronous motors: Vrms/(1000 RPM), phase-to-phase		
Dependency:	Refer to: p0317, r1938, p1960		
p3020	Motld magnetizing current identified / I_mag ident		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: REL, FEM		Expert list: 1
	Min 0.000 [Arms]	Max $5000.000 \text { [Arms] }$	Factory setting 0.000 [Arms]
Description:	Magnetizing current for an induction motor determined by the motor data identification. This magnetizing current can be changed after the identification and accepted in p0320 with p1910/p1960		
Dependency:	Refer to: p0320, r0331, p1910, r1948, p1960		

p3027	Motld optimum load angle identified / phi_load opt ident		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	$\operatorname{Min}_{0.0}\left[^{\circ}\right]$	$\begin{aligned} & \text { Max } \\ & 135.0\left[{ }^{\circ}\right] \end{aligned}$	Factory setting $0.0\left[^{\circ}\right]$
Description:	Optimum load angle for a synchronous motor determined by the motor data identification. This optimum load angle can be changed after the identification and accepted in p0327 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0327, r1947, p1960		
p3028	Motld reluctance force constant identified / kT_reluct ident		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	$\operatorname{Min}_{-1000.00[m H]}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00[\mathrm{mH}] \end{aligned}$	Factory setting 0.00 [mH]
Description:	Reluctance force constant for a synchronous motor determined by the motor data identification. This reluctance force constant can be changed after the identification and accepted in p0328 with p1910/p1960 $=-$ 3.		
Dependency:	Refer to: p0328, r1939, p1960		
p3028	Motld reluctance torque constant identified / kT_reluct ident		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	$\operatorname{Min}_{-1000.00[m H]}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00[\mathrm{mH}] \end{aligned}$	Factory setting 0.00 [mH]
Description:	Reluctance torque constant for a synchronous motor determined by the motor data identification. This reluctance torque constant can be changed after the identification and accepted in p0328 with p1910/p1960 $=$ -3.		
Dependency:	Refer to: p0328, r1939, p1960		
p3030	Motld angular commutation offset identified / Ang_com offset		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -180.00\left[{ }^{\circ}\right] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 180.00\left[^{\circ}\right] \end{aligned}$	Factory setting 0.00 [] $^{\circ}$
Description:	Angular commutation offset for a synchronous motor determined by the motor data identification. This angular commutation offset can be changed after the identification and accepted in p0431 with p1910/p1960 = -3.		
Dependency:	Refer to: p0431, p1910, p1960, r1984		

p3042	Motld load mass identified / Load mass ident		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: 27_1	Unit selection: p0100
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00000[\mathrm{~kg}] \end{aligned}$	Max 10000.00000 [kg]	Factory setting 0.00000 [kg]
Description:	Load mass determined by the motor data identification.		
Dependency:	Refer to: p0342, p1498, p1960, r1969		
Note:	For p1910/p1960 $=-3$, p0342 is set to 1 (ratio between the total and motor).		
p3042	Motld load moment of inertia identified / Load mom ident		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: 25_1	Unit selection: p0100
	Not for motor type: -		Expert list: 1
	Min $0.00000\left[\mathrm{kgm}^{2}\right]$	Max $100000.00000\left[\mathrm{kgm}^{2}\right]$	Factory setting $0.00000\left[\mathrm{kgm}^{2}\right]$
Description:	Load moment of inertia determined by the motor data identification.		
Dependency:	Refer to: p0342, p1498, p1960, r1969		
Note:	For p1910/p1960 $=-3, \mathrm{p} 0342$ is set to 1 (ratio between the total and motor).		
p3045	Motld force characteristic kT1 identified / kT1 ident		
SERVO (Exp M_ctrl, Lin)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min -340.28235E36 [N/Arms]	Max 340.28235 E 36 [N/Arms]	Factory setting 0.00 [N/Arms]
Description:	Coefficient kT1 for the force characteristic for a synchronous linear motor determined by the motor data identification.		
	This coefficient can be changed after the identification and accepted in p0645 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0645, p0646, p0647, p0648, p1960, p3046, p3047, p3048		
p3045	Motld torque characteristic kT1 identified / kT1 ident		
SERVO (Exp M_ctrl)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min -340.28235E36 [Nm/A]	Max $340.28235 \mathrm{E} 36[\mathrm{Nm} / \mathrm{A}]$	Factory setting 0.00 [Nm / A]
Description:	Coefficient kT 1 for the torque characteristic for a synchronous motor determined by the motor data identification. This coefficient can be changed after the identification and accepted in p0645 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0645, p0646, p0647, p0648, p1960, p3046, p3047, p3048		

p3046	Motld force characteristic kT3 identified / kT3 ident		
SERVO (Exp M_ctrl, Lin)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min	Max	Factory setting
Description:	Coefficient kT 3 for the force characteristic for a synchronous linear motor determined by the motor data identification.		
	This coefficient can be changed after the identification and accepted in p0646 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0645, p0646, p0647, p0648, p1960, p3045, p3047, p3048		
p3046	Motld torque characteristic kT3 identified / kT3 ident		
SERVO (Exp M_ctrl)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min	Max	Factory setting
Description:	Coefficient $\mathrm{kT3}$ for the torque characteristic for a synchronous motor determined by the motor data identification. This coefficient can be changed after the identification and accepted in p0646 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0645, p0646, p0647, p0648, p1960, p3045, p3047, p3048		
p3047	Motld force characteristic kT5 identified / kT5 ident		
SERVO (Exp M_ctrl, Lin)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
		Max	Factory setting
Description:	Coefficient kT5 for the force characteristic for a synchronous linear motor determined by the motor data identification.		
	This coefficient can be changed after the identification and accepted in p0647 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0645, p0646, p0647, p0648, p1960, p3045, p3046, p3048		
p3047	Motld torque characteristic kT5 identified / kT5 ident		
SERVO (Exp M_ctrl)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min	Max	Factory setting
Description:	Coefficient kT5 for the torque characteristic for a synchronous motor determined by the motor data identification. This coefficient can be changed after the identification and accepted in p0647 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0645, p0646, p0647, p0648, p1960, p3045, p3046, p3048		

p3048	Motld force characteristic kT7 identified / kT7 ident		
SERVO (Exp M_ctrl, Lin)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min	Max	Factory setting
Description:	Coefficient kT7 for the force characteristic for a synchronous linear motor determined by the motor data identification.		
	This coefficient can be changed after the identification and accepted in p0648 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0645, p0646, p0647, p0648, p1960, p3045, p3046, p3047		
p3048	Motld torque characteristic kT7 identified / kT7 ident		
SERVO (Exp M_ctrl)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM		Expert list: 1
	Min	Max	Factory setting
Description:	Coefficient $\mathrm{kT7}$ for the torque characteristic for a synchronous motor determined by the motor data identification. This coefficient can be changed after the identification and accepted in p0648 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0645, p0646, p0647, p0648, p1960, p3045, p3046, p3047		
p3049[0...n]	Motld Speed at start of field weakening identified / v_Fieldweak ident		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00000 [$\mathrm{m} / \mathrm{min}$]	$\begin{aligned} & \text { Max } \\ & 1000.00000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.00000 [$\mathrm{m} / \mathrm{min}$]
Description:	Velocity at the start of field weakening determined by the motor data identification. This start velocity can be changed after the identification and accepted in p0348 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0348, p1910, p1960		
p3049[0...n]	Motld Speed at start of field weakening identified / ident		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00000 [rev/min]	Max 210000.00000 [rev/min]	Factory setting 0.00000 [rev/min]
Description:	Speed at the start of field weakening determined by the motor data identification. This start speed can be changed after the identification and accepted in p0348 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0348, p1910, p1960		

p3050[0...n]	Motorld stator resistance identified / R_stator ident		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: 16_1	Unit selection: p0349
	Not for motor type: -		Expert list: 1
	Min 0.00000 [Ohm]	$\begin{aligned} & \operatorname{Max} \\ & 2000.00000[\mathrm{Ohm}] \end{aligned}$	Factory setting 0.00000 [Ohm]
Description:	Stator resistance determined by the motor data identification.		
Dependency:	Refer to: p0350, p1910, r1912		
p3054[0...n]	Motld rotor resistance identified / R_rotor ident		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: 16_1	Unit selection: p0349
	Not for motor type: PEM, REL		Expert list: 1
	Min 0.00000 [Ohm]	$\begin{aligned} & \operatorname{Max} \\ & 300.00000[\mathrm{Ohm}] \end{aligned}$	Factory setting 0.00000 [Ohm]
Description:	Rotor resistance for an induction motor determined by the motor data identification.		
Dependency:	Refer to: p0354, p0625, p1910, r1927, p1960 The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
Note:			
p3056[0...n]	Motld stator leakage inductance identified / L_stator leak		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: 15_1	Unit selection: p0349
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{0.00000[\mathrm{mH}]}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00000[\mathrm{mH}] \end{aligned}$	Factory setting $0.00000[\mathrm{mH}]$
Description:	This stator leakage inductance can be changed after the identification and accepted in p0356 with p1910/p1960 $=$ 3.		
Dependency:	Refer to: p0356, p1910, r1932		
p3058[0...n]	Motld rotor leakage inductance identified / L_rotor leak		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: 15_1	Unit selection: p0349
	Not for motor type: PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00000[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00000[\mathrm{mH}] \end{aligned}$	Factory setting 0.00000 [mH]
Description:	Rotor leakage induction for an induction motor determined by the motor data identification.		
Dependency:	This rotor leakage inductance can be changed after the identification and accepted in p0358 with p1910/p1960		

p3060[0...n]	Motld magnetizing inductance identified / Motld Lh ident		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: 15_1	Unit selection: p0349
	Not for motor type: PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00000[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10000.00000[\mathrm{mH}] \end{aligned}$	Factory setting 0.00000 [mH]
Description:	Magnetizing inductance for an induction motor determined by the motor data identification.		
Dependency:	Refer to: p0360, p1910, r1936, p1960		
$\overline{\mathbf{p 3 0 7 0}}$	Motld voltage emulation error final value identified / V_err final ident		
SERVO (Exp M_ctrl)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~V}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.000[\mathrm{~V}] \end{aligned}$	Factory setting 0.000 [V]
Description:	Final value of the voltage emulation error determined by the motor data identification. This final value can be changed after the identification and accepted in p1952 with p1910/p1960 = -3.		
Dependency:	Refer to: p1910, p1952, p1953, p3071		
p3071	Motld voltage emulation error current offset identified / V_error l_offset		
SERVO (Exp M_ctrl)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[A] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.000[A] \end{aligned}$	Factory setting 0.000 [A]
Description:	Current offset of the voltage emulation error determined by the motor data identification. This current offset can be changed after the identification and accepted in p1953 with p1910/p1960 = -3.		
Dependency:	Refer to: p1910, p1952, p1953, p3070		
p3080	Motld flux controller P gain identified / Flux ctrl Kp ident		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0[\mathrm{~A} / \mathrm{Vs}] \end{aligned}$	Max 999999.0 [A/Vs]	Factory setting 0.0 [A/Vs]
Description:	P gain of the flux controller for an induction motor determined by the motor data identification. This P gain can be changed after the identification and accepted in p1590 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p1590, p1910		

p3081	Motld flux controller integral time identified / Flux ctrl Tn ident		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: PEM, REL		Expert list: 1
	$\begin{aligned} & \text { Min }_{0} \\ & 0 \text { [ms] } \end{aligned}$	Max 10000 [ms]	Factory setting 0 [ms]
Description:	Integral time of the flux controller for an induction motor determined by the motor data identification. This integral time can be changed after the identification and accepted in p1592 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p1592, p1910		
p3082	Motld current controller P gain identified / I_ctrl Kp ident		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: 18_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.000} \\ & 0 . \mathrm{V} / \mathrm{A}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100000.000[\mathrm{~V} / \mathrm{A}] \end{aligned}$	Factory setting 0.000 [V/A]
Description:	P gain of the current controller determined by the motor data identification. This P gain can be changed after the identification and accepted in p 1715 with $\mathrm{p} 1910 / \mathrm{p} 1960=-3$.		
Dependency:	Refer to: p1715, p1910		
p3083	Motld current controller integral time identified / I_ctrl Tn ident		
SERVO	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [ms] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description:	Integral time of the current controller determined by the motor data identification. This integral time can be changed after the identification and accepted in p1717 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p1717, p1910		
p3088	Motld Motor model changeover velocity operat. with encod. ident. I v_chg Ident encod		
SERVO (Lin)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00000 [m/min]	$\begin{aligned} & \operatorname{Max} \\ & 1000.00000[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 0.00000 [$\mathrm{m} / \mathrm{min}$]
Description:	Changeover velocity for the motor model with encoder determined by the motor data identification. This changeover velocity can be changed after the identification and accepted in p1752 with p1910/p1960 $=-3$.		
Dependency:			

p3088	Motld Motor model changeover speed operation with encoder ident. / MotMod n_chgSnsorl
SERVO	Can be changed: U, T Calculated: CALC_MOD_ALL Access level: 3 Data type: FloatingPoint32 Dynamic index: - Func. diagram: - P-Group: Motor identification Units group: - Unit selection: - Not for motor type: - Expert list: 1 Min Max Factory setting $0.00000[\mathrm{rev} / \mathrm{min}]$ $210000.00000[\mathrm{rev} / \mathrm{min}]$ $0.00000[r e v / \mathrm{min}]$
Description: Dependency:	Changeover speed for the motor model with encoder determined by the motor data identification. This changeover speed can be changed after the identification and accepted in p1752 with p1910/p1960 $=-3$. Refer to: p1752, p1910
$\begin{aligned} & \hline \text { p3100 } \\ & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	RTC time stamp mode / RTC t_stamp mode Can be changed: U, T Calculated: - Access level: 3 Data type: Unsigned16 Dynamic index: - Func. diagram: - P-Group: - Units group: - Unit selection: - Not for motor type: - Expert list: 1 Min Max Factory setting 0 1 0
Description: Note:	Sets the mode for the time stamp p3100 $=0$: Time stamp, operating hours p3100 = 1: Time stamp, UTC format RTC: Real Time Clock UTC: Universal Time Coordinates The UTC time started, according to the definition on 01.01.1970 at 00:00:00 and is output in days and milliseconds.
$\begin{aligned} & \text { p3101[0...1] } \\ & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	RTC set UTC time / RTC set UTC
Description:	Setting the UTC time. This means that the drive system is synchronized to the time specified by the time master. To start p3101[1] must be written to followed by p3101[0]. After writing to p3101[0], the UTC time is accepted. p3101[0]: Milliseconds p3101[1]: Days
r3102[0...1]	RTC read UTC time / RTC read UTC
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: - Calculated: - Access level: 3 Data type: Unsigned32 Dynamic index: - Func. diagram: - P-Group: - Units group: - Unit selection: - Not for motor type: - Expert list: 1 Min Max Factory setting
Description:	Displays the current UTC time in the drive system. p3102[0]: Milliseconds p3102[1]: Days

p3103	RTC synchronization source / RTC sync_source		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 3 \end{aligned}$	Factory setting 0
Description:	Sets the synchronization source/technique.		
Value:	0: PROFIBUS		
	1: PROFINET		
	2: PPI		
	3: PROFINET PTP		
$\begin{aligned} & \text { p3104 } \\ & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	BI: RTC real time synchronization PING / RTC PING		
	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the PING event to set the UTC time.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
r3108[0...1]	RTC last synchronization deviation / RTC sync_dev		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: - Data type: Unsigned32	Calculated: -	Access level: 3
		Dynamic index: -	Func. diagram: -
	Data type: Unsigned32 P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the last synchronization deviation that was determined. r3108[0]: Milliseconds		
p3109	RTC real time synchronization, tolerance window / RTC sync tol		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [ms]	$\begin{aligned} & \text { Max } \\ & 1000[\mathrm{~ms}] \end{aligned}$	Factory setting 100 [ms]
Description:	Sets the tolerance window for time synchronization.		
Dependency:	Refer to: A01099		

p3110	External fault 3, power-up delay / Ext fault 3 t_on		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 2546
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [ms]	$\begin{aligned} & \text { Max } \\ & 1000 \text { [ms] } \end{aligned}$	Factory setting 0 [ms]
Description:	Sets the delay time for external fault 3 .		
Dependency:	Refer to: p2108, p3111, p3112		
	Refer to: F07862		

p3111	BI: External fault 3, enable / Ext fault 3 enab		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 3
CU_LINK, CU_S,	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram:
HUB, TB30, TM15,	U-Group: Messages	Units group: -	Unit selection: -
TM15DI_DO, TM17,	Expert list: 1		
TM31, TM54F_MA,	Not for motor type: -		
TM54F_SL		Max	Factory setting
	Min	-	1

Description:	Sets the signal source for the enable signal of external fault 3.		
	External fault 3 is initiated by the following AND logic operation:		
	- BI: p2108 negated		
	- BI: p3111		
	- BI: p3112 negated		
Dependency:	Refer to: p2108, p3110, p3112		
	Refer to: F07862		
p3111[0...n]	BI: External fault 3, enable / Ext fault 3 enab		
A_INF, B_INF,	Can be changed: U, T	Calculated: -	Access level: 3
S_INF, SERVO,	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting

Description:	Sets the signal source for the enable signal of external fault 3.
	External fault 3 is initiated by the following AND logic operation:
	- BI: p2108 negated
	- BI: p3111
- BI: p3112 negated	
Dependency:	Refer to: p2108, p3110, p3112 Refer to: F07862

p3201[0...n]	Excitation current outside the tolerance threshold value / I_exc \mathbf{n} Tol thresh		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\operatorname{Min}_{0.1}$	$\begin{aligned} & \operatorname{Max} \\ & 100.0 \text { [\%] } \end{aligned}$	Factory setting 10.0 [\%]
Description:	Sets the threshold value for the "excitation current outside tolerance" message for the excitation current monitoring. If the absolute value of the difference between the excitation current setpoint and actual value (r1641-r1626) exceeds the threshold value and the hysteresis is longer than the selected delay time, then fault F07913 is output. This fault is withdrawn when the threshold voltage is undershot.		
Dependency:	Refer to: r1626, r1641, p3202, p3203		
	Refer to: F07913		
Note:	The monitoring function is only carried out for separately-excited synchronized motors (p0300 = 5).		
p3202[0...n]	Excitation current outside the tolerance hysteresis / I_exc n Tol hyst		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.1} \text { [\%] } \end{aligned}$	Max 100.0 [\%]	Factory setting 10.0 [\%]
Description: Dependency:	Sets the hysteresis for the "excitation current outside tolerance" message for the excitation current monitoring Refer to: p3201, p3203		
Note:	The monitoring function is only carried out for separately-excited synchronized motors ($\mathrm{p} 0300=5$).		
p3203[0...n]	Excitation current outside the tolerance delay time / I_exc \mathbf{n} Tol t_del		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		Expert list: 1
	$\operatorname{Min}_{0.0}$	$\begin{aligned} & \operatorname{Max} \\ & 10.0 \text { [s] } \end{aligned}$	Factory setting 1.0 [s]
Description: Dependency:	Sets the delay time for the "excitation current outside tolerance" message for the excitation current monitoring. Refer to: p3201, p3202		
Note:	The monitoring function is only carried out for separately-excited synchronized motors ($\mathrm{p} 0300=5$).		
p3204[0...n]	Flux outside the tolerance threshold value / Flux n tol thresh		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL		
	$\begin{aligned} & \operatorname{Min}_{0} \\ & 0.1 \end{aligned}$	Max 100.0 [\%]	Factory setting 10.0 [\%]
Description:	Sets the threshold value for the "flux outside the tolerance" message for the flux monitoring. If the absolute value of the difference between the flux setpoint and actual value (r0083-r0084) falls below the threshold value with hysteresis longer than the selected delay time, then fault F07914 is output. This fault is withdrawn when the threshold voltage is undershot.		

p3208[0...n]	Zero current signal hysteresis / I_0_sig hyst			
VECTOR	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3	
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -	
	P-Group: Messages	Units group: 6_2	Unit selection: p0505	
	Not for motor type: ASM, PEM, REL		Expert list: 1	
	Min 0.01 [Arms]	$\begin{aligned} & \text { Max } \\ & 10000.00 \text { [Arms] } \end{aligned}$	Factory setting 1.00 [Arms]	
Description:	Sets the hysteresis for the zero current signal for the zero current monitoring.			
Dependency:	Refer to: p3207, p3209			
Note:	The monitoring function is only carried out for separately-excited synchronized motors (p0300 = 5).			
	The monitoring is only carried out for speeds less than the speed threshold value in p2161 (r2199.0 = 1).			
p3209[0...n] Zero curr				
VECTOR	Can be changed: U, T Calculated: - Access level: 3			
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -	
	P-Group: Messages	Units group: -	Unit selection: -	
	Not for motor type: ASM, PEM, REL		Expert list: 1	
	Min $0.00 \text { [s] }$	Max $10.00 \text { [s] }$	Factory setting $0.02 \text { [s] }$	
Description:	Sets the delay time for the zero current signal for the zero current monitoring.			
Dependency:	Refer to: p3207, p3208			
Note:	The monitoring function is only carried out for separately-excited synchronized motors ($\mathrm{p} 0300=5$).			
	The monitoring is only carried out for speeds less than the speed threshold in p2161 (r2199.0 = 1).			
p3290	Variable signaling function start / Var sig start			
SERVO	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: Unsigned8	Dynamic index: -	Func. diagram: 5301	
	P-Group: -	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting 0010 bin	
Description:	Settings for start/stop and the comparison type for the variable signaling function.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Activate function	Active	Not active	-
	01 Comparison with sign	With sign	Without sign	-
p3291	CI: Variable signaling function signal source / Var sig S_src			
SERVO	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: Unsigned32 / Integer16	Dynamic index: -	Func. diagram: 5301	
	P-Group: -	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting 0	
Description:	Sets the signal source for the variable signaling function.			
Dependency:	Refer to: p3292, p3293			
Note:	Rep3291 = 1:			
	In this case, the signal source is defined using p3292 and p3293.			

p3292	Variable signaling function signal source address / Var sig S_src addr		
SERVO	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 5301
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Sets the address of the signal source for the variable signaling function.		
Dependency:	Refer to: p3291		
	If an incorrect address and data type are set, then this can cause the software to crash.		
Note:	This parameter should only be set for p3291 = 1.		
p3293	Variable signaling function signal source data type / Var sig S_src type		
SERVO	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Integer16	Dynamic index: -	Func. diagram: 5301
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 7 \end{aligned}$	Factory setting 0
Description:	Sets the data type of the signal source for the variable signaling function.		
Value:	0: Unknown 1: U8, Unsigned8 2: I8, Signed8 3: U16, Unsigned16 4: I16, Signed16 5: U32, Unsigned32 6: I32, Signed32 7: Float, FloatingPo		
Dependency:	Refer to: p3291		
	If an incorrect address and data type are set, then this can cause the software to crash.		
Note:	This parameter should only be set for p3291 $=1$.		
r3294	BO: Variable signaling function output signal / Var sig outp_sig		
SERVO	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: -	Func. diagram: 5301
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description: Dependency:	Displays the output signal for the variable signaling function.		

p3295	Variable signaling function threshold value / Var sig thresh_val			
SERVO	Can be changed: U, T	Calculated: -	Acce	
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5301	
	P-Group: -	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & -340.28235 \mathrm{E} 36 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 340.28235 \mathrm{E} 36 \end{aligned}$	Factory setting 0.000	
Description:	Sets the threshold value for the variable signaling function.			
p3296	Variable signaling function hysteresis / Var sig hyst			
SERVO	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 5301	
	P-Group: -	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 340.28235 \mathrm{E} 36 \end{aligned}$	Factory setting0.000	
Description:	Sets the hysteresis for the variable signaling function.			
p3297	Variable signaling function pickup delay / Var sig t_pickup			
SERVO	Can be changed: U, T	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: -	Func	
	P-Group: -	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min 0 [ms]	$\begin{aligned} & \text { Max } \\ & 10000[\mathrm{~ms}] \end{aligned}$	Fact 0 [ms	
Description:	Sets the pickup delay for the variable signaling function.			
Note:	The output signal is set if the condition for the 1 signal is fulfilled for longer than the selected time.			
p3298	Variable signaling function dropout delay / Var sig t_dropout			
SERVO	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 5301	
	P-Group: -	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min 0 [ms]	$\begin{aligned} & \text { Max } \\ & 10000[\mathrm{~ms}] \end{aligned}$	Factory setting 0 [ms]	
Description: Note:	Sets the dropout delay for the variable signaling function.			
	The output signal is reset if the condition for the 0 signal is fulfilled for longer than the selected time.			
$\overline{\text { p3 } 300}$ A_INF, S_INF	Infeed configuration word / INF config_word			
	Can be changed: T	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: -	Func	
	P-Group: Closed-loop control	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min	Max	Fact 1010	
Description:	Sets the configuration word of t			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Smart Mode			-
	01 Flat-top mode	On	Off	-

	$\begin{aligned} & 4: \\ & 5: \\ & 6: \end{aligned}$	ON delay active Precharg. running Operation			
r3405.0..7	CO/BO: Status word infeed / INF ZSW				
A_INF, S_INF	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dynamic index: -	Func. diagram: 8828, 8928	
	P-Group: Closed-loop control		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-			-	
Description:	Displays the status word of the infeed.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Smart mode active	Yes	No	-
	01	Vdc-ctrl active	Yes	No	-
	02	Phase failure detected	Yes	No	-
		Current limit reached	Yes	No	-
		Infeed operates regenerating/motoring	Regenerative mode	Motor mode	-
	05	Motor operation inhibited	Yes	No	-
		Regenerative operation inhibited	Yes	No	-
		DC link undervoltage alarm threshold undershot	Yes	No	
Note:	Re bit 00:				
	Smart Mode is activated with p3400.0.				
	Re bit 01:				
	The DC link voltage closed-loop control is activated with parameters p3400.3 and p3513.				
	When phase failure is detected the bit is set and alarm A06205 is output.				
	The bit is reset for the following events:				
	- the infeed had reached the normal operating state again after a phase failure has been bypassed/buffered (p3402 $=9$).				
	- the pulse enable is withdrawn due to a fault or powering down with OFF1/OFF2.				
	Re bit 03:				
	The present current limit is displayed in r0067.				
	Re bit 04:				
	An active current setting r0078>= 0 means infeed operation in motor mode; an active current setting r0078<0 means regenerative operation in generator mode.				
	Re bit 05:				
	The motor operation inhibit is activated with p3532.				
	Re bit 06:				
	The generator operation inhibit is activated with p3533.				
	Re bit 07:				
	The alarm threshold is dependent on r0296 and the setting in p0279.				
r3405.7	CO	BO: Status word infeed / INF ZS	ZSW		
B_INF	Can be changed: -		Calculated: -	Access	
	Data type: Unsigned16		Dynamic index: -	Func. di	
	P-Group: Closed-loop control		Units group: -	Unit sele	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the status word of the infeed.				

Bit field:	Bit Signal name 07 DC link undervoltage alarm threshold undershot	1 signal Yes	0 signal No	FP
p3409	Infeed line frequency setting / INF f_line_mode			
A_INF, S_INF	Can be changed: T	Calculated: -	Acce	
	Data type: Integer16	Dynamic index: -	Func	
	P-Group: Closed-loop control	Units group: -	Unit	
	Not for motor type: -		Exp	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Facto 1	
Description:	Sets the mode to detect the line supply frequency.			
Value:	0 : Line supply frequency setting $50 / 60 \mathrm{~Hz}$ off 1: Line supply frequency setting $50 / 60 \mathrm{~Hz}$ on			
Dependency:	Refer to: p0211, p0284, p0285			
	Refer to: A06350, A06351, F06500			
Note:	For p3409 = 1, the following applies:			
	After operation has been enabled, the rated line supply frequency (p 0211) is automatically set to a value of 50 Hz or 60 Hz corresponding to the currently measured frequency. This means that the parameter value of p0211 is, under certain circumstances, changed. For p3409 = 0, the following applies: The system does not change parameter p0211.			
p3410	Infeed identification method / INF Ident_type			
A_INF, S_INF	Can be changed: C2(1), T	Calculated: -	Access level: 1	
	Data type: Integer16	Dynamic index: -	Func. diagram: -	
	P-Group: Closed-loop control	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 5 \end{aligned}$	Factory setting5	

Description: Sets the line and DC link parameter identification routine for the infeed module.

Value:

Notice:

Note:

0 : Identification (Id) off Activate identification (Id) Set controller settings Save identification and controller settings Save identification and controller settings with L adaptation Reset, save Id and controller setting with L adaptation
Refer to: r3411, r3412, r3414, p3415, p3416, p3417, p3421, p3422, p3424, p3555, p3560, p3614 Refer to: A06400
For p3410 = 1, 3, 4, 5, alarm A06400 is output and designates that the selected identification will take place the next time that the pulses are enabled.
When p3410 $=1$ an identification run for the total inductance and DC link capacitance is initiated when the pulses are next enabled. The results are displayed in r3411 and r3412. If a Voltage Sensing Module (VSM) is connected, then the line inductance (r3414) is also measured. The infeed then goes into the ready for switching on state.
For $\mathrm{p} 3410=2$, the data (r 3411 , r3412 und r3414) determined during the identification run ($\mathrm{p} 3410=1$) are transferred into p3421, p3422 and p3424. The control loop parameters are suitable scaled to achieve a rugged controller setting (p3425); the fast controller response (p3555[2]) and the current actual value smoothing (p3614) are pre-set. Calculations for the controller are then repeated. The user must save the new parameters in a non-volatile fashion in order to permanently select the new controller setting.
When p3410 $=3$ an identification run for the inductance and DC link capacitance is initiated when the pulses are next enabled. Data determined during the identification ($\mathrm{r} 3411, \mathrm{r} 3412, \mathrm{r} 3414$) are used, as described under p3410= 2 for the setting of p3421, p3422, p3424, p3425, p3555 as well as p3614, and the controller is re-calculated. All of the parameters for the infeed module are then automatically stored in a non-volatile memory. The infeed continues to operate without any interruption with the new controller parameters.

When p3410 = 4 an identification run for the inductance and DC link capacitance is initiated when the pulses are next enabled. Data determined during the identification (r3411, r3412, r3414) are used, as described under p3410 = 2 for the setting of p3421, p3422, p3424, p3425, p3555 as well as p3614, and the controller is re-calculated. The line inductance identification is then repeated, if p3415[1] > p3514[0]. If the inductance measured the second time is lower, the parameters are written to the current controller adaptation (p3620, p3622).. All of the parameters for the infeed module are then automatically stored in a non-volatile memory. The infeed continues to operate without any interruption with the new controller parameters.
For p3410 $=5$, the same measurements and write operations are always carried out as for p3410 $=4$. However, for the first identification run, initially the controller setting is reset by setting p3421 $=$ p0223 + p0225, p3424 $=$ p0225, $\mathrm{p} 3422=\mathrm{p} 0227$ and $\mathrm{p} 3425[]=.100 \%$. Further, before the measurements are carried out, a brief identification run is executed to coarsely set the controller.
p3410 is automatically set to 0 after an identification run has been completed.

r3411[0...1]	Infeed identified inductance / INF L ident		
A_INF, S_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [mH]	Max $-[\mathrm{mH}]$	Factory setting - [mH]
Description:	Displays the identified total inductance. The value corresponds to the total inductance between the rigid line supply and the infeed input terminals.		
Index:	$\begin{aligned} & {[0]=\text { Run } 1} \\ & {[1]=\text { Run } 2} \end{aligned}$		
Dependency:	Refer to: p3410		
Note:	The value measured in the first identification run is displayed in r 3411 [0] (for $\mathrm{p} 3410=1,3,4,5$). This value is transferred to p3421.		
	The value measured in the second identification run (for p3410 $=4,5$) is displayed in $r 3411[1]$ - this value is used to set the current controller adaptation (p3622).		
	For the inductance value of the commutating reactor, r3411-r3414 applies.		
r3412[0...1]	Infeed DC link capacitance identified / INF C_DClink ident		
A_INF, S_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [mF]	Max $-[\mathrm{mF}]$	Factory setting - [mF]
Description:	Displays the identified total DC link capacitance.		
Index:	$\begin{aligned} & {[0]=\text { Run } 1} \\ & {[1]=\text { Run } 2} \end{aligned}$		
Dependency:	Refer to: p3410		
Note:	The value measured in the first identification run (for $p 3410=1,3,4,5$) is displayed in $r 3412[0]$. For $p 3410=1,3$, this value is transferred to p3422.		
	The DC link capacitance is not measured at the second identification run.		
	The total DC link capacitance of a DC link group comprises the sum of the sub-capacitances of all motor/infeed modules and the additional DC link capacitors.		

r3414[0...1]	Infeed, line supply inductance identified / INF t_line ident		
A_INF, S_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [mH]	Max $-[\mathrm{mH}]$	Factory setting - [mH]
Description:	The value corresponds to the total inductance between the stiff line supply and the connection point of the Voltage Sensing Module (VSM).		
Index:	$\begin{aligned} & {[0]=\text { Run } 1} \\ & {[1]=\text { Run } 2} \end{aligned}$		
Dependency:	Refer to: p3410		
Notice:	The value is only automatically determined for the line supply identification (p3410 > 0), if operation with a Voltage Sensing Module is selected (p3400.5 = 1). Otherwise, r3414 = 0 is displayed.		
Note:	The value measured in the firs ferred to p3421. The value measured in the se For the inductance value of the	run is displayed in r ion run is displayed reactor, r3411-r34	$0=1,3,4,5) \text {. This }$ $3410=4,5)$
p3415[0..1]	Infeed excitation current L identification / INF I_exc L_Ident		
A_INF, S_INF	Can be changed: T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{1.00}$	$\begin{aligned} & \operatorname{Max} \\ & 75.00 \text { [\%] } \end{aligned}$	Factory setting 20.00 [\%]
Description:	Sets the magnitude of the excitation frequency for the L identification.		
Index:	$\begin{aligned} & {[0]=\operatorname{Run} 1} \\ & {[1]=\operatorname{Run} 2} \end{aligned}$		
Dependency:	Refer to: p3410, r3411, p3421, p3620, p3622		
Notice:	To correctly identify the current level ($\mathrm{p} 3410=4,5$) depending on the reactor inductance, the following must apply: p3415[0] < p3415[1]		
	For A_INF booksize units, the following applies:		
	The interrelationship between the reactor inductance and the current magnitude should be measured. Generally, the factory setting of p3415[0] and p3415[1] should be kept.		
	For chassis units and S_INF booksize units, the following applies:		
	Generally, there is only a very low inter-relationship between the reactor inductance and the current magnitude. This means that for the factory setting $\mathrm{p} 3415[0]=p 3415[1]=20 \%$, i.e. run 2 is not executed.		
Note:	The reactive current for identification run 2 is set in p3415[1] (adaptation of the current controller when reducing the reactor inductance with increasing current magnitude).		

p3416	Infeed excitation amplitude C identification / INF exc_amp C_Id		
A_INF, S_INF	Can be changed: T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{0.10}$	$\begin{aligned} & \operatorname{Max} \\ & 20.00 \text { [\%] } \end{aligned}$	Factory setting 2.00 [\%]
Description:	Sets the level of the excitation frequency for identification of the total DC link capacitance. The amplitude is indicated as a percentage of the DC voltage setpoint ($\mathrm{Vdc}=\mathrm{p} 0210$ * p 3510).		
Dependency:	Refer to: p3410, r3412, p3422		
p3417	Infeed excitation frequency C identification / INF f_exc C_ID		
A_INF, S_INF	Can be changed: T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{10.00[H z]}$	$\begin{aligned} & \operatorname{Max}_{200.00}[\mathrm{~Hz}] \end{aligned}$	Factory setting $50.00[\mathrm{~Hz}]$
Description: Dependency:	Sets the level of the excitation frequency for identification of the total DC link capacitance. Refer to: p3410, r3412, p3422		
p3421	Infeed inductance / INF Inductance		
A_INF, S_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{0.001}[\mathrm{mH}]$	$\begin{aligned} & \left.\operatorname{Max}_{2000.000}^{[m H}\right] \end{aligned}$	Factory setting $1.000[\mathrm{mH}]$
Description:	Sets the total effective inductance for the closed-loop current control from the sum of the line supply inductance and inductance of the commutating reactor.		
Dependency:	Refer to: p0223, p0225, p3410, p3425, p3614, p3622		
Note:	The controller setting is derived from this value and p3425.		
	The value can be automatically determined using the identification run (p3410).		
	For a parallel circuit, the value corresponds to the inductance of a power unit.		
	For the inductance value of the commutating reactor, p3421-p3424 applies.		
p3422	Infeed DC link capacitance / INF C_DCL		
A_INF, S_INF	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.20[\mathrm{mF}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2000.00[\mathrm{mF}] \end{aligned}$	Factory setting $2.00[\mathrm{mF}]$
Description:	Sets the DC link capacitance for the closed-loop voltage control. This value is preset to p 0227 .		
Dependency:	Refer to: p0227, p3410, p3425		
Note:	The controller setting is derived from this value and p 3425 . A suitable value can be automatically determined using the identification run (p 3410).		

p3424	Infeed, line supply inductance / INF L_line			
A_INF, S_INF	Can be changed: T	Calculated: -	Acce	
	Data type: FloatingPoint32	Dynamic index: -	Fun	
	P-Group: Closed-loop control	Units group: -	Unit	
	Not for motor type: -		Exp	
	$\begin{aligned} & \operatorname{Min} \\ & 0.001[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.000[\mathrm{mH}] \end{aligned}$	$\begin{aligned} & \text { Facts } \\ & 0.001 \end{aligned}$	
Description:	Sets the line supply inductance. This parameter is preset with p0225.			
Dependency: Note:	Refer to: p0223, p0225, p3410, p3425, p3622			
	The controller setting is derived from this value and p3425.			
	The value can be automatically determined using the identification (p3410) if operation with a Voltage Sensing Module is selected. Otherwise, p3424 is set to p3421-p0223.			
p3425[0..1]	Infeed control loop parameter scaling / INF par scaling			
A_INF, S_INF	Can be changed: T	Calculated: -	Acc	
	Data type: FloatingPoint32	Dynamic index: -	Func	
	P-Group: Closed-loop control	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min $1.00 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Fact } \\ & 100.0 \end{aligned}$	
Description: Index:	Sets the scaling factors for con [0] = Scaling, inductance [1] = Scaling, capacitance	ters p3421, p3422 a		
Dependency:	Refer to: p3410, p3421, p3422, p3424, p3614			
Note:	p3425 is automatically set to the optimum value when setting the control parameters using the line supply data identification p3410 >= 2. As the line supply inductance (p3424) increases in comparison to the total inductance (p 3421), lower values must be selected for p3425. This means that the control is adapted to weak line supplies with high relative short-circuit voltage uk or high line supply inductance (also refer to p3614).			
	The scaled control loop parameters become effective for the closed-loop control, i.e. the products p3421 * p3425[0] and p3422 * p3425[1] represent the controller setting.			
p3440	Smart mode configuration / SLM configuration			
A_INF, S_INF	Can be changed: T	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: -	Func	
	P-Group: Closed-loop control	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min	Max	Fact 0001	
Description:	Sets the configuration of the smart mode.			
Bit field:	Bit Signal name 00 Soft pulse mode	1 signal On	0 signal Off	FP
Note:	Re bit 00: When the pulsed mode for the occur.	de-activated, when	higher ph	dients

The active current demand of the line filter is taken into account when calculating the power factor (r0038). The magnitude of the line filter active current depends on the capacitance (p 0221) and the resistance (p 0222) of the line filter.

p3472[0...4] Line supply PLL line supply voltage smoothing time / Line PLL V_I t_sm

Calculated:
Can be changed: U, T
Calculated: -
Dynamic index: -
Units group: -
P-Group: Closed-loop control
Not for motor type: -

Min	Max
$1.0[\mathrm{~ms}]$	$30000.0[\mathrm{~ms}]$

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1

Factory setting

[0] 200.0 [ms]
[1] 100.0 [ms]
[2] 5000.0 [ms]
[3] 8.0 [ms]
[4] 8.0 [ms]

Description: Sets the smoothing time of the line supply voltage for the line supply PLL.
Index:
[0] = Encoderless operation line supply voltage smoothing time
[1] = VSM operation line supply voltage smoothing time
[2] = Detection line supply undervoltage smoothing time
[3] = Detection line supply overvoltage smoothing time
[4] = Detection line supply voltage step smoothing time
Dependency: Refer to: p3400
Note: \quad For the pre-control of the line supply voltage, a smoothed value of the line supply voltage is used in the closed-loop control.
p3472[0]: Sets the PT1 time constant to smooth the line supply voltage for operation without VSM (p3400.5 = 0).
p3472[1]: Sets the PT1 time constant to smooth the line supply voltage for operation with VSM (p3400.5 = 1).
p3472[2]: Sets the smoothing time constant to slowly detect a line supply undervoltage (F6100).
p3472[3]: Sets the smoothing time constant to quickly detect line supply undervoltages for phase failure (A6205).
p3472[4]: Sets the smoothing time constant to quickly adapt the line supply pre-control for line supply voltage steps (p0286).

p3491	Infeed l-offset measurement monitoring time / INF I_offs t_monit		
A_INF, S_INF	Can be changed: T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8832, 8932
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [ms]	Max 65000 [ms]	Factory setting 2000 [ms]
Description:	Sets the monitoring time for the current-offset measurement of the power unit.		
	The time is started with the normal end of the measurement. If the measurement is invalid and if no valid measurement can be taken within the monitoring period (phase currents too high), an appropriate message is generated.		
Note:	Set this parameter to 0 to allow variations in the delay when running-up.		
p3492	Infeed, line supply undervoltage delay time / INF V_line t_del		
A_INF, S_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0[s] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 300 \text { [s] } \end{aligned}$	Factory setting 0 [s]
Description:	Sets the delay time for shutdown due to a line supply undervoltage condition (A06100).		
	After the fault occurs, the power unit is only tripped (shut down) after this delay has expired. If the fault is removed during this design time, then the power unit is not tripped (shut down).		
Dependency:	Refer to: p0283		
	Refer to: F06100		
Note:	The degree of ruggedness of the infeed with respect to fluctuations in the line supply voltage can be increased by parameterizing this delay value.		
	However, the following should be noted:		
	- the infeed power decreases proportionally (linearly) with the line supply voltage.		
	- when other components are connected, for low line supply voltage, operating faults or damage can occur. In this case, the specifications of the connected electrical components should always be carefully observed.		

p3508	Infeed step-up factor maximum / Step-up factor max		
A_INF	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 1.60 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 3.00 \end{aligned}$	Factory setting 1.60
Description:	Sets the maximum permissible step-up factor for the power unit used in conjunction with the line filter parameterized in p0220[0].		
Dependency:	Refer to: p0210, p0220, p3510		
Note:	The maximum step-up factor determines the maximum ratio between the DC link voltage setpoint (p 3510) and the unit supply voltage (p 0210).		
	The input of the DC link voltage setpoint (p 3510) is limited corresponding to the permissible step-up factor (p 3508): p3510 <= p0210 * p3508.		
	Pre-setting values:		
	380 ... 480 V booksize units without Active Interface Module: 1.6		
	380 ... 480 V booksize units with Active Interface Module (p0220 = 41 ... 45): 2		
	380 ... 480 V chassis units: 2		
	500 ... 690 V chassis units: 2		

Maximum values:

380 ... 480 V booksize units without Active Interface Module: 1.6
380 ... 480 V booksize units with Active Interface Module (p0220 = 41 ... 45): 2
380 ... 480 V chassis units: 3
500 ... 690 V chassis units: 3
When the filter setting (p 0220) is changed, then the setting of the maximum step-up factor (p 3508) is also automatically adapted.

p3510	Infeed DC link voltage setpoint / INF Vdc setp		
A_INF	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1774, 8940
	P-Group: Closed-loop control	Units group: 5_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 100.00[\mathrm{~V}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1600.00[\mathrm{~V}] \end{aligned}$	Factory setting 600.00 [V]
Description:	Sets the setpoint for the DC link voltage.		
Dependency:	Refer to: p0210, p0280, p3400, p3508, p3511		
Warning:	Before increasing the voltage limit for pulsed operation of a controlled booksize infeed with line supply voltages p0210 > 415 V it should be checked whether the motors connected to the DC link are specified for the higher motor voltages. The warning information associated with p0210 must be carefully observed.		
Note:	When the Smart Mode is activated ($p 3400.0=1$) the DC link voltage is not regulated, i.e. the value entered here is in this case not effective.		
	The permissible range of the DC link voltage depends on the parameterized unit supply voltage (p 0210) and the permissible, maximum continuous DC link voltage (p 0280).		
	In voltage-controlled operation ($\mathrm{p} 3400.0=0$) the following applies:		
	p3510 > $=1.42$ * p0210 and		
	p3510 <= p3508 * p0210 and		
	p3510 < p 0280.		
	In the Smart Mode (p3400.0 = 1) the following applies:		
	The setpoint p3510 for the DC link voltage control is inactive. In order to permit an adapted display, deviating from voltage-controlled operation, the lower limit p3510 is >= 1.2 * p0210.		

p3511	CI: Infeed DC link voltage supplementary setpoint / INF Vdc Z_set		
A_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the supplementary setpoint for the DC link voltage.		
Dependency:	Refer to: p3510		
p3513	BI: Inhibit voltage-controlled operation / Inhib V_ctrl mode		
A_INF	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source for inhibiting the voltage-controlled mode of the infeed. Refer to: p3400, r3405		

p3520[0...3]	CI: Infeed power pre-control / INF pre-control P		
A_INF	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for power pre-control.		
Dependency:	Refer to: p3521		
Note:	Closed-loop control of the DC link voltage is improved by pre-controlling the power required for the other modules.		
	A non-normalized quantity is expected so that the various power reference values (r2004) of the drive objects do not have to be taken into account. The scaling factors are used to adapt the scaling (p 3521).		
p3521[0...3]	Infeed pre-control power scaling / INF prectrl P scal		
A_INF	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -100000.00000 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100000.00000[\%] \end{aligned}$	Factory setting 100.00000 [\%]
Description:	Sets the scaling factor for the power pre-control.		
Dependency:	Refer to: p3520		
p3530	Infeed current limit motoring / INF I_limit mot		
A_INF	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{1.00} \\ & \text { [Arms] } \end{aligned}$	Max $100000.00 \text { [Arms] }$	Factory setting 10000.00 [Arms]
Description:	Sets the motoring limit for the active line current. The currently effective current limit is displayed in r0067[0].		
Dependency:	Refer to: r0067, p3532		
Caution:	If this limit is selected lower than the maximum current permissible for the power unit (r0067), the infeed can no longer provide its full controlled power.		
	Operating faults of the infeed can occur due to the resulting DC link undervoltage.		
Notice:	For self-commutated infeeds, the DC link voltage decreases if more power is drawn from the DC link by the connected load than can be supplied by the line because of the power unit maximum current or a limit in p3530. If the DC link voltage decreases down to the rectified value, then the complete current - necessary to cover the required active power - flows, uncontrolled into the rectifier circuit via the diodes.		
	This is the reason that, for physical reasons, the value in p3530 cannot act as current limit that is always maintained.		
	The value forms a current threshold from which point onwards the DC link energy is used as buffer for brief power fluctuations.		

p3531	Infeed current limit regenerating / INF I_limit regen		
A_INF	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -100000.00 \text { [Arms] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & -1.00 \text { [Arms] } \end{aligned}$	Factory setting -10000.00 [Arms]
Description:	Sets the limit for the active line supply current when regenerating. The currently effective current limit is displayed in r0067[1].		
Dependency:	Refer to: r0067, p3533		
Caution:	If this limit is selected lower than the maximum current permissible for the power unit (r0067), the infeed can no longer provide its full controlled power.		
Notice:	For self-commutated infeeds, the DC link voltage increases if more power is input to the DC link through the connected source than can be fed to the line because of the maximum power unit current or a limit in p3531		
	The value in p3531 represents a current limit that is always maintained - however, this can result in overvoltage conditions in the DC link.		
	The value in p3531 represents a current limit from which point onwards the capacitance of the DC link can be used as buffer for brief power fluctuations.		
p3532	BI: Infeed, inhibit motori	ot op inhibit	
A_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 8920
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for inhibiting the motoring mode of the infeed.		
Dependency:	Refer to: r3405, p3530		
Notice:	If the motor mode is inhibited although power is withdrawn from the DC link, then the DC link voltage drops to the rectified value.		
	In this state, the DC link is post-charged through the diodes and motoring power is fed to the power unit in spite of the motoring inhibit.		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The inhibit only becomes active after operation has been enabled and the Vdc has been ramped-up (r0863.0 = 1).		
p3533	BI: Infeed, inhibit regene	eration / INF re	
A_INF, S_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 8820, 8920
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to inhibit the regenerating mode of the infeed.		
Dependency:	Refer to: r3405, p3531		
Notice:	The DC link voltage will increase if regenerative operation is inhibited even though power is being regenerated into the DC link.		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The inhibit only becomes active	on has been enabled	been ramped-up (r0863.0 = 1) .

Note:	p3555[0]:		
	Vdc system deviation as a percentage of the setpoint of the DC link voltage (first condition to initiate fast controller intervention). The threshold is also used to internally change over the modulation depth calculation for high system deviations and should therefore generally not be changed!		
	Vdc threshold as a percentage of the rectified value of the current line supply voltage (second condition to initiate the fast controller intervention). Both threshold conditions must be fulfilled to initiate the controller intervention. p3555[2]:		
	Percentage overall level of the fast intervention (scaling factor). For a line supply identification with p3410 $>=2$, the factor is automatically adapted or, for weak line supplies with a high inductance, set to 0 .		
	Percentage correction of the pre-control for a fast voltage dip (dead time compensation).		
	Percentage minimum time between controller interventions (100% corresponds to 100 ms). If high load change frequencies occur with the application, the minimum time between two controller intervention can be reduced using p3555[4].		
	p3555[5]:		
	Percentage overall level of the fast intervention (scaling factor). With $\mathrm{p} 3555[5]=0$, the fast controller intervention is inhibited. For weak line supplies with a high inductance, it makes sense to de-activate the fast intervention.		
p3560	Infeed Vdc controller proportional gain / INF Vdc_ctrl Kp		
A_INF	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.01 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [\%] } \end{aligned}$	Factory setting 100.00 [\%]
Description:	Sets the normalized proportional gain for the DC link voltage controller (Vdc controller).		
Note:	A value of 100% corresponds to the basic setting derived from loop control parameters (p3421, p3422).		
p3562	Infeed,Vdc controller integral time / INF Vdc_ctrl Tn		
A_INF	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.10 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100000.00 \text { [\%] } \end{aligned}$	Factory setting 100.00 [\%]
Description:	Sets the normalized integral time for the DC link voltage controller (Vdc).		
Note:	A value of 100% corresponds to the basic setting derived from loop control parameters (p3421, p3422).		
p3564	Infeed Vdc monitor, time constant / INF Vdc_observe T		
A_INF	Can be changed: T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.0[\mathrm{~ms}] \end{aligned}$	Factory setting 0.2 [ms]
Description:	Sets the filter time constant for the DC link voltage monitor (Vdc).		

r3578	CO: Master/slave current distribution factor, multiplexer output / I_dist_factor outp		
A_INF (Master/Slave)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8948
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\%] \end{aligned}$	$\begin{gathered} \operatorname{Max} \\ -[\%] \end{gathered}$	Factory setting - [\%]
Description:	Displays (connector output) the output for the multiplexer. The signal value is used as standard for the current distribution factor for the infeed master slave operation.		
Dependency:	Refer to: p3576, p3577, p3579		
Note:	If the multiplexer for the master/slave is not required, then it can also be used for another function.		
p3579	CI: Master/Slave current distribution factor / I_dist_factor		
A_INF (Master/Slave)	Can be changed: T Data type: Unsigned32 / FloatingPoint32	Calculated: -	Access level: 3
		Dynamic index: -	Func. diagram: 8948
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underline{M i n}$	Max	Factory setting 3578[0]
Description:	For a master slave infeed configuration, the value reduced in this way can be distributed to the slave axes. Th overall gain from the perspective of the voltage controller remains the same.		
Dependency:	Refer to: p3576, p3577, r3578		
r3602	Infeed control status / INF ctrl state		
A_INF	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 bin	Max 1000 bin	Factory setting
Description: Value:	Displays the status of the closed-loop infeed control.		
	0 : Initialization running		
	1: Pulse enable missing		
	2: Ramp-up, DC link voltage		
	3: Ramp-up reactive current		
	4: Shutdown running		
	5: Reset identification		
	6: Operation		
	7: Identification running		
	8: Smart mode running		
p3603	Infeed current pre-control factor D component / INF I_ctrl D-comp		
A_INF	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8946
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$	Max $500.00 \text { [\%] }$	$\begin{aligned} & \text { Factory setting } \\ & 100.00 \text { [\%] } \end{aligned}$
Description:	The D component of the current pre-contro weigh the pre-calculated D component. If	is determined from the dynamic pre-control	the filter. p3603 can be us the factor to zero.

r3606	Infeed active current controller system deviation / INF I_act ctrl dev		
A_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8946
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the system deviation of the active current controller.		
r3608	Infeed reactive current controller system deviation / INF I_reactvCtrDev		
A_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8946
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Arms]	Max - [Arms]	Factory setting - [Arms]
Description:	Displays the system deviation of the reactive current controller.		
p3610	Infeed reactive current fixed setpoint / INF I_reactv F_set		
A_INF	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1774, 8946
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -10000.0 \text { [Arms] } \end{aligned}$	Max 10000.0 [Arms]	Factory setting 0.0 [Arms]
Description:	Sets the fixed setpoint for the reactive current.		
Dependency:	Refer to: r0029, r0075, r0076		
Notice:	If the line phases are reversed and the line voltage therefore has a negative orientation ($\mathrm{r} 0066<0$), it should be noted that the sign of the reactive current is also reversed. The negated value of p3610 is effective in display parameters r0029, r0075, r0076 as appropriate.		
Note:	p3610 < 0: Inductive reactive current is produced, i. e. the current follows the voltage.		
	This definition applies to 3 AC voltage systems both with positive rotational orientation (r0066>0) and for negative rotational orientation (r0066 < 0).		
p3611	CI: Infeed reactive current supplementary setpoint / INF I_reactv Z_set		
A_INF	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: -	Func. diagram: 8946
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the supplementary setpoint of the reactive current.		

p3614	Infeed current actual value filter smoothing time / INF I_act t_sm		
A_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8950
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \text { [ms] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2.000 \text { [ms] } \end{aligned}$	Factory setting 0.000 [ms]
Description: Note:	Sets the time constant for the PT1 filtering of the active current actual value and reactive current actual value. The PT1 filter with a clock cycle dead time can be used to stabilize the closed-loop current control for extremely weak line supplies with higher relative short-circuit voltage uk). The current actual value filter is de-activated with p3614 $=0$. For an automatic controller setting with p3410 $>=2$, the current actual value filter is automatically preset.		
p3615	Infeed current controller P gain / INF I_ctrl Kp		
A_INF	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8946
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [\%] } \end{aligned}$	Factory setting 100.00 [\%]
Description: Note:	Sets the normalized P gain for closed-loop current control of the infeed. A value of 100% corresponds to the basic setting derived from loop control parameters (p3421, p3422).		
p3617	Infeed current controller integral time / INF I_ctrl Tn		
A_INF	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8946
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.10 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100000.00 \text { [\%] } \end{aligned}$	Factory setting 100.00 [\%]
Description: Note:	Sets the normalized integral time for the infeed current controller. A value of 100% corresponds to the basic setting derived from loop control parameters (p3421, p3422).		
r3618	Infeed active current controller, integral component / INF I_act_ctrl Tn		
A_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8946
	P-Group: Closed-loop control		Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the integral component of the active current controller.		
r3619	Infeed reactive current controller integral component / INF I_reactv_ctrTn		
A_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8946
	P-Group: Closed-loop control		Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the integral action component of the reactive current controller.		

r3633	Infeed input voltage Vsq (reactive component) / INF V_inp Vsq		
A_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1774, 8946, 8950
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [Vrms]	Max - [Vrms]	Factory setting - [Vrms]
Description:	Displays the voltage Vsq (reactive component) at the 3-phase line supply input of the power unit.		
r3635	Infeed input voltage angle / INF V_inp angle		
A_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8950
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $-\left[{ }^{\circ}\right]$	$\begin{gathered} \operatorname{Max} \\ -\left[{ }^{\circ}\right] \end{gathered}$	Factory setting - [${ }^{\circ}$]
Description:	Displays the angle of the input voltage (relative to the line angle).		
p3660	VSM input line supply voltage, voltage scaler / VSM inp V_scaler		
A_INF, S_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100000.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	Sets the voltage scaler for the Voltage Sensing Module (VSM).		
Note:	When the 690 V input is used (X 522) without voltage scaler,, 0 \% should be entered.		
	When the 100 V input (X521) is used with voltage scaler to measure medium voltages, the dividing (scaling) factor multiplied by 100% should be entered.		
	Example:		
	1000 V line supply voltage, voltage scaling, 10:1		
	--> voltage at the VSM input is 100 V		
	--> p3660 = 10 * $100 \%=1000$ \%		

p3660[0...n]	VSM input line supply voltage, voltage scaler / VSM inp V_scaler		
VECTOR	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.00 \text { [\%] }$	$\begin{aligned} & \text { Max } \\ & 100000.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	Sets the voltage scaler for the Voltage Sensing Module (VSM).		
Note:	When the 690 V input is used (X522) without voltage scaler,, 0% should be entered.		
	When the 100 V input (X521) is used with voltage scaler to measure medium voltages, the dividing (scaling) factor multiplied by 100% should be entered.		
	Example:		
	1000 V line supply voltage, voltage scaling, 10:1		
	--> voltage at the VSM input is 100 V		
	--> p3660 = 10 * $100 \%=1000 \%$		

r3661	CO: VSM input line supply voltage u1-u2 / VSM inp u1-u2		
A_INF, S_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8850, 8950, 9880
	P-Group: Closed-loop control	Units group: 5_3	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [V]	$\begin{aligned} & \operatorname{Max} \\ & -[V] \end{aligned}$	Factory setting - [V]
Description:	Displays the voltage between L1 and L2.		
Dependency:	Refer to: r0025, r0072, p3660		
Note:	X521.1 or X522.1: Connection of L1		
	X521.2 or X522.2: Connection of L2		
	X521.3 or X522.3: Connection of L3		
	The absolute voltage value (3-ph. AC) resulting from the phase voltages is displayed unsmoothed in r0072[1] and smoothed in r0025[1].		
r3661[0...n] VECTOR	CO: VSM input line supply voltage u1-u2 / VSM inp u1-u2		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: 5_3	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [V]	Max $-[V]$	Factory setting $-[V]$
Description:	Displays the voltage between L1 and L2.		
Dependency:	Refer to: p3660		
Note:	X521.1 or X522.1: Connection of L1		
	X521.2 or X522.2: Connection of L2		
	X521.3 or X522.3: Connection of L3		
r3662	CO: VSM input line supply voltage u2-u3 / VSM inp u2-u3		
A_INF, S_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 8850, 8950, 9880
	P-Group: Closed-loop control	Units group: 5_3	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [V]	$\begin{aligned} & \operatorname{Max} \\ & -[V] \end{aligned}$	Factory setting - [V]
Description:	Displays the voltage between L2 and L3.		
Dependency:	Refer to: r0025, r0072, p3660		
Note:	X521.2 or X522.2: Connection of L2		
	X521.3 or X522.3: Connection of L3		
	The absolute voltage value resulting from the phase voltages is displayed in r0072[1] and smoothed in r0025[1].		
r3662[0...n]	CO: VSM input line supply voltage u2-u3 / VSM inp u2-u3		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: 5_3	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [V]	$\begin{aligned} & \text { Max } \\ & -[V] \end{aligned}$	Factory setting - [V]
Description:	Displays the voltage between L2 and L3.		

Dependency: Note:	Refer to: p3660 X521.2 or X522.2: Connection of L2 X521.3 or X522.3: Connection of L3			
r3664.0..1	BO: VSM temperature evaluation, status / VSM temp status			
A_INF, S_INF	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: -	Fun	
	P-Group: Terminals	Units group: -	Unit	
	Not for motor type: -		Exp	
	Min	Max	Fact	
Description:	Displays the status of the temperature evaluation of the Voltage Sensing Module (VSM). This displays as to whether the temperature actual value has exceeded the fault/alarm threshold.			
Bit field:	Bit Signal name 00 Temperature alarm threshold exceeded 01 Temperature fault threshold exceeded	1 signal Yes Yes	0 signal No No	FP
Dependency:	Refer to: p3665, r3666, p3667, p3668			
r3664[0...n]	CO: VSM temperature evaluation, status / VSM temp status			
VECTOR	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: -	Fun	
	P-Group: Terminals	Units group: -	Unit	
	Not for motor type: -			
	Min	Max	Fact	
Description:	Displays the status of the temperature evaluation of the Voltage Sensing Module (VSM). This displays as to whether the temperature actual value has exceeded the fault/alarm threshold.			
Bit field:	Bit Signal name 00 Temperature alarm threshold exceeded 01 Temperature fault threshold exceeded	1 signal Yes Yes	0 signal No No	FP
Dependency:	Refer to: p3665, r3666, p3667, p3668			
p3665[0...n]	VSM temperature evaluation, sensor type / VSM TempSensorType			
A_INF, S_INF, VEC-	Can be changed: T	Calculated: -	Acce	
TOR	Data type: Integer16	Dynamic index: -	Fuı	
	P-Group: Closed-loop control			
	$\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$	Max	Fact 0	
Description:	Setting of the temperature sensor for the Voltage Sensing Module (VSM).			
Value:	0: No sensor 1: PTC 2: KTY84			

r3666	CO: VSM temperature KTY / VSM temp KTY		
A_INF, S_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9886
	P-Group: Closed-loop control	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $-\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the temperature actual value of a KTY84 temperature sensor connected to the Voltage Sensing Module (VSM).		
	Prerequisite:		
	A KTY84 sensor is connected and p3665 is set to 2.		
Dependency:	Refer to: p3665		
Note:	For sensor type PTC (p3665 = 1), the following applies:		
	- below the nominal response temperature, r3666 =-50 ${ }^{\circ} \mathrm{C}$.		

r3666[0...n]	CO: VSM temperature KTY / VSM temp KTY		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9886
	P-Group: Closed-loop control	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the temperature actual value of a KTY84 temperature sensor connected to the Voltage Sensing Module (VSM).		
	Prerequisite:		
	A KTY84 sensor is connected and p3665 is set to 2.		
Dependency:	Refer to: p3665		
Note:	For sensor type PTC (p3665 = 1), the following applies:		
	- below the nominal response temperature, r3666 =-50 ${ }^{\circ} \mathrm{C}$.		
	- above the nominal response temperature, r3666 $=199.9{ }^{\circ} \mathrm{C}$.		
p3667	VSM line filter overtemperature alarm threshold / VSMfilt_T A_thresh		
A_INF, S_INF	Can be changed: T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9886
	P-Group: -	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{0\left[{ }^{\circ} \mathrm{C}\right]}$	Max $301\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting 150 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the alarm threshold for the KTY temperature sensor of the Voltage Sensing Module (VSM) to monitor the line filter temperature.		
	Prerequisite:		
	A KTY84 sensor is connected and p3665 is set to 2.		
Dependency:	Refer to: p3665		
	Refer to: A34211		

p3669[0...n]	VSM line filter overtemperature hysteresis / VSM filt_T hyst	
VECTOR	Can be changed: T Calculated: -	Access level: 3
	Data type: FloatingPoint32 Dynamic index: -	Func. diagram: 9886
	P-Group: - Units group: 21_2	Unit selection: p0505
	Not for motor type: -	Expert list: 1
	Min Max $1.00[\mathrm{~K}]$ $50.00[\mathrm{~K}]$	Factory setting 3.00 [K]
Description: Dependency:	Sets the hysteresis for the alarm threshold of the VSM to monitor the line filter temperature. Refer to: p3667	
p3670	VSM 10 V input CT gain / VSM CT_gain	
A_INF, S_INF	Can be changed: T Calculated: -	Access level: 3
	Data type: FloatingPoint32 Dynamic index: -	Func. diagram: 9880
	P-Group: Closed-loop control Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1
	Min Max 0.000 [A]$\quad 1000.000$ [A]	Factory setting 1.000 [A]
Description:	Sets CT gain of the CT connected at the 10 V input of the Voltage Sensing Module (VSM). The parameter specifies the current magnitude in [A] referred to the input voltage at the VSM in [V]. Example: CT with 1 V per 200 A . $\text { --> p3670 = } 200$	
Dependency:	Refer to: r3671, r3672	
Note:	The CT for phase 1 is connected at terminals X520.1 and X520.2 of the VSM.	
p3670[0...n]	VSM 10 V input CT gain / VSM CT_gain	
VECTOR	Can be changed: T Calculated: -	Access level: 3
	Data type: FloatingPoint32 Dynamic index: -	Func. diagram: 9880
	P-Group: Closed-loop control Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1
	Min Max $0.000[A]$ $1000.000[A]$	Factory setting 1.000 [A]
Description:	Sets CT gain of the CT connected at the 10 V input of the Voltage Sensing Module (VSM). The parameter specifies the current magnitude in [A] referred to the input voltage at the VSM in [V]. Example: CT with 1 V per 200 A . $\text { --> p3670 = } 200$	
Dependency:	Refer to: r3671, r3672	
Note:	The CT for phase 1 is connected at terminals X520.1 and X520.2 of the VSM. The CT for phase 2 is connected at terminals X520.3 and X520.4 of the VSM.	

r3671	CO: VSM 10 V input CT 1 actual value / VSM CT 1 I_act		
A_INF, S_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [A]	Max - [A]	Factory setting - [A]
Description:	Displays the current actual value from current transducer (CT) 1 at the 10 V input of the Voltage Sensing Module (VSM).		
Dependency:	Refer to: p3670		
Note:	The CT for phase 1 is connected at terminals X520.1 and X520.2 of the VSM.		
r3671[0...n]	CO: VSM 10 V input CT 1 actual value / VSM CT 1 I_act		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [A]	Max - [A]	Factory setting - [A]
Description:	Displays the current actual value from current transducer (CT) 1 at the 10 V input of the Voltage Sensing Module (VSM).		
Dependency:	Refer to: p3670		
Note:	The CT for phase 1 is connected at terminals X520.1 and X520.2 of the VSM.		
r3672	CO: VSM 10 V input CT 2 actual value / VSM CT 2 I_act		
A_INF, S_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [A]	Max - [A]	Factory setting - [A]
Description:	Displays the current actual value from current transducer (CT) 2 at the 10 V input of the Voltage Sensing Module (VSM).		
Dependency:	Refer to: p3670		
Note:	The CT for phase 2 is connected at terminals X520.3 and X520.4 of the VSM.		
r3672[0...n]	CO: VSM 10 V input CT 2 actual value / VSM CT 2 I_act		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [A]	Max - [A]	Factory setting - [A]
Description:	Displays the current actual value from current transducer (CT) 2 at the 10 V input of the Voltage Sensing Module (VSM).		
Dependency:	Refer to: p3670		
Note:	The CT for phase 2 is connected at terminals X520.3 and X520.4 of the VSM.		

r3673	CO: VSM 10 V input 1 actual value / VSM inp 1 V_act		
A_INF, S_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $-[V]$	$\begin{aligned} & \operatorname{Max} \\ & -[V] \end{aligned}$	Factory setting - [V]
Description: Dependency: Note:	Displays the actual value of the Refer to: p3670 10 V input 1: Terminals X 520.1	sured at the 10 V inp	ge Sensing Modules (VSM).
r3673[0...n]	CO: VSM 10 V input 1 actual value / VSM inp 1 V_act		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -[V] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[V] \end{aligned}$	Factory setting - [V]
Description: Dependency: Note:	Displays the actual value of the Refer to: p3670 10 V input 1: Terminals X520.1	sured at the 10 V inp	ge Sensing Modules (VSM).
r3674	CO: VSM 10 V input 2 actual value / VSM inp 2 V_act		
A_INF, S_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -[\mathrm{V}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[V] \end{aligned}$	Factory setting $-[V]$
Description: Dependency: Note:	Displays the actual value of th Refer to: p3670 10 V input 2: Terminals X520.3	sured at the 10 V in	ge Sensing Modules (VSM).
r3674[0...n]	CO: VSM 10 V input 2 actual value / VSM inp 2 V_act		
VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [V]	$\begin{aligned} & \operatorname{Max} \\ & -[V] \end{aligned}$	Factory setting $-[V]$
Description: Dependency: Note:	Displays the actual value of the Refer to: p3670 10 V input 2: Terminals X 520.3	sured at the 10 V in	ge Sensing Modules (VSM).

p3676	VSM line filter capacitance alarm threshold / VSMfilt C A_thresh		
A_INF, S_INF	Can be changed: T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.00 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 100.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	Sets the alarm threshold for the change of the capacitance of the line filter. The monitoring of the filter capacitance is de-activated with p3676 $=0.00 \%$.		
Dependency:	Refer to: p3670		
	Refer to: A06250		
Note:	Prerequisites for monitoring the filter capacitance:		
	The phase currents must be measured at two capacitors of the line filter. To do this, CTs should be connected at the 10 V inputs of the VSM.		

r3677[0...2]	CO: VSM line filter capacitance / VSM filt C	
A_INF, S_INF	Can be changed: - Calculated: -	Access level: 4
	Data type: FloatingPoint32 Dynamic index: -	Func. diagram: -
	P-Group: Closed-loop control Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1
	Min Max $-[\mu \mathrm{F}]$ $-[\mu \mathrm{F}]$	Factory setting - [$\mu \mathrm{F}$]
Description:	Displays the capacitance of the line filter (for a star circuit configuration).	
Index:	$\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase } \mathrm{V}} \\ & {[2]=\text { Phase } \mathrm{W}} \end{aligned}$	
Dependency:	Refer to: p3676	
Note:	Prerequisite:	
	The monitoring of the filter capacitance is activated.	

p3680

BI: Braking Module internal inhibit / BM int inhib		
Can be changed: T	Calculated: -	Access level: 3
Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
P-Group: -	Units group: -	Unit selection: -
Not for motor type: -		Expert list: 1
Min	Max	Factory setting
-	-	0

Description: Sets the signal source to inhibit the internal Braking Module.
1 signal: The Braking Module is inhibited.
0 signal: The Braking Module is enabled.
Dependency:
Refer to: A06904
Caution:
When the Braking Module is inhibited, no energy can be dissipated in the braking resistor.

p3681	BI: Activating Braking Module internal DC link fast discharge / BM intDCdischg act		
B_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to activate the DC link fast discharge for an internal braking module.		
	The DC link fast discharge is started later with delay time (p 3682) when the following conditions apply: - BI: p3681 = 1 signal.		
	- an external line contactor is opened via r0863.1 "energize contactor".		
	The DC link fast discharge is interrupted when the following conditions apply:		
	- BI: p3681 = 0 signal.		
	- ON command for the infeed.		
Recommend.:	The DC link fast discharge should be activated if there is an external line contactor and is correctly interconnected (r0863.1, p0860). If the DC link fast discharge is not activated together with an external line contactor, then faults could occur when pre-charging (e.g. F300027).		
Dependency:	Refer to: p3682		
	Refer to: F30027		
p3682	Braking Module internal DC link fast discharge delay time / BM int DC dischg		
B_INF	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 500 [ms]	$\underset{4294967295[\mathrm{~ms}]}{\operatorname{Max}^{2}}$	Factory setting 1000 [ms]
Description:	Sets the delay time for switching in the DC link fast discharge for an internal Braking Module.		
Dependency:	Refer to: p3681		
r3685	BO: Digital Braking Module: Pre-alarm I2t shutdown / Dig BM A I2t shutd		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	The binector output uses a 1 signal to indicate that 80% of the highest permissible 12 t value has been reached in the Braking Module.		
Dependency:	Refer to: A06905		
r3686	BO: Digital Braking Module Fault / Dig BM Fault		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
		-	
Description: Dependency:	The binector output uses a 1 signal to indicate an overcurrent fault or an 12 t shutdown in the Braking Module. Refer to: F06906		

p3701	APC enc sel / APC enc sel				
SERVO (APC)	Can be changed: C1(4), U		Calculated: -	Access level: 3	
	Data type: Integer16		Dynamic index: -	Func. diagram: -	
	P-Group: Data sets		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & 2 \end{aligned}$		$\begin{aligned} & \text { Max } \\ & 3 \end{aligned}$	Factory set 2	
Description:	Sets the number of the encoder used for for APC (Advanced Positioning Control).				
Value:	2: \quad Encoder 2				
Note:	An encoder used for APC is, regarding its fault messages, treated just like a motor encoder - this means that its fault messages are assigned to the drive.				
p3704[0...n]	APC filter activation / APC filter act				
SERVO (APC)	Can be changed: U, T		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dynamic index: DDS, p0180	Func. diagram: 7012	
	P-Group: Closed-loop control		Units group: -	Unit selection: -	
	Not for motor type: REL			Expert list: 1	
	Min		Max	Factory setting 0000 bin	
Description:	Setting to activate the filter for APC (Advanced Positioning Control).				
Bit field:		Signal name	1 signal	0 signal	FP
		Activate filter 1.1	Yes	No	-
		Activate filter 2.1	Yes	No	-
		Activate filter 2.2	Yes	No	-
		Activate filter 3.1	Yes	No	-
		Activate filter 3.2	Yes	No	-
p3705[0...n]	APC filter type / APC filter type				
SERVO (APC)	Can be changed: U, T		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dynamic index: DDS, p0180	Func. diagram: 7012	
	P-Group: Closed-loop control		Units group: -	Unit selection: -	
	Not for motor type: REL			Expert list: 1	
	Min		Max	Factory setting 0000 bin	
Description:	Sets the filter type for the filter for APC (Advanced Positioning Control).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Filter 1.1 type	A. Filter 2nd ord.	Low pass (PT2)	-
	04	Filter 2.1 type	A. Filter 2nd ord.	Low pass (PT2)	-
	05	Filter 2.2 type	A. Filter 2nd ord.	Low pass (PT2)	-
	08	Filter 3.1 type	A. Filter 2nd ord.	Low pass (PT2)	-
	09	Filter 3.2 type	A. Filter 2nd ord.	Low pass (PT2)	-

p3706[0...n]	APC sub-sampling, filter 2.x / APC sub-samp. 2.X		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
	1	64	1
Description:	Sets the factor for the sub-sampling in the branch of filter 2.1 and 2.2 for APC (Advanced Positioning Control).		

Note: \quad The values are integer multiples of the speed controller clock cycle (p0115[1]).

p3707[0...n]	APC sub-sampling, filter 3.x / APC sub-samp. 3.x		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 64 \end{aligned}$	Factory setting 1
Description: Note:	Sets the factor for the sub-sampling in the branch of filter 3.1 and 3.2 for APC (Advanced Positioning Control). The values are integer multiples of the speed controller clock cycle ($\mathrm{p} 0115[1]$).		
p3708[0...n]	APC velocity actual value smoothing time encoder 2 / APC v_act t_sm 2		
SERVO (APC, Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 4711
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 50.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description:	Sets the smoothing time constant (PT1) for the velocity actual value of encoder 2 with APC (Advanced Positioning Control).		
Note:	The velocity actual value should be smoothed for encoders with a low pulse number or for resolvers.		
p3708[0...n]	APC speed actual value smoothing time encoder 2 / APC n_act t_sm 2		
SERVO (APC)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 4711
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 50.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description:	Sets the smoothing time constant (PT1) for the speed actual value of encoder 2 with APC (Advanced Positioning Control).		
Note:	The speed actual value should be smoothed for encoders with a low pulse number or for resolvers.		
p3709[0...n]	APC velocity actual value smoothing time encoder 3 / APC v_act t_sm 3		
SERVO (APC, Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 4711
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	Max $50.00[\mathrm{~ms}]$	Factory setting 0.00 [ms]
Description:	Sets the smoothing time constant (PT1) for the velocity actual value of encoder 3 with APC (Advanced Positioning Control).		
Note:	The velocity actual value should be smoothed for encoders with a low pulse number or for resolvers.		

p3709[0...n]	APC speed actual value smoothing time encoder 3 / APC n_act t_sm 3		
SERVO (APC)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 4711
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 50.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description:	Sets the smoothing time constant (PT1) for the speed actual value of encoder 3 with APC (Advanced Positioning Control).		
Note:	The speed actual value should be smoothed for encoders with a low pulse number or for resolvers.		
p3711[0...n]	APC filter 1.1 denominator natural frequency / APC Filt 1.1 fn_d		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	Max $16000.0[\mathrm{~Hz}]$	Factory setting 2000.0 [Hz]
Description:	Sets the denominator natural frequency for filter 1.1 (PT2, general 2nd Order filter) for APC (Advanced Positioning Control).		
Dependency:	Refer to: p3704, p3705		
p3712[0...n]	APC filter 1.1 denominator damping / APC Filt 1.1 D_d		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.050 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description: Dependency:	Sets the denominator damping for filter 1.1 (PT2, general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705		
p3713[0...n]	APC filter 1.1 numerator natural frequency / APC Filt 1 fn_n		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 2000.0 [Hz]
Description: Dependency:	Sets the numerator natural frequency for filter 1.1 (general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705		
p3714[0...n]	APC filter 1.1 numerator damping / APC Filt 1.1 D_n		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description:	Sets the numerator damping for filter 1.1 (general 2nd Order filter) for APC (Advanced Positioning Control).		

Dependency:	Refer to: p3704, p3705		
p3721[0...n]	APC filter 2.1 denominator natural frequency / APC Filt 2.1 fn_d		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 2000.0 [Hz]
Description:	Sets the denominator natural frequency for filter 2.1 (PT2, general 2nd Order filter) for APC (Advanced Positioning Control).		
Dependency:	Refer to: p3704, p3705		
p3722[0...n]	APC filter 2.1 denominator damping / APC Filt 2.1 D_d		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.050 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description: Dependency:	Sets the denominator damping for filter 2.1 (PT2, general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705		
p3723[0...n]	APC filter 2.1 numerator natural frequency / APC Filt 2.1 fn_n		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.5} \\ & 0 . \mathrm{Hz}] \end{aligned}$	Max $16000.0[\mathrm{~Hz}]$	Factory setting 2000.0 [Hz]
Description: Dependency:	Sets the numerator natural frequency for filter 2.1 (general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705		
p3724[0...n]	APC filter 2.1 numerator damping / APC Filt 2.1 D_n		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description: Dependency:	Sets the numerator damping for filter 2.1 (general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705		

p3726[0...n]	APC filter 2.2 denominator natural frequency / APC Filt 2.2 fn_d		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.5[H z]} \end{aligned}$	Max 16000.0 [Hz]	Factory setting 2000.0 [Hz]
Description:	Sets the denominator natural frequency for filter 2.2 (PT2, general 2nd Order filter) for APC (Advanced Positioning Control).		
Dependency:	Refer to: p3704, p3705		
p3727[0...n]	APC filter 2.2 denominator damping / APC Filt 2.2 D_d		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0} \\ & 0.050 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description: Dependency:	Sets the denominator damping for filter 2.2 (PT2, general 2nd Order filter) for APC (Advanced Positioning Control).		
p3728[0...n]	APC filter 2.2 numerator natural frequency / APC Filt 2.2 fn_n		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.5[H z]} \end{aligned}$	$\begin{aligned} & \operatorname{Max}_{16000.0}^{[H z]} \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 2000.0[\mathrm{~Hz}] \end{aligned}$
Description: Dependency:	Sets the numerator natural frequency for filter 2.2 (general 2nd Order filter) for APC (Advanced Positioning Control) Refer to: p3704, p3705		
p3729[0...n]	APC filter 2.2 numerator damping / APC Filt 2.2 D_n		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7029
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min 0.000	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 0.700 \end{aligned}$
Description: Dependency:	Sets the numerator damping for filter 2.2 (general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705		
p3731[0...n]	APC filter 3.1 denominator natural frequency / APC Filt 3.1 fn_d		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.5[H z]} \end{aligned}$	Max $16000.0[\mathrm{~Hz}]$	$\begin{aligned} & \text { Factory setting } \\ & 2000.0[\mathrm{~Hz}] \end{aligned}$
Description:	Sets the denominator natural frequency for filter 3.1 (PT2, general 2nd Order filter) for APC (Advanced Positioning Control).		

Dependency:	Refer to: p3704, p3705		
p3732[0...n]	APC filter 3.1 denominator damping / APC Filt 3.1 D_d		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.050 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description: Dependency:	Sets the denominator damping for filter 3.1 (PT2, general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705		
p3733[0...n]	APC filter 3.1 numerator natural frequency / APC Filt 3.1 fn_n		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 2000.0 [Hz]
Description: Dependency:	Sets the numerator natural frequency for filter 3.1 (general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705		
p3734[0...n]	APC filter 3.1 numerator damping / APC Filt 3.1 D_n		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.000 \end{aligned}$	Max 10.000	Factory setting 0.700
Description: Dependency:	Sets the numerator damping for filter 3.1 (general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705		
p3736[0...n]	APC filter 3.2 denominator natural frequency / APC Filt 3.2 fn_d		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting 2000.0 [Hz]
Description:	Sets the denominator natural frequency for filter 3.2 (PT2, general 2nd Order filter) for APC (Advanced Positioning Control).		
Dependency:	Refer to: p3704, p3705		
p3737[0...n]	APC filter 3.2 denominator damping / APC Filt 3.2 D_d		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		
	$\begin{aligned} & \text { Min } \\ & 0.050 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.700
Description:	Sets the denominator damping for filter 3.2 (PT2, general 2nd Order filter) for APC (Advanced Positioning Control).		

Dependency:	Refer to: p3704, p3705		
p3738[0...n]	APC filter 3.2 numerator natural frequency / APC Filt 3.2 fn_n		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.5[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 16000.0[\mathrm{~Hz}] \end{aligned}$	Factory setting $2000.0[\mathrm{~Hz}]$
Description: Dependency:	Sets the numerator natural frequency for filter 3.2 (general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705		
p3739[0...n]	APC filter 3.2 numerator damping / APC Filt 3.2 D_n		
SERVO (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min 0.000	Max 10.000	Factory setting 0.700
Description: Dependency:	Sets the numerator damping for filter 3.2 (general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705		
p3750[0...n]	CI: APC acceleration sensor input / APC accel input		
SERVO (APC)	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: CDS, p0170	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting 0
Description: Dependency:	Sets the signal source for the actual value of the acceleration sensor for APC (Advanced Positioning Control). Refer to: p3700		
p3751[0...n]	APC acceleration sensor high pass time constant / APC accel DT1 T		
SERVO (APC)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 10000.00[\mathrm{~ms}] \end{aligned}$	Factory setting 100.00 [ms]
Description: Dependency:	Sets the time constant of the high pass filter for the acceleration sensor for APC (Advanced Positioning Control). Refer to: p3700, p3750		
p3760[0...n]	APC load velocity controller 1 P gain / APC v_load ctr1 Kp		
SERVO (APC, Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		
	$\begin{aligned} & \operatorname{Min} \\ & -100.000 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.000 \end{aligned}$	Factory setting 0.000
Description:	Sets the proportional gain of the load velocity controller 1 for APC (Advanced Positioning Control). The gain acts on the difference between the velocity setpoint and load velocity in the branch for filter 2.1 and 2.2.		

p3760[0...n]	APC load speed controller 1 P gain / APC n_load ctr1 Kp		
SERVO (APC)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, pO180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
	-100.000	0.000	
Description:	Sets the proportional gain of the load speed controller 1 for APC (Advanced Positioning Control).		
	The gain acts on the difference between the speed setpoint and load speed in the branch for filter 2.1 and 2.2.		

p3761[0...n]	APC load velocity controller 1 rate time / APC v_load ctr1 Tv		
SERVO (APC, Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
	$-500.00[\mathrm{~ms}]$	$500.00[\mathrm{~ms}]$	0.00 [ms]
Description:	Sets the rate time of the load velocity controller 1 for APC (Advanced Positioning Control).		
	The rate time acts on the load acceleration in the branch for filter 2.1 and 2.2.		

p3761[0...n] APC load speed controller 1 rate time / APC n_load ctr1 Tv
SERVO (APC) Can be changed: U, T Calculated: CALC MOD CON

Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL

Min	Max
$-500.00[\mathrm{~ms}]$	$500.00[\mathrm{~ms}]$

Access level: 2
Func. diagram: 7012
Unit selection: -
Expert list: 1
Factory setting
0.00 [ms]

Description: Sets the rate time of the load speed controller 1 for APC (Advanced Positioning Control). The rate time acts on the load acceleration in the branch for filter 2.1 and 2.2.
p3765[0...n] APC load velocity controller 2 P gain / APC v_load ctr2 Kp
SERVO (APC, Lin) Can be changed: U, T

Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL
Min
-100.000
Sets the proportional gain of the load velocity controller 2 for APC (Advanced Positioning Control). The gain acts on the difference between the velocity setpoint and load velocity in the branch for filter 3.1 and 3.2.

p3765[0...n]	APC load speed controller 2 P gain / APC n_load ctr2 Kp		
SERVO (APC)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
	-100.000	0.000	

p3766[0...n]	APC load velocity controller 2 rate time / APC v_load ctr2 Tv		
SERVO (APC, Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -500.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 500.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description:	Sets the rate time of the load velocity controller 2 for APC (Advanced Positioning Control). The rate time acts on the load acceleration in the branch for filter 3.1 and 3.2.		
p3766[0...n]	APC load speed controller 2 rate time / APC n_load ctr2 Tv		
SERVO (APC)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -500.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 500.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description:	Sets the rate time of the load speed controller 2 for APC (Advanced Positioning Control). The rate time acts on the load acceleration in the branch for filter 3.1 and 3.2.		
r3770	CO: APC load velocity / APC v_load		
SERVO (APC, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7012
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description: Dependency:	Displays the load velocity for APC (Advanced Positioning Control). Refer to: r3771		
r3770	CO: APC load speed / APC n_load		
SERVO (APC)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7012
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the load speed for APC (Advanced Positioning Control). Refer to: r3771		
Dependency:			
r3771	CO: APC load velocity smoothed / APC v_load smth		
SERVO (APC, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4711, 5040, $5042,5210$
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description: Dependency:	Displays the smoothed load velocity for APC (Advanced Positioning Control). Refer to: p1441, r3770		

r3771	CO: APC load speed smoothed / APC n_load smth		
SERVO (APC)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 4711, 5040, 5042, 5210
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the smoothed load speed for APC (Advanced Positioning Control).		
Dependency:	Refer to: p1441, r3770		
r3772[0...1]	APC filter branch 2 display values / APC branch 2 val		
SERVO (APC, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7012
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description: Index:	Displays the velocities in filter branch 2. [0] = Filter 2.1 input value [1] = Filter 2.2 output value		
r3772[0...1]	APC filter branch 2 display values / APC branch 2 val		
SERVO (APC)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7012
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description: Index:	Displays the speeds in filter branch 2. [0] = Filter 2.1 input value [1] = Filter 2.2 output value		
r3773[0...1]	APC filter branch 3 display values / APC branch 3 val		
SERVO (APC, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7012
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description: Index:	[0] = Filter 3.1 input value [1] = Filter 3.2 output value		

r3773[0...1]	APC filter branch 3 display values / APC branch 3 val		
SERVO (APC)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7012
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the speeds in filter branch 3.		
Index:	[0] = Filter 3.1 input value [1] = Filter 3.2 output value		
r3777[0...1]	CO: APC filter branch 1 display values / APC branch 1 val		
SERVO (APC, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7012
	P-Group: Setpoints	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [m/min]	Max - [m/min]	Factory setting - [m/min]
Description:	Displays the velocities in filter branch 1.		
Index:	$\begin{aligned} & \text { [0] = Filter } 1.1 \text { input value } \\ & {[1]=\text { Filter } 1.1 \text { output value }} \end{aligned}$		
r3777[0...1]	CO: APC filter branch 1 display values / APC branch 1 val		
SERVO (APC)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7012
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description: Index:	$\begin{aligned} & {[0]=\text { Filter } 1.1 \text { input value }} \\ & {[1]=\text { Filter } 1.1 \text { output value }} \end{aligned}$		
p3778[0...n]	APC velocity limit / APC v_limit		
SERVO (APC, Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: 4_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Max 1000.00 [$\mathrm{m} / \mathrm{min}$]	Factory setting 1000.00 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the velocity limit for APC (Advanced Positioning Control).		
Dependency:	Refer to: p3779		
p3778[0...n]	APC speed limit / APC n_limit		
SERVO (APC)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min 0.00 [rev/min]	$\underset{210000.00[r e v / m i n]}{\operatorname{Max}}$	Factory setting $210000.00[\mathrm{rev} / \mathrm{min}]$
Description:	Sets the speed limit for APC (Advanced Positioning Control).		

Dependency:	Refer to: p3779		
p3779[0...n]	APC velocity limit monitoring time / APC v_limit t		
SERVO (APC, Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: Unsigned32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000000 [ms]	$0 \text { [ms] }$
Description:	Sets the monitoring time to limit the output for APC (Advanced Positioning Control).		
	This monitoring time is started after the selected limit value (p 3778) has been exceeded. A corresponding fault is output if the limit value is not undershot before this time expires.		
Dependency:	Refer to: p3778		
	Refer to: F07425		
p3779[0...n]	APC speed limit monitoring time / APC n_limit t		
SERVO (APC)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: Unsigned32	Dynamic index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	Min 0 [ms]	Max 1000000 [ms]	Factory setting 0 [ms]
Description:	Sets the monitoring time to limit the output for APC (Advanced Positioning Control).		
	This monitoring time is started after the selected limit value (p 3778) has been exceeded. A corresponding fault is output if the limit value is not undershot before this time expires.		
Dependency:	Refer to: p3778		
	Refer to: F07425		
p3784[0...n]	BI: Sync-line-drive external increase voltage / Sync ext V incr		
VECTOR	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting 0
Description:	Sets the signal source to increase the voltage for external line-drive synchronization. BI: p3784 = 1 signal: The voltage is increased.		
Note:	Only SINAMICS GM150.		
p3785[0...n]	BI: Sync-line-drive external decrease voltage / Sync ext V decr		
VECTOR	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting 0
Description:	Sets the signal source to decrease the voltage for external line-drive synchronization. BI: p3785 = 1 signal: The voltage is lowered.		
Note:	Only SINAMICS GM150.		

p3800[0...n]	Sync-line-drive activation / Sync act		
VECTOR	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets the activation for the line-drive synchronization.		
Value:	0: Sync-line-drive de-activated		
Dependency:	Refer to: p3801, p3802		
Note:	The INTERNAL voltage actual values are used for synchronization. The effects that a (sine-wave) filter - that is connected between the Motor Module and motor - has on the voltage actual values are taken into account (theoretically) by appropriately selecting p0230. VSM: Voltage Sensing Module		
p3801[0...n]	Sync-line-drive, drive object number / Sync DO_No		
VECTOR	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 62 \end{aligned}$	Factory setting 1
Description:	Sets the drive object number of the Voltage Sensing Module (VSM) used for the line-drive synchronization.		
Dependency:	Refer to: p3800, p3802		
Notice:	The current controller sampling time $\mathrm{p} 0115[0]$ of the drive object with the VSM used for synchronization must be identical to the current controller sampling time of the drive of the drive used to perform line synchronization.		
Note:	VSM: Voltage Sensing Module		
p3802[0...n]	BI: Sync-line-drive enable / Sync enable		
VECTOR	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dynamic index: CDS, p0170	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source to switch BI: p3802 $=1$ signal: The line-drive synchronization is	for the line-drive synchronizatio	
Dependency:	Refer to: p3800, p3801		

r3803.0	CO/BO: Sync-line-drive control word / Sync STW			
VECTOR	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned32	Dynamic index: -	Func	
	P-Group: Functions	Units group: -	Unit	
	Not for motor type: -		Expe	
	$\underline{M i n}$	Max	Fact	
Description:	Displays the control word for the line-drive synchronization.			
Bit field:	Bit Signal name 00 Sync-line-drive selected	$\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \mathbf{0} \text { signal } \\ & \text { No } \end{aligned}$	FP
Note:	Re bit 00:			
	For a 1 signal, p3800 >0 is set.			
r3804 VECTOR	CO: Sync-line-drive target frequency / Sync f_target			
	Can be changed: -	Calculated: -	Acce	
	Data type: FloatingPoint32	Dynamic index: -	Func	
	P-Group: Functions	Units group: -	Unit	
	Not for motor type: -		Expe	
	$\operatorname{Min}_{-[\mathrm{Hz}]}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Hz}] \end{aligned}$	Fact - [Hz	
Description: Dependency:	Displays the target frequency for the line-drive synchronization. Refer to: A07941			
r3805	CO: Sync-line-drive frequency difference / Sync f_diff			
VECTOR	Can be changed: - Data type: FloatingPoint32 P-Group: Functions Not for motor type: -	Calculated: -	Access level: 2	
		Dynamic index: -	Func. diagram: 7020	
		Units group: -	Unit selection: -	
		Not for motor type: -	Expert list: 1	
	$\begin{aligned} & \operatorname{Min}_{-[\mathrm{Hz}} \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Hz}] \end{aligned}$	Factory setting$-[H z]$	
Description:	Displays the frequency difference between the measured target frequency and output frequency of the gating unit of the closed-loop control for line-drive synchronization.			
p3806[0...n]	Sync-line-drive frequency difference threshold value / Sync f_diff thresh			
VECTOR	Can be changed: U, T Data type: FloatingPoint32 P-Group: Functions	Calculated: -	Access level: 2	
		Dynamic index: DDS, p0180	Func	
		Units group: -	Unit	
	Not for motor type: -		Expert list: 1	
	$\operatorname{Min}_{0.00[\mathrm{~Hz}]}$	$\begin{aligned} & \text { Max } \\ & 1.00[\mathrm{~Hz}] \end{aligned}$		
Description:	Sets the threshold value of the frequency difference to activate the closed-loop phase control for line-drive synchronization. The closed-loop phase control is activated (r3819.6 = 1) , if the frequency difference is less that the threshold value.			

r3808	CO: Sync-line-drive phase difference / Sync phase diff		
VECTOR	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -\left[{ }^{\circ}\right] \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ -\left[^{\circ}\right] \end{gathered}$	Factory setting - [${ }^{\circ}$]
Description:	Displays the phase difference between the measured target phase and phase of the gating unit of the closed-loop control for line-drive synchronization.		
p3809[0...n]	Sync-line-drive phase setpoint / Sync phase setp		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -180.00\left[{ }^{\circ}\right] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 179.90\left[^{\circ}\right] \end{aligned}$	Factory setting $0.00\left[{ }^{\circ}\right]$
Description:	Sets the phase setpoint for the line-drive synchronization.		
p3811[0...n]	Sync-line-drive frequency limiting / Sync f_lim		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.00[\mathrm{~Hz}]} \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1.00[\mathrm{~Hz}] \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 0.20[\mathrm{~Hz}] \end{aligned}$
Description:	Sets the frequency limiting of the phase controller output for the line-drive synchronization.		
r3812	CO: Sync-line-drive correction frequency / Sync f_corr		
VECTOR	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{-[H z]} \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Hz}] \end{aligned}$	Factory setting - [Hz]
Description:	Displays the correction frequency for the line-drive synchronization.		
p3813[0...n]	Sync-line-drive phase synchronism threshold value / Sync Ph_sync thrsh		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\left.\operatorname{Min}_{1.00}{ }^{\circ}{ }^{\circ}\right]$	$\begin{aligned} & \operatorname{Max} \\ & 20.00\left[{ }^{\circ}\right] \end{aligned}$	Factory setting 2.00 [${ }^{\circ}$]
Description:	Sets the threshold value of the phase synchronism for the line-drive synchronization. A prerequisite for synchronism is achieved if the phase difference is lower than the threshold value.		
Note:	Synchronism is reached ($r 3819.2=1$), if the AND logic operation of the results from the phase measurement (p 3813) and voltage measurement (p 3815) is fulfilled.		

Dependency:	Refer to: p3830, p3845		
p3820[0...n]	Friction characteristic, value n0 / Friction n0		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [rev/min]	Max 210000.00 [rev/min]	Factory setting 15.00 [rev/min]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 1st value pair of the friction characteristic.		
Dependency:	Refer to: p3830, p3845		
p3821[0...n]	Friction characteristic, value v1 / Friction v1		
SERVO (Lin)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 4_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [$\mathrm{m} / \mathrm{min}$]	$\begin{aligned} & \operatorname{Max} \\ & 21000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 3.00 [$\mathrm{m} / \mathrm{min}$]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the v coordinate of the 2nd value pair of the friction characteristic.		
Dependency:	Refer to: p3831, p3845		
p3821[0...n]	Friction characteristic, value n1 / Friction n1		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [rev/min]	Max 210000.00 [rev/min]	Factory setting 30.00 [rev/min]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 2 nd value pair of the friction characteristic.		
Dependency:	Refer to: p3831, p3845		
p3822[0...n]	Friction characteristic, value v2 / Friction v2		
SERVO (Lin)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 4_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [$\mathrm{m} / \mathrm{min}$]	Max 21000.00 [$\mathrm{m} / \mathrm{min}$]	Factory setting 6.00 [$\mathrm{m} / \mathrm{min}$]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3832, p3845		

p3822[0...n]	Friction characteristic, value n2 / Friction n2		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [rev/min]	Max 210000.00 [rev/min]	Factory setting 60.00 [rev/min]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3832, p3845		
p3823[0...n]	Friction characteristic, value v3 / Friction v3		
SERVO (Lin)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 4_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 21000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 12.00 [$\mathrm{m} / \mathrm{min}$]
Description:	The friction characteristic is defined by 10 value pairs. This parameter specifies the v coordinate of the 4th value pair of the friction characteristic.		
Dependency:	Refer to: p3833, p3845		
p3823[0...n]	Friction characteristic, value n3 / Friction n3		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{rev} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 120.00 [rev/min]
Description:	The friction characteristic is defined by 10 value pairs. This parameter specifies the n coordinate of the 4th value pair of the friction characteristic.		
Dependency:	Refer to: p3833, p3845		
p3824[0...n]	Friction characteristic, value v4 / Friction v4		
SERVO (Lin)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 4_1	Unit selection: p0505
	Not for motor type: REL		
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 21000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 15.00 [$\mathrm{m} / \mathrm{min}$]
Description:	The friction characteristic is defined by 10 value pairs. This parameter specifies the v coordinate of the 5 th value pair of the friction characteristic.		
Dependency:	Refer to: p3834, p3845		

p3824[0...n]	Friction characteristic, value n4 / Friction n4		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [rev/min]	Max 210000.00 [rev/min]	Factory setting 150.00 [rev/min]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3834, p3845		
p3825[0...n]	Friction characteristic, value v5 / Friction v5		
SERVO (Lin)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 4_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [$\mathrm{m} / \mathrm{min}$]	$\begin{aligned} & \operatorname{Max} \\ & 21000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 30.00 [m/min]
Description:	The friction characteristic is defined by 10 value pairs.		This parameter specifies the v coordinate of the 6th value pair of the friction characteristic.
Dependency:	Refer to: p3835, p3845		
p3825[0...n]	Friction characteristic, value n5 / Friction n5		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [rev/min]	Max 210000.00 [rev/min]	Factory setting 300.00 [rev/min]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3835, p3845		
p3826[0...n]	Friction characteristic, value v6 / Friction v6		
SERVO (Lin)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 4_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [$\mathrm{m} / \mathrm{min}$]	Max 21000.00 [$\mathrm{m} / \mathrm{min}$]	Factory setting 60.00 [m/min]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3836, p3845		

p3826[0...n]	Friction characteristic, value n6 / Friction n6		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [rev/min]	$\begin{aligned} & \operatorname{Max} \\ & 210000.00[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 600.00 [rev/min]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 7th value pair of the friction characteristic.		
Dependency:	Refer to: p3836, p3845		
p3827[0...n]	Friction characteristic, value v7 / Friction v7		
SERVO (Lin)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 4_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 21000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 120.00 [$\mathrm{m} / \mathrm{min}$]
Description:	The friction characteristic is defined by 10 value pairs. This parameter specifies the v coordinate of the 8 th value pair of the friction characteristic.		
Dependency:	Refer to: p3837, p3845		
p3827[0...n]	Friction characteristic, value n7 / Friction n7		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{rev} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 210000.00[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 1200.00 [rev/min]
Description:	The friction characteristic is defined by 10 value pairs. This parameter specifies the n coordinate of the 8 th value pair of the friction characteristic.		
Dependency:	Refer to: p3837, p3845		
p3828[0...n]	Friction characteristic, value v8 / Friction v8		
SERVO (Lin)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 4_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 21000.00[\mathrm{~m} / \mathrm{min}] \end{aligned}$	Factory setting 150.00 [$\mathrm{m} / \mathrm{min}$]
Description:	The friction characteristic is defined by 10 value pairs. This parameter specifies the v coordinate of the 9th value pair of the friction characteristic.		
Dependency:	Refer to: p3838, p3845		

p3828[0...n]	Friction characteristic, value n8 / Friction n8		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [rev/min]	Max 210000.00 [rev/min]	Factory setting 1500.00 [rev/min]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3838, p3845		
p3829[0...n]	Friction characteristic, value v9 / Friction v9		
SERVO (Lin)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 4_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [$\mathrm{m} / \mathrm{min}$]	Max 21000.00 [$\mathrm{m} / \mathrm{min}$]	Factory setting 300.00 [$\mathrm{m} / \mathrm{min}$]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3839, p3845		
p3829[0...n]	Friction characteristic, value n9 / Friction n9		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min 0.00 [rev/min]	Max 210000.00 [rev/min]	Factory setting 3000.00 [rev/min]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3839, p3845		
p3830[0...n]	Friction characteristic, value F0 / Friction F0		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{~N}] \end{aligned}$	Max $1000000.00[\mathrm{~N}]$	Factory setting 0.00 [N]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3820, p3845		

p3830[0...n]	Friction characteristic, value M0 / Friction M0		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{Nm}] \end{aligned}$	Max $1000000.00[\mathrm{Nm}]$	Factory setting 0.00 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3820, p3845		
p3831[0...n]	Friction characteristic, value F1 / Friction F1		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -1000000.00[\mathrm{~N}] \end{aligned}$	Max 1000000.00 [N]	Factory setting 0.00 [N]
Description:	The friction characteristic is defined by 10 value pairs. This parameter specifies the F coordinate of the 2 nd value pair of the friction characteristic.		
Dependency:	Refer to: p3821, p3845		
p3831[0...n]	Friction characteristic, value M1 / Friction M1		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{Nm}] \end{aligned}$	Max 1000000.00 [Nm]	Factory setting 0.00 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		This parameter specifies the M coordinate of the 2 nd value pair of the friction characteristic.
Dependency:	Refer to: p3821, p3845		
p3832[0...n]	Friction characteristic, value F2 / Friction F2		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{~N}] \end{aligned}$	Max 1000000.00 [N]	Factory setting 0.00 [N]
Description:	The friction characteristic is defined by 10 value pairs. This parameter specifies the F coordinate of the 3rd value pair of the friction characteristic.		
Dependency:	Refer to: p3822, p3845		

p3832[0...n]	Friction characteristic, value M2 / Friction M2		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3822, p3845		
p3833[0...n]	Friction characteristic, value F3 / Friction F3		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{~N}] \end{aligned}$	Max $1000000.00[\mathrm{~N}]$	Factory setting 0.00 [N]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3823, p3845		
p3833[0...n]	Friction characteristic, value M3 / Friction M3		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3823, p3845		
p3834[0...n]	Friction characteristic, value F4 / Friction F4		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{~N}] \end{aligned}$	Max $1000000.00[\mathrm{~N}]$	Factory setting 0.00 [N]
Description:	The friction characteristic is defined by 10 value pairs. This parameter specifies the F coordinate of the 5th value pair of the friction characteristic.		
Dependency:	Refer to: p3824, p3845		

p3834[0...n]	Friction characteristic, value M4 / Friction M4		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -1000000.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 5th value pair of the friction characteristic.		
Dependency:	Refer to: p3824, p3845		
p3835[0...n]	Friction characteristic, value F5 / Friction F5		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -1000000.00[\mathrm{~N}] \end{aligned}$	Max $1000000.00[\mathrm{~N}]$	Factory setting 0.00 [N]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the F coordinate of the 6th value pair of the friction characteristic.		
Dependency:	Refer to: p3825, p3845		
p3835[0...n]	Friction characteristic, value M5 / Friction M5		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	Min $-1000000.00[\mathrm{Nm}]$	$\begin{aligned} & \operatorname{Max} \\ & 1000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 6th value pair of the friction characteristic.		
Dependency:	Refer to: p3825, p3845		
p3836[0...n]	Friction characteristic, value F6 / Friction F6		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{~N}] \end{aligned}$	Max $1000000.00[\mathrm{~N}]$	Factory setting 0.00 [N]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3826, p3845		

p3836[0...n]	Friction characteristic, value M6 / Friction M6		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{Nm}] \end{aligned}$	Max $1000000.00[\mathrm{Nm}]$	Factory setting 0.00 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 7 th value pair of the friction characteristic.		
Dependency:	Refer to: p3826, p3845		
p3837[0...n]	Friction characteristic, value F7 / Friction F7		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{~N}] \end{aligned}$	Max $1000000.00[\mathrm{~N}]$	Factory setting 0.00 [N]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the F coordinate of the 8th value pair of the friction characteristic.		
Dependency:	Refer to: p3827, p3845		
p3837[0...n]	Friction characteristic, value M7 / Friction M7		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 8th value pair of the friction characteristic.		
Dependency:	Refer to: p3827, p3845		
p3838[0...n]	Friction characteristic, value F8 / Friction F8		
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000000.00[N] \end{aligned}$	Max $1000000.00[\mathrm{~N}]$	Factory setting 0.00 [N]
Description:	The friction characteristic is defined by 10 value pairs.		This parameter specifies the F coordinate of the 9th value pair of the friction characteristic.
Dependency:	Refer to: p3828, p3845		

p3838[0...n]	Friction characteristic, value M8 / Friction M8			
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 2	
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010	
	P-Group: Functions	Units group: 7_1	Unit selection: p0505	
	Not for motor type: REL		Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & -1000000.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Nm]	
Description:	The friction characteristic is defined by 10 value pairs.			This parameter specifies the M coordinate of the 9th value pair of the friction characteristic.
Dependency:	Refer to: p3828, p3845			
p3839[0...n]	Friction characteristic, value F9 / Friction F9			
SERVO (Lin)	Can be changed: T	Calculated: -	Access level: 2	
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010	
	P-Group: Functions	Units group: 8_1	Unit selection: p0505	
	Not for motor type: REL		Expert list: 1	
	$\begin{aligned} & \operatorname{Min} \\ & -1000000.00[\mathrm{~N}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000000.00[\mathrm{~N}] \end{aligned}$	Factory setting 0.00 [N]	
Description:	The friction characteristic is defined by 10 value pairs.			
Dependency:	Refer to: p3829, p3845			
p3839[0...n]	Friction characteristic, value M9 /	Friction M9		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 2	
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: 7010	
	P-Group: Functions	Units group: 7_1	Unit selection: p0505	
	Not for motor type: REL		Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & -1000000.00[\mathrm{Nm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000000.00[\mathrm{Nm}] \end{aligned}$	Factory setting 0.00 [Nm]	
Description:	The friction characteristic is defined by 10 value pairs.			
	This parameter specifies the M coordinate of the 10th value pair of the friction characteristic.			
Dependency:	Refer to: p3829, p3845			
r3840.0.. 8	CO/BO: Friction characteristic, status word / Friction ZSW			
SERVO, VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 7010	
	P-Group: Functions	Units group: -	Unit selection: -	
	Not for motor type: REL		Expert list: 1	
	Min	Max	Factory setting	
Description:	Displays the state of the friction characteristic.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Friction characteristic OK	Yes	No	-
	01 Friction characteristic record activated	Yes	No	-
	02 Friction characteristic record completed	Yes	No	-
	03 Friction characteristic record aborted	Yes	No	-
	08 Friction characteristic positive direction	Yes	No	-

r3841	CO: Friction characteristic output / Frict outp		
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index:-	Func. diagram: 7010
	P-Group: Functions	Units group: 8_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[N] \end{aligned}$	$\begin{gathered} \operatorname{Max} \\ -[\mathrm{N}] \end{gathered}$	Factory setting - [N]
Description:	Displays the force of the friction characteristic dependent on the velocity.		
Dependency:			
r3841	CO: Friction characteristic output / Frict outp		
SERVO, VECTOR (n / M)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index:-	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL		Expert list: 1
	$\underset{-[\mathrm{Nm}]}{\operatorname{Min}}$	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{Nm}] \end{aligned}$	Factory setting - [Nm]
Description:	Displays the torque of the fric	tic dependent on the	
Dependency:	Refer to: p1569, p3842		
p3842	Friction characteristic activation / Frict act		
SERVO, VECTOR (n / M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: -	Func. diagram: 7010
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{1}{\operatorname{Max}}$	Factory setting 0
Description:	Setting to activate and de-activate the friction characteristic.		
Value:	0: Friction characteristic de-activated 1: Friction characteristic activated		
Dependency:	Refer to: p1569, r3841, p3845		
p3845	Friction characteristic record activation / Frict rec act		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: -	Func. diagram: 7010
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL		Expert list: 1
		$\underset{3}{\operatorname{Max}}$	Factory setting 0
Description:	Setting for the friction characteristic record.		
	After the next power-on command, the friction characteristic is automatically recorded.		
Value:	0: Friction characteristic record de-activated 1: Friction char record activated for all directions 2: Friction char record activated for positive direction 3: Friction char record activated for negative direction		
Dependency:	When selecting the friction characteristic measurement, the drive data set changeover is suppressed.		
	For linear drives (refer to r0108 bit 12) it is not permissible to carry out the friction characteristic measurement for mechanical systems that limit travel.		
	For drives with a mechanical system that limit the distance moved, it must be ensured that during recording, the friction characteristic is not reached. If this is not the case, then it is not permissible that the measurement is carried out.		

Bit field:	This binector output is used as signal source to interconnect to a digital output.							
	For "booksize" formats the digital output must be connected to terminal X21.1 and for "chassis" formats the digital output must be connected to terminal X21.3 of the particular Braking Module.							
	Bit	Signal name	1 signal	0 signal	FP			
		Inhibit/acknowledge Braking Module 1	High	Low	-			
		Inhibit/acknowledge Braking Module 2	High	Low	-			
		Inhibit/acknowledge Braking Module 3	High	Low	-			
		Inhibit/acknowledge Braking Module 4	High	Low	-			
		Inhibit/acknowledge Braking Module 5	High	Low	-			
		Inhibit/acknowledge Braking Module 6	High	Low	-			
		Inhibit/acknowledge Braking Module 7	High	Low	-			
	07	Inhibit/acknowledge Braking Module 8	High	Low	-			
Warning:	It must be carefully ensured that the binector outputs BO: p3861.n are correctly connected and also that the appropriate digital outputs are correctly connected up. If the interconnections/connections are incorrect and if the Braking Module develops a fault condition, then the software could execute a different (incorrect) function via the binector outputs BO: p3861.n.							
p3862	Braking Module DC link fast discharge delay time / BM DC-dischg t_del							
A_INF (Brk Mod ext),	Can	be changed: C 1 (3), T	ulated: -	Acce				
B_INF (Brk Mod ext),		type: Unsigned32	amic index: -	Func				
		oup: Communications	group: -	Unit				
		for motor type: -		Expe				
			$967295 \text { [ms] }$	$\begin{aligned} & \text { Facto } \\ & 1000 \end{aligned}$				
Description:	Sets the delay time for switching in the DC link fast discharge.							
Dependency:	Refer to: p3863, r3864							
Note:	The DC link fast discharge is only possible for "booksize" formats. This function is not supported for "chassis" formats.							
p3863	BI: Activating Braking Module DC link fast discharge / BM DC-dischg act							
A_INF (Brk Mod ext), B_INF (Brk Mod ext), S_INF (Brk Mod ext)	Can be changed: T		Calculated: -	Access level: 3				
	Data type: Unsigned32 / BinaryP-Group: -		Dynamic index: -	Func. diagram: 9951				
			Units group: -	Unit selection: -				
	Not for motor type: -			Expert list: 1				
	Min		Max	Factory setting 0				
Description:	Sets the signal source to activate the DC link fast discharge.							
	The DC link fast discharge is started later with delay time (p3862) when the following conditions apply: - BI: p3863 = 1 signal.							
	The DC link fast discharge is interrupted when the following conditions apply:							
	- ON command for the infeed.							
Recommend.:	The DC link fast discharge should be activated if there is an external line contactor and is correctly interconnected (r0863.1, p0860). If the DC link fast discharge is not activated together with an external line contactor, then faults could occur when pre-charging (e.g. F30027).							
Dependency:	Refer to: r3864							
	Refer to: F30027							
Note:	The DC link fast discharge is only possible for "booksize" formats. This function is not supported for "chassis" formats.							

r3864.0...7	BO: Braking Module DC link fast discharge / BM DC link dischg			
A_INF (Brk Mod ext), B_INF (Brk Mod ext), S_INF (Brk Mod ext)	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9951	
	P-Group: Commands	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Fact	
	-		-	
Description:	Signal to control (energize) terminal X21.2 "DC link fast discharge" on the Braking Module.			
	This binector output is used as signal source to interconnect to a digital output. The digital output must be connected to terminal X21.2 of the particular Braking Module.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Fast discharge Braking Module 1	High	Low	-
	01 Fast discharge Braking Module 2	High	Low	-
	02 Fast discharge Braking Module 3	High	Low	-
	03 Fast discharge Braking Module 4	High	Low	-
	04 Fast discharge Braking Module 5	High	Low	-
	05 Fast discharge Braking Module 6	High	Low	-
	06 Fast discharge Braking Module 7	High	Low	-
	07 Fast discharge Braking Module 8	High	Low	-
Dependency:				
	Refer to: F30027			
Warning:	It must be carefully ensured that the binector outputs BO: p3864.n are correctly interconnected and also that the appropriate digital outputs are correctly connected up.			
	If the interconnection/connection is incorrect, in the case of an active DC link fast discharge, the software could execute another function (incorrect function) via binector outputs BO: p3864.n or could also permanently control the DC link fast discharge even if the line contactor is closed.			
Note:	The DC link fast discharge is only possible for "booksize" formats. This function is not supported for "chassis" formats.			

p3865[0...7]	BI: Braking Module pre-warning I*t shutdown / BM I*t shutdown		
A_INF (Brk Mod ext),	Can be changed: T	Calculated: -	Access level: 3
B_INF (Brk Mod ext),	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9951
S_INF (Brk Mod ext)	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the signal "pre-alarm I*t shutdown (X21.3) of the Braking Module. BI: p3865[0...7] = 0 signal --> no pre-alarm, I*t shutdown BI: p3865[0...7] = 1 signal --> pre-alarm I*t shutdown (A06901)		
Dependency:	Refer to: A06901		
Note:	The pre-alarm I*t shutdown is only possible for "booksize" formats. This function is not supported for "chassis" formats.		

p3866[0...7]
A_INF (Brk Mod ext),
B_INF (Brk Mod ext), S_INF (Brk Mod ext)

BI: Braking Module fault / BM fault

Can be changed: T
Data type: Unsigned32 / Binary
P-Group: -
Not for motor type: -
Min Max

Calculated: -
Dynamic index: -
Units group: -

Max

Access level: 3
Func. diagram: 9951
Unit selection: -
Expert list: 1
Factory setting
0

Description: Sets the signal source for the "fault" signal of the Braking Module (X21.4 for "booksize" formats and X21.3 for "chassis" formats).

	If an incorrect commutation angle is set, this can result in instability in the closed-loop control and in turn injure personnel or cause damage to the machine !
p3873	BI: Long stator sig. source changeover to cl.-loop ctrl w/ enc. / S_src ctrl w/ enc
SERVO	Can be changed: T Calculated: - Access level: 3
	Data type: Unsigned32 / Binary Dynamic index: - Func. diagram: -
	P-Group: Functions Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
	Min Max Factory setting -
Description:	Sets the signal source to change over to closed-loop control with encoder.
Dependency:	Refer to: p3870, p3871, p3872, p3874, r3875, p3876, p3878, p3879
	If an incorrect commutation angle is set, this can result in instability in the closed-loop control and in turn injure personnel or cause damage to the machine !
Note:	BI: p3873 = 1 signal --> closed-loop control with encoder
	BI: p3873 $=0$ signal --> encoderless closed-loop control
	For a 0/1 edge, the commutation angle is set from CI: p3874.
p3874	CI: Long stator signal source commutation angle oper. with encoder / S_src com_ang enc
SERVO	Can be changed: T Calculated: - Access level: 3
	Data type: Unsigned32 / FloatingPoint32 Dynamic index: - Func. diagram: -
	P-Group: - Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
	Min Max Factory setting - - $3879[0]$
Description:	Sets the signal source for the commutation angle for operation with encoder.
Dependency:	Refer to: p3870, p3871, p3872, p3873, r3875, p3876, p3878, p3879
Note:	This angle is set for a $0 / 1$ signal edge via BI : p 3873 .
r3875.0..1	CO/BO: Long stator status word / Long stator ZSW
SERVO (Lin)	Can be changed: - Calculated: - Access level: 3
	Data type: Unsigned32 Dynamic index: - Func. diagram: -
	P-Group: - Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
	Min Max Factory setting
	- - -
Description:	Displays the status word for long stator motors.
Bit field:	Bit Signal name 1 signal 0 signal
	00 Sensor Module is unparked Yes No
	$01 \begin{aligned} & \text { Closed-loop velocity control with encoder Active Inactive } \\ & \text { requested }\end{aligned}$
Dependency:	Refer to: p3870, p3871, p3872, p3873, p3874, p3876, p3878, p3879
Note:	The display is updated with a sampling time of 1 ms .
	Re bit $00=1$:
	The encoder is parked. Contrary to r0481.14, parking is also displayed here if the suppression of the parking bit is active in r0481.14 (p3870.1 = 1).
	Re bit $01=1$:
	The long-stator functions requested closed-loop velocity control with encoder. In r1407.2, it is indicated as to whether an encoder is actually used for the closed-loop control.

p3902[0...n]	Power unit EEPROM Vdc calibration / PU EEPROM Vdc_cal					
A_INF, B_INF, S_INF, SERVO, VECTOR	Can be changed: $\mathrm{C} 1, \mathrm{C} 2(1)$, T		Calculated: -		Access level: 3	
	Data type: Unsigned32		Dynamic index: PDS, p0120		Func. diagram: -	
	P-Group: -		Units group: -		Unit selection: -	
	Not for motor type: -				Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$		Max		Factory setting	
Description:	Calibration factor for the DC link voltage measurement.					
Caution:	Incorrect use of the calibration can have a negative impact on the closed-loop control. The parameter influences the upper and lower voltage detection.					
Note:	Para acce The Calc	meter entries are directly sa pted. All other entries are n parameter only has an effec ulation rule: p3902_new = p	RIVE are pow 0026	CLiQ component involved herefore also not displaye r units. Vdc_measured value	Only values fr	000 are
r3925[0...n]	Ide	tification final disp	na	disp		
SERVO	Can be changed: -		Calculated: -		Access level: 3	
	Data type: Unsigned32		Dynamic index: DDS, p0180		Func. diagram: -	
	P-Group: Motor		Units group: -		Unit selection: -	
	Not for motor type: -				Expert list: 1	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the commissioning steps that have been carried out.					
Bit field:	$\begin{aligned} & \text { Bit } \\ & 00 \end{aligned}$	Signal name		1 signal	0 signal No	FP
		Motor/control parameters $=1, p 3900>0)$		Yes		-
	02	Motor data identification ca standstill (p1910 = 1)		Yes	No	-
	03	Rotating measurement car $1,2)$		Yes	No	-
	04	Motor encoder adjustment (p1960 = 1, p1990 = 1)		Yes	No	-
		Motor encoder manually a		Yes	No	-
		Motor equivalent circuit dia changed		Changed	Not changed	
Note:	The	individual bits are only set if n motor rating plate parame n setting the individual bits,	ate a st sig	the has been initiated and display is reset. thificant bits are reset.	successfully com	
r3925[0...n]	Identification final display / Ident final_disp					
VECTOR	Can be changed: -		Calculated: -		Access level: 3	
	Data type: Unsigned32		Dynamic index: DDS, p0180		Func. diagram: -	
	P-Group: Motor		Units group: -		Unit selection: -	
	Not for motor type: -				Expert list: 1	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the commissioning steps that have been carried out.					
Bit field:	Bit 00	Signal name Motor/control parameters $=1, \mathrm{p} 3900>0$)		1 signal Yes	0 signal No	FP

02	Motor data identification carried out at standstill $(\mathrm{p} 1910=1)$	Yes	No
03	Rotating measurement carried out $(\mathrm{p} 1960=$ 1, 2)	Yes	No
04	Motor encoder adjustment carried out (p1960 $=1, \mathrm{p} 1990=1)$	Yes	No
10	Automatic parameterization only for V/f con- trol (r0108.2 = 0)	Yes	No
15	Motor equivalent circuit diagram parameters Changed changed	Not changed	

Note: \quad The individual bits are only set if the appropriate action has been initiated and successfully completed. When motor rating plate parameters are changed, the final display is reset. When setting the individual bits, all of the most significant bits are reset.

r3927[0...n]	Motor data identification induction motor data determined / MotID ASM dat det				
SERVO	Can be changed: - C		Calculated: CALC_MOD_ALL Acce		
	Data type: Unsigned32 D		Dynamic index: DDS, p0180 Func		
	P-Group: Motor identification U		Units group:	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min	M		Fact	
Description:	Displays the data of an induction motor determined and accepted from the stationary motor data identification or rotating measurement.				
Bit field:		Signal name	1 signal	0 signal	FP
	00	p0350 accepted	Yes	No	-
	01	p0354 accepted	Yes	No	-
		p0356 accepted	Yes	No	-
	03	p0358 accepted	Yes	No	-
	04	p0360 accepted	Yes	No	-
	05	p0320 accepted	Yes	No	-
	06	p0410 accepted	Yes	No	-
	12	p1715 accepted	Yes	No	-
		p1717 accepted	Yes	No	-
		p1590 accepted	Yes	No	-
		p1592 accepted	Yes	No	-
		p0341 accepted	Yes	No	-
		p0348 accepted	Yes	No	-
		p1752 accepted	Yes	No	-
Dependency:	Refer to: r3925				
r3927[0...n]	Motor data identification control word / MotID STW				
VECTOR	Can be changed: - C		Calculated: CALC_MOD_ALL Access		
	Data type: Unsigned16 Dr		Dynamic index: DDS, p0180	Func. diagram: -	
	P-Group: Motor identification U		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-			-	
Description:	Successfully completed component of the last motor data identification carried out.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Stator inductance estimate no measurement	Yes	No	-
	01	Cl.-loop current control w/ dead-beat controller	Yes	No	-
	02	Rotor time constant estimate no measurement	Yes	No	-
	03	Leakage inductance estimate no measure ment	Yes	No	-

p3981	Faults, acknowledge drive object / Faults ackn DO		
All objects	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned8	Dynamic index: -	Func. diagram: 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Setting to acknowledge all active faults of a drive object.		
Note:	Parameter should be set from 0 to 1 to acknowledge.		
	After acknowledgement, the parameter is automatically reset to 0 .		
p3985	Master control mode selection / PcCtrl mode select		
A_INF, B_INF, S_INF, SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description: Value:	Sets the mode to change over the master control / LOCAL mode.		
	0 : \quad Change master control for STW1.0 $=0$ 1: Change master control in operation		
	When changing the master control in operation, the drive can manifest undesirable behavior - e.g. it can accelerate up to another setpoint.		
r3986	Parameter count / Parameter count		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the number of parameters for this drive unit.		
	The number comprises the device-specific and the drive-specific parameters.		
Dependency:	Refer to: r0980, r0981, r0989		
r3988[0...1]	Ramp-up state / R		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10800 \end{aligned}$	Factory setting
Description: Value:	Displays the ramp-up state.		
	0: Not active		
	1: Fatal fault		
	10: Fault		
	20: Reset all parame		
	30: Drive object modif		
	40: Download using 90: Reset Control Un	ware objects	

r3998	First infeed commissioning / First inf_comm			
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$	Can be changed: - Data type: Unsigned16 P-Group: - Not for motor type: -	Calculated: -	Access level: 3	
		Dynamic index: -	Func. diagram: -	
		Units group: -	Unit selection: -	
			Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$	Factory setting	
Description:	Displays whether the infeed must be commissioned for the first time.			
	$2=\mathrm{No}$			
r3998[0...n]	First drive commissioning / First drv_comm			
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dynamic index: DDS, p0180	Func. diagram: -	
	P-Group: -	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$	Factory setting	
Description:	Displays whether the drive still has to be commissioned for the first time.			
	$2=\mathrm{No}$			
r4021	TB30 digital inputs terminal actual value / TB30 DI act value			
TB30	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9100	
	P-Group: Commands	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting	
Description:	Displays the actual value at the digital inputs.			
	This means that the actual input signal can be checked at terminal DI x prior to switching from the simulation mode ($\mathrm{p} 4095 \cdot \mathrm{x}=1$) to the terminal mode ($\mathrm{p} 4095 \cdot \mathrm{x}=0$). The input signal of terminal DI x is displayed in bit x of r 4021 .			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (X481.1)	High	Low	-
	01 DI 1 (X481.2)	High	Low	-
	02 DI 2 (X481.3)	High	Low	-
	03 DI 3 (X481.4)	High	Low	-
Note:	DI: Digital input			
r4021	TM31 digital inputs terminal actual value / TM31 DI act value			
TM31	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 1840, 9550, 9552, 9560, 9562	
	P-Group: Commands	Units group: -	Unit selection: -	
	Not for motor type: -			
	Min	Max	Factory setting	
Description:	This means that the actual input signal can be checked at terminal $\mathrm{DI} \times$ or $\mathrm{DI} / \mathrm{DO} \times$ prior to switching from the simulation mode ($\mathrm{p} 4095 . \mathrm{x}=1$) to terminal mode ($\mathrm{p} 4095 . \mathrm{x}=0$). The input signal at terminal DI x or DI/DO x is displayed in bit x of r 4021 .			

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI 0 (X520.1)	High	Low	-
	01	DI 1 (X520.2)	High	Low	-
	02	DI 2 (X520.3)	High	Low	-
	03	DI 3 (X520.4)	High	Low	-
	04	DI 4 (X530.1)	High	Low	-
	05	DI 5 (X530.2)	High	Low	-
	06	DI 6 (X530.3)	High	Low	-
	07	DI 7 (X530.4)	High	Low	-
		DI/DO 8 (X541.2)	High	Low	-
		DI/DO 9 (X541.3)	High	Low	-
		DI/DO 10 (X541.4)	High	Low	-
	11	DI/DO 11 (X541.5)	High	Low	-
Note:		DI/DO is parameteriz	. $x=1$), then r4021.x	yed.	
		igital input			
		O: Bidirectional Digit			
r4021		41 digital inputs	value / TM41		
TM41		be changed: -	Calculated: -	Acce	
		type: Unsigned32	Dynamic index: -	Func	
	P-G	oup: Commands	Units group: -	Unit	
	Not	for motor type: -		Expe	
	Min		Max	Fact	
			-	-	
Description:		ays the actual value			
		means that the actu mode (p4095.x = 1) x of r4021.	e checked at termin p4095.x = 0). The in	O x prior terminal D	the simudisplayed
Bit field:		Signal name	1 signal	0 signal	FP
		DI 0 (X522.1)	High	Low	9660
		DI 1 (X522.2)	High	Low	9660
		$\text { DI } 2 \text { (X522.3) }$	High	Low	9660
		$\text { DI } 3 \text { (X522.4) }$	High	Low	9660
		DI/DO 0 (X521.1)	High	Low	9661
		DI/DO 1 (X521.2)	High	Low	9661
		DI/DO 2 (X521.3)	High	Low	9662
		DI/DO 3 (X521.4)	High	Low	9662
Note:		DI/DO is parameteriz	. $x=1$), then r4021.x	yed.	
		igital input			
	DI/D	O: Bidirectional Digit			
r4021		5DI/DO digital	l actual value /	act val	
TM15DI_DO		be changed: -	Calculated: -	Acc	
		type: Unsigned32	Dynamic index: -	Func 9402	, 9401,
	P-G	oup: Commands	Units group: -	Unit	
	Not	for motor type: -			
	Min		Max	Fact	
Description:		ays the actual value			
	Thi latio in b	means that the actu mode (p4095.x = 1) x of r4021.	checked at termin p4095.x = 0). The in	O x prior terminal D	the simudisplayed
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 0 (X520.2)	High	Low	-
		DI/DO 1 (X520.3)	High	Low	-

	02	DI/DO 2 (X520.4)	High	Low	-
	03	DI/DO 3 (X520.5)	High	Low	-
	04	DI/DO 4 (X520.6)	High	Low	-
	05	DI/DO 5 (X520.7)	High	Low	-
	06	DI/DO 6 (X520.8)	High	Low	-
	07	DI/DO 7 (X520.9)	High	Low	-
	08	DI/DO 8 (X521.2)	High	Low	-
	09	DI/DO 9 (X521.3)	High	Low	-
	10	DI/DO 10 (X521.4)	High	Low	-
	11	DI/DO 11 (X521.5)	High	Low	-
	12	DI/DO 12 (X521.6)	High	Low	-
	13	DI/DO 13 (X521.7)	High	Low	-
	14	DI/DO 14 (X521.8)	High	Low	-
	15	DI/DO 15 (X521.9)	High	Low	-
	16	DI/DO 16 (X522.2)	High	Low	-
	17	DI/DO 17 (X522.3)	High	Low	-
		DI/DO 18 (X522.4)	High	Low	-
	19	DI/DO 19 (X522.5)	High	Low	-
	20	DI/DO 20 (X522.6)	High	Low	-
		DI/DO 21 (X522.7)	High	Low	-
		DI/DO 22 (X522.8)	High	Low	-
	23	DI/DO 23 (X522.9)	High	Low	-
Note:	If a DI/DO is parameterized as output ($p 4028 . x=1$), then $r 4021 . x=0$ is displayed. DI/DO: Bidirectional Digital Input/Output				
r4022.0... 3	CO/BO: TB30 digital inputs, status / TB30 DI status				
TB30	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 1790, 9100	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Displays the status of the digital inputs of the Terminal Board 30 (TB30).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X481.1)	High	Low	-
		DI 1 (X481.2)	High	Low	-
		DI 2 (X481.3)	High	Low	-
		DI 3 (X481.4)	High	Low	-
Dependency:	Refer to: r4023				
Note:	DI: Digital input				
r4022.0... 11	CO/BO: TM31 digital inputs, status / TM31 DI status				
TM31	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 1840, 9550, 9552, 9560, 9562	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Displays the status of the digital inputs of Terminal Module 31 (TM31).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI 0 (X520.1)	High	Low	-
	01	DI 1 (X520.2)	High	Low	-
	02	DI 2 (X520.3)	High	Low	-
	03	DI 3 (X520.4)	High	Low	-
	04	DI 4 (X530.1)	High	Low	-
	05	DI 5 (X530.2)	High	Low	-

	06	DI 6 (X530.3)	High	Low
	07	DI 7 (X530.4)	High	Low
	08	DI/DO 8 (X541.2)	High	Low
	09	DI/DO 9 (X541.3)	High	Low
	10	DI/DO 10 (X541.4)	High	Low
	11	DI/DO 11 (X541.5)	High	Low
Dependency:	Ref	to: r4023		
Note:		igital input		
	DI/D	O: Bidirectional Digit		

r4022.0... 11	CO/BO: TM41 digital inputs, status / TM41 Dl status				
TM41	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: -	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Displays the status of the digital inputs of Terminal Module 41 (TM41).				
Bit field:		Signal name	1 signal	0 signal	FP
		DI 0 (X522.1)	High	Low	9660
		DI 1 (X522.2)	High	Low	9660
		DI 2 (X522.3)	High	Low	9660
		DI 3 (X522.4)	High	Low	9660
		DI/DO 0 (X521.1)	High	Low	9661
		DI/DO 1 (X521.2)	High	Low	9661
		DI/DO 2 (X521.3)	High	Low	9662
		DI/DO 3 (X521.4)	High	Low	9662
Dependency:	Refer to: r4023				
Note:	DI: Digital input				
	DI/DO: Bidirectional Digital Input/Output				
r4022.0... 23	CO/BO: TM15DI/DO digital inputs, status / TM15D DI status				
TM15DI_DO	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 9400, 9401, 9402	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-			Factory seting	
Description:	Displays the status of the digital inputs of Terminal Module 15 (TM15).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	High	Low	-
	01	DI/DO 1 (X520.3)	High	Low	-
	02	DI/DO 2 (X520.4)	High	Low	-
	03	DI/DO 3 (X520.5)	High	Low	-
	04	DI/DO 4 (X520.6)	High	Low	-
	05	DI/DO 5 (X520.7)	High	Low	-
	06	DI/DO 6 (X520.8)	High	Low	-
	07	DI/DO 7 (X520.9)	High	Low	-
	08	DI/DO 8 (X521.2)	High	Low	-
	09	DI/DO 9 (X521.3)	High	Low	-
	10	DI/DO 10 (X521.4)	High	Low	-
	11	DI/DO 11 (X521.5)	High	Low	-
	12	DI/DO 12 (X521.6)	High	Low	-
	13	DI/DO 13 (X521.7)	High	Low	-
	14	DI/DO 14 (X521.8)	High	Low	-

	15	DI/DO 15 (X521.9)	High	Low	-
	16	DI/DO 16 (X522.2)	High	Low	-
	17	DI/DO 17 (X522.3)	High	Low	-
	18	DI/DO 18 (X522.4)	High	Low	-
	19	DI/DO 19 (X522.5)	High	Low	-
	20	DI/DO 20 (X522.6)	High	Low	-
	21	DI/DO 21 (X522.7)	High	Low	-
		DI/DO 22 (X522.8)	High	Low	-
	23	DI/DO 23 (X522.9)	High	Low	-
Dependency:	Refer to: r4023, r4024, r4025				
Notice:	For the BICO interconnection of the connector output (CO) only bit $00 \ldots$ bit 15 are transferred.				
Note:	DI/DO: Bidirectional Digital Input/Output				
r4023.0..3	BO: TB30 digital inputs, status inverted / TB30 DI status inv				
TB30	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 1790, 9100	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the inverted status of the digital inputs of the Terminal Board 30 (TB30).				
Bit field:		Signal name	1 signal	0 signal	FP
		DI 0 (X481.1)	High	Low	-
		DI 1 (X481.2)	High	Low	-
		DI 2 (X481.3)	High	Low	-
		DI 3 (X481.4)	High	Low	-
Dependency:	Refer to: r4022				
Note:	DI: Digital input				
r4023.0... 11	CO/BO: TM31 digital inputs, status inverted / TM31 DI status inv				
TM31	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 1840, 9550, 9552, 9560, 9562	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-	E	
Description:	Displays the inverted status of the digital inputs of Terminal Module 31 (TM31).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X520.1)	High	Low	-
		DI 1 (X520.2)	High	Low	-
	02	DI 2 (X520.3)	High	Low	-
	03	DI 3 (X520.4)	High	Low	-
	04	DI 4 (X530.1)	High	Low	-
	05	DI 5 (X530.2)	High	Low	-
	06	DI 6 (X530.3)	High	Low	-
	07	DI 7 (X530.4)	High	Low	-
	08	DI/DO 8 (X541.2)	High	Low	-
		DI/DO 9 (X541.3)	High	Low	-
	10	DI/DO 10 (X541.4)	High	Low	-
		DI/DO 11 (X541.5)	High	Low	-
Dependency:	Refer to: r 4022				
Note:	DI: Digital input				
	DI/DO: Bidirectional Digital Input/Output				

r4023.0... 11	BO: TM41 digital inputs, status inverted / TM41 Dl status inv			
TM41	Can be changed: -	Calculated: -	Access level: 1	
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -	
	P-Group: Commands	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting	
Description:	Displays the inverted status of the digital inputs of Terminal Module 41 (TM41).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (X522.1)	High	Low	9660
	01 DI 1 (X522.2)	High	Low	9660
	02 DI 2 (X522.3)	High	Low	9660
	03 DI 3 (X522.4)	High	Low	9660
	08 DI/DO 0 (X521.1)	High	Low	9661
	09 DI/DO 1 (X521.2)	High	Low	9661
	10 DI/DO 2 (X521.3)	High	Low	9662
	11 DI/DO 3 (X521.4)	High	Low	9662
Dependency:	Refer to: r 4022			
Note:	DI: Digital input			
	DI/DO: Bidirectional Digital Input/Output			

Notice: Note:	For the BICO interconnection of the connector output (CO) only bit 00 ... bit 15 are transferred. DI/DO: Bidirectional Digital Input/Output			
r4024	CO: TM15DI/DO digital inputs $16 . .23$ status / TM15D DI 16-23 St			
TM15DI_DO	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: -	Func	
	P-Group: Commands	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min	Max	Fact	
Description:	Displays the status of digital inputs $16 \ldots 23$ of Terminal Module 15 (TM15).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI/DO 16 (X522.2)	On	Off	-
	01 DI/DO 17 (X522.3)	On	Off	-
	02 DI/DO 18 (X522.4)	On	Off	-
	03 DI/DO 19 (X522.5)	On	Off	-
	04 DI/DO 20 (X522.6)	On	Off	-
	05 DI/DO 21 (X522.7)	On	Off	-
	06 DI/DO 22 (X522.8)	On	Off	-
	07 DI/DO 23 (X522.9)	On	Off	-
Dependency:	Refer to: r4022, r4023, r4025			
Note:	DI: Digital input			
r4025	CO: TM15DI/DO digital inputs $16 . . .23$ status inverted / TM15D DI 16-23 inv			
TM15DI_DO	Can be changed: -	Calculated: -	Access level: 1	
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 9402	
	P-Group: Commands	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting	
Description: Bit field:	Displays the inverted status of digital inputs 16 ... 23 of Terminal Module 15 (TM15).			
	Bit Signal name	1 signal	0 signal	FP
	00 DI/DO 16 (X522.2)	On	Off	-
	01 DI/DO 17 (X522.3)	On	Off	-
	02 DI/DO 18 (X522.4)	On	Off	-
	03 DI/DO 19 (X522.5)	On	Off	-
	04 DI/DO 20 (X522.6)	On	Off	-
	05 DI/DO 21 (X522.7)	On	Off	-
	06 DI/DO 22 (X522.8)	On	Off	-
	07 DI/DO 23 (X522.9)	On	Off	-
Dependency:	Refer to: r4022, r4023, r4			
Note:	DI: Digital input			
p4028	TM31 set input or out	DI or DO		
TM31	Can be changed: T Calculated: -		Access level: 1	
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 1840, 9560, 9562	
	P-Group: Commands	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting 0000 bin	
Description:	Sets the bidirectional digital inputs/outputs as input or output on the Terminal Module 31 (TM31).			

Bit field:		Signal name	1 signal	0 signal	FP
	08	DI/DO 8 (X541.2)	Output	Input	-
	09	DI/DO 9 (X541.3)	Output	Input	-
		DI/DO 10 (X541.4)	Output	Input	-
	11	DI/DO 11 (X541.5)	Output	Input	-
p4028		1 set input or o	or DO		
TM41		be changed: T	Calculated: -	Acce	
		type: Unsigned32	Dynamic index: -	Func	
		oup: Commands	Units group: -	Unit	
		for motor type: -		Exp	
	Min		Max	Fact 0000	
Description:		the bidirectional digit	the Terminal Modu	as input	
Bit field:		Signal name	1 signal	0 signal	FP
	08	DI/DO 0 (X521.1)	Output	Input	9661
		DI/DO 1 (X521.2)	Output	Input	9661
	10	$\text { DI/DO } 2 \text { (X521.3) }$	Output	Input	9662
		$\text { DI/DO } 3 \text { (X521.4) }$	Output	Input	9662
p4028		7 set input or o	or DO		
TM17		be changed: T	Calculated: -	Acce	
		type: Unsigned32	Dynamic index: -	Func	
		up: Commands	Units group: -	Unit	
		for motor type: -		Expe	
	Min		Max	Fact 0000	
Description:		he bidirectional digit	the Terminal Mod	as input	
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	Output	Input	-
	01	DI/DO 1 (X520.3)	Output	Input	-
	02	DI/DO 2 (X520.5)	Output	Input	-
	03	DI/DO 3 (X520.6)	Output	Input	-
	04	$\text { DI/DO } 4 \text { (X520.8) }$	Output	Input	-
		$\text { DI/DO } 5 \text { (X520.9) }$	Output	Input	-
		$\text { DI/DO } 6 \text { (X521.2) }$	Output	Input	-
	07	$\text { DI/DO } 7 \text { (X521.3) }$	Output	Input	-
	08	DI/DO 8 (X521.8)	Output	Input	-
	09	DI/DO 9 (X521.9)	Output	Input	-
	10	DI/DO 10 (X522.2)	Output	Input	-
	11	DI/DO 11 (X522.3)	Output	Input	-
		DI/DO 12 (X522.5)	Output	Input	-
		DI/DO 13 (X522.6)	Output	Input	-
		DI/DO 14 (X522.8)	Output	Input	-
	15	DI/DO 15 (X522.9)	Output	Input	-
Note:	DI/	O: Bidirectional Digita			
p4028		15 set input or o	D or DO		
TM15		be changed: T	Calculated: -	Acce	
		type: Unsigned32	Dynamic index: -	Func	
		oup: Commands	Units group: -	Unit	
		for motor type: -		Expe	
	Min		Max	Fact 0000	
Description:		the bidirectional digit	the Terminal Modu	as input or	

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	Output	Input	-
	01	DI/DO 1 (X520.3)	Output	Input	-
	02	DI/DO 2 (X520.4)	Output	Input	-
	03	DI/DO 3 (X520.5)	Output	Input	-
	04	DI/DO 4 (X520.6)	Output	Input	-
	05	DI/DO 5 (X520.7)	Output	Input	-
	06	DI/DO 6 (X520.8)	Output	Input	-
	07	DI/DO 7 (X520.9)	Output	Input	-
	08	DI/DO 8 (X521.2)	Output	Input	-
	09	DI/DO 9 (X521.3)	Output	Input	-
	10	DI/DO 10 (X521.4)	Output	Input	-
	11	DI/DO 11 (X521.5)	Output	Input	-
	12	DI/DO 12 (X521.6)	Output	Input	-
	13	DI/DO 13 (X521.7)	Output	Input	-
	14	DI/DO 14 (X521.8)	Output	Input	-
	15	DI/DO 15 (X521.9)	Output	Input	-
	16	DI/DO 16 (X522.2)	Output	Input	-
	17	DI/DO 17 (X522.3)	Output	Input	-
	18	DI/DO 18 (X522.4)	Output	Input	-
	19	DI/DO 19 (X522.5)	Output	Input	-
		DI/DO 20 (X522.6)	Output	Input	-
		DI/DO 21 (X522.7)	Output	Input	-
		DI/DO 22 (X522.8)	Output	Input	-
	23	DI/DO 23 (X522.9)	Output	Input	-
Note:	DI/DO: Bidirectional Digital Input/Output				
p4028	TM15DI/DO set input or output / TM15D DI or DO				
TM15DI_DO	Can be changed: T		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 9400, 9401, 9402	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting 0000 bin	
Description:	Sets the bidirectional digital inputs/outputs on the Terminal Module 15 (TM15) as input or output.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 0 (X520.2)	Output	Input	-
	01	DI/DO 1 (X520.3)	Output	Input	-
	02	DI/DO 2 (X520.4)	Output	Input	-
	03	DI/DO 3 (X520.5)	Output	Input	-
	04	DI/DO 4 (X520.6)	Output	Input	-
	05	DI/DO 5 (X520.7)	Output	Input	-
	06	DI/DO 6 (X520.8)	Output	Input	-
	07	DI/DO 7 (X520.9)	Output	Input	-
	08	DI/DO 8 (X521.2)	Output	Input	-
	09	DI/DO 9 (X521.3)	Output	Input	-
	10	DI/DO 10 (X521.4)	Output	Input	-
	11	DI/DO 11 (X521.5)	Output	Input	-
	12	DI/DO 12 (X521.6)	Output	Input	-
	13	DI/DO 13 (X521.7)	Output	Input	-
	14	DI/DO 14 (X521.8)	Output	Input	-
	15	DI/DO 15 (X521.9)	Output	Input	-
	16	DI/DO 16 (X522.2)	Output	Input	-
	17	DI/DO 17 (X522.3)	Output	Input	-
	18	DI/DO 18 (X522.4)	Output	Input	-
	19	DI/DO 19 (X522.5)	Output	Input	-
	20	DI/DO 20 (X522.6)	Output	Input	-
	21	DI/DO 21 (X522.7)	Output	Input	-

p4031	BI: TM31 signal source for terminal DO 1 / TM31 S_src DO 1		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 1840, 9556
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the digital output DO 1 (X542.4, X542.5, X542.6) of Terminal Module 31 (TM31). Digital output 1 of TM31 is a relay output. If the signal at the binector input p4031 is low, then terminal COM 1 (X542.5) is connected to NC 1 (X542.4). This connection also matches the mechanical quiescent setting of the relay. If the signal at the binector input p4031 is high, then terminal COM 1 (X542.5) is connected to NO 1 (X542.6).		
Note:	DO: Digital Output NC: Normally Closed contact NO: Normally Open contact		
p4031	BI: TM15DI/DO signal source for terminal DI/DO 1 / TM15D S_srcDI/DO 1		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9400
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for termina Prerequisite: The DI/DO must be DI/DO: Bidirectional Digital Input/	X520.3) of Terminal utput (p4028.1 = 1).	
p4032	BI: TB30 signal source for terminal DO 2 / TB30 S_src DO 2		
TB30	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9102
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for terminal DO 2 (X481.7) of the Terminal Board 30 (TB30). DO: Digital Output		
p4032	BI: TM15DI/DO signal source for terminal DI/DO 2 / TM15D S_srcDI/DO 2		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9400
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 2 (X520.4) of Terminal Module 15 (TM15).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.2 = 1).		

p4033	BI: TB30 signal source for terminal DO 3 / TB30 S_src DO 3		
TB30	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 1790, 9102
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for terminal DO 3 (X481.8) of the Terminal Board 30 (TB30). DO: Digital Output		
p4033	BI: TM15DI/DO signal source for terminal DI/DO 3 / TM15D S_srcDI/DO 3		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9400
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for terminal DI/DO 3 (X520.5) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output (p4028.3 = 1). DI/DO: Bidirectional Digital Input/Output		
p4034	BI: TM15DI/DO signal source for terminal DI/DO 4 / TM15D S_srcDI/DO 4		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9400
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 4 (X520.6) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output (p4028.4 = 1). DI/DO: Bidirectional Digital Input/Output		
Note:			
p4035	BI: TM15DI/DO signal source for terminal DI/DO 5 / TM15D S_srcDI/DO 5		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9400
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 5 (X520.7) of Terminal Module 15 (TM15).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.5 = 1). DI/DO: Bidirectional Digital Input/Output		

p4036	BI: TM15DI/DO signal source for terminal DI/DO 6 / TM15D S_srcDI/DO 6		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9400
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 6 (X520.8) of Terminal Module 15 (TM15).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.6 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p4037	BI: TM15DI/DO signal source for terminal DI/DO 7 / TM15D S_srcDI/DO 7		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9400
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 7 (X520.9) of Terminal Module 15 (TM15).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.7 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p4038	BI: TM31 signal source for terminal DI/DO 8 / TM31 S_src DI/DO 8		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 1840, 9560
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 8 (X541.2) of Terminal Module 31 (TM31).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.8 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p4038	BI: TM41 signal source for terminal DI/DO 0 / TM41 S_src DI/DO 0		
TM41	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9661
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 0 (X521.1) of Terminal Module 41 (TM41).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.8 = 1).		DI/DO: Bidirectional Digital Input/Output

p4038	BI: TM15DI/DO signal source for terminal DI/DO 8 / TM15D S_srcDI/DO 8		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9401
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for terminal DI/DO 8 (X521.2) of terminal module 15 (TM15).		
p4039	BI: TM31 signal source for terminal DI/DO 9 / TM31 S_src DI/DO 9		
тM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9560
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for terminal DI/DO 9 (X541.3) of Terminal Module 31 (TM31).		Prerequisite: The DI/DO must be set as an output (p4028.9 = 1). DI/DO: Bidirectional Digital Input/Output
p4039	BI: TM41 signal source for terminal DI/DO 1 / TM41 S_src DI/DO 1		
TM41	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9661
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for termina Prerequisite: The DI/DO must be DI/DO: Bidirectional Digital Input/	X541.2) of Terminal utput (p4028.9 = 1).	
p4039	BI: TM15DI/DO signal source for terminal DI/DO 9 / TM15D S_srcDI/DO 9		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9401
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 9 (X521.3) of Terminal Module 15 (TM15).		
Note:			

p4040	BI: TM31 signal source for terminal DI/DO 10 / TM31 S_src DI/DO10		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9562
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for terminal DI/DO 10 (X541.4) of Terminal Module 31 (TM31). Prerequisite: The DI/DO must be set as an output ($\mathrm{p} 4028.10=1$). DI/DO: Bidirectional Digital Input/Output		
p4040	BI: TM41 signal source for terminal DI/DO 2 / TM41 S_src DI/DO 2		
TM41	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9662
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for terminal DI/DO 2 (X521.3) of Terminal Module 41 (TM41). Prerequisite: The DI/DO must be set as an output (p4028.10 = 1). DI/DO: Bidirectional Digital Input/Output		
p4040	BI: TM15DI/DO signal source for terminal DI/DO 10 / TM15D S_srcDI/D010		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9401
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for terminal DI/DO 10 (X521.4) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output ($\mathrm{p} 4028.10=1$). DI/DO: Bidirectional Digital Input/Output		
p4041	BI: TM31 signal source for terminal DI/DO 11 / TM31 S_src DI/D011		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 1840, 9562
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 11 (X541.5) of Terminal Module 31 (TM31).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.11 = 1).DI/DO: Bidirectional Digital Input/Output		

p4041	BI: TM41 signal source for terminal DI/DO 3 / TM41 S_src DI/DO 3		
TM41	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9662
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
		Max	Factory setting 0
Description: Note:	Sets the signal source for termina Prerequisite: The DI/DO must be DI/DO: Bidirectional Digital Input/	X521.4) of Terminal utput (p4028.11 = 1)	
p4041	BI: TM15DI/DO signal source for terminal DI/DO 11 / TM15D S_srcDI/D011		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9401
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for termina Prerequisite: The DI/DO must be DI/DO: Bidirectional Digital Input/	(X521.5) of Termina utput (p4028.11 = 1)	15).
p4042	BI: TM15DI/DO signal source for terminal DI/DO 12 / TM15D S_srcDI/DO12		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9401
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for termina Prerequisite: The DI/DO must be DIIDO: Bidirectional Digital Input/	(X521.6) of Termina utput (p4028.12 = 1)	15).
p4043	BI: TM15DI/DO signal source for terminal DI/DO 13 / TM15D S_srcDI/DO13		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9401
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for termina Prerequisite: The DI/DO must be DI/DO: Bidirectional Digital Input//	(X521.7) of Terminal	15).

p4044	BI: TM15DI/DO signal source for terminal DI/DO 14 / TM15D S_srcDI/D014			
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1	
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9401	
	P-Group: Commands	Units group: -	Unit selection: -	
	Not for motor type:-		Expert list: 1	
	Min	Max	Factory setting 0	
Description: Note:	Sets the signal source for terminal DI/DO 14 (X521.8) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output (p4028.14 = 1). DI/DO: Bidirectional Digital Input/Output			
p4045 TM15DI_DO	BI: TM15DI/DO signal source for terminal DI/DO 15 / TM15D S_srcDI/DO15			
	Can be changed: U, T	Calculated: -	Access level: 1	
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9401	
	P-Group: Commands	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
		Max	Factory setting 0	
Description: Note:	Sets the signal source for terminal DI/DO 15 (X521.9) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output ($\mathrm{p} 4028.15=1$). DI/DO: Bidirectional Digital Input/Output			
p4046	TM31 digital outputs, limit current / TM31 DO limit curr			
TM31	Can be changed: T	Calculated: -	Access level: 2	
	Data type: Integer16	Dynamic index: -	Func. diagram: 9560	
	P-Group: Commands	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{1}{\operatorname{Max}}$	Factory setting 0	
Description:	Sets the limit for the total output voltage of terminals X541.1, X541.2, X541.3 and X541.4 (DI/DO 8 ... 11) of Terminal Module 31 (TM31).			
Value:	$\begin{array}{lll}\text { 0: } & 0.1 \text { A total current limit DI/DO } 8 \ldots & 11 \\ \text { 1: } & 1.0 \text { A total current limit DI/DO } 8 \ldots & \ldots 11\end{array}$			
Dependency:	Refer to: p4028			
Warning:	Since the sum of the output currents at terminals X541.1, X541.2, X541.3 and X541.4 is limited, an overcurrent or short circuit at one output terminal can cause a dip in the signal at the other terminals.			
r4047	TB30 digital outputs status / TB30 DO status			
TB30	Can be changed: -	Calculated: -	Access level: 1	
	Data type: Unsigned32	Dynamic index: -Units group: -	Func. diagram: 9102	
	P-Group: Commands		Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting	
Description:	Displays the status of the digital outputs of the Terminal Board 30 (TB30).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DO 0 (X481.5)	High	Low	-
	01 DO 1 (X481.6)	High	Low	-
	02 DO 2 (X481.7)	High	Low	-
	03 DO 3 (X481.8)	High	Low	-

Note:	Inversion using p4048 has been taken into account. DO: Digital Output			
r4047	TM31 digital outputs status / TM31 DO status			
TM31	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned32	Dynamic index: -	Func 9562	9560
	P-Group: Commands	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min	Max	Fact	
	-	-	-	
Description:	Displays the status of the digital outputs of Terminal Module 31 (TM31).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DO 0 (X542.1-3)	High	Low	-
	01 DO 1 (X542.4-6)	High	Low	-
	08 DI/DO 8 (X541.2)	High	Low	-
	09 DI/DO 9 (X541.3)	High	Low	-
	10 DI/DO 10 (X541.4)	High	Low	-
	11 DI/DO 11 (X541.5)	High	Low	-
Note:	Inversion using p4048 has been taken into account.			
	The setting of the DI/DO as either input or output is of no significance (p4028).			
	DO: Digital Output			
	DI/DO: Bidirectional Digital Input/Output			
r4047	TM41 digital outputs status / TM41 DO status			
TM41	Can be changed: -	Calculated: -	Access level: 1	
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -	
	P-Group: Commands	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the status of the digital outputs of Terminal Module 41 (TM41).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	08 DI/DO 0 (X521.1)	High	Low	9661
	09 DI/DO 1 (X521.2)	High	Low	9661
	10 DI/DO 2 (X521.3)	High	Low	9662
	11 DI/DO 3 (X521.4)	High	Low	9662
Note:	Inversion using p4048 has been taken into account.			
	The setting of the DI/DO as either input or output is of no significance (p4028).			
	DO: Digital Output			
	DI/DO: Bidirectional Digital Input/Output			
r4047	TM15DI/DO digital outputs, status / TM15D DO status			
TM15DI_DO	Can be changed: - Data type: Unsigned32	Calculated: -	Access level: 1	
		Dynamic index: -	$\begin{aligned} & \text { Func } \\ & 9402 \end{aligned}$	9401,
	P-Group: Commands	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting	
Description:Bit field:	Displays the status of the digital outputs of Terminal Module 15 (TM15).			
	Bit Signal name	1 signal	0 signal	FP
	00 DI/DO 0 (X520.2)	High	Low	-

	01	DI/DO 1 (X520.3)	High	Low	-
	02	DI/DO 2 (X520.4)	High	Low	-
	03	DI/DO 3 (X520.5)	High	Low	-
	04	DI/DO 4 (X520.6)	High	Low	-
	05	DI/DO 5 (X520.7)	High	Low	-
	06	DI/DO 6 (X520.8)	High	Low	-
	07	DI/DO 7 (X520.9)	High	Low	-
	08	DI/DO 8 (X521.2)	High	Low	-
	09	DI/DO 9 (X521.3)	High	Low	-
	10	DI/DO 10 (X521.4)	High	Low	-
	11	DI/DO 11 (X521.5)	High	Low	-
	12	DI/DO 12 (X521.6)	High	Low	-
	13	DI/DO 13 (X521.7)	High	Low	-
	14	DI/DO 14 (X521.8)	High	Low	-
	15	DI/DO 15 (X521.9)	High	Low	-
	16	DI/DO 16 (X522.2)	High	Low	-
	17	DI/DO 17 (X522.3)	High	Low	-
	18	DI/DO 18 (X522.4)	High	Low	-
		DI/DO 19 (X522.5)	High	Low	-
		DI/DO 20 (X522.6)	High	Low	-
		DI/DO 21 (X522.7)	High	Low	-
		DI/DO 22 (X522.8)	High	Low	-
	23	DI/DO 23 (X522.9)	High	Low	-
Note:	Inversion using p4048 has been taken into account.				
	The setting of the DI/DO as either input or output is of no significance (p4028).				
	DI/DO: Bidirectional Digital Input/Output				
p4048	TB30 invert digital outputs / TB30 DO invert				
TB30	Can be changed: U, T		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 9102	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting 0000 bin	
Description:	Setting to invert the signals at the digital outputs of the Terminal Board 30 (TB30).				
Bit field:		Signal name	1 signal	0 signal	FP
		DO 0 (X481.5)	Inverted	Not inverted	-
		DO 1 (X481.6)	Inverted	Not inverted	-
		DO 2 (X481.7)	Inverted	Not inverted	-
		DO 3 (X481.8)	Inverted	Not inverted	-
Note:	DO: Digital Output				
p4048	TM31 invert digital outputs / TM31 DO invert				
TM31	Can be changed: U, T		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 9556, 9560, 9562	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting 0000 bin	
Description:	Setting to invert the signals at the digital outputs of Terminal Module 31 (TM31).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DO 0 (X542.1-3)	Inverted	Not inverted	-
	01	DO 1 (X542.4-6)	Inverted	Not inverted	-
	08	DI/DO 8 (X541.2)	Inverted	Not inverted	-
	09	DI/DO 9 (X541.3)	Inverted	Not inverted	-

		DI/DO 10 (X541.4) DI/DO 11 (X541.5) DI/DO 11 (X541.5)	Inverted Inverted	Not inverted Not inverted	
Note:	DO: Digital Output				
p4048	TM41 invert digital outputs / TM41 DO invert				
TM41	Can be changed: U, T		Calculated: -	Access	
	Data type: Unsigned32		Dynamic index: -	Func. dia	
	P-Group: Commands		Units group: -	Unit sele	
	Not for motor type: -			Expert lis	
	Min		Max	Factory	
	-		-	0000 bin	
Description:	Setting to invert the signals at the digital outputs of Terminal Module 41 (TM41).				
Bit field:		Signal name	1 signal	0 signal	FP
		DI/DO 0 (X521.1)	Inverted	Not inverted	9661
		DI/DO 1 (X521.2)	Inverted	Not inverted	9661
		DI/DO 2 (X521.3)	Inverted	Not inverted	9662
		DI/DO 3 (X521.4)	Inverted	Not inverted	9662
Note:	DO: Digital Output				
	DI/DO: Bidirectional Digital Input/Output				
p4048	TM17 invert digital inputs/outputs / TM17 DI/DO invert				
TM17	Can be changed: U, T		Calculated: -	Access	
	Data type: Unsigned32		Dynamic index: -	Func. dia	
	P-Group: Commands		Units group: -	Unit sele	
	Not for motor type: -			Expert lis	
	Min		Max	Factory 0000 bin	
Description:	Setting to invert the signals at the digital inputs/outputs of Terminal Module 17 (TM17).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	Inverted	Not inverted	-
	01	DI/DO 1 (X520.3)	Inverted	Not inverted	-
	02	DI/DO 2 (X520.5)	Inverted	Not inverted	-
	03	DI/DO 3 (X520.6)	Inverted	Not inverted	-
	04	DI/DO 4 (X520.8)	Inverted	Not inverted	-
	05	DI/DO 5 (X520.9)	Inverted	Not inverted	-
	06	DI/DO 6 (X521.2)	Inverted	Not inverted	-
	07	DI/DO 7 (X521.3)	Inverted	Not inverted	-
	08	DI/DO 8 (X521.8)	Inverted	Not inverted	-
	09	DI/DO 9 (X521.9)	Inverted	Not inverted	-
	10	DI/DO 10 (X522.2)	Inverted	Not inverted	-
	11	DI/DO 11 (X522.3)	Inverted	Not inverted	-
	12	DI/DO 12 (X522.5)	Inverted	Not inverted	-
	13	DI/DO 13 (X522.6)	Inverted	Not inverted	-
	14	DI/DO 14 (X522.8)	Inverted	Not inverted	-
	15	DI/DO 15 (X522.9)	Inverted	Not inverted	-
Note:	DI/DO: Bidirectional Digital Input/Output				

p4048	TM15 invert digital inputs/outputs / TM15 DI/DO invert				
TM15	Can be changed: U, T			Access level: 2	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: -	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting 0000 bin	
Description:	Setting to invert the signals at the digital inputs/outputs of Terminal Module 15 (TM15).				
Bit field:		Signal name	1 signal	0 signal	FP
		DI/DO 0 (X520.2)	Inverted	Not inverted	-
		DI/DO 1 (X520.3)	Inverted	Not inverted	-
		DI/DO 2 (X520.4)	Inverted	Not inverted	-
		DI/DO 3 (X520.5)	Inverted	Not inverted	-
		DI/DO 4 (X520.6)	Inverted	Not inverted	-
	05	DI/DO 5 (X520.7)	Inverted	Not inverted	-
	06	DI/DO 6 (X520.8)	Inverted	Not inverted	-
	07	DI/DO 7 (X520.9)	Inverted	Not inverted	-
	08	DI/DO 8 (X521.2)	Inverted	Not inverted	-
	09	DI/DO 9 (X521.3)	Inverted	Not inverted	-
	10	DI/DO 10 (X522.4)	Inverted	Not inverted	-
	11	DI/DO 11 (X521.5)	Inverted	Not inverted	-
	12	DI/DO 12 (X521.6)	Inverted	Not inverted	-
	13	DI/DO 13 (X521.7)	Inverted	Not inverted	-
	14	DI/DO 14 (X521.8)	Inverted	Not inverted	-
		DI/DO 15 (X521.9)	Inverted	Not inverted	-
		DI/DO 16 (X522.2)	Inverted	Not inverted	-
		DI/DO 17 (X522.3)	Inverted	Not inverted	-
		DI/DO 18 (X522.4)	Inverted	Not inverted	-
		DI/DO 19 (X522.5)	Inverted	Not inverted	-
		DI/DO 20 (X522.6)	Inverted	Not inverted	-
		DI/DO 21 (X522.7)	Inverted	Not inverted	-
		DI/DO 22 (X522.8)	Inverted	Not inverted	-
	23	DI/DO 23 (X522.9)	Inverted	Not inverted	-
Note:	DI/DO: Bidirectional Digital Input/Output				
p4048	TM15DI/DO invert digital outputs / TM15D DO invert				
TM15DI_DO	Can be changed: U, T		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 9400, 9401, 9402	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting 0000 bin	
Description:	Setting to invert the signals at the digital outputs of Terminal Module 15 (TM15).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 0 (X520.2)	Inverted	Not inverted	-
	01	DI/DO 1 (X520.3)	Inverted	Not inverted	-
	02	DI/DO 2 (X520.4)	Inverted	Not inverted	-
	03	DI/DO 3 (X520.5)	Inverted	Not inverted	-
	04	DI/DO 4 (X520.6)	Inverted	Not inverted	-
	05	DI/DO 5 (X520.7)	Inverted	Not inverted	-
	06	DI/DO 6 (X520.8)	Inverted	Not inverted	-
	07	DI/DO 7 (X520.9)	Inverted	Not inverted	-
	08	DI/DO 8 (X521.2)	Inverted	Not inverted	-
	09	DI/DO 9 (X521.3)	Inverted	Not inverted	-
	10	DI/DO 10 (X521.4)	Inverted	Not inverted	-
	11	DI/DO 11 (X521.5)	Inverted	Not inverted	-

	12	DI/DO 12 (X521.6)	Inverted	Not inverted	-
	13	DI/DO 13 (X521.7)	Inverted	Not inverted	-
	14	DI/DO 14 (X521.8)	Inverted	Not inverted	-
	15	DI/DO 15 (X521.9)	Inverted	Not inverted	-
	16	DI/DO 16 (X522.2)	Inverted	Not inverted	-
	17	DI/DO 17 (X522.3)	Inverted	Not inverted	-
	18	DI/DO 18 (X522.4)	Inverted	Not inverted	-
	19	DI/DO 19 (X522.5)	Inverted	Not inverted	-
	20	DI/DO 20 (X522.6)	Inverted	Not inverted	-
	21	DI/DO 21 (X522.7)	Inverted	Not inverted	-
		DI/DO 22 (X522.8)	Inverted	Not inverted	-
	23	DI/DO 23 (X522.9)	Inverted	Not inverted	-
Note:	DI/DO: Bidirectional Digital Input/Output				
p4049	TM17 digital inputs/outputs, set the mode / TM17 DI/DO mode				
TM17	Can be changed: T		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: -	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting 0000 bin	
Description:	Sets the mode of the DI/DO of Terminal Module 17 (TM17).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 0 (X520.2)	I/O with time	I/O	-
		DI/DO 1 (X520.3)	I/O with time	1/O	-
		DI/DO 2 (X520.5)	I/O with time	1/O	-
	03	DI/DO 3 (X520.6)	I/O with time	I/O	-
	04	DI/DO 4 (X520.8)	I/O with time	1/0	-
	05	DI/DO 5 (X520.9)	I/O with time	1/O	-
	06	DI/DO 6 (X521.2)	I/O with time	I/O	-
	07	DI/DO 7 (X521.3)	I/O with time	1/0	-
	08	DI/DO 8 (X521.8)	I/O with time	I/O	-
	09	DI/DO 9 (X521.9)	I/O with time	I/O	-
	10	DI/DO 10 (X522.2)	I/O with time	I/O	-
	11	DI/DO 11 (X522.3)	I/O with time	I/O	-
		DI/DO 12 (X522.5)	I/O with time	I/O	-
		DI/DO 13 (X522.6)	I/O with time	I/O	-
		DI/DO 14 (X522.8)	I/O with time	1/0	-
	15	DI/DO 15 (X522.9)	I/O with time	1/O	-
Note:	DI/DO: Bidirectional Digital Input/Output				
p4049	TM15 digital inputs/outputs, set the mode / TM15 DI/DO mode				
TM15	Can be changed: T		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: -	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting 0000 bin	
Description:	Sets the mode of the DI/DOs of Terminal Module 15 (TM15).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 0 (X520.2)	I/O with time	I/O	-
	01	DI/DO 1 (X520.3)	I/O with time	I/O	-
	02	DI/DO 2 (X520.4)	I/O with time	I/O	-
	03	DI/DO 3 (X520.5)	I/O with time	1/O	-
	04	DI/DO 4 (X520.6)	I/O with time	1/O	-
	05	DI/DO 5 (X520.7)	I/O with time	1/O	-
	06	DI/DO 6 (X520.8)	I/O with time	1/O	-

Index:	$[0]=$ Al $0($ X523.1/X523.2 $)$
Note:	Al: Analog Input

p4053[0...1]	TB30 analog inputs, smoothing time constant / TB30 Al T_smooth		
TB30	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	

p4053[0...0]	TM41 analog inputs, smoothing time constant / TM41 AI T_smooth		
TM41	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9663
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.0[\mathrm{~ms}] \end{aligned}$	Factory setting 0.0 [ms]
Description:	Sets the smoothing time constant of the 1st-order low pass filter for the analog inputs of Terminal Module 41 (TM41).		
Index:	[0] = Al 0 (X523.1/X523.2)		
Note:	AI: Analog Input		

r4055[0...1]	CO: TB30 analog inputs, current value in percent / TB30 Al value in \%		
TB30	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1790, 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the currently referred input value of the analog inputs of Terminal Board 30 (TB30). When interconnected, the signals are referred to the reference quantities p200x and p205x.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$		

Note:	AI: Analog Input		
r4055[0...1]	CO: TM31 analog inputs, current value in percent / TM31 AI value in \%		
тM31	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 1840, 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{-[\%]}$	$\begin{gathered} \operatorname{Max} \\ -[\%] \end{gathered}$	Factory setting - [\%]
Description:	Displays the currently referred input value of the analog inputs of Terminal Module 31 (TM31). When interconnected, the signals are referred to the reference quantities p 200 x and p 205 x .		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(\text { (X521.1/X521.2, S5.0) }} \\ & {[1]=\text { Al } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Note:	Al: Analog Input		
r4055[0...0]	CO: TM41 analog inputs, current value in percent / TM41 AI value in \%		
TM41	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9663
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\%] \end{aligned}$	$\begin{gathered} \operatorname{Max} \\ -[\%] \end{gathered}$	Factory setting - [\%]
Description:	Displays the currently referred input value of the analog inputs of Terminal Module 41 (TM41).		
Index:	When interconnected, the signals are referred to the reference quantities p200x and p205x.$\text { [0] = AI } 0 \text { (X523.1/X523.2) }$		
Note:	Al: Analog Input		
r4056[0...1]	TB30 analog inputs, type / TB30 Al type		
TB30	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index:-	Func. diagram: -
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 4 \end{aligned}$	Factory setting
Description:	Displays the type of analog inputs.		
Value:	4: Bipolar voltage input (-10 V ... +10 V)		
Index:	$[0]=\text { AI } 0(X 482.1 / X 482.2)$		
p4056[0...1]	TM31 analog inputs, type / TM31 Al type		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 5 \end{aligned}$	Factory setting 4
Description:	Sets the type of analog inputs of Terminal Module 31 (TM31). $\mathrm{p} 4056[\mathrm{x}]=0$, 4 correspond to a voltage input (r 4052 , p4057, p4059 are displayed in V). $\mathrm{p} 4056[\mathrm{x}]=2,3,5$ correspond to a current input (r 4052 , p 4057 , p 4059 are displayed in mA). In addition, the associated switch S5 must be switched.		

p4057[0...1]	TM31 analog inputs, characteristic value x1 / TM31 Al char x1		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -20.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 20.000 \end{aligned}$	Factory setting 0.000
Description:	Sets the normalization char The normalization character This parameter specifies the acteristic.	analog inputs of Term inputs is defined put voltage in V or in	(TM31). of the 1st value pair of the char-
Index:	$\begin{aligned} & {[0]=\mathrm{Al} 0(\mathrm{X} 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)} \\ & {[1]=\mathrm{Al} 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Dependency:	The units of this parameter (V or mA) depend on the analog input type. Refer to: r4056, p4056		
Notice:	This parameter is automatically overwritten when the analog input type (p4056) is modified.		
Note:	The parameters for the characteristic do not limit.		
p4057[0...0]	TM41 analog input, characteristic value x1/ TM41 Al char x1		
TM41	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9663
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -20.000[\mathrm{~V}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 20.000[\mathrm{~V}] \end{aligned}$	Factory setting 0.000 [V]
Description:	Sets the normalization characteristic for the analog inputs of Terminal Module 41 (TM41). The normalization characteristic for the analog input is defined using 2 points. This parameter specifies the x coordinate (input voltage in V) of the 1st value pair of the characteristic.		
Index:	[0] = Al 0 (X523.1/X523.2)		
Note:	The parameters for the characteristic do not limit.		
p4058[0..1]	TB30 analog inputs, characteristic value y1 / TB30 Al char y1		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -1000.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	Sets the normalization characteristic for the analog inputs of Terminal Board 30 (TB30). The normalization characteristic for the analog inputs is defined using two points. This parameter specifies the y coordinate (percentage) of the 1st value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Note:	The parameters for the characteristic do not limit.		

p4058[0...1]	TM31 analog inputs, characteristic value y1 / TM31 Al char y1		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	Sets the normalization characteristic for the analog inputs of Terminal Module 31 (TM31). The normalization characteristic for the analog inputs is defined using two points.		
Index:	This parameter specifies the y coordinate (percentage) of the 1 st value pair of the characteristic.$\text { [0] = AI } 0 \text { (X521.1/X521.2, S5.0) }$		
Notice:	This parameter is automatically overwritten when the analog input type (p4056) is modified.		
Note:	The parameters for the characteristic do not limit.		
p4058[0...0]	TM41 analog input, characteristic value y1 / TM41 Al char y1		
TM41	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9663
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000.00[\%] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	Sets the normalization characteristic for the analog input of Terminal Module 41 (TM41). The normalization characteristic for the analog inputs is defined using two points. This parameter specifies the y coordinate (percentage) of the 1st value pair of the characteristic.		
Index:	$[0]=\mathrm{Al} 0(\mathrm{X} 523.1 / \mathrm{X} 523.2)$		
Note:	The parameters for the characteristic do not limit.		
p4059[0...1]	TB30 analog inputs, characteristic value x2 / TB30 Al char x2		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -11.000[V] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 11.000 \text { [V] } \end{aligned}$	Factory setting 10.000 [V]
Description:	Sets the normalization characteristic for the analog inputs of Terminal Board 30 (TB30). The normalization characteristic for the analog inputs is defined using two points. This parameter specifies the x coordinate (input voltage in V) of the 2nd value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Note:	The parameters for the characteristic do not limit.		

p4059[0...1]	TM31 analog inputs, characteristic value x2 / TM31 Al char x2		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min -20.000	$\begin{aligned} & \text { Max } \\ & 20.000 \end{aligned}$	Factory setting 10.000
Description:	Sets the normalization characteristic for the analog inputs of Terminal Module 31 (TM31). The normalization characteristic for the analog inputs is defined using two points. This parameter specifies the x coordinate (input voltage in V or input current in mA) of the 2nd value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\mathrm{Al} 0(\mathrm{X} 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)} \\ & {[1]=\mathrm{Al} 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Dependency:	The units of this parameter (V or mA) depend on the analog input type. Refer to: r4056, p4056		
Notice:	This parameter is automatically overwritten when the analog input type (p4056) is modified.		
Note:	The parameters for the characteristic do not limit.		
p4059[0...0]	TM41 analog input, characteristic value x2 / TM41 Al char x2		
TM41	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9663
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -20.000[\mathrm{~V}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 20.000[\mathrm{~V}] \end{aligned}$	Factory setting 10.000 [V]
Description:	Sets the normalization characteristic for the analog input of Terminal Module 41 (TM41). The normalization characteristic for the analog inputs is defined using two points. This parameter specifies the x coordinate (input voltage in V) of the 2nd value pair of the characteristic.		
Index:	[0] = Al 0 (X523.1/X523.2)		
Note:	The parameters for the characteristic do not limit.		
p4060[0...1]	TB30 analog inputs, characteristic value y2 / TB30 Al char y2		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000.00[\%] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.00 \text { [\%] } \end{aligned}$	Factory setting 100.00 [\%]
Description:	Sets the normalization characteristic for the analog inputs of Terminal Board 30 (TB30). The normalization characteristic for the analog inputs is defined using two points. This parameter specifies the y coordinate (percentage) of the $2 n d$ value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0 \text { (X482.1/X482.2) }} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Note:	The parameters for the characteristic do not limit.		

p4060[0...1]	TM31 analog inputs, characteristic value y2 / TM31 Al char y2		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [\%] } \end{aligned}$	Factory setting 100.00 [\%]
Description:	Sets the normalization characteristic for the analog inputs of Terminal Module 31 (TM31). The normalization characteristic for the analog inputs is defined using two points. This parameter specifies the y coordinate (percentage) of the 2 nd value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / X 521.2, \text { S5.0 })} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Notice:	This parameter is automatically overwritten when the analog input type (p4056) is modified.		
Note:	The parameters for the characteristic do not limit.		
p4060[0...0]	TM41 analog input, characteristic value y2 / TM41 Al char y2		
TM41	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9663
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -1000.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [\%] } \end{aligned}$	Factory setting 100.00 [\%]
Description:	Sets the normalization characteristic for the analog input of Terminal Module 41 (TM41). The normalization characteristic for the analog inputs is defined using two points. This parameter specifies the y coordinate (percentage) of the 2 nd value pair of the characteristic.		
Index:	[0] = AI 0 (X523.1/X523.2)		
Note:	The parameters for the characteristic do not limit.		
p4061[0...1]	TM31 analog inputs, wire breakage monitoring response threshold / TM31 WireBrkThresh		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~mA}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 20.00[\mathrm{~mA}] \end{aligned}$	Factory setting 2.00 [mA]
Description: Index:	$\begin{aligned} & {[0]=\mathrm{AI} 0(\mathrm{X} 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)} \\ & {[1]=\mathrm{Al} 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Dependency:	For the following analog input type, the wire breakage monitoring is active: p4056[x] = 3 (unipolar current input monitored (+4 mA ... +20 mA)) Refer to: r4056, p4056		

p4062[0...1]	TM31 analog inputs, wire breakage monitoring delay time / TM31 wirebrk t_del		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [ms]	Max 1000 [ms]	Factory setting 100 [ms]
Description: Index:	Sets the delay time for wire $\begin{aligned} & {[0]=\mathrm{Al} 0 \text { (X521.1/X521.2, }} \\ & {[1]=\mathrm{Al} 1 \text { (X521.3/X521.4, S }} \end{aligned}$	ring of the analog in	Module 31 (TM31).
p4063[0...1]	TB30 analog inputs offset / TB30 Al offset		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -20.000[\mathrm{~V}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 20.000[\mathrm{~V}] \end{aligned}$	Factory setting 0.000 [V]
Description:	Sets the offset for the analog inputs of Terminal Board 30 (TB30).		
Index:	[1] = Al 1 (X482.3/X482.4)		
p4063[0...1]	TM31 analog inputs offset / TM31 Al offset		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -20.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 20.000 \end{aligned}$	Factory setting 0.000
Description:	Sets the offset for the analog inputs of Terminal Module 31 (TM31). The offset is added to the input signal before the normalization characteristic.		
Index:	$\text { [0] = AI } 0 \text { (X521.1/X521.2, S5.0) }$		
p4063[0...0]	TM41 analog input, offset / TM41 Al offset		
TM41	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9663
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{-20.000[V]}$	$\begin{aligned} & \operatorname{Max} \\ & 20.000[\mathrm{~V}] \end{aligned}$	Factory setting 0.000 [V]
Description: Index:	Sets the offset for the analog input of Terminal Module 41 (TM41). The offset is added to the input signal before the normalization characteristic. $\text { [0] = AI } 0 \text { (X523.1/X523.2) }$		

p4066[0...1]	TB30 analog inputs, activate absolute value generation / TB30 Al absVal act		
TB30	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Activates the absolute value generation for the analog input signals of the Terminal Board 30 (TB30).		
Value:	0 : \quad No absolute valu 1: \quad Absolute value g		
Index:	$\begin{aligned} & {[0]=\text { AI } 0 \text { (X482.1/X482. }} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482. }} \end{aligned}$		

p4066[0...1]	TM31 analog inputs, activate absolute value generation / TM31 Al absVal act		
TM31	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Activates the absolute value generation for the analog input signals of Terminal Module 31 (TM31).		
Value:	0 : \quad No absolute value 1: \quad Absolute value		
Index:	$\begin{aligned} & {[0]=\mathrm{Al} 0(X 521.1 / \mathrm{X} 521} \\ & {[1]=\mathrm{Al} 1 \text { (X521.3/X521 }} \end{aligned}$		

p4066[0...0]	TM41 analog input, activate absolute value generation / TM41 Al absVal act		
TM41	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 9663
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Activates the absolute value generation of the analog input signal of Terminal Module 41 (TM41).		
Value:	0 : \quad No absolute value 1: \quad Absolute value		
Index:	[0] = Al 0 (X523.1/X523		

p4067[0...1] BI: TB30 analog inputs invert signal source / TB30 Al inv S_src

TB30

Can be changed: U, T	Calculated: -	Access level: 3
Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9104
P-Group: Terminals	Units group: -	Unit selection: -
Not for motor type: -		Expert list: 1
Min	Max	Factory setting
-	-	0

Description: Sets the signal source to invert the analog input signals of the Terminal Board 30 (TB30).
Index:
[0] = AI 0 (X482.1/X482.2)
[1] = AI 1 (X482.3/X482.4)

p4067[0..1]	BI: TM31 analog inputs invert signal source / TM31 Al inv S_src		
TM31	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Index:	Sets the signal source to invert the analog inputs signals of Terminal Module 31 (TM31).$\begin{aligned} & {[0]=\text { AI } 0(\text { (X521.1/X521.2, S5.0) }} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
p4067[0...0]	BI: TM41 analog input invert signal source / TM41 Al inv S_src		
TM41	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9663
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Index:	Sets the signal source to invert the analog input signal of Terminal Module 41 (TM41).$[0]=\text { AI } 0 \text { (X523.1/X523.2) }$		
p4068[0..1]	TB30 analog inputs, window to suppress noise / TB30 Al window		
TB30	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$	Max $20.00 \text { [\%] }$	Factory setting 0.00 [\%]
Description:	Sets the noise suppression window for the analog inputs of Terminal Board 30 (TB30). Changes less than the window are suppressed.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
p4068[0..1]	TM31 analog inputs, window to suppress noise / TM31 Al window		
TM31	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$	Max $20.00 \text { [\%] }$	Factory setting 0.00 [\%]
Description:	Sets the window for noise suppression for the analog inputs of Terminal Module 31 (TM31). Changes less than the window are suppressed.		
Index:	$\begin{aligned} & {[0]=\mathrm{Al} 0 \text { (X521.1/X521.2, S5.0) }} \\ & {[1]=\mathrm{Al} 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		

p4068[0...0]	TM41 analog input, window to suppress noise / TM41 Al window		
TM41	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9663
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 20.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	Sets the noise suppression window for the analog input of Terminal Module 41 (TM41). Changes less than the window are suppressed.		
Index:	[0] = Al 0 (X523.1/X523.2)		
p4069[0...1]	BI: TB30 analog inputs, signal source for enable / TB30 Al enable		
TB30	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description: Index:	Sets the signal source for enablin $\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$	g inputs of the Termi	30).
p4069[0...1]	BI: TM31 analog inputs, signal source for enable / TM31 Al enable		
TM31	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 1
Description: Index:	$\begin{aligned} & {[0]=\mathrm{AI} 0 \text { (X521.1/X521.2, S5.0) }} \\ & {[1]=\mathrm{Al} 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		

p4069[0...0]	BI: TM41 analog input, signal source for enable / TM41 Al enable		
TM41	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9663
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	-	Factory setting
	-	1	
Description:	Sets the signal source for the enable signal of the analog input of Terminal Module 41 (TM41).		
Index:	$[0]=$ AI $0(X 523.1 / X 523.2)$		

p4071[0...1]	CI: TB30 analog outputs, signal source / TB30 AO sig_source		
TB30	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: -	Func. diagram: 1790,9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1

Index:	$[0]=\mathrm{AO} 0(X 482.5 / X 482.6)$		
Note:	AO: Analog Output		
p4071[0...1]	CI: TM31 analog outputs, signal source / TM31 AO sig_source		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: -	Func. diagram: 1840, 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the analog outputs of Terminal Module 31 (TM31).		
Index:	$\text { [0] = AO } 0 \text { (X522.1, X522.2, X522.3) }$		
Note:	AO: Analog Output		
r4072[0...1]	TB30 analog outputs, output value currently referred / TB30 AO outp_val		
TB30	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description: Index:	Displays the actual referred output value of $\begin{aligned} & {[0]=\text { AO } 0(X 482.5 / X 482.6)} \\ & {[1]=\text { AO } 1 \text { (X482.7/X482.8) }} \end{aligned}$	e analog outputs of	ard 30 (TB30).
r4072[0...1]	TM31 analog outputs, output value currently referred / TM31 AO outp_val		
TM31	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description: Index:	Displays the current referred output value $\begin{aligned} & {[0]=\text { AO } 0(X 522.1, \text { X522.2, X522.3) }} \\ & {[1]=\text { AO } 1 \text { (X522.4, X522.5, X522.6) }} \end{aligned}$	the analog outputs of	le 31 (TM31).
p4073[0...1]	TB30 analog outputs, smoothing time constant / TB30 AO T_smooth		
TB30	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [ms] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.0[\mathrm{~ms}] \end{aligned}$	Factory setting 0.0 [ms]
Description:	Sets the smoothing time constant of the 1st order low pass filter for the analog outputs of the Terminal Board 30 (TB30).		
Index:	$\begin{aligned} & {[0]=\text { AO } 0 \text { (X482.5/X482.6) }} \\ & {[1] \text { = AO } 1 \text { (X482.7/X482.8) }} \end{aligned}$		

p4073[0..1]	TM31 analog outputs, smoothing time constant / TM31 AO T_smooth		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.0 \text { [ms] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.0 \text { [ms] } \end{aligned}$	Factory setting 0.0 [ms]
Description:	Sets the smoothing time constant of the 1st-order low pass filter for the analog outputs of Terminal Module 31 (TM31).		
Index:	[0] = AO 0 (X522.1, X522.2, X522.3)		
	[1] = AO 1 (X522.4, X522.5, X522.6)		
r4074[0...1]	TB30 analog outputs, current output voltage / TB30 AO V_outp		
TB30	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[V] \end{aligned}$	Max - [V]	Factory setting - [V]
Description: Index:	Displays the current output voltage at the analog outputs of the Terminal Board 30 (TB30).$\begin{aligned} & {[0] \text { = AO } 0(X 482.5 / X 482.6)} \\ & {[1]=\text { AO } 1 \text { (X482.7/X482.8) }} \end{aligned}$		
r4074[0...1]	TM31 analog outputs, current output voltage/current / TM31 AO V/I_outp		
TM31	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the current output voltage in V when set as voltage output. Displays the current output voltage in mA when set as current output.		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, X 522.3)} \\ & {[1]=A O 1(X 522.4, X 522.5, X 522.6)} \end{aligned}$		
Dependency:	The type of the analog output AO x (voltage or current output) is set using p4076. Refer to: r4076, p4076		
Note:	AO: Analog Output		
p4075[0...1]	TB30 analog outputs, activate absolute value generation / TB30 AO absVal act		
TB30	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min_{0}	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Activates the absolute value generation for the analog outputs of the Terminal Board 30 (TB30).		
Value:	0 : \quad No absolute value generation 1: Absolute value generation switched in		
Index:	$\begin{aligned} & {[0]=\text { AO } 0 \text { (X482.5/X482.6) }} \\ & {[1] \text { = AO } 1 \text { (X482.7/X482.8) }} \end{aligned}$		

p4077[0...1]	TB30 analog outputs, characteristic value x1 / TB30 AO char x1		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	Sets the normalization characteristic for the analog outputs of Terminal Board 30 (TB30). The normalization characteristic for the analog outputs is defined using 2 points. This parameter specifies the x coordinate (percentage) of the 1 st value pair of the characteristic.		
Index:	This parameter specifies the x coordinate (percentage) of the 1 st value pair of the characteristic.$\begin{aligned} & {[0]=\text { AO } 0(X 482.5 / X 482.6)} \\ & {[1]=A O 1(X 482.7 / X 482.8)} \end{aligned}$		
Note:	The parameters for the characteristic do not limit.		
p4077[0...1]	TM31 analog outputs, characteristic value x1 / TM31 AO char x1		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1000.00[\%] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	Sets the normalization characteristic for the analog outputs of Terminal Module 31 (TM31). The normalization characteristic for the analog outputs is defined using 2 points. This parameter specifies the x coordinate (percentage) of the 1 st value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, X 522.3)} \\ & {[1]=\text { AO } 1 \text { (X522.4, X522.5, X522.6) }} \end{aligned}$		
Dependency:	The units of this parameter (V or mA) depend on the analog input type. Refer to: r4076, p4076		
Notice:	This parameter is automatically overwritten when the analog output type is changed (p4076).		
Note:	This parameter is automatically overwritten if p4076 (type of analog output) is changed.		
p4078[0...1]	TB30 analog outputs, characteristic value y1 / TB30 AO char y1		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -11.000[\mathrm{~V}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 11.000 \text { [V] } \end{aligned}$	Factory setting 0.000 [V]
Description:	Sets the normalization characteristic for the analog outputs of Terminal Board 30 (TB30). The normalization characteristic for the analog outputs is defined using 2 points. This parameter specifies the y coordinate (output voltage in V) of the 1st value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\mathrm{AO} 0 \text { (X482.5/X482.6) }} \\ & {[1] \text { = AO } 1 \text { (X482.7/X482.8) }} \end{aligned}$		
Note:	The parameters for the characteristic do not limit.		

p4080[0...1]	TB30 analog outputs, characteristic value y2 / TB30 AO char y2		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -11.000[\mathrm{~V}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 11.000 \text { [V] } \end{aligned}$	Factory setting 10.000 [V]
Description:	Sets the normalization characteristic for the analog outputs of Terminal Board 30 (TB30). The normalization characteristic for the analog outputs is defined using 2 points. This parameter specifies the y coordinate (output voltage in V) of the 2nd value pair of the characteristic.		
Index:	This parameter specifies the y coordinate (output voltage in V) of the 2 nd value pair of the characteristic.$\begin{aligned} & {[0]=\text { AO } 0(X 482.5 / X 482.6)} \\ & {[1]=\text { AO } 1 \text { (X482.7/X482.8) }} \end{aligned}$		
Note:	The parameters for the characteristic do not limit.		
p4080[0...1]	TM31 analog outputs, characteristic value y2 / TM31 AO char y2		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -20.000[V] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 20.000[V] \end{aligned}$	Factory setting 10.000 [V]
Description:	Sets the normalization character The normalization characteristic This parameter specifies the y co characteristic.	analog outputs of Ter g outputs is defined utput voltage in V or	(TM31). mA) of the 2 nd value p
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, X 522.3)} \\ & {[1]=A O 1(X 522.4, X 522.5, X 522.6)} \end{aligned}$		
Dependency:	The units of this parameter (V or Refer to: r4076, p4076	d on the analog input	
Notice:	This parameter is automatically overwritten when the analog output type is changed (p4076).		
Note:	This parameter is overwritten if p4076 (type of analog output) is changed.		
	The parameters for the characteristic do not limit.		
p4082[0...1]	BI: TB30 analog outputs invert signal source / TB30 AO inv S_src		
TB30	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Index:	Sets the signal source for inverting $\begin{aligned} & {[0]=\text { AO } 0(X 482.5 / X 482.6)} \\ & {[1]=\text { AO } 1 \text { (X482.7/X482.8) }} \end{aligned}$	g output signals of th	d 30 (TB30).

p4082[0...1]	BI: TM31 analog outputs invert signal source / TM31 AO inv S_src		
TM31	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Index:	Sets the signal source to invert the $\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, X 522} \\ & {[1]=A O 1 \text { (X522.4, X522.5, X522 }} \end{aligned}$	tput signals of Term	TM31).
p4083[0...1]	TB30 analog outputs, offset / TB30 AO offset		
TB30	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -10.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10.000 \end{aligned}$	Factory setting 0.000
Description:	Sets the offset for the analog outputs of Terminal Board 30 (TB30).		
Index:	The offset is added to the output $\begin{aligned} & {[0]=\text { AO } 0(X 482.5 / X 482.6)} \\ & {[1]=\text { AO } 1 \text { (X482.7/X482.8) }} \end{aligned}$	the normalization ch	
p4083[0...1]	TM31 analog outputs, offset / TM31 AO offset		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -20.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 20.000 \end{aligned}$	Factory setting 0.000
Description:	Sets the offset for the analog outputs of Terminal Module 31 (TM31).		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, X 522.3)} \\ & {[1]=\text { AO } 1 \text { (X522.4, X522.5, X522.6) }} \end{aligned}$		
Dependency:	The units of this parameter (V or mA) depend on the analog input type. Refer to: r4076, p4076		
Note:	This means, for example, the offset of a downstream isolating amplifier can be compensated.		
p4086	BI: TM15DI/DO signal source for terminal DI/DO 16 / TM15D S_srcDI/DO16		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9402
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for termin Prerequisite: The DI/DO must be DI/DO: Bidirectional Digital Input/	(X522.2) of Termina utput (p4028.16 = 1)	15).

p4087	BI: TM15DI/DO signal source for terminal DI/DO 17 / TM15D S_srcDI/DO17		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9402
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for terminal DI/DO 17 (X522.3) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output (p4028.17 = 1). DI/DO: Bidirectional Digital Input/Output		
p4088	BI: TM15DI/DO signal source for terminal DI/DO 18 / TM15D S_srcDI/DO18		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9402
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for terminal DI/DO 18 (X522.4) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output (p4028.18 = 1). DI/DO: Bidirectional Digital Input/Output		
p4089	BI: TM15DI/DO signal source for terminal DI/DO 19 / TM15D S_srcDI/DO19		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9402
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description: Note:	Sets the signal source for terminal DI/DO 19 (X522.5) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output (p4028.19 = 1). DI/DO: Bidirectional Digital Input/Output		
p4090	BI: TM15DI/DO signal source for terminal DI/DO 20 / TM15D S_srcDI/DO20		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9402
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for terminal DI/DO 20 (X522.6) of Terminal Module 15 (TM15).		
Note:			
	Prerequisite: The DI/DO must be set as an output ($\mathrm{p} 4028.20=1$). DI/DO: Bidirectional Digital Input/Output		

p4091	BI: TM15DI/DO signal source for terminal DI/DO 21 / TM15D S_srcDI/DO21			
TM15DI_DO	Can be changed: U, T	Calculated: -	Acces	
	Data type: Unsigned32 / Binary	Dynamic index: -	Func	
	P-Group: Commands	Units group: -		
	Not for motor type: -		Expe	
	Min	Max	Fact 0	
Description: Note:	Sets the signal source for terminal DI/DO 21 (X522.7) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output (p4028.21 = 1). DI/DO: Bidirectional Digital Input/Output			
p4092	BI: TM15DI/DO signal source for terminal DI/DO 22 / TM15D S_srcDI/DO22			
TM15DI_DO	Can be changed: U, T	Calculated: -		
	Data type: Unsigned32 / Binary	Dynamic index: -Units group: -	Func. diagram: 9402	
	P-Group: Commands		Unit selection: -	
	Not for motor type: -		Expert list: 1	
	$\underline{M i n}$	Max	Factory setting 0	
Description: Note:	Sets the signal source for termin Prerequisite: The DI/DO must be DI/DO: Bidirectional Digital Input/	(X522.8) of Termina utput (p4028.22 = 1)	(TM15).	
p4093	BI: TM15DI/DO signal source for terminal DI/DO 23 / TM15D S_srcDI/DO23			
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1	
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 9402	
	P-Group: Commands	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
		Max	Factory setting0	
Description: Note:	Sets the signal source for termina Prerequisite: The DI/DO must be DI/DO: Bidirectional Digital Input/	(X522.9) of Termina utput (p4028.23 = 1)	(TM15).	
r4094.0... 23	BO: TM15 digital inputs	verted raw data	TM15 D	
TM15DI_DO	Can be changed: -	Calculated: -	Access level: 4	
	Data type: Unsigned32	Dynamic index: -Units group: -	Func. diagram: -	
	P-Group: Commands		Unit selection: -	
	Not for motor type: -	Units group: -	Expert list: 1	
	Min	Max	Factory setting	
Description: Bit field:	Displays the inverted status of the raw data of the digital inputs of the Terminal Module 15 (TM15).			
	Bit Signal name	1 signal	0 signal	FP
	00 DI/DO 0 (X520.2)	High	Low	-
	01 DIIDO 1 (X520.3)	High	Low	-
	02 DIIDO 2 ($\times 520.4$)	High	Low	-
	03 DI/DO 3 (X520.5)	High	Low	-
	04 DIIDO 4 (X520.6)	High	Low	-
	05 DIIDO 5 (X520.7)	High	Low	-
	06 DI/DO 6 ($\times 520.8$)	High	Low	-
	07 DI/DO 7 (X520.9)	High	Low	-
	08 DI/DO 8 (X521.2)	High	Low	-

09	DI/DO $9($ (X521.3)	High	Low
10	DI/DO 10 (X521.4)	High	Low
11	DI/DO 11 (X521.5)	High	Low
12	DI/DO 12 (X521.6)	High	Low
13	DI/DO 13 (X521.7)	High	Low
14	DI/DO 14 (X521.8)	High	Low
15	DI/DO 15 (X521.9)	High	Low
16	DI/DO 16 (X522.2)	High	Low
17	DI/DO 17 (X522.3)	High	Low
18	DI/DO 18 (X522.4)	High	Low
19	DI/DO 19 (X522.5)	High	Low
20	DI/DO 20 (X522.6)	High	Low
21	DI/DO 21 (X522.7)	High	Low
22	DI/DO 22 (X522.8)	High	Low
23	DI/DO 23 (X522.9)	High	Low

Notice: \quad The raw data of the digital inputs is directly displayed (e.g. without any debounce).
Note: \quad Should only used for internal Siemens purposes (alternative r4022, r4023).

p4095	TM31 digital inputs, simulation mode / TM31 Dl sim_mode				
TM31	Can be changed: U, T		Calculated: -	Access le	
	Data	type: Unsigned32	Dynamic index: -	Func. diag 9552, 956	9550,
	P-G	oup: Terminals	Units group: -	Unit selec	
	Not	for motor type: -		Expert list	
	Min		Max	Factory s 0000 bin	
Description:	Sets the simulation mode for the digital inputs of Terminal Module 31 (TM31).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X520.1)	Simulation	Terminal eval.	-
		DI 1 (X520.2)	Simulation	Terminal eval.	-
	02	DI 2 (X520.3)	Simulation	Terminal eval.	-
	03	DI 3 (X520.4)	Simulation	Terminal eval.	-
	04	DI 4 (X530.1)	Simulation	Terminal eval.	-
	05	DI 5 (X530.2)	Simulation	Terminal eval.	-
	06	DI 6 (X530.3)	Simulation	Terminal eval.	-
	07	DI 7 (X530.4)	Simulation	Terminal eval.	-
	08	DI/DO 8 (X541.2)	Simulation	Terminal eval.	-
	09	DI/DO 9 (X541.3)	Simulation	Terminal eval.	-

Note:	This parameter is not saved when data is backed-up (p0971, p0977). DI: Digital input DI/DO: Bidirectional Digital Input/Output				
p4096	TM41 digital inputs, simulation mode setpoint / TM41 DI sim setp				
TM41		be changed: U, T	Calculated: -	Acce	
		type: Unsigned32	Dynamic index: -	Func	
		oup: Terminals	Units group: -	Unit	
		for motor type: -		Expe	
	Min		Max	Fact 0000	
Description:	Sets the setpoint for the input signals in the simulation mode of the digital inputs of Terminal Module 41 (TM41).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI 0 (X522.1)	High	Low	9660
	01	DI 1 (X522.2)	High	Low	9660
		DI 2 (X522.3)	High	Low	9660
		DI 3 (X522.4)	High	Low	9660
		DI/DO 0 (X521.1)	High	Low	9661
		DI/DO 1 (X521.2)	High	Low	9661
		DI/DO 2 (X521.3)	High	Low	9662
	11	DI/DO 3 (X521.4)	High	Low	9662
Dependency:	The simulation of a digital input is selected using p4095. Refer to: p4095				
Note:	This parameter is not saved when data is backed-up (p0971, p0977). DI: Digital input DI/DO: Bidirectional Digital Input/Output				
p4096	TM15DI/DO digital inputs, simulation mode, setpoint / TM15D DI sim setp				
TM15DI_DO	Can be changed: U, T		Calculated: -	Access level: 2	
			Dynamic index: -	Func. diagram: 9400, 9401, 9402	
	P-Group: Terminals		Units group: -	Unit selection: -	
	Not for motor type: -				
	Min		Max	Factory setting 0000 bin	
Description:	Sets the setpoint for the input signals in the simulation mode of the digital inputs of Terminal Module 15 (TM15).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	High	Low	-
	01	DI/DO 1 (X520.3)	High	Low	-
	02	DI/DO 2 (X520.4)	High	Low	-
	03	DI/DO 3 (X520.5)	High	Low	-
	04	DI/DO 4 (X520.6)	High	Low	-
	05	DI/DO 5 (X520.7)	High	Low	-
	06	DI/DO 6 (X520.8)	High	Low	-
	07	DI/DO 7 (X520.9)	High	Low	-
	08	DI/DO 8 (X521.2)	High	Low	-
	09	DI/DO 9 (X521.3)	High	Low	-
	10	DI/DO 10 (X521.4)	High	Low	-
	11	DI/DO 11 (X521.5)	High	Low	-
	12	DI/DO 12 (X521.6)	High	Low	-
	13	DI/DO 13 (X521.7)	High	Low	-
	14	DI/DO 14 (X521.8)	High	Low	-
	15	DI/DO 15 (X521.9)	High	Low	-
	16	DI/DO 16 (X522.2)	High	Low	-
	17	DI/DO 17 (X522.3)	High	Low	-
	18	DI/DO 18 (X522.4)	High	Low	-

Value:	0: \quad No simulation mode for analog input x 1: Simulation mode for analog input x		
Index:	[0] = AI 0 (X523.1/X523.2)		
Dependency:	The setpoint for the input voltage is specified via p4098.		
Note:	This parameter is not saved when data is backed-up (p0971, p0977). AI: Analog Input		
p4098[0...1]	TB30 analog inputs simulation mode setpoint / TB30 Al sim setp		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -11.000[\mathrm{~V}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 11.000[\mathrm{~V}] \end{aligned}$	Factory setting 0.000 [V]
Description: Index:	$\begin{aligned} & {[0]=\mathrm{Al} 0(X 482.1 / \mathrm{X} 482.2)} \\ & {[1]=\mathrm{Al} 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Dependency:	Refer to: p4097		
Note:	This parameter is not saved when data is backed-up ($\mathrm{p} 0971, \mathrm{p} 0977$). AI: Analog Input		
p4098[0...1]	TM31 analog inputs simulation mode setpoint / TM31 Al sim setp		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -20.000 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 20.000 \end{aligned}$	Factory setting 0.000
Description: Index:	Sets the setpoint for the input value in simulation mode of the analog inputs of Terminal Module 31 (TM31).$\begin{aligned} & {[0]=\mathrm{Al} 0(\mathrm{X} 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)} \\ & {[1]=\mathrm{Al} 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Dependency:	If $\mathrm{Al} x$ is parameterized as voltage input (p 4056), then the setpoint is a voltage in V . If Al x is parameterized as current input (p 4056), then the setpoint is current in mA . Refer to: r4056, p4056, p4097		
Note:	This parameter is not saved when data is backed-up (p0971, p0977).		
p4098[0...0]	TM41 analog input, simulation mode setpoint / TM41 Al sim setp		
TM41	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9663
	P-Group: Terminals		Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -20.000[\mathrm{~V}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 20.000[\mathrm{~V}] \end{aligned}$	Factory setting 0.000 [V]
Description: Index:	$[0]=\mathrm{Al} 0(X 523.1 / X 523.2)$		
Dependency:	Refer to: p4097		

p4099[0...3]	TM41 inputs/outputs, sampling time / TM41 I/O t_sample		
TM41	Can be changed: C1(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9660, 9661, 9662, 9663, 9674, 9676
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.00 \text { [} \mu \mathrm{s}]$	Max 5000.00 [$\mu \mathrm{s}$]	Factory setting [0] 4000.00 [$\mu \mathrm{s}$]
			[1] 4000.00 [$\mu \mathrm{s}$]
			[2] 0.00 [$\mu \mathrm{s}$]
			[3] 125.00 [$\mu \mathrm{s}$]
Description:	Sets the sampling time for the inputs and outputs of Terminal Module 41 (TM41).		
Index:	$\begin{aligned} & {[0]=\text { Digital inputs/outputs }([} \\ & {[1]=\text { Analog inputs (AI) }} \\ & {[2]=\text { Not present }} \\ & {[3]=\text { Incremental encoder er }} \end{aligned}$		
Dependency:	The parameter can only be modified for $\mathrm{p} 0009=3,29$.		
	Refer to: p0009, r0110, r0111		
	Refer to: F35228		
Note:	- the value of the sampling time of the incremental encoder emulation p4099[3] can be preset. The next time that the system boots, the validity of the value is checked. For an invalid value, fault F35228 is output and p4099[3] is automatically set to the correct value. The modified parameter must then be saved and POWER ON carried out. If necessary, the sampling time can be checked again, taking into account any other TM41s located on the same DRIVE-CLiQ line. - the modified sampling time is not effective until the drive unit is powered up again. - if there are several TM41s located on a DRIVE-CLiQ line, the same sampling time in p4099[3] must be set for all components. - the sampling time of a TM41 in SINAMICS mode ($\mathrm{p} 4400=1$) must be the same as that of the emulated encoder. - parameter p4099[0] must never equal zero.		
p4099	TM17 inputs/outputs, sampling time / TM17 I/O t_sample		
TM17	Can be changed: C1(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 31.25 [$\mu \mathrm{s}$]	$\begin{aligned} & \operatorname{Max} \\ & 500.00[\mu \mathrm{~s}] \end{aligned}$	Factory setting 125.00 [$\mu \mathrm{s}$]
Description:	The sampling time of the Terminal Module 17 (TM17) is determined by the DRIVE-CLiQ clock cycle of the line to which the component is attached. An entry is not possible using p4099. At power on, p4099 is correctly set to the resulting sampling time.		
p4099	TM15 inputs/outputs, sampling time / TM15 I/O t_sample		
TM15	Can be changed: C 1 (3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 31.25 [$\mu \mathrm{s}$]	$\begin{aligned} & \operatorname{Max} \\ & 500.00[\mu \mathrm{~s}] \end{aligned}$	Factory setting 125.00 [$\mu \mathrm{s}$]
Description:	The sampling time of the Terminal Module 15 (TM15) is determined by the DRIVE-CLiQ clock cycle of the line to which the component is attached. An entry is not possible using p4099. At power on, p4099 is correctly set to the resulting sampling time.		

p4099	TM15DI/DO inputs/outputs, sampling time / TM15D I/O t_sampl		
TM15DI_DO	Can be changed: C 1 (3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 9400, 9401, 9402
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mu \mathrm{~s}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 5000.00[\mu \mathrm{~s}] \end{aligned}$	Factory setting 4000.00 [$\mu \mathrm{s}$]
Description:	Sets the sampling time for the inputs and outputs of Terminal Module 15 (TM15).		
Dependency:	The parameter can only be modified for $00009=3,29$.		
	Refer to: p0009, r0110, r0111		
Note:	- the modified sampling time is not effective until the drive unit is powered up again. - parameter p4099(0) must never equal zero.		
p4100	TM31 temperature evaluation, sensor type / TM31 temp sens_typ		
TM31	Can be changed: T	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: 9576, 9577
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 0
Description:	Sets the temperature evaluation of Terminal Module 31 (TM31).		
Value:	$0:$ Evaluation disabled 1: PTC thermistor $2:$ KTY84 Evaluation disabled PTC thermistor KTY84		
Note:	The temperature sensor is connected at terminals X522.7(+) and X522.8(-).		
r4101	TM31 temperature evaluation, sensor resistance / TM31 temp R_sensor		
TM31	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 9576, 9577
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [Ohm]	Max - [Ohm]	Factory setting - [Ohm]
Description: Note:	Displays the current resistance value of the temperature sensor connected at Terminal Module 31 (TM31). The temperature sensor is connected at terminals X522.7(+) and X522.8(-). The maximum measurable resistance value is approx. 1700 Ohm.		
p4102[0..1]	TM31 temperature evaluation fault/alarm threshold / TM31 temp thresh		
TM31	Can be changed: T	Calculated: -	Access level: 1
	Data type: Integer16	Dynamic index: -	Func. diagram: 9576
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -48\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 251\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting [0] 100 [$\left.{ }^{\circ} \mathrm{C}\right]$
			[1] 120 [${ }^{\mathrm{C}}$]
Description:	Sets the fault/alarm threshold for the temperature evaluation of Terminal Module 31 (TM31). Temperature actual value $>$ p4102[0] --> alarm A35211 is output. Temperature actual value >p4102[1] --> fault F35207 is output.		

Index:	[0] = Alarm threshold [1] = Fault threshold			
Dependency:	Refer to: r4104			
Warning:	Fault F35207 only causes the drive to be shut down if there is at least one BICO interconnection between the drive and TM31.			
Note:	The temperature sensor is connected at terminals X522.7(+) and X522.8(-). A value $>250^{\circ} \mathrm{C}$ deactivates the alarm or fault.			
p4103	TM31 temperature evaluation timer / TM31 TempTimer			
TM31	Can be changed: U, T	Calculated: -	Acc	
	Data type: FloatingPoint32	Dynamic index: -	Fun	
	P-Group: Motor	Units group: -	Unit	
	Not for motor type: -		Expe	
	$\begin{aligned} & \text { Min } \\ & 0.000 \text { [ms] } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 600.000[\mathrm{~ms}] \end{aligned}$	Fact 0.000	
Description:	Sets the timer for the temperature evaluation of the Terminal Module 31 (TM31) for the fault threshold for the motor temperature monitoring.			
	This timer is started when the temperature alarm threshold ($\mathrm{p} 4102[0]$) is exceeded. If the timer expires before the temperature in the meantime falls below the alarm threshold, the fault F35207 is output.			
	If the temperature fault threshold ($\mathrm{p} 4102[1]$) is prematurely exceeded before the timer has expired, then fault F35207 is immediately output.			
	As long as the temperature of the TM31 has still not exceeded the fault threshold and the alarm thresholds have again been undershot, the fault can be acknowledged.			
Dependency:	Refer to: r4104			
Warning:	Fault F35207 only causes the drive to be shut down if there is at least one BICO interconnection between the drive and TM31.			
Note:	With p4103 = 0 s , the timer is de-activated and only the fault threshold is effective.			
r4104.0... 1	BO: TM31 temperature evaluation, status / TM31 temp status			
TM31	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: -	Fun	9576
	P-Group: Terminals	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min	Max	Fact	
Description:	Displays the status for the temperature evaluation of Terminal Module 31 (TM31).			
	This displays as to whether the temperature actual value has exceeded the fault/alarm threshold.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Temperature alarm threshold exceeded	Yes	No	-
	01 Temperature fault threshold exceeded	Yes	No	-
Dependency:	Refer to: p4102			

r4211	TM17 edge mode digital input 0 ... 7 / TM17 EdgMd DI 0-7	
TM17	Can be changed: - Calculated: -	Access level: 3
	Data type: Unsigned16 Dynamic index: -	Func. diagram: -
	P-Group: Commands Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1
	Min Max	Factory setting
		-
Description:	Displays the edge mode for digital input $0 \ldots 7$ of Terminal Module 17 (TM17).	
	Assignment of the digital inputs to the bits:	
	DI 0: r4211.1 ... 0	
	DI 1: r4211.3 ... 2	
	DI 2: r4211.5 ... 4	
	DI 3: r4211.7 ... 6	
	DI 4: r4211.9 ... 8	
	DI 5: r4211.11 ... 10	
	DI 6: r4211.13 ... 12	
	DI 7: r4211.15 ... 14	
	Possible edge modes:	
	Bit $x, y=0,0-->$ no edge detection	
	Bit $x, y=0,1-->$ rising - rising edge	
	Bit $x, y=1,0-->$ falling - falling edge	
	Bit $x, y=1,1->$ rising - falling edge or falling - rising edge	
Note:	DI: Digital input	
r4211	TM15 edge mode digital input 0 ... 7 / TM15 EdgMd DIO-7	
TM15	Can be changed: - Calculated: -	Access level: 3
	Data type: Unsigned16 Dynamic index: -	Func. diagram: -
	P-Group: Commands Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1
	Min Max	Factory setting
Description:	Displays the edge mode for digital input $0 \ldots 7$ of Terminal Module 15 (TM15).	
	Assignment of the digital inputs to the bits:	
	DI 0: r4211.1 ... 0	
	DI 1: r4211.3 ... 2	
	DI 2: r4211.5 ... 4	
	DI 3: r4211.7 ... 6	
	DI 4: r4211.9 ... 8	
	DI 5: r4211.11 ... 10	
	DI 6: r4211.13 ... 12	
	DI 7: r4211.15 ... 14	
	Possible edge modes:	
	Bit $x, y=0,0-->$ no edge detection	
	Bit $x, y=0,1-->$ rising - rising edge	
	Bit $x, y=1,0$--> falling - falling edge	
	Bit $x, y=1,1$--> rising - falling edge or falling - rising edge	
Note:	DI: Digital input	

r4212	TM17 edge mode digital input 8 ... 15 / TM17 EdgMd DI 8-15	
TM17	Can be changed: - Calculated: -	Access level: 3
	Data type: Unsigned16 Dynamic index: -	Func. diagram: -
	P-Group: Commands Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1
	Min Max	Factory setting
Description:	Displays the edge mode for digital input $8 \ldots 15$ of Terminal Module 17 (TM17).	
	Assignment of the digital inputs to the bits:	
	DI 8: r4212.1 ... 0	
	DI 9: r4212.3 ... 2	
	DI 10: r4212.5 ... 4	
	DI 11: r4212.7 ... 6	
	DI 12: r4212.9 ... 8	
	DI 13: r4212.11 ... 10	
	DI 14: r4212.13 ... 12	
	DI 15: r4212.15 ... 14	
	Possible edge modes:	
	Bit $x, y=0,0-->$ no edge detection	
	Bit $x, y=0,1-\gg$ rising - rising edge	
	Bit $x, y=1,0-->$ falling - falling edge	
	Bit $x, y=1,1->$ rising - falling edge or falling - rising edge	
Note:	DI: Digital input	
r4212	TM15 edge mode digital input 8 ... 15 / TM15 EdgMd DI8-15	
TM15	Can be changed: - Calculated: -	Access level: 3
	Data type: Unsigned16 Dynamic index: -	Func. diagram: -
	P-Group: Commands Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1
	Min Max	Factory setting
	- -	-
Description:	Displays the edge mode for digital input $8 \ldots 15$ of Terminal Module 15 (TM15).	
	Assignment of the digital inputs to the bits:	
	DI 8: r4212.1 ... 0	
	DI 9: r4212.3 ... 2	
	DI 10: r4212.5 ... 4	
	DI 11: r4212.7 ... 6	
	DI 12: r4212.9 ... 8	
	DI 13: r4212.11 ... 10	
	DI 14: r4212.13 ... 12	
	DI 15: r4212.15 ... 14	
	Possible edge modes:	
	Bit $x, y=0,0-->$ no edge detection	
	Bit $x, y=0,1-->$ rising - rising edge	
	Bit $x, y=1,0-->$ falling - falling edge	
	Bit $x, y=1,1->$ rising - falling edge or falling - rising edge	
Note:	DI: Digital input	

r4250	TM17 set/reset time digital output 0 / TM17 t_set DO 0		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 0 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4250	TM15 set/reset time digital output 0 / TM15 t_set DO 0		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 0 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4251	TM17 set/reset time digital output 1 / TM17 t_set DO 1		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 1 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4251	TM15 set/reset time digital output 1 / TM15 t_set DO 1		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 1 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		

r4252	TM17 set/reset time digital output 2 / TM17 t_set DO 2		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the time to set and reset for digital output 2 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4252	TM15 set/reset time digital output 2 / TM15 t_set DO 2		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 2 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4253	TM17 set/reset time digital output 3 / TM17 t_set DO 3		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 3 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4253	TM15 set/reset time digital output 3 / TM15 t_set DO 3		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 3 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		

r4254	TM17 set/reset time digital output 4 / TM17 t_set DO 4		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 4 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4254	TM15 set/reset time digital output 4 / TM15 t_set DO 4		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 4 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4255	TM17 set/reset time digital output 5 / TM17 t_set DO 5		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 5 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4255	TM15 set/reset time digital output 5 / TM15 t_set DO 5		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 5 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		

r4256	TM17 set/reset time digital output 6 / TM17 t_set DO 6		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the time to set and reset for digital output 6 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4256	TM15 set/reset time digital output 6 / TM15 t_set DO 6		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 6 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4257	TM17 set/reset time digital output 7 / TM17 t_set DO 7		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 7 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4257	TM15 set/reset time digital output 7 / TM15 t_set DO 7		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 7 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		

r4258	TM17 set/reset time digital output 8 / TM17 t_set DO 8		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 8 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4258	TM15 set/reset time digital output 8 / TM15 t_set DO 8		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 8 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4259	TM17 set/reset time digital output 9 / TM17 t_set DO 9		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
		-	
Description:	Displays the time to set and reset for digital output 9 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4259	TM15 set/reset time digital output 9 / TM15 t_set DO 9		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 9 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		

r4260	TM17 set/reset time digital output 10 / TM17 t_set DO 10		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 10 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4260	TM15 set/reset time digital output 10 / TM15 t_set DO 10		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 10 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4261	TM17 set/reset time digital output 11 / TM17 t_set DO 11		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 11 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4261	TM15 set/reset time digital output 11 / TM15 t_set DO 11		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 11 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		

r4262	TM17 set/reset time digital output 12 / TM17 t_set DO 12		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 12 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4262	TM15 set/reset time digital output 12 / TM15 t_set DO 12		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
			-
Description:	Displays the time to set and reset for digital output 12 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4263	TM17 set/reset time digital output 13 / TM17 t_set DO 13		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 13 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4263	TM15 set/reset time digital output 13 / TM15 t_set DO 13		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands		Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 13 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		

r4264	TM17 set/reset time digital output 14 / TM17 t_set DO 14		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 14 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4264	TM15 set/reset time digital output 14 / TM15 t_set DO 14		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 14 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4265	TM17 set/reset time digital output 15 / TM17 t_set DO 15		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 15 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4265	TM15 set/reset time digital output 15 / TM15 t_set DO 15		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 15 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		

r4266	TM15 set/reset time digital output 16 / TM15 t_set DO 16		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 16 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4267	TM15 set/reset time digital output 17 / TM15 t_set DO 17		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 17 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4268	TM15 set/reset time digital output 18 / TM15 t_set DO 18		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 18 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4269	TM15 set/reset time digital output 19 / TM15 t_set DO 19		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time to set and reset for digital output 19 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		

r4270	TM15 set/reset time digital output 20 / TM15 t_set DO 20		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 20 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4271	TM15 set/reset time digital output 21 / TM15 t_set DO 21		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 21 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4272	TM15 set/reset time digital output 22 / TM15 t_set DO 22		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 22 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4273	TM15 set/reset time digital output 23 / TM15 t_set DO 23		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
		-	
Description:	Displays the time to set and reset for digital output 23 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		

	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	DIIDO 14 (X522.8) DI/DO 15 (X522.9)	$\begin{aligned} & \text { On } \\ & \text { On } \end{aligned}$	Off Off	
Note:	DI/DO: Bidirectional Digital Input/Output				
r4304	TM15 status, digital input 0 ... 15 / TM15 St DI 0-15				
TM15	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dynamic index: -	Func. diagram: -	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Displays status for digital input 0 ... 15 of Terminal Module 15 (TM15).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	On	Off	-
	01	DI/DO 1 (X520.3)	On	Off	-
	02	DIIDO 2 (X520.4)	On	Off	-
	03	DIIDO 3 (X520.5)	On	Off	-
	04	DI/DO 4 (X520.6)	On	Off	-
	05	DIIDO 5 (X520.7)	On	Off	-
	06	DIIDO 6 (X520.8)	On	Off	-
	07	DI/DO 7 (X520.9)	On	Off	-
	08	DIIDO 8 (X521.2)	On	Off	-
		DIIDO 9 (X521.3)	On	Off	-
	10	DI/DO 10 (X522.4)	On	Off	-
	11	DI/DO 11 (X521.5)	On	Off	-
	12	DI/DO 12 (X521.6)	On	Off	-
		DI/DO 13 (X521.7)	On	Off	-
		DI/DO 14 (X521.8)	On	Off	-
	15	DI/DO 15 (X521.9)	On	Off	-
Note:	DI/DO: Bidirectional Digital Input/Output				
r4305	TM15 status, digital input 16 ... 23 / TM15 St DI 16-23				
TM15	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dynamic index: -	Func. diagram: -	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Displays status for digital input 16 ... 23 of Terminal Module 15 (TM15).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 16 (X522.2)	On	Off	-
	01	DI/DO 17 (X522.3)	On	Off	-
	02	DI/DO 18 (X522.4)	On	Off	-
	03	DI/DO 19 (X522.5)	On	Off	-
	04	DI/DO 20 (X522.6)	On	Off	-
	05	DI/DO 21 (X522.7)	On	Off	-
	06	DI/DO 22 (X522.8)	On	Off	-
	07	DI/DO 23 (X522.9)	On	Off	-
Note:	DI/DO: Bidirectional Digital Input/Output				

r4313	TM15 edge status digital input 16 ... 23 / TM15 EdgSt DI16-23		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the edge status for digital input $16 . . .23$ of Terminal Module 15 (TM15).		
	Assignment of the digital inputs to the bits:		
	DI 16: r4313.1 ... 0		
	DI 17: r4313.3 ... 2		
	DI 18: r4313.5 ... 4		
	DI 19: r4313.7 ... 6		
	DI 20: r4313.9 ... 8		
	DI 21: r4313.11 ... 10		
	DI 22: r4313.13 ... 12		
	DI 23: r4313.15 ... 14		
	Possible edge states:		
	Bit $\mathrm{x}, \mathrm{y}=0,0$--> no edge detection		
	Bit $x, y=0,1-->1$ st edge detected		
	Bit $x, y=1,0-->2 n d$ edge detected		
	Bit $x, y=1,1-->$ both edges detected		
Note:	DI: Digital input		
r4350	TM17 edge times digital input 0 / TM17 edge_t DI 0		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 0 of Terminal Module 17 (TM17) The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4350	TM15 edge times digital input 0 / TM15 edge_t DI 0		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1 st and 2nd edge for digital input 0 of Terminal Module 15 (TM15) The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		

r4351	TM17 edge times digital input 1 / TM17 edge_t DI 1		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 1 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4351	TM15 edge times digital input 1 / TM15 edge_t DI 1		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 1 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4352	TM17 edge times digital input 2 / TM17 edge_t DI 2		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 2 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4352	TM15 edge times digital input 2 / TM15 edge_t DI 2		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 2 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		

r4353	TM17 edge times digital input 3 / TM17 edge_t DI 3		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 3 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4353	TM15 edge times digital input 3 / TM15 edge_t DI 3		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 3 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4354	TM17 edge times digital input 4 / TM17 edge_t DI 4		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 4 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4354	TM15 edge times digital input 4 / TM15 edge_t DI 4		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 4 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		

r4355	TM17 edge times digital input 5 / TM17 edge_t DI 5		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 5 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4355	TM15 edge times digital input 5 / TM15 edge_t DI 5		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 5 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4356	TM17 edge times digital input 6 / TM17 edge_t DI 6		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 6 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4356	TM15 edge times digital input 6 / TM15 edge_t DI 6		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 6 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		

r4357	TM17 edge times digital input 7 / TM17 edge_t DI 7		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 7 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4357	TM15 edge times digital input 7 / TM15 edge_t DI 7		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 7 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4358	TM17 edge times digital input 8 / TM17 edge_t DI 8		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 8 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4358	TM15 edge times digital input 8 / TM15 edge_t DI 8		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 8 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		

r4359	TM17 edge times digital input 9 / TM17 edge_t DI 9		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
		-	
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 9 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4359	TM15 edge times digital input 9 / TM15 edge_t DI 9		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 9 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4360	TM17 edge times digital input 10 / TM17 edge_t DI 10		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 10 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4360	TM15 edge times digital input 10 / TM15 edge_t DI 10		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands		Unit selection: -
	Not for motor type: -		
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 10 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		

r4361	TM17 edge times digital input 11 / TM17 edge_t DI 11		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 11 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4361	TM15 edge times digital input 11 / TM15 edge_t DI 11		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 11 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4362	TM17 edge times digital input 12 / TM17 edge_t DI 12		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 12 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4362	TM15 edge times digital input 12 / TM15 edge_t DI 12		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1 st and 2 nd edge for digital input 12 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		

r4363	TM17 edge times digital input 13 / TM17 edge_t DI 13		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection:
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
		-	
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 13 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4363	TM15 edge times digital input 13 / TM15 edge_t DI 13		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 13 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4364	TM17 edge times digital input 14 / TM17 edge_t DI 14		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 14 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4364	TM15 edge times digital input 14 / TM15 edge_t DI 14		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 14 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		

r4365	TM17 edge times digital input 15 / TM17 edge_t DI 15		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 15 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4365	TM15 edge times digital input 15 / TM15 edge_t DI 15		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 15 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4366	TM15 edge times digital input 16 / TM15 edge_t DI 16		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 16 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4367	TM15 edge times digital input 17 / TM15 edge_t DI 17		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 17 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		

r4368	TM15 edge times digital input 18 / TM15 edge_t DI 18		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 18 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4369	TM15 edge times digital input 19 / TM15 edge_t DI 19		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 19 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4370	TM15 edge times digital input 20 / TM15 edge_t DI 20		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 20 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		
r4371	TM15 edge times digital input 21 / TM15 edge_t DI 21		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 21 of Terminal Module 15 (TM15) The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital input		

r4372	TM15 edge times digital input 22 / TM15 edge_t DI 22			
TM15	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned16	Dynamic index: -	Func.	
	P-Group: Commands	Units group: -	Unit	
	Not for motor type: -		Exper	
	Min	Max	Facto	
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 22 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.			
Note:	DI: Digital input			
r4373	TM15 edge times digital input 23 / TM15 edge_t DI 23			
TM15	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned16	Dynamic index: -	Func.	
	P-Group: Commands	Units group: -	Unit	
	Not for motor type: -		Exp	
	Min	Max	Facto	
Description:	Displays the time when detecting the 1st and 2nd edge for digital input 23 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.			
Note:	DI: Digital input			
p4400	TM41 incremental encoder emulation operating mode / Enc_emulat mode			
TM41	Can be changed: U, T	Calculated: -	Acces	
	Data type: Integer16	Dynamic index: -	Func.	9676
	P-Group: Closed-loop control	Units group: -	Unit	
	Not for motor type: -		Exper	
	Min 0	Max 1	Facto 0	
Description:	Sets the operating mode for the incremental encoder emulation. 0 -> Encoder emulation using the speed setpoint (p1155) 1 -> Encoder emulation using the encoder position actual value (p 4420)			
Value:	0: SIMOTION 1: SINAMICS			
Note:	A change only becomes effective after the next boot.			
p4401	TM41 incremental encoder emulation mode / Enc_emulat mode			
TM41	Can be changed: U, T Data type: Unsigned16 P-Group: Closed-loop control Not for motor type: -	Calculated: -	Access level: 3	
		Dynamic index: -	Func. diagram: 9674, 9676	
		Units group: -	Unit selection: -	
			Expert list: 1	
	Min	Max	Factory setting 0001 bin	
Description:	Sets the mode for the incremental encoder emulation.			
Bit field:	Bit Signal name 00 Zero mark enable	$\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \end{aligned}$	0 signal No	$\begin{aligned} & \text { FP } \\ & 9674 \end{aligned}$
Note:	When the TM41 is operated in the SINAMICS mode ($\mathrm{p} 4400=1$), the following applies: A new zero mark search is initiated by switching in the zero mark at the TM41. The zero mark is output at the TM41 as soon as it was synchronized with the encoder interconnected at connector input p4420.			

r4402.0...	CO/BO: TM41 incremental encoder emulation, status / Enc_emulat status		
TM41	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 9674,9676
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status of the incremental encoder emulation on Terminal Module 41 (TM41).		
Bit field:	Bit Signal name	1 signal	$\mathbf{0}$ signal
	00	Zero mark enabled	Yes

Note: | This parameter is effective only when p0601 =10. |
| :--- |
| PTC thermistor: Tripping resistance $=1650$ Ohm |
| Information on using temperature sensors is provided in the following literature: |
| |
| - hardware description of the appropriate components |
| |
| - SINAMICS S120 Commissioning Manual |

r4620[0..3]	Motor temperature measured / Mot_temp meas		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -\left[\left[^{\circ} \mathrm{C}\right]\right. \end{aligned}$	Max $-\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting - [$\left.{ }^{\circ} \mathrm{C}\right]$
Description: Index:	Displays the actual tempera [0] = Temperature channel [1] = Temperature channel [2] = Temperature channel 3 [3] = Temperature channel	measured through temp	nels $1 . . .4$.
Note:	An invalid temperature is displayed using the value $-200^{\circ} \mathrm{C}$.		
p4680[0...n]	Zero mark monitoring tolerance permissible / ZM_monit tol perm		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(4)$	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000 \end{aligned}$	Factory setting 4
Description:	Sets the permissible tolerance in encoder pulses for the zero mark monitoring.		
Note:	The zero mark monitoring is activated using p0437.1 $=1$.		

p4681[0...n]	Zero mark monitoring, tolerance window limit 1 positive / ZM tol lim 1 pos		
SERVO, VECTOR	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	Max 1000	Factory setting 2
Description:	Sets the positive tolerance window in encoder pulses for limit 1 for the zero mark monitoring.		
Dependency:	Refer to: p0437, p4680, p4682, p4683, p4684		
Note:	The zero mark monitoring is activated using p0437.2 $=1$.		
p4682[0...n]	Zero mark monitoring, tolerance window limit 1 negative / ZM tol lim 1 neg		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(4)$	Calculated: -	Access level: 3
	Data type: Integer32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1001 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 0 \end{aligned}$	Factory setting -1001
Description:	Sets the negative tolerance window in encoder pulses for limit 1 for the zero mark monitoring.		
Dependency:	Refer to: p4681		
Note:	The zero mark monitoring is activated using p0437.2 $=1$.		
	For a set value $=-1001$, the negated value of p4681 is effective.		
p4683[0...n]	Zero mark monitoring, tolerance window limit 2 positive / ZM tol lim 2 pos		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(4)$	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	Max 100000	Factory setting 0
Description:	Sets the positive tolerance window in encoder pulses for limit 2 for the zero mark monitoring.		
Dependency:	Refer to: p0437, p4680, p4681, p4682, p4684		
Note:	The zero mark monitoring is activated using p0437.2 $=1$.		
p4684[0...n]	Zero mark monitoring, tolerance window limit 2 negative / ZM tol lim 2 neg		
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(4)$	Calculated: -	Access level: 3
	Data type: Integer32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -100001 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 0 \end{aligned}$	Factory setting -100001
Description:	Sets the negative tolerance window in encoder pulses for limit 2 for the zero mark monitoring.		
Dependency:	Refer to: p4683		
Note:	The zero mark monitoring is activated using p0437.2 $=1$.		
	For a set value $=-100001$, the negated value of p4683 is effective.		

p4685[0...n]	Changeover, average value generation / Average value mode		
SERVO, VECTOR	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 20 \end{aligned}$	Factory setting 0
p4686[0...n]	Zero mark minimum length / ZM min length		
SERVO, VECTOR	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: EDS	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10 \end{aligned}$	Factory setting 0
Description:	Sets the minimum length for the zero mark.		
Dependency:	Refer to: p0425		
Note:	The value for the minimum length of the zero mark must be set less than p0425.		
r4688[0...2]	Zero mark monitoring, differential pulse count / ZM diff_pulse qty		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description: Index:	Displays the number of dif [0] = Encoder 1 [1] = Encoder 2 [2] = Encoder 3	the zero mark monitorin	accumulated.
Dependency:	Refer to: p4681, p4682		
r4689[0...2]	CO: Squarewave encoder, diagnostics / Sq-wave enc diag		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description: Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		

p4692	Save SMI data of all SMI / Save SMI data		
CU_CX32, CU_I,	Can be changed: T	Calculated: -	Access level: 1
CU_S	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 13 \end{aligned}$	Factory setting 0
Description:	Setting to save data of all existing Sensor Module Integrated (SMI) on the CompactFlash card.		
Value:	$0:$ Inactive 1: Save data from all SMI on CompactFlash card 13: CompactFlash card does not have sufficient memory space		
Dependency:	Refer to: p4690, p4691		
Note:	SMI: SINAMICS Sensor Module Integrat p4692 is automatically set to 0 at the end The procedure must be repeated if the d	the data save proced	the power supply
p4700[0...1]	Trace control / Trace control		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Value:	$0:$ Stop trace 1: Start trace		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		

p4701	Measuring function, control / Meas fct ctrl		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	0	2	0
Value:	$0:$	Stop measuring function	
	$1:$	Start measuring function	
	$2:$	Measuring function, check parameterization	

r4705[0...1] Trace status / Trace status
 CU_S

Value:
Can be changed: -
Data type: Integer16
P-Group: Trace and function generator
Not for motor type: -
Min
0

Description: Displays the current status of the trace.
0 : \quad Trace inactive
1: \quad Trace is recording presamples Trace is waiting for trigger event Trace is recording Recording (trace) ended

Calculated: -
Dynamic index: - Func. diagram: -
Units group: - Unit selection:

Max

Expert list: 0
Factory setting
Access level: 3

4

Calculated: - Access level: 3
Dynamic index: - Func. diagram: -
Unit selection: -

Factory setting
0

p4712[0...1] Trace trigger threshold / Trace trig_thresh

CU CX32, CU I, Can be changed: U, T Calculated:

CU_S	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection:
	Not for motor type: -	Max	Expert list: 0
	Min	340.28235 E 36	Factory setting
	-340.28235 E 36		
Description:	Sets the trigger threshold for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		
Dependency:	Only effective when $\mathrm{p} 4710=2,3$.		

p4713[0..1]	Trace tolerance band trigger threshold / Trace trig thresh		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	$-340.28235 E 36$	340.28235 E 36	0.00

Description: Sets the first trigger threshold for trigger via tolerance band.

Index:	$[0]=$ Trace 0
	$[1]=$ Trace 1
Dependency:	Only effective when p4710 $=4,5$.

p4714[0...1]	Trace tolerance band trigger threshold / Trace trig thresh		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	$\begin{aligned} & \operatorname{Min} \\ & -340.28235 E 36 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 340.28235 E 36 \end{aligned}$	Factory setting 0.00
Description: Index:	Sets the second trigger threshold for trigger via tolerance band$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
Dependency:	Only effective when p4710 $=4,5$.		
p4715[0...1]	Trace bit mask trigger, bit mask / Trace trig mask		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 4294967295 \end{aligned}$	Factory setting 0
Description: Index:	Sets the bit mask for the bit mask trigger.$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
Dependency:	Only effective when p4710 $=6$		
p4716[0..1]	Trace, bit mask trigger, trigger condition / Trace Trig_cond		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 4294967295 \end{aligned}$	Factory setting 0
Description: Index:	Sets the trigger condition for bit mask trigger.$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
Dependency:	Only effective when p4710 $=6$.		
p4717	Measuring function, number of averaging operations / Meas fct avg qty		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 255 \end{aligned}$	Factory setting 0

p4718	Measuring function, number of stabilizing periods / MeasFct StabPerQty		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 255 \end{aligned}$	Factory setting 0
r4719[0...1]	Trace trigger index / Trace Trig_index		
$\begin{aligned} & C U _C X 32, C U _I, \\ & C U _S \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
Description: Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
Dependency:	Only valid when p4705 $=4$.		
p4720[0..1]	Trace recording cycle / Trace record_cyc		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	$\begin{aligned} & \text { Min } \\ & 0.000[\mathrm{~ms}] \end{aligned}$	Max 60000.000 [ms]	Factory setting 1.000 [ms]
Description: Index:	Sets the recording cycle for the trace.$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
p4721[0..1]	Trace recording time / Trace record_time		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~ms}] \end{aligned}$	Max 3600000.000 [ms]	Factory setting 1000.000 [ms]
Description: Index:	Sets the recording time for the trace.$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
p4722[0..1]	Trace trigger delay / Trace trig_delay		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	$\begin{aligned} & \operatorname{Min} \\ & -3600000.000[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 3600000.000[\mathrm{~ms}] \end{aligned}$	Factory setting 0.000 [ms]
Description:	Sets the trigger delay for the trace.		

Index:	Trigger delay <0 : Pretrigger: Tracing (recording) starts the selected time before the trigger event actually occurs. Trigger delay >0: Post trigger: Tracing does not start until the set time after the trigger event. $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
p4723[0...1]	Time slice cycle for trace / Tra	ycle	
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T Data type: FloatingPoint32 P-Group: Trace and function generator Not for motor type: - Min 0.03125 [ms]	Calculated: - Dynamic index: - Units group: - Max 4.00000 [ms]	Access level: 3 Func. diagram: Unit selection: Expert list: 0 Factory setting 0.12500 [ms]
Description: Index:	Sets the time slice cycle in which the trace is called.$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
p4724[0...1]	Trace average in the time range / Trace average		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T Data type: Unsigned8 P-Group: Trace and function generator Not for motor type: - Min 0000 bin	Calculated: - Dynamic index: - Units group: - Max 0001 bin	Access level: 3 Func. diagram: Unit selection: Expert list: 0 Factory setting 0000 bin
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
r4725[0...1]	Trace, data type 1 traced/ Trace rec type 1		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: - Data type: Unsigned32 P-Group: Trace and function generator Not for motor type: - Min	Calculated: - Dynamic index: - Units group: - Max	Access level: 3 Func. diagram: Unit selection: Expert list: 0 Factory setting
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
r4726[0...1]	Trace, data type 2 traced / Trace rec type 2		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: - Data type: Unsigned32 P-Group: Trace and function generator Not for motor type: - Min	Calculated: - Dynamic index: Units group: - Max	Access level: 3 Func. diagram: Unit selection: Expert list: 0 Factory setting
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		

r4727[0...1]	Trace, data type 3 traced / Trace rec type 3		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
$\begin{aligned} & \hline \text { 47728[0...1] } \\ & \text { CU_CX32, CU_I, } \\ & C U _S \end{aligned}$	Trace, data type 4 traced / Trace rec type 4		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
r4729[0...1]	Trace number of recorded values / Trace rec values		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
Description: Index:	Displays the number of traced values for each signal.$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
Dependency:	Only valid when p4705 $=4$.		
p4730[0...5]	Trace record signal 0 / Trace record sig 0		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting 0
Description:	Selects the first signal to be traced. [0] = Trace 0 parameter in BICO format [1] = Trace 1 parameter in BICO format [2] = Trace 0 PINx with DO Id and chart Id [3] = Trace 0 PINx with block Id and PIN Id [4] = Trace 1 PINy with DO Id and chart Id [5] = Trace 1 PINy with block Id and PIN Id		
Index:			
Note:	It only makes sense to trace the PINs using the commissioning software.		
	For index 2(4) and 3(5) equal to zero, index $0(1)$ can only be written and vice versa. Re index 0 ... 1:		

Re index $2 \ldots 3$:
The PIN to be traced for trace 0 is entered here.
Index 2 bit 31 ... 16: Number of the Drive Object (DO), bit $15 \ldots 0$: Number of the chart Index 3 bit 31 ... 16: Number of the block, bit $15 \ldots 0$: Number of the PIN
Re index $4 \ldots 5$:
The PIN to be traced for trace 1 is entered here.
Index 4 bit $31 \ldots$ 16: Number of the Drive Object (DO), bit $15 \ldots 0$: Number of the chart Index 5 bit $31 \ldots 16$: Number of the block, bit $15 \ldots 0$: Number of the PIN

p4731[0...5]	Trace record signal 1 / Trace record sig 1		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting 0
Description:	Selects the second signal to be traced.		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0 \text { parameter in BICO format }} \\ & {[1]=\text { Trace } 1 \text { parameter in BICO format }} \\ & {[2]=\text { Trace } 0 \text { PINx with DO Id and chart Id }} \\ & {[3]=\text { Trace } 0 \text { PINx with block Id and PIN Id }} \\ & {[4]=\text { Trace } 1 \text { PINy with DO Id and chart Id }} \\ & {[5]=\text { Trace } 1 \text { PINy with block Id and PIN Id }} \end{aligned}$		
Note:	It only makes sense to trace the PINs using the commissioning software.		
	For index 2(4) and 3(5) equal to zero, index $0(1)$ can only be written and vice versa. Re index 0 ... 1:		
	Here, the signal to be traced for trace 0 or 1 is entered as parameter in BICO format.		
	For trace with a physical address (p4781), the data type of the signal to be traced (recorded) is set here. Re index 2 ... 3 :		
	The PIN to be traced for trace 0 is entered here.		
	Index 2 bit $31 . .16$: Number of the Drive Object (DO), bit $15 \ldots 0$: Number of the chart		
	Index 3 bit $31 \ldots$ 16: Number of the block, bit $15 \ldots 0$: Number of the PIN		
	Re index $4 . . .5$:		
	The PIN to be traced for trace 1 is entered here.		
	Index 4 bit $31 . .16$: Number of the Drive Object (DO), bit $15 \ldots 0$: Number of the chart		
	Index 5 bit $31 . . .16$: Number of the block, bit	15 ... 0: Number of	

p4732[0...5]	Trace record signal $2 /$ Trace record sig 2		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting

Description: Selects the third signal to be traced.
Index: $\quad[0]=$ Trace 0 parameter in BICO format
[1] = Trace 1 parameter in BICO format
[2] = Trace 0 PINx with DO Id and chart Id
[3] = Trace 0 PINx with block Id and PIN Id
[4] = Trace 1 PINy with DO Id and chart Id
[5] = Trace 1 PINy with block Id and PIN Id
Note: It only makes sense to trace the PINs using the commissioning software.
For index 2(4) and 3(5) equal to zero, index $0(1)$ can only be written and vice versa.

Re index 0 ... 1:
Here, the signal to be traced for trace 0 or 1 is entered as parameter in BICO format. For trace with a physical address (p4782), the data type of the signal to be traced (recorded) is set here. Re index 2 ... 3 :

The PIN to be traced for trace 0 is entered here.
Index 2 bit 31 ... 16: Number of the Drive Object (DO), bit $15 \ldots 0$: Number of the chart Index 3 bit 31 ... 16: Number of the block, bit $15 \ldots 0$: Number of the PIN
Re index $4 \ldots 5$:
The PIN to be traced for trace 1 is entered here.
Index 4 bit 31 ... 16: Number of the Drive Object (DO), bit 15 ... 0: Number of the chart Index 5 bit 31 ... 16: Number of the block, bit $15 \ldots 0$: Number of the PIN

p4734[0..5]	Trace record signal $4 /$ Trace record sig 4		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting

Description: Selects the fifth signal to be traced.

Index: $\quad[0]=$ Trace 0 parameter in BICO format
[1] = Trace 1 parameter in BICO format
[2] = Trace 0 PINx with DO Id and chart Id
[3] = Trace 0 PINx with block Id and PIN Id
[4] = Trace 1 PINy with DO Id and chart Id
[5] = Trace 1 PINy with block Id and PIN Id

Access level: 3
Func. diagram: -
Unit selection: -

Factory setting
0

Note:	It only makes sense to trace the PINs using the commissioning software.
For index $2(4)$ and $3(5)$ equal to zero, index $0(1)$ can only be written and vice versa.	
	Re index $0 \ldots 1:$
	Here, the signal to be traced for trace 0 or 1 is entered as parameter in BICO format.
For trace with a physical address (p4784), the data type of the signal to be traced (recorded) is set here.	
Re index $2 \ldots 3:$	
	The PIN to be traced for trace 0 is entered here.
	Index 2 bit $31 \ldots 16:$ Number of the Drive Object (DO), bit $15 \ldots 0:$ Number of the chart
	Index 3 bit $31 \ldots 16:$ Number of the block, bit $15 \ldots 0:$ Number of the PIN
	Re index $4 \ldots 5:$
	The PIN to be traced for trace 1 is entered here.
	Index 4 bit $31 \ldots 16:$ Number of the Drive Object (DO), bit $15 \ldots 0:$ Number of the chart
	Index 5 bit $31 \ldots 16:$ Number of the block, bit $15 \ldots 0:$ Number of the PIN

p4736[0...5] Trace record signal 6 / Trace record sig 6

CU CX32, CU I, Can be changed: U, T Calculated:

Description: Selects the seventh signal to be traced.
Index: $\quad[0]=$ Trace 0 parameter in BICO format
[1] = Trace 1 parameter in BICO format
[2] = Trace 0 PINx with DO Id and chart Id

Data type: Unsigned32
P-Group: Trace and function generator Not for motor type: -

Min

Max

-

Dynamic index: -
Units group: -

Access level: 3
Func. diagram: Unit selection: Expert list: 0

Factory setting

 0Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0

Factory setting

0

r4740[0...16383] Trace 0 trace buffer signal 0 floating point / Trace 0 rec sig 0

CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting

Description: Displays the trace buffer (record buffer) for trace 0 and signal 0 .

	The trace (record) buffer is sub-divided into memory banks, each containing 16384 values. Parameter p4795 can be used to toggle between the individual banks.		
	Example A:		
	The first 16384 values of signal 0 , trace 0 are to be read out.		
	In this case, memory bank 0 is set with $\mathrm{p} 4795=0$. The first 16384 values can now be read out using r4740[0] to r4740[16383].		
	Example B:		
	The values 16385 to 32768 from signal 0, trace 0 are to be read out.		
	In this case, memory bank 1 is set with $\mathrm{p} 4795=1$. The values can now be read out in r4740[0] to r4740[16383].		
Dependency:	Refer to: p 4795		
r4741[0...16383]	Trace 0 trace buffer signal 1 floating point / Trace 0 trace sig1		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 1.		
Dependency:	Refer to: r4740, p4795		
r4742[0...16383]	Trace 0 trace buffer signal 2 floating point / Trace 0 trace sig2		
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 3
CU_S	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 2.		
Dependency:	Refer to: r4740, p4795		
r4743[0...16383]	Trace 0 trace buffer signal 3 floating point / Trace 0 rec sig 3		
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 3
CU_S	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
			-
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 3 .		
Dependency:	Refer to: r4740, p4795		
r4744[0...16383]	Trace 0 trace buffer signal 4 floating point / Trace 0 rec sig 4		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	\mathbf{P}-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 4.		
Dependency:	Refer to: r4740, p4795		

r4752[0...16383] Trace 1 trace buffer signal 2 floating point / Trace 1 rec sig 2			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	$\underline{M i n}$	Max	Factory setting
Description:	Displays the trace buffer (record buffer) for trace 1 and signal 2. Refer to: r4740, p4795		
Dependency:			
r4753[0...16383] Trace 1 trace buffer signal 3 floating point / Trace 1 rec sig 3			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	
Description:	Displays the trace buffer (record buffer) for trace 1 and signal 3. Refer to: r4740, p4795		
Dependency:			
r4754[0...16383] Trace 1 trace buffer signal 4 floating point / Trace 1 rec sig 4			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the trace buffer (record buffer) for trace 1 and signal 4. Refer to: r4740, p4795		
Dependency:			
r4755[0...16383] Trace 1 trace buffer signal 5 floating point / Trace 1 rec sig 5			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	
Description:	Displays the trace buffer (record buffer) for trace 1 and signal 5 . Refer to: r4740, p4795		
Dependency:			
r4756[0...16383] Trace 1 trace buffer signal 6 floating point / Trace 1 rec sig 6			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	
Description:	Displays the trace buffer (record buffer) for trace 1 and signal 6. Refer to: r4740, p4795		
Dependency:			

r4757[0...16383] Trace 1 trace buffer signal 7 floating point / Trace 1 rec sig 7			
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 3
CU_S	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-		
Description:	Displays the trace buffer (record buffer) for trace 1 and signal 7 .		
Dependency:	Refer to: r4740, p4795		
r4760[0...16383] Trace 0 trace buffer signal 0 / Trace 0 rec s			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 0 as integer number.		
Note:	For signals, data type I32 or U32, the trace buffer is assigned as follows:		
	$\mathrm{r} 4760[0]=$ value 0		
	$\mathrm{r} 4760[1]$ = value 1		
	...		
	r4760[8191] = value 8191		
	For signals, data type 116 or U16, the trace buffer is assigned as follows:		
	r 4760 [0] = value 0 (bit $31 \ldots 16$) and value 1 (bit $15 \ldots 0$)		
	$\mathrm{r} 4760[1]$ = value 2 (bit $31 \ldots 16$) and value 3 (bit $15 \ldots 0$)		
	\cdots		
	r4760[8191] = value 16382 (bit $31 . .16$) and value 16383 (bit $15 \ldots 0$)		
	For signals, data type 18 or U8, the trace buffer is assigned as follows:		
	$\mathrm{r} 4760[0]=$ value 0 (bit $31 \ldots 24$) value 1 (bit $23 \ldots 16$) value 2 (bit $15 \ldots 8$) value 3 (bit $7 \ldots 0$)		
	$\mathrm{r} 4760[1]=$ value 4 (bit $31 \ldots 24$) value 5 (bit $23 \ldots 16$) value 6 (bit $15 \ldots 8)$ value 7 (bit $7 \ldots 0$)		
	...		
	r4760[8191] = value 32764 (bit $31 . . .24$)	e 32765 (bit $23 . . .1$	it $15 \ldots 8)$ value 32

r4761[0...16383] Trace 0 trace buffer signal 1 / Trace 0 trace sig1

CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 3
CU_S	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting

$\begin{array}{ll}\text { Description: } & \text { Displays the trace buffer (record buffer) for trace } 0 \text { and signal } 1 . \\ \text { Dependency: } & \text { Refer to: } \mathrm{r} 4760\end{array}$

r4762[0..16383] Trace 0 trace buffer signal 2 / Trace 0 trace sig2			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 2 . Refer to: r4760		
Dependency:			
r4763[0...16383] Trace 0 trace buffer signal 3 / Trace 0 rec sig 3			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 3 . Refer to: r4760		
Dependency:			
r4764[0...16383] Trace 0 trace buffer signal 4 / Trace 0 rec sig 4			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 4. Refer to: r4760		
Dependency:			
r4765[0...16383] Trace 0 trace buffer signal 5 / Trace 0 rec sig 5			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 5 . Refer to: r4760		
Dependency:			
r4766[0..16383] Trace 0 trace buffer signal 6 / Trace 0 rec sig 6			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 6 . Refer to: r4760		
Dependency:			

r4767[0...16383] Trace 0 trace buffer signal 7 / Trace 0 rec sig 7			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 7 . Refer to: r4760		
Dependency:			
r4770[0...16383] Trace 1 trace buffer signal 0 / Trace 1 rec sig 0			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description: Displays the trace buffer (record buffer) for trace 1 and signal 0. Dependency: Refer to: r 4760	Displays the trace buffer (record buffer) for trace 1 and signal 0 . Refer to: r4760		
r4771[0...16383] Trace 1 trace buffer signal 1 / Trace 1 rec sig 1			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
Description:	Displays the trace buffer (record buffer)	ace 1 and signal 1.	
Dependency:	Refer to: r4760		
r4772[0..16383] Trace 1 trace buffer signal 2 / Trace 1 rec sig 2			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	
Description:	Displays the trace buffer (record buffer) for trace 1 and signal 2.		
Dependency:	Refer to: r4760		
r4773[0...16383] Trace 1 trace buffer signal 3 / Trace 1 rec sig 3			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
Description:	Displays the trace buffer (record buffer) for trace 1 and signal 3 .		
Dependency:	Refer to: r4760		

r4774[0...16383] Trace 1 trace buffer signal 4 / Trace 1 rec sig 4			
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 3
CU_S	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
Description: Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 4. Refer to: r4760		
r4775[0..16383] Trace 1 trace buffer signal 5 / Trace 1 rec sig 5			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
Description: Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 5 . Refer to: r4760		
r4776[0..16383] Trace 1 trace buffer signal 6 / Trace 1 rec sig 6			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
Description: Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 6. Refer to: r4760		
r4777[0..16383] Trace 1 trace buffer signal 7 / Trace 1 rec sig 7			
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
Description: Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 7 . Refer to: r4760		
p4780[0..1]	Trace physical address signal 0 / Trace PhyAddr Sig0		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min 0000 bin	```Max 1 ~ b i n```	Factory setting 0000 bin
Description:	Sets the physical address for the first signal to be traced. The data type is defined using p4730.		

r4790[0...1]	Trace, data type 5 traced / Trace rec type 5		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
$\begin{aligned} & \hline \text { r4791[0...1] } \\ & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Trace, data type 6 traced / Trace rec type 6		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
$\begin{aligned} & \text { r4792[0...1] } \\ & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Trace, data type 7 traced/ Trace rec type 7		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: - Data type: Unsigned32 P-Group: Trace and function generator Not for motor type: -	Calculated: -	Access level: 3
		Dynamic index: -	Func. diagram: -
		Units group: -	Unit selection: -
			Expert list: 0
	Min$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$	Max	Factory setting
Index:			
r4793[0...1]	Trace, data type 8 traced / Trace rec type 8		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: - Data type: Unsigned32 P-Group: Trace and function generator Not for motor type: -	Calculated: -	Access level: 3
		Dynamic index: -	Func. diagram: -
		Units group: -	Unit selection: -
			Expert list: 0
	Min	Max	Factory setting
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
p4795	Trace memory bank changeover / Trace mem changeov		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 500 \end{aligned}$	Factory setting 0
Description: Dependency:	Changes over the memory bank to read out the contents of the trace buffer. Refer to: r4740, r4741, r4742, r4743, r4750, r4751, r4752, r4753		

r4818	CO: Function generator output signal / FG output signal		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [\%]	Max - [\%]	Factory setting - [\%]
Description:	Displays the output signal for the function generator.		
Dependency:	Refer to: p4810		
Note:	The value is displayed independently of the function generator mode.		
	The signal is available as connector output for an ongoing interconnection.		
p4819	BI: Function generator control / FG control		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T Data type: Unsigned32 / Binary P-Group: Trace and function generator	Calculated: -	Access level: 3
		Dynamic index: -	Func. diagram: -
		Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{array}{ll}\text { Min } \\ - & \text { Max }\end{array}$		Factory setting 1
Description:	Sets the signal source to control the function generator.		
	When the function generator is running, signal generation is stopped with a 0 signal from BI : p4819 and p4800 is set to 0 .		
Dependency:	Refer to: p4800		
p4820	Function generator signal shape / FG signal shape		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T Data type: Integer16 P-Group: Trace and function generator Not for motor type: -	Calculated: -	Access level: 3
		Dynamic index: -	Func. diagram: -
		Units group: -	Unit selection: -
			Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 5 \end{aligned}$	Factory setting 1
Description: Value:	Sets the signal to be generated for the function generator.		
	1: Square-wave		
	2: Staircase		
	3: Delta		
	4: Binary noise - PRBS (Pseudo Random Binary Signal)		
	5: Sine-wave		
p4821	Function generator period / FG period duration		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T Data type: FloatingPoint32 P-Group: Trace and function generator Not for motor type: -	Calculated: -	Access level: 3
		Dynamic index: -	Func. diagram: -
		Units group: -	Unit selection: -
			Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	Max 60000.00 [ms]	Factory setting 1000.00 [ms]
Description: Dependency:	Sets the period of the signal to be generated for the function generator. Ineffective when p4820 = 4 (PRBS).		

p4822	Function generator pulse width / FG pulse width		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 60000.00[\mathrm{~ms}] \end{aligned}$	Factory setting 500.00 [ms]
Description: Dependency:	Sets the pulse width for the signal to be generated for the function generator. Only effective when p4820 = 1 (square-wave).		
p4823	Function generator bandwidth / FG bandwith		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	\mathbf{P}-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0025[H z] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 16000.0000[H z] \end{aligned}$	Factory setting 4000.0000 [Hz]
Description: Dependency:	Sets the bandwidth for the signal to be Only effective when p4820 $=4$ (PRBS). Refer to: p4830 Refer to: A02041	ated for the function	
p4824	Function generator amplitude / FG amplitude		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1600.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1600.00 \text { [\%] } \end{aligned}$	Factory setting 5.00 [\%]
Description: Dependency:	Sets the amplitude for the signal to be Units are dependent on p4810. If $p 4810=1,2,4$: The amplitude is refe If $p 4810=3,5$: The amplitude is referre	ated for the function p 2002 (reference 2000 (reference sp	
p4825	Function generator second amplitude / FG second ampl		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -1600.00[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1600.00[\%] \end{aligned}$	Factory setting 7.00 [\%]
Description:	Sets the second amplitude for the signal to be generated for the function generator.		
Dependency:	Only effective for $\mathrm{p} 4820=2$ (staircase). Units are dependent on p 4810 . If $\mathrm{p} 4810=1,2,4$: The amplitude is refe If $\mathrm{p} 4810=3,5:$ The amplitude is referre	o p2002 (reference 2000 (reference sp	

p4826	Function generator offset / FG offset		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underset{-1600.00[\%]}{\operatorname{Min}^{2}}$	$\begin{aligned} & \operatorname{Max} \\ & 1600.00 \text { [\%] } \end{aligned}$	Factory setting 0.00 [\%]
Description:	Sets the offset (DC component) of the signal to be generated for the function generator.		
Dependency:	Units are dependent on p4810.		
	If p4810 $=1,2,4$: The offset is referred to p2002 (reference current).		
	If $\mathrm{p} 4810=3,5$: The offset is referred to p2000 (reference speed).		
	If p4810 $=2$: In order to avoid the undesirable effects of play (backlash), the offset does not act on the current setpoint, but instead on the speed setpoint.		
p4827	Function generator ramp-up time to offset / FG ramp-up offset		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 100000.00 \text { [ms] } \end{aligned}$	Factory setting 32.00 [ms]
Description:	Sets the ramp-up time to the offset for the function generator.		
p4828	Function generator lower limit / FG lower limit		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -10000.00[\%] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 0.00 \text { [\%] } \end{aligned}$	Factory setting -100.00 [\%]
Description:	Sets the lower limit for the function generator.		
Dependency:	For p4810 $=2$ the limit only applies to the current setpoint, but not the speed setpoint (offset).		
p4829	Function generator upper limit / FG upper limit		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 10000.00 \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Factory setting } \\ & 100.00 \text { [\%] } \end{aligned}$
Description:	Sets the upper limit for the function generator.		
Dependency:	For p4810 $=2$ the limit only applies to the current setpoint, but not the speed setpoint (offset).		

p4830	Function generator time slice cycle / FG time slice		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.03125[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2.00000[\mathrm{~ms}] \end{aligned}$	Factory setting 0.12500 [ms]
Description:	Sets the time slice cycle in which the function generator is called.		
p4831	Function generator amplitude scaling / FG amplitude scal		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	\mathbf{P}-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.00000 \text { [\%] }$	$\begin{aligned} & \operatorname{Max} \\ & 200.00000 \text { [\%] } \end{aligned}$	Factory setting 100.00000 [\%]
Description:	Sets the scaling for the amplitude of the signal waveforms for all output channels. The value can be changed while the function generator is running.		
p4832[0...2]	Function generator amplitude scaling / FG amplitude scal		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	\mathbf{P}-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -340.28235 E 36[\%] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 340.28235 \mathrm{E} 36 \text { [\%] } \end{aligned}$	Factory setting 100.00000 [\%]
Description:	Sets the scaling for the amplitude of the signal waveforms separately for each output channel. The value cannot be changed while the function generator is running.		
Index:	[0] = First drive for connection [1] = Second drive for connection [2] = Third drive for connection		
p4833[0...2]	Function generator offset scaling / FG offset scal		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -340.28235 E 36[\%] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 340.28235 \mathrm{E} 36[\%] \end{aligned}$	Factory setting 100.00000 [\%]
Description:	Sets the scaling for the offset of the signal waveforms separately for each output channel. The value cannot be changed while the function generator is running.		
Index:	$\begin{aligned} & {[0]=\text { First drive for connection }} \\ & {[1]=\text { Second drive for connection }} \\ & {[2]=\text { Third drive for connection }} \end{aligned}$		

r4899	Status word sequence control / ZSW seq_ctrl			
TM41	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned16	Dynamic index: -	Func.	
	P-Group: Displays, signals	Units group: -	Unit	
	Not for motor type: -		Exper	
	Min	Max	Facto	
Description:	Displays the status word of the sequence control from Terminal Module 41 (TM41).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Ready for switching on	Yes	No	-
	01 Ready for operation	Yes	No	-
	02 Operation enabled	Yes	No	-
	03 Fault present	Yes	No	-
	04 Coast down active	No	Yes	-
	05 Quick Stop active	No	Yes	-
	06 Switching on inhibited	Yes	No	-
	07 Alarm present	Yes	No	-
	09 Control requested	Yes	No	-
	14 Motor rotates forwards	Yes	No	-
r4950	OA application count / OA no.			
All objects	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned16	Dynamic index: -	Func.	
	P-Group: OEM range	Units group: -	Unit	
	Not for motor type: -		Exper	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10 \end{aligned}$	Fact	
Description:	Displays the number of OA applications installed on the memory card.			
Dependency:	Refer to: r4951, r4952, r4955, p4956, r4957, r4958, r4959, r4960			
Note:	OA: Open Architecture			
r4951	OA application identifier, total length / OA ID length			
All objects	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned16	Dynamic index: -	Func.	
	P-Group: OEM range	Units group: -	Unit	
	Not for motor type: -		Exper	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 90 \end{aligned}$	Facto	
Description:	Displays the total length of the identifiers of all of the OA applications installed on the memory card.			
Dependency:	Refer to: r4950, r4952, r4955, p4956, r4957, r4958, r4959, r4960			
Note:	The identifier of an OA application comprises a maximum of 8 characters plus separator.			
r4952	OA application GUID, total length / OA GUID length			
All objects	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned16	Dynamic index: -	Func.	
	P-Group: OEM range	Units group: -	Unit	
	Not for motor type: -		Exper	
	$\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 180 \end{aligned}$	Facto	
Description:	Displays the total length of the GUIDs of all of the OA applications installed on the memory card. Refer to: r4950, r4951, r4955, p4956, r4957, r4958, r4959, r4960			
Dependency:				

p4961[0...n]	OA application logbook module selection / OA logbook module		
All objects	Can be changed: T	Calculated: -	Access level: 4
	Data type: Unsigned32	Dynamic index: r4950	Func. diagram: -
	P-Group: OEM range	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Only for service purposes.		
r4975	OA application invalid count / OA inv qty		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: OEM range	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 10 \end{aligned}$	Factory setting
Description:	Displays the number of invalid OA applications installed on the memory card. Refer to: r4976, r4978, r4979		
Dependency:			
Note:	OA: Open Architecture		
r4976	OA application invalid identifier, total length / OA and ID length		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: OEM range	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min_{0}	$\begin{aligned} & \text { Max } \\ & 90 \end{aligned}$	Factory setting
Description: Dependency:	Displays the total length of the identifiers of all of the OA applications installed on the memory card. Refer to: r4975, r4978, r4979		
Note:	The identifier of an invalid OA application comprises a maximum of 8 characters plus separator.		
r4978[0...n]	OA application invalid identifier / OA inv ID		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned8	Dynamic index: r 4976	Func. diagram: -
	P-Group: OEM range	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
Description:	Displays the identifiers of invalid OA applications installed on the memory card. r4978[0...8]: Identifier of invalid OA application 1 r4978[9...17]: Identifier of invalid OA application 2, ...		
Dependency:	Refer to: r4975, r4976, r4979		
Notice:	If there is no invalid OA application, then it is not possible to access an index.		

r4979[0...n]	OA application invalid fault code / OA inv fault code		
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 4
CU_S	Data type: Unsigned32	Dynamic index: r4975	Func. diagram: -
	P-Group: OEM range	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
Description:	Displays the fault code of invalid OA applications installed on the memory card. r4979[0]: Fault value of OA application 1 r4979[1]: Fault value of OA application 2, ...		
Dependency:	Refer to: r4975, r4976, r		
Notice:	If there is no invalid OA	not possible to access	
Note:	The value in the fault co Bit 0: Incompatible OA in Bit 1: OA application cou Bit 2: Incorrect descriptio Bit 3: OA application doe Bit 4: OA application not Bit 5: OA application not Bit 6: Incorrect descriptio	d in binary form. The bits type. ice (incorrect CPU type). ice (incorrect type ID). do not match).	llowing meaning:

r7000 Par_circuit No. of active power units / Qty active PU			
A_INF (Parallel), B_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description: Dependency:	Displays the active power units for a parallel circuit configuration. Refer to: p7001		
p7001[0...n]	Par_circuit power units enable / PU enable		
A INF (Parallel),	Can be changed: T	Calculated: -	Access level: 3
B_INF (Parallel),	Data type: Integer16	Dynamic index: PDS, p0120	Func. diagram: -
VECTOR (Parallel)	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 1
Description:	Enables the power units in the parallel circuit configuration.		
Value:	$0:$ De-activated 1: Activated		
Dependency:	Refer to: r7000		
Note:	For motors with separate winding systems (p7003 = 1) it is not possible to inhibit an individual power unit. p7001 is automatically reset if a power unit is de-activated via p0125 or p0895.		

r7025	CO: Par_circuit max. deviation currents phase U / Phase U Max i_dev		
A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\underset{-[A]}{\operatorname{Min}_{-}}$	$\begin{gathered} \text { Max } \\ -[A] \end{gathered}$	Factory setting $-[A]$
Description:	Displays the maximum absolute deviation of the measured current actual values of phase U from the average value as peak value.		
Dependency:	The deviation of the individual currents from the average value is displayed in r 7020 .		
	Refer to: r7020, r7026, r7027		
	Refer to: A05052		
r7026	CO: Par_circuit max. deviation currents phase V / Phase V Max i_dev		
A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: - Data type: FloatingPoint32 P-Group: Displays, signals Not for motor type: -	Calculated: - Dynamic index: - Units group: 6_5	Access level: 3
			Func. diagram: -
			Unit selection: p0505
		Not for motor type: -	Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[A] \end{gathered}$	$\begin{aligned} & \text { Max } \\ & -[A] \end{aligned}$	Factory setting - [A]
Description:	Displays the maximum absolute deviation of the measured current actual values of phase V from the average value as peak value.		
	The deviation of the individual currents from the average value is displayed in r 7021 .		
Dependency:	Refer to: r7021, r7025, r7027		
	Refer to: A05052		
$\overline{\mathrm{r} 7027}$ A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	CO: Par_circuit max. deviation currents phase W / Phase W Max i_dev		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[A] \end{gathered}$	$\begin{aligned} & \text { Max } \\ & -[A] \end{aligned}$	Factory setting - [A]
Description:	Displays the maximum absolute deviation of the measured current actual values of phase W from the average value as peak value.		
	The deviation of the individual currents from the average value is displayed in r 7022.		
Dependency:	Refer to: r7022, r7025, r7026		
	Refer to: A05052		
$\overline{\mathrm{r} 7030[0 \ldots \mathrm{n}]}$ A_INF (Parallel), B_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	CO: Par_circuit DC link voltage deviation / Vdc deviation		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[V] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & -[V] \end{aligned}$	Factory setting - [V]
Description:	Displays the deviation of the measured $D C$ link voltage from the average value. The maximum deviation from the average value is displayed in r 7031 .		
Dependency:	Refer to: r7031		

p7036[0...n]	Par_circuit circulating current control proportional gain / Circ_I Kp		
VECTOR (Parallel)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00000 [Ohm]	$\begin{aligned} & \text { Max } \\ & 20.00000[\mathrm{hm}] \end{aligned}$	Factory setting 0.00000 [Ohm]
Description:	Sets the proportional gain for the circulating current controller. The parameter is pre-set to the cable resistance.		
p7037	Infeed par_cct circulating current control integral time / I_circ Tn		
A_INF (Parallel),	Can be changed: U, T	Calculated: -	Access level: 3
S_INF (Parallel)	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0 \text { [\%] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100000.0 \text { [\%] } \end{aligned}$	Factory setting 100.0 [\%]
Description: Note:	Sets the normalized integral time of the circulating current controller. A value of 100% corresponds to the basic setting derived from the controller sampling time $\mathbf{p} 0115[0]$. The integral component of the controller is de-activated with p7037 $=0$.		
p7037[0...n]	Par_circuit circulating current control integral time / I_circ Tn		
VECTOR (Parallel)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 2.0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000.0 \end{aligned}$	Factory setting 4.0
Description:	Sets the integral time of the circulating current controller. The parameter is referred to the current controller sampling time (p0115[0]).		
Dependency:	Refer to: p0115		
p7038	Infeed par_circuit circulating current control limit / I_circ limit		
A_INF (Parallel), S_INF (Parallel)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{1[\%]}$	$\begin{aligned} & \text { Max } \\ & 100 \text { [\%] } \end{aligned}$	Factory setting 100 [\%]
Description:	Sets the limit of the circulating current controller output values.		
	The parameter is, depending on the phase, referred to the valve lockout times ($\mathrm{p} 1828, \mathrm{p} 1829, \mathrm{p} 1830$).		

p7038[0...n]	Par_circuit circulating current control limit / I_circ limit		
VECTOR (Parallel)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dynamic index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{1[\%]} \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 100 \text { [\%] } \end{aligned}$	Factory setting 50 [\%]
Description:	Sets the limit of the circulating current controller output values.		
	The parameter is, depending on the phase, referred to the valve lockout times (p1828, p1829, p1830).		
p7040[0...n]	Par_circuit correction valve lockout time phase U / Comp t_lockout U		
A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{0.00} \\ & \\ & \text { [} \mathrm{s}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1000000.00[\mu \mathrm{~s}] \end{aligned}$	Factory setting 0.00 [$\mu \mathrm{s}$]
Description:	For the particular Motor Module, the correction time must be added to the valve lockout time to be compensated for phase U (p 1828).		
	The corrective value is used to compensate variations/spread in the valve lockout times of Motor Modules for a par allel circuit configuration.		
Dependency:	Refer to: p1828		
p7042[0...n]	Par_circuit correction valve lockout time phase V / Comp t_lockout V		
A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mu \mathrm{s}$]	Max 1000000.00 [$\mu \mathrm{s}$]	Factory setting 0.00 [$\mu \mathrm{s}$]
Description:	For the particular Motor Module, the correction time must be added to the valve lockout time to be compensated for phase V (p 1829).		
	The corrective value is used to compensate variations/spread in the valve lockout times of Motor Modules for a par allel circuit configuration.		
Dependency:	Refer to: p1829		
p7044[0...n]	Par_circuit correction valve lockout time phase W / Comp t_lockout W		
A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mu \mathrm{s}$]	Max 1000000.00 [$\mu \mathrm{s}$]	Factory setting 0.00 [$\mu \mathrm{s}$]
Description:	For the particular Motor Module, the correction time must be added to the valve lockout time to be compensated for phase W (p1830).		
	The corrective value is used to compensate variations/spread in the valve lockout times of Motor Modules for a parallel circuit configuration.		
Dependency:	Refer to: p1830		

$\overline{\mathrm{r} 7050[0 . . . n]}$ A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Par_circuit circulating current phase U / Circ_I_phase U		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $-[A]$	$\begin{aligned} & \operatorname{Max} \\ & -[A] \end{aligned}$	Factory setting $-[A]$
Description:	Displays the circulating current of phase U as peak value.		
r7051[0...n]	Par_circuit circulating current phase V / Circ_l_phase V		
A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $-[\mathrm{A}]$	$\begin{aligned} & \operatorname{Max} \\ & -[A] \end{aligned}$	Factory setting - [A]
Description:	Displays the circulating current of phase V as peak value.		
r7052[0...n]	Par_circuit circulating current phase W / Circ_I_phase W		
A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [A]	$\begin{aligned} & \operatorname{Max} \\ & -[A] \end{aligned}$	Factory setting - [A]
Description:	Displays the circulating current of phase W as peak value.		
r7100[0...99]	Par_circuit ring buffer fault/alarm code / Fault/alarm code		
A_INF (Parallel), B_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Ring buffer for faults and alarms that have occurred from power units connected in parallel (Motor Module, Active Line Infeed, Voltage Sensing Module). Displays the fault/alarm code.		
Dependency:	Refer to: r7101, r7102, r7103		
Note:	The last fault case that occurred is documented in index 0 . The parameter is reset to 0 at POWER ON.		

r7200[0...n]	Par_circuit power unit overload I2T / PU overload I2T		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
S_INF (Parallel),	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
VECTOR (Parallel)	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	
Description:	Displays the overload of the particular power unit in a parallel circuit configuration calculated using the l2t function.		
	The maximum value of all power units is displayed in roo36.		

r7201[0...n]	Par_circuit power unit temperatures max. inverter / PU temp max inv		
A_INF (Parallel), B_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the maximum inverter temperature in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[0].		
r7202[0...n]	Par_circuit power unit temperatures max. depletion layer / PU TempMaxDepLayer		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
B_INF (Parallel),	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
S_INF (Parallel), VECTOR (Parallel)	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Max $-\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting - [$\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the maximum depletion layer temperature in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[1].		

r7203[0...n]	Par_circuit power unit temperatures max. rectifier / PU temp max rect		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
B_INF (Parallel),	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
S_INF (Parallel),	P-Group: Displays, signals	Units group: $21 _1$	Unit selection: p0505
VECTOR (Parallel)	Not for motor type: -	Expert list: 1	
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	
Description:	Displays the maximum rectifier temperature in the power unit for a parallel circuit configuration.		
	The maximum value of all power units is displayed in r0037[2].		

r7204[0...n]
A_INF (Parallel),
B_INF (Parallel),
S_INF (Parallel),
VECTOR (Parallel)
Par_circuit power unit temperatures air intake / PU temp air intake
Can be changed: - Calculated: - Access level: 3

Data type: FloatingPoint32 Dynamic index: PDS, p0120
P-Group: Displays, signals
Not for motor type: -
Min Max Factory setting
$-\left[{ }^{\circ} \mathrm{C}\right] \quad-\left[{ }^{\circ} \mathrm{C}\right] \quad-\left[{ }^{\circ} \mathrm{C}\right]$

Description: Displays the air intake temperature in the power unit for a parallel circuit configuration.
The maximum value of all power units is displayed in r0037[3].

r7205[0...n]	Par_circuit power unit temperatures electronics / PU temp electr		
$\begin{aligned} & \text { A_INF (Parallel), } \\ & \text { B_INF (Parallel), } \\ & \text { S_INF (Parallel), } \\ & \text { VECTOR (Parallel) } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting - [$\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the temperature of the electronics module in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[4].		
r7206[0...n] A_INF (Parallel), B_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Par_circuit power unit temperatures inverter 1 / PU temp inv 1		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Max $-\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting - [$\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the inverter temperature 1 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[5].		
$\begin{aligned} & \hline \mathbf{r 7 2 0 7}[\mathbf{0} \ldots \mathrm{n}] \\ & \text { A_INF (Parallel), } \\ & \text { B_INF (Parallel), } \\ & \text { S_INF (Parallel), } \\ & \text { VECTOR (Parallel) } \end{aligned}$	Par_circuit power unit temperatures inverter 2 / PU temp inv 2		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $-\left[{ }^{\circ} \mathrm{C}\right]$	Max $-\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the inverter temperature 2 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[6].		
r7208[0...n]	Par_circuit power unit temperatures inverter 3 / PU temp inv 3		
A_INF (Parallel), B_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $-\left[{ }^{\circ} \mathrm{C}\right]$	Max $-\left[^{\circ} \mathrm{C}\right]$	Factory setting $-\left[^{\circ} \mathrm{C}\right]$
Description:	Displays the inverter temperature 3 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[7].		
r7209[0...n]	Par_circuit power unit temperatures inverter 4 / PU temp inv 4		
A_INF (Parallel), B_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $-\left[{ }^{\circ} \mathrm{C}\right]$	Max $-\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting $-\left[^{\circ} \mathrm{C}\right]$
Description:	Displays the inverter temperature 4 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[8].		

r7210[0...n]	Par_circuit power unit temperatures inverter 5 / PU temp inv 5		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
B_INF (Parallel),	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
VECTOR (Parallel)	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{-\left[{ }^{\circ} \mathrm{C}\right]}$	$\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the inverter temperature 5 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[9].		

r7211[0...n]	Par_circuit power unit temperatures inverter $\mathbf{6} /$ / PU temp inv $\mathbf{6}$		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
B_INF (Parallel),	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
S_NF (Parallel),	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
VECTOR (Parallel)	Pot for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	
Description:	Displays the inverter temperature 6 in the power unit for a parallel circuit configuration.		

r7212[0...n] Par_circuit power unit temperatures inverter 1 / PU temp rect 1

A_INF (Parallel),
B_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)

Can be changed: -
Data type: FloatingPoint32
P-Group: Displays, signals
Not for motor type: -

Min	Max
$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$

Calculated: -
Dynamic index: PDS, p0120
Units group: 21_1

Access level: 3
Func. diagram: -
Unit selection: p0505
Expert list: 1
Factory setting

- $\left[{ }^{\circ} \mathrm{C}\right]$

Description: Displays rectifier temperature 1 in the power unit for a parallel circuit configuration.
The maximum value of all power units is displayed in r0037[11].

r7213[0...n]	Par_circuit power unit temperatures inverter 2 / PU temp rect 2		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
B_INF (Parallel),	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
VECTOR (Parallel)	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{-\left[{ }^{\circ} \mathrm{C}\right]}$	$\begin{aligned} & \operatorname{Max} \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays rectifier temperature 2 in the power unit for a parallel circuit configuration.		

r7214[0...n]
A_INF (Parallel),
B_INF (Parallel),
S_INF (Parallel),
VECTOR (Parallel)

Par_circuit power unit temperatures depletion layer 1 / PU temp DepLayer 1
Can be changed: - Calculated: -

Data type: FloatingPoint32
P-Group: Displays, signals Not for motor type: -
$\operatorname{Min} \quad$ Max \quad Factory setting $-\left[{ }^{\circ} \mathrm{C}\right] \quad-\left[{ }^{\circ} \mathrm{C}\right] \quad-\left[{ }^{\circ} \mathrm{C}\right]$ $-\left[{ }^{\circ} \mathrm{C}\right] \quad-\left[{ }^{\circ} \mathrm{C}\right]-\left[{ }^{\circ} \mathrm{C}\right]$ The maximum value of all power units is displayed in r0037[13].

r7215[0...n]	Par_circuit power unit temperatures depletion layer 2 / PU temp DepLayer 2		
A_INF (Parallel), B_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $-\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays depletion layer temperature 2 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[14].		
$\overline{\mathrm{r} 7216[0 . . . n]}$ A_INF (Parallel), B_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Par_circuit power unit temperatures depletion layer 3 / PU temp DepLayer 3		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $-\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays depletion layer temperature 3 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[15].		
$\overline{\text { r7217[0...n] }}$ A_INF (Parallel), B_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Par_circuit power unit temperatures depletion layer 4 / PU temp DepLayer 4		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min $-\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays depletion layer temperature 4 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[16].		
r7218[0...n]	Par_circuit power unit temperatures depletion layer 5 / PU temp DepLayer 5		
A_INF (Parallel), B_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Max $-\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays depletion layer temperature 5 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[17].		
r7219[0...n]	Par_circuit power unit temperatures depletion layer 6 / PU temp DepLayer 6		
A INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
B_INF (Parallel),	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
VECTOR (Parallel)	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$	Factory setting - $\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays depletion layer temperature 6 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[18].		

$\mathbf{r 7 2 2 0 [0 . . . n] ~}$	Infeed par_circuit absolute current value motoring permissible / INF I_abs mot perm		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
S_INF (Parallel)	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	Max	Factory setting
	$-[A r m s]$	$-[A r m s]$	[Arms]
Description:	Displays the currently permissible line-side absolute current when motoring.		
	The minimum value of all power units multiplied by the number of Motor Modules is displayed in r0067[0].		

$\mathbf{r 7 2 2 0 [0 . . . n] ~}$	CO: Par_circuit drive output current maximum / Drv I_outp max		
VECTOR (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection:-
	Not for motor type: -	Expert list: 1	
	Min	Max	Factory setting
	$-[$ [Arms $]$	- [Arms]	
Description:	Displays the maximum output current of the power unit.		
	The minimum value of all power units multiplied by the number of Motor Modules is displayed in r0067.		

$\mathbf{r 7 2 2 1 [0 . . . n] ~}$	Infeed par_circuit absolute current regenerating permissible / INF I_absRegenPerm		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
S_INF (Parallel)	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	Max	Factory setting
	$-[A r m s]$	- [Arms]	
Description:	Displays the currently permissible line-side absolute regenerative current.		
	The minimum value of all power units multiplied by the number of Motor Modules is displayed in r0067[1].		

r7222[0...n]	CO: Par_circuit absolute current actual value /l_act abs val		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
S_INF (Parallel),	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
VECTOR (Parallel)	P-Group: Displays, signals	Units group: $6 _2$	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$-[A r m s]$	$-[A r m s]$	- [Arms]
Description:	Displays actual absolute current.		
	The summed value of all power units is displayed in r0068.		

r7223[0...n] CO: Par_circuit phase current actual value phase U / I_phase U act val
A INF (Parallel),

S_INF (Parallel), VECTOR (Parallel)

Data type: FloatingPoint32
Calculated: -
Dynamic index: PDS, p0120
P-Group: Displays, signals
Units group: 6_5
Func. diagram: -

Not for motor type: -

Min	Max
$-[A]$	$-[A]$

Max
$-[A]$
Factory setting
[A]

Description: Displays the measured actual value of phase U as peak value.
The summed value of all power units is displayed in r0069[0].

r7224[0...n]	CO: Par_circuit phase current actual value phase V / I_phase V act val		
A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [A]	Max - [A]	Factory setting - [A]
Description:	Displays the measured actual value of phase V as peak value. The summed value of all power units is displayed in r0069[1].		
$\overline{\mathrm{r} 7225[0 . . . n]}$ A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	CO: Par_circuit phase current actual value phase W / I_phase W act val		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [A]	$\begin{gathered} \operatorname{Max} \\ -[A] \end{gathered}$	Factory setting - [A]
Description:	Displays the measured actual value of phase W as peak value. The summed value of all power units is displayed in r0069[2].		
r7226[0...n]	CO: Par_circuit phase current actual value phase U offset / I_phase U offset		
$\begin{aligned} & \text { A_INF (Parallel), } \\ & \text { S_INF (Parallel), } \\ & \text { VECTOR (Parallel) } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [A]	$\begin{aligned} & \text { Max } \\ & -[A] \end{aligned}$	Factory setting - [A]
Description:	Displays the measured offset of phase U as peak value. The summed value of all power units is displayed in r0069[3].		
r7227[0...n]	CO: Par_circuit phase current actual value phase V offset / I_phase V offset		
A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [A]	$\begin{aligned} & \text { Max } \\ & -[A] \end{aligned}$	Factory setting $-[A]$
Description:	Displays the measured offset of phase V as peak value. The summed value of all power units is displayed in r0069[4].		
r7228[0...n]	CO: Par_circuit phase current actual value phase W offset / I_phase W offset		
A_INF (Parallel), S_INF (Parallel), VECTOR (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min - [A]	Max - [A]	Factory setting - [A]
Description:	Displays the measured offset of phase W as peak value. The summed value of all power units is displayed in r0069[5].		

r7229[0...n]	CO: Par_circuit phase current actual value sum U, V, W / I_phase sum UVW		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
S_INF (Parallel),	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
VECTOR (Parallel)	P-Group: Displays, signals	Units group: $6 _5$	Unit selection: p0505
	Not for motor type: -	Expert list: 1	
	Min	Max	Factory setting
	$-[A]$	$-[A]$	$-[A]$
Description:	Displays the measured sum of the currents in phases U, V and W as peak value.		

r7230[0...n]	CO: Par_circuit DC link voltage actual value / Vdc_act		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
B_INF (Parallel),	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
VECTOR (Parallel)	P-Group: Displays, signals	Units group: 5_2	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \operatorname{Min} \\ -[\mathrm{V}] \end{gathered}$	$\begin{aligned} & \text { Max } \\ & -[V] \end{aligned}$	Factory setting - [V]
Description:	Displays the measured actual value of the DC link voltage.The average value of all power units is displayed in r0070.		

$\mathbf{r 7 2 3 1 [0 . . . n] ~}$	CO: Par_circuit phase voltage actual value phase U/V_phase U act val		
A_INF (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: $5 _3$	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$-[V]$	$-[V]$	
Description:	Displays the current voltage, phase U.		

$\mathbf{r 7 2 3 1 [0 . . . n] ~}$	CO: Par_circuit phase voltage actual value phase U/V_phase U act val		
S_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR (Parallel)	Data type: FloatingPoint32	Dynamic index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 5_3	Unit selection: p0505
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	$-[V]$	$-[V]$	
Description:	Displays the current voltage, phase U.		
	The average value of all power units is displayed in roos9 [0].		

r7232[0...n] CO: Par_circuit phase voltage actual value phase V / V_phase V act val

A INF (Parallel)
Data type: FloatingPoint32

P-Group: Displays, signals
Not for motor type: -
Min
$-[V]$
Displays the current voltage, phase V .

r7232[0...n]	CO: Par_circuit phase voltage actual value phase V / V_phase V act val				
S_INF (Parallel), VECTOR (Parallel)	Can be changed: -		Calculated: -	Access level: 3	
	Data type: FloatingPoint32		Dynamic index: PDS, p0120	Func. diagram: -	
	P-Group: Displays, signals		Units group: 5_3	Unit selection: p0505	
	Not for motor type: -			Expert list: 1	
	$\begin{aligned} & \operatorname{Min} \\ & -[\mathrm{V}] \end{aligned}$		Max $-[V]$	Factory setting$-[V]$	
Description:	Displays the current voltage, phase V .				
$\begin{aligned} & \hline \mathbf{r} 7233[0 . . . n] \\ & \text { A_INF (Parallel) } \end{aligned}$	CO: Par_circuit phase voltage actual value phase W / V_phase W act val				
	Can be changed: -		Calculated: -	Access level: 3	
	Data type: FloatingPoint32		Dynamic index: PDS, p0120	Func. diagram: -	
	P-Group: Displays, signals		Units group: 5_3	Unit selection: p0505	
	Not for motor type: -			Expert list: 1	
	Min - [V]		Max $-[V]$	Factory setting - [V]	
Description:	Displays the current voltage, phase W.				
$\begin{aligned} & \hline \mathbf{r 7 2 3 3}[0 \ldots \mathrm{n}] \\ & \text { S_INF (Parallel), } \\ & \text { VECTOR (Parallel) } \end{aligned}$	CO: Par_circuit phase voltage actual value phase W / V_phase W act val				
	Can be changed: -		Calculated: -	Access level: 3	
	Data type: FloatingPoint32		Dynamic index: PDS, p0120	Func. diagram: -	
	P-Group: Displays, signals		Units group: 5_3	Unit selection: p0505	
	Not for motor type: -			Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & -[V] \end{aligned}$		$\begin{gathered} \operatorname{Max} \\ -[\mathrm{V}] \end{gathered}$	Factory setting - [V]	
Description:	Displays the current voltage, phase W.				
r7240[0...n] VECTOR (Parallel)	Par_circuit gating unit status word 1 / Gating unit ZSW1				
	Can be changed: -		Calculated: -	Access level: 4	
	Data type: Unsigned16		Dynamic index: PDS, p0120	Func. diagram: -	
	P-Group: Displays, signals		Units group: -	Unit selection: -	
	Not for motor type: -				
	Min		Max	Factory setting	
Description:	Displays status word 1 of the power unit.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Fault time-critical	On	Off	-
	01	Gating unit mode bit 0	On	Off	-
	02	Pulse enable	On	Off	-
	03	5 V upper circuit breaker	On	Off	-
	04	5 V lower circuit breaker	On	Off	-
	05	Gating unit mode bit 1	On	Off	-
	06	Gating unit mode bit 2	On	Off	-
	07	Brake state	On	Off	-
	08	Brake diagnostics	On	Off	-
	09	Armature short-circuit braking	Active	Not active	-
	10	Gating unit state bit 0	On	Off	-
	11	Gating unit state bit 1	On	Off	-
	12	Gating unit state bit 2	On	Off	-
	13	Alarm status bit 0	On	Off	-

r7300[0...n]	CO: Par_circuit VSM input line voltage u1-u2 / VSM inp u1-u2			
A_INF (Parallel), S_INF (Parallel)	Can be changed: -	Calculated: -	Acce	
	Data type: FloatingPoint32	Dynamic index: -	Fun	
	P-Group: Closed-loop control	Units group: -	Unit	
	Not for motor type: -		Exp	
	Min $-[V]$	$\begin{aligned} & \operatorname{Max} \\ & -[V] \end{aligned}$	Fact $-[V]$	
Description:	Displays the voltage between phases L1 and L2 of the particular Voltage Sensing Module (VSM) for a parallel circuit configuration.			
	The average value of all VSM is displayed in r3661.			
Dependency: Note:	Refer to: p3660			
	X521.1 or X522.1: Connection of L1			
	X521.2 or X522.2: Connection of L2			
$\begin{aligned} & \hline \mathbf{r 7 3 0 1 [0 . . . n]} \\ & \text { A_INF (Parallel), } \\ & \text { S_INF (Parallel) } \end{aligned}$	CO: Par_circuit VSM input line voltage u2-u3 / VSM inp u2-u3			
	Can be changed: -	Calculated: -	Acc	
	Data type: FloatingPoint32	Dynamic index: -	Fun	
	P-Group: Closed-loop control	Units group: -	Unit	
	Not for motor type: -		Expe	
	$\begin{aligned} & \text { Min } \\ & -[V] \end{aligned}$	$\begin{gathered} \operatorname{Max} \\ -[\mathrm{V}] \end{gathered}$	Fact $-[V]$	
Description:	Displays the voltage between phases L2 and L3 of the particular Voltage Sensing Module (VSM) for a parallel circuit configuration. The average value of all VSM is displayed in r3662.			
Dependency: Note:	Refer to: p3660			
	X521.2 or X522.2: Connection of L2			
	X521.3 or X522.3: Connection of L3			
$\begin{aligned} & \hline \text { r7305[0...n] } \\ & \text { A_INF (Parallel), } \\ & \text { S_INF (Parallel) } \end{aligned}$	Par_circuit VSM temperature evaluation status / VSM temp status			
	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: -	Fun	
	P-Group: Terminals	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min	Max	Fact	
	-	-	-	
Description:	Displays the status of the temperature evaluation of the particular Voltage Sensing Module (VSM) for a parallel circuit configuration.			
	This displays as to whether the temperature actual value has exceeded the fault/alarm threshold.			
	The overall status of the temperature evaluation of all VSM is displayed in r3664.			
Bit field:	Bit Signal name 00 Temperature alarm threshold exceeded 01 Temperature fault threshold exceeded	1 signal	0 signal	FP
		Yes		-
		Yes	No	-
Dependency:	Refer to: p3665, r3666, p3667, p3668			

r7316[0...n]	CO: Par_circuit VSM 10 V input 2 actual value / VSM inp 2 V_act		
A_INF (Parallel), S_INF (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram:
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [V]	$\begin{aligned} & \text { Max } \\ & -[V] \end{aligned}$	Factory setting - [V]
Description:	Displays the actual value of the voltage measured at the 10 V input 2 of the Voltage Sensing Modules (VSM). The average value of all VSM is displayed in r3674.		
Dependency:	Refer to: p3670		
Note:	10 V input 2: Terminals X520.3 and X520.4		
$\begin{aligned} & \hline \mathbf{r 7 3 2 0}[\mathbf{0 . . . n]} \\ & \text { A_INF (Parallel), } \\ & \text { S_INF (Parallel) } \end{aligned}$	Par_circuit VSM line filter capacitance phase U / VSM filt C phase U		
	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram:
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [$\mu \mathrm{F}$]	Max - [$\mu \mathrm{F}]$	Factory setting - [$\mu \mathrm{F}$]
Description:	Displays the capacitance of the line filter, phase U of the particular Voltage Sensing Module (VSM). The average value of all VSM is displayed in r3677[0].		
Dependency:	Refer to: p3676		
Note:	Prerequisites:		
	The monitoring of the filter capacitance is activated.		
r7321[0...n]	Par_circuit VSM line filter capacitance phase V / VSM filt C phase V		
A_INF (Parallel), S_INF (Parallel)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram:
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [$\mu \mathrm{F}$]	Max $-[\mu \mathrm{F}]$	Factory setting - [$\mu \mathrm{F}$]
Description:	Displays the capacitance of the line filter, phase V of the particular Voltage Sensing Module (VSM). The average value of all VSM is displayed in r3677[1].		
Dependency:	Refer to: p3676		
Note:	Prerequisites:		
	The monitoring of the filter capacitance is activated.		
r7322[0...n]	Par_circuit VSM line filter capacitance phase W / VSM filt C phase W		
A_INF (Parallel), S_INF (Parallel)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram:
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [$\mu \mathrm{F}$]	Max $-[\mu \mathrm{F}]$	Factory setting - [$\mu \mathrm{F}$]
Description:	Displays the capacitance of the line filter, phase W of the particular Voltage Sensing Module (VSM). The average value of all VSM is displayed in r3677[2].		
Dependency:	Refer to: p3676		
Note:	Prerequisites:		
	The monitoring of the filter capacitance is activated.		

p7830	Diagnostics telegram selection / Diag telegram		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 4
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 3 \end{aligned}$	Factory setting 0
Description:	Selects a telegram whose contents should be shown in p7831 ... p7836.		
Value:	0: Reserved		
	1: First cyclic rece		
	2: First cyclic rece		
	3: First cyclic rece		
Dependency:	Refer to: r7831, r7832,	r7836	

	$\begin{aligned} & {[2]=} \\ & {[3]=} \\ & {[4]=} \\ & {[5]=} \\ & {[6]=} \\ & {[7]=} \\ & {[8]=} \\ & {[9]=} \\ & {[10]=} \\ & {[11]=} \\ & {[12]=} \\ & {[13]=} \\ & {[14]=} \\ & {[15]=} \end{aligned}$		
$\overline{r 7835[0 \ldots 15]}$	Telegram diagnostics	g real	
SERVO, VECTOR	Can be changed: - Data type: FloatingPoint32 P-Group: - Not for motor type: - Min	Calculated: - Dynamic index: - Units group: - Max	Access level: 4 Func. diagram: Unit selection: Expert list: 1 Factory setting
Description: Index:	Parameter to display a DSA The associated signal numbe $\begin{aligned} & {[0]=} \\ & {[1]=} \\ & {[2]=} \\ & {[3]=} \\ & {[4]=} \\ & {[5]=} \\ & {[6]=} \\ & {[7]=} \\ & {[8]=} \\ & {[9]=} \\ & {[10]=} \\ & {[11]=} \\ & {[12]=} \\ & {[13]=} \\ & {[14]=} \\ & {[15]=} \end{aligned}$	format. at the appropriate ind	
$\overline{\mathbf{r 7 8 3 6}} \mathbf{0 . . 1 5]}$	Telegram diagnostics	gr unit	
SERVO, VECTOR	Can be changed: - Data type: Integer16 P-Group: - Not for motor type: - $\begin{aligned} & \text { Min } \\ & -1 \end{aligned}$	Calculated: - Dynamic index: - Units group: - Max 147	Access level: 4 Func. diagram: Unit selection: Expert list: 1 Factory setting
Description:	Parameter to display the unit The associated signal number	at the appropriate in	
Value:	-1: Unknown 0: None 1: Millimeter or degrees 2: Millimeter 3: Degrees 4: mm/min or RPM 5: Millimeter / min 6: Revolutions / min		

7:	$\mathrm{m} / \mathrm{sec}^{\wedge} 2$ or V/sec^${ }^{\text {2 }}$
8:	$\mathrm{m} / \mathrm{sec}^{\wedge} 2$
9:	V/sec^2
10:	$\mathrm{m} / \mathrm{sec}^{\wedge} 3$ or V/sec^ 3
11:	$\mathrm{m} / \mathrm{sec}^{\wedge} 3$
12:	V/sec^3
13:	Sec
14:	16.667 / sec
15:	$\mathrm{mm} /$ revolution
16:	ACX_UNIT_COMPENSATION_CORR
18:	Newton
19:	Kilogram
20:	Kilogram meter ${ }^{\wedge} 2$
21:	Percent
22:	Hertz
23:	Volt peak-to-peak
24:	Amps peak-to-peak
25:	Degrees Celsius
26:	Degrees
28:	Millimeter or degrees
29:	Meters / minute
30:	Meters / second
31:	Ohm
32:	Millihenry
33:	Newton meter
34:	Newton meter / Amps
35:	Volt / Amp
36:	Newton meter second / rad
38:	31.25 microseconds
39:	Microseconds
40:	Milliseconds
42:	Kilowatt
43:	Micro amps peak-to-peak
44:	Volt seconds
45:	Microvolt seconds
46:	Micro Newton meter
47:	Amps / Volt seconds
48:	Per mille
49:	Hertz / second
53:	Micrometer or millidegrees
54:	Micrometer
55:	Millidegrees
59:	Nanometer
61:	Newton/Amps
62:	Volt seconds / meter
63:	Newton seconds / meter
64:	Micronewton
65:	Liters / minute
66:	Bar
67:	Cubic centimeters
68:	Millimeters / Volt minute
69:	Newton/Volt
80:	Millivolts peak-to-peak
81:	Volt rms
82:	Millivolts rms
83:	Amps rms
84:	Micro amps rms
85:	Micrometers / revolution
90:	Tenths of a second
91:	Hundredths of a second
92:	10 microseconds
93:	Pulses
94:	256 pulses
95:	Tenth of a pulse

	96:	Revolutions
	97:	100 revolutions / minute
	98:	10 revolutions / minute
	99:	0.1 revolutions / minute
	100:	Thousandth revolution / minute
	101:	Pulses / second
	102:	100 pulses / second
	103:	10 revolutions / (minute * second)
	104:	10000 pulses/second^2
	105:	0.1 Hertz
	106:	0.01 Hertz
	107:	0.1 / seconds
	108:	Factor 0.1
	109:	Factor 0.01
	110:	Factor 0.001
	111:	Factor 0.0001
	112:	0.1 Volt peak-to-peak
	113:	0.1 Volt peak-to-peak
	114:	0.1 amps peak-to-peak
	115:	Watt
	116:	100 Watt
	117:	10 Watt
	118:	0.01 percent
	119:	1 / second ${ }^{\wedge} 3$
	120:	0.01 percent/millisecond
	121:	Pulses / revolution
	122:	Microfarads
	123:	Milliohm
	124:	0.01 Newton meter
	125:	Kilogram millimeter ${ }^{\wedge} 2$
	126:	Rad / (seconds newton meter)
	127:	Henry
	128:	Kelvin
	129:	Hours
	130:	Kilohertz
	131:	Milliamperes peak-to-peak
	132:	Millifarads
	133:	Meter
	135:	Kilowatt hours
	136:	Percent
	137:	Amps / Volt
	138:	Volt
	139:	Millivolts
	140:	Microvolts
	141:	Amps
	142:	Milliamperes
	143:	Micro amps
	144:	Milliamperes rms
	145:	Millimeter
	146:	Nanometer
	147:	Joules
Index:	[0] =	
	[1] =	
	[2] =	
	[3] $=$	
	[4] =	
	[5] =	
	[6] =	
	[7] =	
	[8] =	
	[9] =	
	[10] =	
	[11] =	

p7852	Number of indices for r7853 / Qty indices r7853		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underset{1}{\operatorname{Min}}$	$\begin{aligned} & \text { Max } \\ & 200 \end{aligned}$	Factory setting 1
Description:	Displays the number of indices for r7853[0...n]. This corresponds to the number of DRIVE-CLiQ components that are in the target topology.		
Dependency:	Refer to: r7853		
r7853[0...n]	Component available/not available / Comp present		
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 4
CU_S	Data type: Unsigned16	Dynamic index: p7852	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF hex	Factory setting
Description:	Displays the component and whether this component is currently present. High byte: Component number Low byte: 0/1 (not available/available)		
Dependency:	Refer to: p7852		
p7857	Sub-boot mode / Sub-boot mode		
A_INF, B_INF, CU_LINK, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR	Not for motor type: -	Calculated: - Dynamic index: - Units group: -	Access level: 4 Func. diagram: Unit selection: - Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$	Max_{1}	Factory setting 1
Description:	Sets the mode for the sub-boot.		
Value:	0 : Sub-boot manual 1: Sub-boot automatic		
Note:	For p7857 $=0$ (manual sub-boot) the following applies: The parameter should be set to 1 to start the sub-boot.		
p7859[0...199]	Component number global / Comp_nr global		
CU_CX32, CU_I,	Can be changed: U, T	Calculated: -	Access level: 4
CU_S	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	$\operatorname{Min}_{-32786}$	$\begin{aligned} & \text { Max } \\ & 32767 \end{aligned}$	Factory setting 0
Description:	Sets the global and unique component number in a drive system with several Control Units.		

r7869[0..16]	Status changes drive object reference / Status_chng DO ref	
CU_CX32, CU_I,	Can be changed: - Calculated: -	Access level: 4
CU_S	Data type: Unsigned32 Dynamic index:-	Func. diagram: -
	P-Group: - Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1
	Min Max	Factory setting
Description:	Reference to the drive objects whose status has changed. Index 0: When changing one of the following indices, then the value in this index is increased. Index 1...n: The drive object with object number in $\mathrm{p} 0101[\mathrm{n}-1]$ has changed its status. Example: r7868[3] was incremented since the last time it was read. --> the status of the drive object with object number in p0101[2] was changed.	
Index:	[0] = Sum of the following indices [1] = Object number in p0101[0] [2] = Object number in p0101[1] [3] = Object number in p0101[2] [4] = Object number in p0101[3] [5] = Object number in p0101[4] [6] = Object number in p0101[5] [7] = Object number in p0101[6] [8] = Object number in p0101[7] [9] = Object number in p0101[8] [10] = Object number in p0101[9] [11] = Object number in p0101[10] [12] = Object number in p0101[11] [13] = Object number in p0101[12] [14] = Object number in p0101[13] [15] = Object number in p0101[14] [16] = Object number in p0101[15]	
Dependency:	Refer to: p0101, r7867, r7872	
r7870[0..7]	Configuration changes global / Config_chng global	
CU_CX32, CU_I,	Can be changed: - Calculated: -	Access level: 4
CU_S	Data type: Unsigned32 Dynamic index: -	Func. diagram: -
	P-Group: - Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1
	Min Max	Factory setting
Description: Index:	Displays the configuration changes of all of the drive objects in the complete unit. [0] = Sum of the following indices [1] $=$ r7871[0] of a drive object [2] = p0101 or r0102 [3] = PROFIBUS configuration (p0978) [4] = DRIVE-CLiQ actual topology (r9900 or r9901) [5] = DRIVE-CLiQ target topology (r9902 or r9903) [6] = DRIVE-CLiQ ports (p0109) [7] = OA applications	
Dependency:	Refer to: r7867, r7871	
Note:	Index 0: When changing one of the following indices, then the value in this index is increm Index 1 : Drive object configuration. When changing r7871[0] on a drive object, the value in	this index is increm

Index 2:
Drive object, configuration unit. When changing either p0101 or r0102, the value in this index is incremented. Index 3:
PROFIBUS configuration unit. When changing p0978, the value in this index is incremented.
Index 4:
DRIVE-CLiQ actual topology. When changing either r9900 or r9901, the value in this index is incremented. Index 5:
DRIVE-CLiQ target topology. When changing either p9902 or p9903, the value in this index is incremented. Index 6:
DRIVE-CLiQ ports. When changing p0109, the value in this index is incremented.
Index 7:
OA applications. When changing OA applications, the value in this index is incremented.

r7871[0...9] Configuration changes drive object / Config_chng DO

CU LINK, HUB,
TB30, TM15, TM15DI_DO, TM17, TM31, TM41

Can be changed:
Data type: Unsigned32
P-Group: -
Not for motor type: -
Min

Calculated: -
Dynamic index: -
Units group:

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Description: Displays the configuration changes on the drive object.
Index:
[0] = Sum of the following indices
[1] = p0010, p0107 or p0108
[2] = Drive object name (p0199)
[3] = Structure-relevant parameters (e.g. p0180)
[4] = BICO interconnections

	[5] = Activate/de-activate drive object [6] = Data back-up required [7] = Reserved [8] = Reference or changeover parameters (e.g. p2000) [9] = Parameter count through Drive Control Chart (DCC)
Dependency:	Refer to: r7868, r7870
Note:	Index 0: When changing one of the following indices, then the value in this index is incremented. Index 1: Drive object configuration. When changing p0010, p0107 or p0108, the value in this index is incremented. Index 2: Drive object name. When changing p0199, the value in this index is incremented. Index 3: Drive object structure. When changing a parameter that is relevant for the structure (e.g. number of data sets), value in this index is incremented. Index 4: Drive object BICO interconnections. When changing r3977, the value in this index is incremented. Index 6: Drive object, data save. 0 : There are not parameter changes to save. 1: There are parameter changes to save. Index 8: Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304 value in this index is incremented. Index 9: Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DC value in this index is incremented.
r7871[0...9]	Configuration changes drive object / Config_chng DO
$\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$	Can be changed: - Calculated: - Access level: 4 Data type: Unsigned32 Dynamic index: - Func. diagram: - P-Group: - Units group: - Unit selection: - Not for motor type: - Expert list: 1 Min Max Factory setting - - -
Description: Index:	Displays the configuration changes on the drive object. [0] = Sum of the following indices [1] = p0010, p0107 or p0108 [2] = Drive object name (p0199) [3] = Structure-relevant parameters (e.g. p0180) [4] = BICO interconnections [5] = Reserved [6] = Data back-up required [7] = Reserved [8] = Reference or changeover parameters (e.g. p2000) [9] = Parameter count through Drive Control Chart (DCC)
Dependency:	Refer to: r7868, r7870
Note:	Index 0: When changing one of the following indices, then the value in this index is incremented. Index 1: Drive object configuration. When changing p0010, p0107 or p0108, the value in this index is incremented. Index 2: Drive object name. When changing p0199, the value in this index is incremented.

Index 3:
Drive object structure. When changing a parameter that is relevant for the structure (e.g. number of data sets), the value in this index is incremented.

Index 4:
Drive object BICO interconnections. When changing r3977, the value in this index is incremented.
Index 6:
Drive object, data save.
0 : There are not parameter changes to save.
1: There are parameter changes to save.
Index 8:
Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304 ...), the value in this index is incremented.
Index 9:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.

Index 8:
Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304 ...), the value in this index is incremented.
Index 9:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.
Index 15:
SERVO/VECTOR configuration. When changing p0300, p0301 or p0400, the value in this index is incremented.

p8501[0...15]	BI: Data transfer 1 bitwise / Transfer 1 bit		
CU_CX32	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2211
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting [0] 722.0
			[1] 722.1
			[2] 722.2
			[3] 722.3
			[4] 0
			[5] 0
			[6] 0
			[7] 0
			[8] 722.8
			[9] 722.9
			[10] 722.10
			[11] 722.11
			[12] 0
			[13] 0
			[14] 0
			[15] 0
Description:	Sets the signal source for bitwise data transfer.		
	These signals are transferred to another Control Unit and are located in BO: r8511.0 ... 15 for further interconnection.		
Index:	[0] = Send signal to BO: r8511.0		
	[1] = Send signal to BO: 88511.1 [2] = Send signal to BO: r8511.2		
	[3] = Send signal to BO: r8511.3		
	[4] = Send signal to BO: r8511.4		
	[5] = Send signal to BO: r8511.5		
	[6] = Send signal to BO: r8511.6		
	[7] = Send signal to BO: r8511.7		
	[8] = Send signal to BO: r8511.8		
	[9] = Send signal to BO: r8511.9		
	[10] = Send signal to BO: r8511.10		
	[11] = Send signal to BO: r8511.11		
	[12] = Send signal to BO: r8511.12		
	[13] = Send signal to BO: r8511.13		
	[14] = Send signal to BO: r8511.14		
	[15] = Send signal to BO: r8511.15		
Dependency:	Refer to: r8511		

p8501[0..15]	BI: Data transfer 1 bitwise / Transfer 1 bit		
CU_LINK	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2211
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting [0] 722.0
			[1] 722.1
			[2] 722.2
			[3] 722.3
			[4] 722.4
			[5] 722.5
			[6] 722.6
			[7] 722.7
			[8] 722.8
			[9] 722.9
			[10] 722.10
			[11] 722.11
			[12] 722.12
			[13] 722.13
			[14] 722.14
			[15] 722.15
Description:	Sets the signal source for bitwise data transfer.		
	These signals are transferred to another Control Unit and are located in BO: r8511.0 ... 15 for further interconnection.		
Index:	[0] = Send signal to BO: r8511.0		
	[1] = Send signal to BO: r8511.1		
	[2] = Send signal to BO: r8511.2		
	[3] = Send signal to BO: r8511.3		
	[4] = Send signal to BO: r8511.4		
	[5] = Send signal to BO: r8511.5		
	[6] = Send signal to BO: r8511.6		
	[7] = Send signal to BO: r8511.7		
	[8] = Send signal to BO: r8511.8		
	[9] = Send signal to BO: 88511.9		
	[10] = Send signal to BO: r8511.10		
	[11] = Send signal to BO: r8511.11		
	[12] = Send signal to BO: r8511.12		
	[13] = Send signal to BO: r8511.13		
	[14] = Send signal to BO: r8511.14		
	[15] = Send signal to BO: r8511.15		
Dependency:	Refer to: 88511		
p8502	CI: Data transfer 0 wordwise / Transfer 0 word		
CU_I, CU_S	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Integer32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the wordwise data transfer (process signal).		
	This signal value is available in CO: r8512 for further interconnection.		
Dependency:	Refer to: r8512		

p8502	CI: Data transfer 0 wordwise / Transfer 0 word		
CU_CX32, CU_LINK	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: -	Func. diagram: 2211
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the wordwise data transfer (process signal).		
Dependency:	Refer to: 88512		
p8503	CI: Data transfer 1 wordwise / Transfer 1 word		
CU_I, CU_S	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Integer32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the wordwise data transfer (process signal). This signal value is available in CO: r8513 for further interconnection.		
Dependency:	Refer to: r8513		
p8503	CI: Data transfer 1 wordwise / Transfer 1 word		
CU_CX32, CU_LINK	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dynamic index: -	Func. diagram: 2211
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the wordwise data transfer (process signal).		
Dependency:	Refer to: r8513		
p8504	CI: Data transfer 2 wordwise / Transfer 2 word		
CU_I, CU_S	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Integer32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the wordwise data transfer (process signal). This signal value is available in CO: r8514 for further interconnection.		
Dependency:	Refer to: r8514		

p8504	CI: Data transfer 2 wordwise / Transfer 2 word				
CU_CX32, CU_LINK	Can be changed: U, T Data type: Unsigned32 / FloatingPoint32		Calculated: -	Access level: 2	
			Dynamic index: -	Func. diagram: 2211	
	P-Group: -		Units group: -	Unit selection:	
	Not for motor type: -			Expert list: 1	
	$\underline{\text { Min }}$		Max	Factory setting0	
Description:	Sets the signal source for the wordwise data transfer (process signal).				
Dependency:	Refer to: 88514				
p8505	CI: Data transfer 3 wordwise / Transfer 3 word				
CU_I, CU_S	Can be changed: U, T		Calculated: -	Access level: 2	
	Data type: Unsigned32 / Integer32		Dynamic index: -	Func. diagram: -	
	P-Group: -		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	$\underline{M i n}$		Max	Factory setting 0	
Description:	Sets the signal source for the wordwise data transfer (process signal).				
Dependency:	Refer to: r8515				
p8505	CI: Data transfer 3 wordwise / Transfer 3 word				
CU_CX32, CU_LINK	Can be changed: U, T		Calculated: -	Access level: 2	
	Data type: Unsigned32 / FloatingPoint32		Dynamic index: -	Func. diagram: 2211	
	P-Group: -		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	$\underline{M i n}$		Max	Factory setting 0	
Description:	Sets the signal source for the wordwise data transfer (process signal).				
Dependency:	Refer to: r8515				
r8510.0..7	BO: Data transfer 0 receive bitwise / Trans 0 recv bit				
CU_I, CU_S	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dynamic index: -	Func. diagram:	
	P-Group: -		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Displays the signals of the bitwise received data.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Receive signal from BI: p8500	On	Off	-
	01	Receive signal from BI: p8500	On	Off	-
	02	Receive signal from BI: p8500	On	Off	-
	03	Receive signal from BI: p8500	On	Off	-
	04	Receive signal from BI: p8500	On	Off	-
	05	Receive signal from BI: p8500	On	Off	-
	06	Receive signal from BI: p8500	On	Off	-
	07	Receive signal from BI: p8500	On	Off	-

Dependency: Refer to: p8500

r8511.0... 15 BO: Data transfer 1 receive bitwise / Trans 1 recv bit

r8511.0... 15	BO: Data transfer 1 receive bitwise / Trans 1 recv bit				
CU_CX32, CU_LINK	Can be changed: -		Calculated: -	Acce	
	Data type: Unsigned32		Dynamic index: -	Func	
	P-Group: -		Units group: -	Unit	
	Not for motor type: -			Expe	
	Min		Max	Facto	
	-		-	-	
Description:	Displays the signals of the bitwise received data.				
	These signals were interconnected and transferred to another Control Unit via BI: p8501[0...15].				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Receive signal from BI: p8501	On	Off	-
		Receive signal from BI: p8501	On	Off	-
		Receive signal from BI : p8501	On	Off	-
		Receive signal from BI: p8501	On	Off	-
		Receive signal from BI: p8501	On	Off	-
	05	Receive signal from BI : p8501	On	Off	-
		Receive signal from BI: p8501	On	Off	-
		Receive signal from BI: p8501	On	Off	-
		Receive signal from BI: p8501	On	Off	-
		Receive signal from BI: p8501	On	Off	-
		Receive signal from BI: p8501	On	Off	-
		Receive signal from BI: p8501	On	Off	-
		Receive signal from BI: p8501	On	Off	-
		Receive signal from BI: p8501	On	Off	-
		Receive signal from BI : p8501	On	Off	-
		Receive signal from BI: p8501	On	Off	-
Dependency:	Refer to: p8501				
r8512	CO: Data transfer 0 receive wordwise / Trans 0 recv word				
CU_I, CU_S	Can be changed: -		Calculated: -	Acce	
	Data type: FloatingPoint32		Dynamic index: -	Func	
	P-Group: -		Units group: -	Unit	
	Not for motor type: -			Expe	
	Min - [\%]		Max - [\%]	Fact - [\%]	
Description:	Displays the signals of the wordwise received data (process signal).				This signal value is interconnected and transferred via CI: p8502.
Dependency:	Refer to: p8502				
r8512	CO: Data transfer 0 receive wordwise / Trans 0 recv word				
CU_CX32, CU_LINK	Can be changed: -		Calculated: -	Acce	
	Data type: FloatingPoint32		Dynamic index: -	Func	
	P-Group: -		Units group: -	Unit	
	Not for motor type: -			Expe	
	Min		Max	Factory setting	
			-	-	
Description:	Displays the signals of the wordwise received data (process signal).				
Dependency:	Refer to: p8502				

r8513	CO: Data transfer 1 receive wordwise / Trans 1 recv word		
CU_I, CU_S	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -[\%] \end{aligned}$	$\begin{gathered} \operatorname{Max} \\ -[\%] \end{gathered}$	Factory setting - [\%]
Description:	Displays the signals of the wordwise received data (process signal). This signal value is interconnected and transferred via CI: p8503.		
Dependency:	Refer to: p 8503		

r8513	CO: Data transfer 1 receive wordwise / Trans 1 recv word		
CU_CX32, CU_LINK	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2211
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	-	-
	-	Factory setting	
Description:	Displays the signals of the wordwise received data (process signal).		
	This signal value is interconnected and transferred to another Control Unit via CI: p8503.		
Dependency:	Refer to: p8503		

r8514	CO: Data transfer 2 receive wordwise / Trans 2 recv word		
CU_I, CU_S	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -[\%] \end{aligned}$	$\begin{gathered} \operatorname{Max} \\ -[\%] \end{gathered}$	Factory setting - [\%]
Description:	Displays the signals of the wordwise received data (process signal). This signal value is interconnected and transferred via CI: p8504.		
Dependency:	Refer to: p8504		

r8514	CO: Data transfer $\mathbf{2}$ receive wordwise / Trans $\mathbf{2}$ recv word		
CU_CX32, CU_LINK	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2211
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	-	Factory setting
	-		
Description:	Displays the signals of the wordwise received data (process signal).		
	This signal value is interconnected and transferred to another Control Unit via CI: p8504.		
Dependency:	Refer to: p8504		

07	CW/CCW active	Yes	No
08	Jog active	Yes	No
09	Save speed setpoint	Yes	No
14	Inhibit operation	Yes	No
15	Inhibit parameterization	Yes	No

p8604[0...1]	CBC node guarding / Node guarding		
CU_S (CAN)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$	Factory setting 0
Description:	Sets the node guarding - 100C hex: Guard Time - 100D hex: Life Time Fa The life time is derived by	owing CANopen ob me by the life time	

Index:	[0] = Time interval [ms] for new node guarding telegram [1] = Factor for failure of the node guarding telegram		
Dependency:	Only adjustable if heartbeat time $=0$ (heartbeat is disabled).		
Note:	For p8604[0] $=0$ and/or p8604[1] $=0$, the node guarding protocol is not used.		
p8606	CBC producer heartbeat time / Prod Heartb Time		
CU_S (CAN)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [ms]	$\begin{aligned} & \text { Max } \\ & 65535 \text { [ms] } \end{aligned}$	Factory setting 0 [ms]
Description:	Sets the time [ms] to cyclicaly The smallest cycle time is 100 When a 0 is written, then he	at telegrams.	
Dependency:	Only adjustable if guard time $=0$ (node guarding disabled).		
Note:	Corresponds to the CANopen object 1017 hex.		
r8607[0...3]	CBC identity object / Identity object		
CU_S (CAN)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	General device information display.		
Index:	$\begin{aligned} & {[0]=\text { Vendor ID }} \\ & {[1]=\text { Product code }} \\ & {[2]=\text { Revision number }} \\ & {[3]=\text { Serial number }} \end{aligned}$		
Note:	Corresponds to the CANopen object 1018 hex.		
p8608	CBC clear bus off error / Clear bus off err		
CU_S (CAN)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	For a bus off error, the CAN bus is restarted with p8608 = 1 after the cause of the error has been removed.		
Value:	0 : Inactive 1: Start CAN controller		
Note:	This parameter is automatically reset to 0 after start.		

p8609[0...1]	CBC error behavior / Error behavior		
CU_S (CAN)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 1
Description:	Sets the behavior of the CAN node referred to the communications error or equipment fault.		
Value:	0: Pre-operational 1: No change 2: Stopped		
Index:	[0] = Behavior for communication errors		
Note:	Corresponds to the CANopen object 1029 hex.		
r8610[0...1]	CBC first server SDO / First server SDO		
CU_S (CAN)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description: Index:	[0] = Displays the COB ID from client to server [1] = Displays the COB ID from server to client		
Note:	Corresponds to the CANopen SDO: Service Data Object	SDO: Service Data Object	
p8611[0...82]	CBC pre-defined error field / Pre_def err field		
CU_S (CAN)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index:	Func. diagram:
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF 1000 hex	Factory setting 0000 hex
Description:	Displays the Pre-defined Error Field of the CAN node.		
	It includes the number of all errors that have occurred, the number of errors that have occurred for each drive and the errors according to their history.		
	Index 1 has the same structure - however, the drive object ID is in the second 16 bits instead of the SINAMICS error code.		
	CANopen error code:		
	0000 hex: No error present		
	8110 hex: Alarm A08751 present		
	8120 hex: Alarm A08752 present		
	8130 hex: Alarm A08700(F) with alarm value $=2$ present		
	1000 hex: Generic error 1 present (there is at least one fault outside the range $8700 \ldots 8799$)		
	1001 hex: Generic error 2 present (there is at least one alarm in the range 8700 ... 8799 with the exception of A08751, A08752, A08700)		
Index:	$\begin{aligned} & {[0]=\text { Number of all faults in }} \\ & {[1]=\text { Most recent drive numb }} \\ & {[2]=\text { Number of faults drive }} \end{aligned}$		

[3] = Fault 1/ drive 1
[4] = Fault 2 / drive 1
[5] = Fault 3/ drive 1
[6] = Fault 4/ drive 1
[7] = Fault 5/ drive 1
[8] = Fault 6/ drive 1
[9] = Fault 7/ drive 1
[10] = Fault 8/ drive 1
[11] = Number of faults drive 2
[12] = Fault 1/ drive 2
[13] = Fault $2 /$ drive 2
[14] = Fault 3/ drive 2
[15] = Fault 4/ drive 2
[16] = Fault 5/ drive 2
[17] = Fault 6/ drive 2
[18] = Fault 7/ drive 2
[19] = Fault 8/ drive 2
[20] = Number of faults drive 3
[21] = Fault 1/ drive 3
[22] = Fault 2/ drive 3
[23] = Fault 3/ drive 3
[24] = Fault 4/ drive 3
[25] = Fault 5/ drive 3
[26] = Fault 6/ drive 3
[27] = Fault 7/ drive 3
[28] = Fault 8/ drive 3
[29] = Number of faults drive 4
[30] = Fault 1/ drive 4
[31] = Fault 2/ drive 4
[32] = Fault 3/ drive 4
[33] = Fault 4/ drive 4
[34] = Fault 5/ drive 4
[35] = Fault 6/ drive 4
[36] = Fault 7/ drive 4
[37] = Fault 8/ drive 4
[38] = Number of faults drive 5
[39] = Fault 1/ drive 5
[40] = Fault $2 /$ drive 5
[41] = Fault 3/ drive 5
[42] $=$ Fault 4/ drive 5
[43] = Fault 5/ drive 5
[44] = Fault 6/ drive 5
[45] $=$ Fault 7/ drive 5
[46] = Fault 8/ drive 5
[47] $=$ Number of faults drive 6
[48] = Fault 1/ drive 6
[49] = Fault 2/ drive 6
[50] = Fault 3/ drive 6
[51] = Fault 4/ drive 6
[52] = Fault 5/ drive 6
[53] = Fault 6/ drive 6
[54] = Fault 7/ drive 6
[55] = Fault 8/ drive 6
[56] = Number of faults drive 7
[57] = Fault $1 /$ drive 7
[58] = Fault 2/ drive 7
[59] = Fault 3/ drive 7
[60] = Fault 4/ drive 7
[61] = Fault 5/ drive 7
[62] = Fault 6/ drive 7
[63] = Fault 7/ drive 7
[64] = Fault 8/ drive 7
[65] $=$ Number of faults drive 8
[66] = Fault 1/ drive 8

Note:	[14] = Interface 1 data A1 regis [15] = Interface 1 data A2 regis [16] = Interface 1 data B1 regis [17] = Interface 1 data B2 regis [18] = Interface 2 command re [19] = Interface 2 command m [20] = Interface 2 mask 1 regis [21] = Interface 2 mask 2 regis [22] = Interface 2 arbitration 1 [23] = Interface 2 arbitration 2 [24] = Interface 2 message con [25] = Interface 2 data A1 regis [26] = Interface 2 data A2 regis [27] = Interface 2 data B1 regis [28] = Interface 2 data B2 regis [29] = Transmission request 1 [30] = Transmission request 2 [31] = New data 1 register [32] = New data 2 register [33] = Interrupt pending 1 regis [34] = Interrupt pending 2 regis [35] = Message valid 1 register [36] = Message valid 2 register	CAN controll	Manual"
p8684	CBC NMT state after b	state n boot	
CU_S (CAN)	Can be changed: T Data type: Integer16 P-Group: - Not for motor type: - Min 4	Calculated: - Dynamic index: - Units group: - $\begin{aligned} & \text { Max } \\ & 127 \end{aligned}$	Access level: 3 Func. diagram: - Unit selection: - Expert list: 1 Factory setting 127
Description: Value: Dependency: Note:	Sets the CANopen NMT state 4: Stopped 5: Operational 127: Pre-operational Refer to: p8685 Booting in the NMT state pre-o	after booting. esponds to the CAN	
p8685	CBC NMT states / NM		
CU_S (CAN)	Can be changed: $\mathrm{C} 1(1), \mathrm{U}, \mathrm{T}$ Data type: Integer16 P-Group: Communications Not for motor type: - Min 0	Calculated: - Dynamic index: - Units group: - $\begin{aligned} & \text { Max } \\ & 129 \end{aligned}$	Access level: 3 Func. diagram: - Unit selection: - Expert list: 1 Factory setting 127
Description: Value:	Sets and displays the CANope 0 : Initializing 4: Stopped 5: Operational 127: Pre-operational 128: Reset node 129: Reset Communication		
Note:	The value 0 (initialization) is on	nd cannot be set.	

p8711[0...3]	CBC receive mapping for RPDO 2 / Mapping RPDO 2		
SERVO (CAN), VEC-	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
TOR (CAN)	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9204, 9206
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 2 (RPDO 2).		
Index:	[0] $=$ Mapped object 1 $[1]=$ Mapped object 2 $[2]=$ Mapped object 3 $[3]=$ Mapped object 4		
Note:	Corresponds to the CANopen object 1601 hex +40 hex * x (x: Drive number $0 \ldots 7)$.		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		

p8712[0...3] CBC receive mapping for RPDO 3 / Mapping RPDO 3

SERVO (CAN), VECTOR (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram:
	P-Group: Communications	Units group: -	Unit selection:
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 3 (RPDO 3).		
Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1602 hex +40 hex * x (x: Drive number $0 \ldots 7$).		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		

p8713[0..3]	CBC receive mapping for RPDO 4 / Mapping RPDO 4		
SERVO (CAN), VEC-	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
TOR (CAN)	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9204, 9206
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description: Index:	Sets the mapping paramete [0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4	Receive Process Da	O 4).
Note:	Corresponds to the CANopen Dummy mapping not suppor The parameter can only be	$x+40 \text { hex * } x(x: D$ en the associated	7). set as invalid.

p8714[0...3]	CBC receive mapping for RPDO 5 / Mapping RPDO 5		
SERVO (CAN), VEC-	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
TOR (CAN)	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9204
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description: Index:	Sets the mapping parameter [0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4	Receive Process Da	O5).
Note:	Corresponds to the CANope Dummy mapping not suppor The parameter can only be	$\text { ex + } 40 \text { hex * x (x: Dr }$ en the associated C	7). set as invalid.

p8715[0...3] CBC receive mapping for RPDO 6 / Mapping RPDO 6

SERVO (CAN), VEC- Can be changed: C1(3), T	Calculated: -	Access level: 3	
TOR (CAN)	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9204
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Max	Fxpert list: 1

p8716[0...3]	CBC receive mapping for RPDO 7 / Mapping RPDO 7		
SERVO (CAN), VEC-	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
TOR (CAN)	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9204
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 7 (RPDO 7).		
Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANope Dummy mapping not suppor The parameter can only be	$\text { x + } 40 \text { hex * } x(x: \operatorname{Dr}$ en the associated C	set as invalid.

p8717[0...3]	CBC receive mapping for RPDO 8 / Mapping RPDO 8		
SERVO (CAN), VEC-	Can be changed: $\mathrm{C} 1(3)$, T	Calculated: -	Access level: 3
TOR (CAN)	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9204
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 8 (RPDO 8).		
Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1607 hex +40 hex * x (x: Drive number $0 \ldots .7$).		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		

p8720[0...4] CBC transmit PDO 1 / Transmit PDO 1

SERVO (CAN), VECTOR (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max C000 06DF hex	Factory setting [0] C000 06DF hex
			[1] 00FE hex
			[2] 0000 hex
			[3] 0000 hex
			[4] 0000 hex
Description:	Sets the communication parameters for CANopen Transmit Process Data Object 1 (TPDO 1).		
Index:	$\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
	Refer to: p8740, p8741		
Notice:	For inhibit time and even timer, the following apply:		
	A value that is not a multiple integer of CANopen (4 ms) is rounded-off.		
Note:	Corresponds to the CANopen object 1800 hex + 40 hex *x (x: Drive number $0 \ldots 7$).		
	Transmission types 0, $1 \ldots$ F0, FE and FF can be set.		
	PDO: Process Data Object		

p8721[0...4]	CBC transmit PDO 2 / Transmit PDO 2		
SERVO (CAN), VECTOR (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max C000 06DF hex	Factory setting [0] C000 06DF hex
			[1] 00FE hex
			[2] 0000 hex
			[3] 0000 hex
			[4] 0000 hex
Description:	Sets the communication parameters for CANopen Transmit Process Data Object 2 (TPDO 2).		
Index:	$\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
	Refer to: p8740, p8741		
Notice:	For inhibit time and even timer, the following apply:		
	A value that is not a multiple integer of CANopen (4 ms) is rounded-off.		
Note:	Corresponds to the CANopen object 1801 hex +40 hex *x (x: Drive number $0 \ldots 7)$.		
	Transmission types 0, $1 \ldots$ F0, FE and FF can be set.		
	PDO: Process Data Object		

p8722[0...4] CBC transmit PDO 3 / Transmit PDO 3

SERVO (CAN), VEC-	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
TOR (CAN)	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max C000 06DF hex	Factory setting [0] C000 06DF hex
			[1] 00FE hex
			[2] 0000 hex
			[3] 0000 hex
			[4] 0000 hex

Description: Sets the communication parameters for CANopen Transmit Process Data Object 3 (TPDO 3).
[2] = Inhibit time (in $100 \mu \mathrm{~s}$)
[3] = Reserved
[4] = Event timer (in ms)
Dependency: A valid COB-ID can only be set for the available (existing) channel.
Refer to: p8740, p8741

Notice: \quad For inhibit time and even timer, the following apply:
A value that is not a multiple integer of CANopen (4 ms) is rounded-off.
Note: Corresponds to the CANopen object 1802 hex +40 hex ${ }^{*} \mathrm{x}$ (x: Drive number 0 ... 7).
Transmission types $0,1 \ldots$ F0, FE and FF can be set
PDO: Process Data Object

p8725[0...4]	CBC transmit PDO 6 / Transmit PDO 6		
SERVO (CAN), VECTOR (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9208
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max C000 06DF hex	Factory setting [0] C000 06DF hex
			[1] 00FE hex
			[2] 0000 hex
			[3] 0000 hex
			[4] 0000 hex
Description:	Sets the communication parameters for CANopen Transmit Process Data Object 6 (TPDO 6).		
Index:	$\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
	Refer to: p8740, p8741		
Notice:	For inhibit time and even timer, the following apply:		
	A value that is not a multiple integer of CANopen (4 ms) is rounded-off.		
Note:	Corresponds to the CANopen object 1805 hex +40 hex * x (x: Drive number $0 \ldots 7$).		
	Transmission types 0, $1 \ldots$ F0, FE and FF can be set.		
	PDO: Process Data Object		

p8726[0...4] CBC transmit PDO 7 / Transmit PDO 7

SERVO (CAN), VEC-	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
TOR (CAN)	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9208
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max C000 06DF hex	Factory setting [0] C000 06DF hex
			[1] 00FE hex
			[2] 0000 hex
			[3] 0000 hex
			[4] 0000 hex

Description: Sets the communication parameters for CANopen Transmit Process Data Object 7 (TPDO 7).
Index:
[0] = PDO COB-ID
[1] = PDO transmission type
[2] = Inhibit time (in $100 \mu \mathrm{~s}$)
[3] = Reserved
[4] = Event timer (in ms)
Dependency: A valid COB-ID can only be set for the available (existing) channel.
Refer to: p8740, p8741
Notice: \quad For inhibit time and even timer, the following apply:
A value that is not a multiple integer of CANopen (4 ms) is rounded-off.
Note: \quad Corresponds to the CANopen object 1806 hex +40 hex ${ }^{*} \mathrm{x}$ (x: Drive number $0 \ldots 7$).
Transmission types $0,1 \ldots$ F0, FE and FF can be set.
PDO: Process Data Object

p8727[0...4]	CBC transmit PDO 8 / Transmit PDO 8		
SERVO (CAN), VECTOR (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9208
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max C000 06DF hex	Factory setting [0] C000 06DF hex
			[1] 00FE hex
			[2] 0000 hex
			[3] 0000 hex
			[4] 0000 hex
Description:	Sets the communication parameters for CANopen Transmit Process Data Object 8 (TPDO 8).		
Index:	[0] = PDO COB-ID		
	[1] = PDO transmission type		
	[2] = Inhibit time (in $100 \mu \mathrm{~s}$)		
	[3] = Reserved		
	[4] = Event timer (in ms)		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
	Refer to: p8740, p8741		
Notice:	For inhibit time and even timer, the following apply:		
	A value that is not a multiple integer of CANopen (4 ms) is rounded-off.		
Note:	Corresponds to the CANopen object 1807 hex +40 hex *x (x: Drive number $0 \ldots 7$).		
	Transmission types $0,1 \ldots$ F0, FE and FF can be set.		
	PDO: Process Data Object		

p8730[0...3] CBC send mapping for TPDO 1 / Mapping TPDO 1

SERVO (CAN), VECTOR (CAN)	Can be changed: C1(3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 1 (TPDO 1).		
Index:	$\begin{aligned} & {[0]=\text { Mapped object } 1} \\ & {[1]=\text { Mapped object } 2} \\ & {[2]=\text { Mapped object } 3} \\ & {[3]=\text { Mapped object } 4} \end{aligned}$		
Note:	Corresponds to the CANopen object 1A00 hex +40 hex * x (x: Drive number $0 \ldots 7$).		
	The parameter can only be written online when the associated COB ID in p872x is set as invalid.		

p8731[0...3]	CBC send mapping for TPDO 2 / Mapping TPDO 2		
SERVO (CAN), VEC-	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
TOR (CAN)	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 2 (TPDO 2).		
Index:	[0] = Mapped object 1		
	$\text { [1] = Mapped object } 2$		
	$\text { [2] = Mapped object } 3$		
	[3] = Mapped object 4		

Note: \quad Corresponds to the CANopen object 1A01 hex +40 hex * x (x : Drive number $0 \ldots 7$). The parameter can only be written online when the associated COB ID in p872x is set as invalid.

p8732[0...3]	CBC send mapping for TPDO 3 / Mapping TPDO 3		
SERVO (CAN), VEC-	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
TOR (CAN)	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 3 (TPDO 3).		
Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANope The parameter can only be	$\text { ex + } 40 \text { hex * } x \text { (x: D }$ en the associated	7). set as invalid.

p8733[0...3]	CBC send mapping for TPDO 4 / Mapping TPDO 4		
SERVO (CAN), VEC-	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
TOR (CAN)	Data type: Unsigned32	Dynamic index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 4 (TPDO 4).		
Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANope The parameter can only be	$\text { ex + } 40 \text { hex * } x \text { (x: }$ en the associated	7). set as invalid.

p8734[0...3] CBC send mapping for TPDO 5 / Mapping TPDO 5

SERVO (CAN), VEC- Can be changed: C1(3), T
TOR (CAN)
Data type: Unsigned32

P-Group: Communications
Not for motor type: -

Min

0000 hex

Calculated: -
Dynamic index: -
Units group: -

Max
FFFF FFFF hex

Access level: 3
Func. diagram: 9208
Unit selection: -
Expert list: 1
Factory setting 0000 hex

Description: Sets the mapping parameters for CANopen Transmit Process Data Object 5 (TPDO 5)
Index:
[0] = Mapped object 1
[1] = Mapped object 2
[2] = Mapped object 3
[3] = Mapped object 4
Note: \quad Corresponds to the CANopen object 1A04 hex +40 hex ${ }^{*} \mathrm{x}(\mathrm{x}$: Drive number $0 \ldots 7$).
The parameter can only be written online when the associated COB ID in p872x is set as invalid.

r8742	CBC number of free RPDO channels / Qty free RPDO		
CU_S (CAN)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the RPDO channels that are still available.		
Dependency:	Refer to: p8741		
Note:	The display is updated after acknowledging the configuration (p8741 = 1).		
	The number only includes the RPDO channels in p8740 for which an axis is present in the topology!		
	RPDO: Receive Process Data Object		
r8743[0...7]	CBC assignment drive ID / Drive ID		
CU_S (CAN)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the drive ID associated with each drive.		
Index:			
	[1] = Drive ID for 2nd drive		
	[2] = Drive ID for 3rd drive		
	[3] = Drive ID for 4th drive		
	[4] = Drive ID for 5th drive		
	[5] = Drive ID for 6th drive		
	[6] = Drive ID for 7th drive		
	[7] = Drive ID for 8th drive		
p8744	CBC PDO mapping configuration / PDO Mapping conf.		
SERVO (CAN), VECTOR (CAN)	Can be changed: $\mathrm{C} 2, \mathrm{~T}$	Calculated: -	Access level: 2
	Data type: Integer16	Dynamic index: -	Func. diagram: 9204, 9206, 9208, 9210
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 2
Description:	Sets the mapping for download or in the online mode after acknowledging with p8741.		
Value:	1: Predefined Connection Set		
r8750[0..15]	CBC mapped 16-bit receive objects / RPDO 16 mapped		
SERVO (CAN), VECTOR (CAN)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the mapped 16-bit receive CANopen objects in the process data buffer.		

$$
\begin{aligned}
& {[4]=\text { PZD } 5+6} \\
& {[5]=\text { PZD } 6+7} \\
& {[6]=\text { PZD } 7+8} \\
& {[7]=\text { PZD } 8+9} \\
& {[8]=\text { PZD } 9+10} \\
& {[9]=\text { PZD } 10+11} \\
& {[10]=\text { PZD } 11+12} \\
& {[11]=\text { PZD } 12+13} \\
& {[12]=\text { PZD } 13+14} \\
& {[13]=\text { PZD } 14+15} \\
& {[14]=\text { PZD } 15+16}
\end{aligned}
$$

Dependency:	Refer to: $\mathrm{r} 8750, \mathrm{r} 8795, \mathrm{r} 8850$
Note:	The following BICO interconnections are automatically established if the CANopen control word is mapped at one
of the locations $x=0 \ldots 3$ in the receive process data buffer.	
BI: $p 0840.0=r 889 x .0$	
BI: $p 0844.0=r 889 x .1$	
BI: p0848.0 $=r 889 x .2$	
BI: p0852.0 $=r 889 x .3$	
BI: p2103.0 $=r 889 x .7$	
The write access is rejected if a CANopen control word is not mapped at one of these locations.	
This also causes the project download of the commissioning software to be canceled.	

r8795	CBC control word / Control word			
SERVO (CAN), VECTOR (CAN)	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned16	Dynamic index: -	Func	
	P-Group: -	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min	Max	Fact	
	-	-	-	
Description:	Access to the CANopen control word using SDO transfer.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 ON/OFF1	Yes	No	-
	01 Do not activate coast down	Yes	No	-
	02 Do not activate a Quick Stop	Yes	No	-
	03 Operation enable	Yes	No	-
	07 Acknowledge fault	Yes	No	-
	11 Freely interconn	High	Low	-
	12 Freely interconn	High	Low	-
	13 Freely interconn	High	Low	-
	14 Freely interconn	High	Low	-
	15 Freely interconn	High	Low	-
Dependency:	Refer to: p8790			
Note:	Corresponds to the CANopen object 6040 hex +800 hex * x (x: Drive number $0 \ldots 7)$.			
r8796	CBC target velocity / Target velocity			
SERVO (CAN), VECTOR (CAN)	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Integer32	Dynamic index: -	Func	
	P-Group: -	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min Max		Fact	
Description:	Access to the CANopen object target velocity using the SDO transfer. The value is displayed in increments/second as standard.			
Note:	Corresponds to the CANopen obje The displayed value is calculated r8796 = n_set [RPM] / 60 s * p0408	$\begin{aligned} & \text { ex + } 800 \text { hex * } x(x: \\ & 8 \text { * } p 8798[1] / p 879 \end{aligned}$	$0 \ldots 7) .$	

$\overline{\mathrm{r8797}}$	CBC target torque / Target torque		
SERVO (CAN), VEC-	Can be changed: -	Calculated: -	Access level: 3
TOR (CAN)	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Access to the CANopen object target torque using SDO transfer. The value is displayed as per mille $(1 / 1000)$ as standard.		
Note:	Corresponds to the CANope The displayed value is calcu r8797 [per mille] = M_set [N	$\text { ex + } 800 \text { hex * x (x: }$ $\text { * } 1000$	7).
p8798[0...1]	CBC speed conversion factor / n_conv_factor		
SERVO (CAN), VEC-	Can be changed: T	Calculated: -	Access level: 3
TOR (CAN)	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 4294967295 \end{aligned}$	Factory setting 1
Description:	The factor converts the required velocity units into the internal velocity units $(\mathrm{V} / \mathrm{s})$. With the factor setting, for CANopen, the velocity units are increments/second. The parameter corresponds to the CANopen object 6094 hex. The internal velocity is calculated as follows: n_set_internal = object $6094.1 /$ object 6094.2 * $1 /\left(p 0408\right.$ * 2^{\wedge} p0418) * n_set_bus		
Index:	[0] = Counter [1] = Denominator		
p8835	CBE20 firmware selection / CBE20 FW sel		
CU_S (PROFINET),	Can be changed: C1(1)	Calculated: -	Access level: 3
CU_S	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 99 \end{aligned}$	Factory setting 1
Description:	Selects the firmware version for the PROFINET COMM BOARD CBE20.		
Value:	$\begin{array}{ll}\text { 0: } & \text { PROFINET V2.1 } \\ \text { 1: } & \text { PROFINET V2.2 } \\ \text { 2: } & \text { PN gate } \\ \text { 99: } & \text { Customer-specific from }\end{array}$	ctory	
Note:	A change only becomes effective after a POWER ON.		
p8839[0..1]	PZD interface hardware assignment / PZD IF HW assign		
CU_S	Can be changed: C1(1)	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 99 \end{aligned}$	Factory setting 99
Description:	Assignment of the hardware for cyclic communications via PZD interface 1 and interface 2.		

Value:	0: Inactive		
	1: Communication interface integrated in the Control Unit		
	2: Option module		
	99: Automatic		
Index:	[0] = IF1		
	[1] = IF2		
Note:	For value = 99 (automatic) the following applies:		
	- if neither a COMM BOARD nor CAN is inserted, then PROFIBUS communicates via IF1.		
	- if a CBE20 is inserted, then PROFINET communicates via IF1.		
	- CAN always communicates via IF2.		
	For a value not equal to 99 (automatic) the following applies:		
	- both indices must be set to a number not equal to 99 (automatic).		
	A new setting only becomes effective after POWER ON, reset or download.		
p8840	COMM BOARD monitoring time / CB t_monit		
$\begin{aligned} & \text { CU_S (COMM } \\ & \text { BOARD, PROFI- } \\ & \text { NET), CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0 [ms]	$\begin{aligned} & \text { Max } \\ & 65535000[\mathrm{~ms}] \end{aligned}$	Factory setting 20 [ms]
p8841[0...39]	COMM BOARD send configuration data / CB S_config_data		
CU_S (COMM BOARD, PROFINET), CU_S	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 65535 \end{aligned}$	Factory setting 0
p8842 CU_S (COMM BOARD, PROFI- NET), CU_S	COMM BOARD start configuration / CB config start		
	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
$\begin{aligned} & \hline \text { p8848 } \\ & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	IF2 PZD sampling time / IF2 PZD t_sample		
	Can be changed: C1(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 1.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 16.00 \text { [ms] } \end{aligned}$	Factory setting 4.00 [ms]
Description:	Sets the sampling time for the cyclic interface 2 (IF2).		

r8849[0...139]	COMM BOARD receive configuration data / CB E_config_data		
CU_S (COMM BOARD, PROFI- NET), CU_S	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
r8850[0..4]	CO: IF2 PZD receive word / IF2 PZD recv word		
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 2491
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description: Index:	Connector output for interco $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \end{aligned}$	(setpoints) receive	in the word format.
Note:	PZD1 to PZD2 are displayed bit-serially in r8890 to r8891.		
r8850[0...15]	CO: IF2 PZD receive word / IF2 PZD recv word		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 2485, 9204, 9206
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
		-	-
Description: Index:		(setpoints) receive	in the word format.
Dependency:	Refer to: r8860, r8890, r8891, r8892, r8893		
Note:	IF2: Interface 2		
	PZD1 to PZD4 are displayed bit-serially in r8890 to r8893.		

p8851[0...7]	CI: IF2 PZD send word / IF2 PZD send word		
A_INF, B_INF,	Can be changed: U, T	Calculated: -	Access level: 3
S_INF	Data type: Unsigned32 / Integer16	Dynamic index: -	Func. diagram: 2493, 9210
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Selects the PZD (actual values) to be sent via interface 2 in the word format.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
Note:	IF2: Interface 2		
p8851[0...15]	CI: IF2 PZD send word / IF2 PZD send word		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dynamic index: -	Func. diagram: 2487, 9208
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Selects the PZD (actual values) to be sent via interface 2 in the word format.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
Dependency:	Refer to: p8861		
Note:	IF2: Interface 2		
r8853[0...7]	IF2 diagnostics PZD send / IF2 diag PZD send		
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 2493
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the sent PZD (actual values) sent via interface 2.		

Index:	$[0]$ $[1]$ $[2]$ $[3]$ $[4]$ $[5]$ $[6]$ $[7]$	$\begin{aligned} & \text { PZD } 1 \\ & \text { PZD } 2 \\ & \text { PZD } 4 \\ & \text { PZD } 5 \\ & \text { PZD } 6 \\ & \text { PZD } 7 \\ & \text { PZD } 8 \end{aligned}$			
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	On	Off	-
	01	Bit 1	On	Off	-
	02	Bit 2	On	Off	-
	03	Bit 3	On	Off	-
	04	Bit 4	On	Off	-
	05	Bit 5	On	Off	-
	06	Bit 6	On	Off	-
		Bit 7	On	Off	-
	08	Bit 8	On	Off	-
	09	Bit 9	On	Off	-
	10	Bit 10	On	Off	-
	11	Bit 11	On	Off	-
	12	Bit 12	On	Off	-
		Bit 13	On	Off	-
		Bit 14	On	Off	-
	15	Bit 15	On	Off	-
Note:	IF2	Interface 2			
r8853[0...15]		diagnostics PZD	ag PZD send		
SERVO, VECTOR		be changed: -	Calculated: -	Acce	
		type: Unsigned16	Dynamic index: -		, 9208,
	P-G	oup: Communications	Units group: -	Unit	
		for motor type: -		Expe	
	Min		Max		
Description:	Disp	lays the sent PZD (actua	via interface 2.		
Index:	[0]	PZD 1			
		PZD 2			
	[2]	PZD 3			
		PZD 4			
		PZD 5			
		PZD 6			
		PZD 7			
		PZD 8			
		PZD 9			
		PZD 10			
		= PZD 11			
		P PZD 12			
		= PZD 13			
		= PZD 14			
	[14]	= PZD 15			
		= PZD 16			
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	On	Off	-
	01	Bit 1	On	Off	-
	02	Bit 2	On	Off	-
	03	Bit 3	On	Off	-
	04	Bit 4	On	Off	-
	05	Bit 5	On	Off	-
	06	Bit 6	On	Off	-

Index:	$\begin{aligned} & {[0]=\text { PZD } 1+2} \\ & {[1]=\text { PZD } 2+3} \\ & {[2]=\text { PZD } 3+4} \\ & {[3]=\text { PZD } 4+5} \\ & {[4]=\text { PZD } 5+6} \\ & {[5]=\text { PZD } 6+7} \\ & {[6]=\text { PZD } 7+8} \\ & {[7]=\text { PZD } 8+9} \\ & {[8]=\text { PZD } 9+10} \\ & {[9]=\text { PZD } 10+11} \\ & {[10]=\text { PZD } 11+12} \\ & {[11]=\text { PZD } 12+13} \\ & {[12]=\text { PZD } 13+14} \\ & {[13]=\text { PZD } 14+15} \\ & {[14]=\text { PZD } 15+16} \end{aligned}$		
Dependency:	Refer to: r8850		
Note:	IF2: Interface 2		
p8861[0...14]	CI: IF2 PZD send double w	2 PZD send DV	
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer32	Dynamic index: -	Func. diagram: 2487, 9208, 9210
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Selects the PZD (actual values) to	interface 2 in the	
Index:	$\begin{aligned} & {[0]=\text { PZD } 1+2} \\ & {[1]=\text { PZD } 2+3} \\ & {[2]=\text { PZD } 3+4} \\ & {[3]=\text { PZD } 4+5} \\ & {[4]=\text { PZD } 5+6} \\ & {[5]=\text { PZD } 6+7} \\ & {[6]=\text { PZD } 7+8} \\ & {[7]=\text { PZD } 8+9} \\ & {[8]=\text { PZD } 9+10} \\ & {[9]=\text { PZD } 10+11} \\ & {[10]=\text { PZD } 11+12} \\ & {[11]=\text { PZD } 12+13} \\ & {[12]=\text { PZD } 13+14} \\ & {[13]=\text { PZD } 14+15} \\ & {[14]=\text { PZD } 15+16} \end{aligned}$		
Dependency:	Refer to: p8851		
Note:	IF2: Interface 2		
r8863[0...14]	IF2 diagnostics PZD send	word / IF2 diag	
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 2487
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description: Index:	Displays the PZD sent via interface $\begin{aligned} & {[0]=\text { PZD } 1+2} \\ & {[1]=\text { PZD } 2+3} \\ & {[2]=\text { PZD } 3+4} \\ & {[3]=\text { PZD } 4+5} \\ & {[4]=\text { PZD } 5+6} \end{aligned}$	values) with double	

	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
Note:	IF2: Interface 2		
	Value range:		
	0-242: Byte offset		
	255: Not occupied		
r8876[0...7] IF2 diagnostics telegram offset PZD send / IF2 diag offs send			
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the byte offset of the PZD in the send telegram.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
r8876[0...15]	IF2 diagnostics telegram offset PZD send / IF2 diag offs send		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the byte offset of the PZD in the send telegram.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		

	$[15]=$ PZD 16
Note:	IF2: Interface 2
	Value range:
	$0-242:$ Byte offset
	255: Not occupied

p8880[0...15] BI: IF2 binector-connector converter status word 1 / Bin/con ZSW1

A_INF, B_INF,
S_INF, SERVO, VECTOR

Can be changed: U, T
Data type: Unsigned32 / Binary
P-Group: Communications
Not for motor type: -
Min

Selects bits to be sent to the PROFIBUS/PROFINET master.
The individual bits are combined to form status word 1 .
Index:
[0] = Bit 0
[1] $=$ Bit 1
[2] $=$ Bit 2
[3] $=$ Bit 3
[4] $=$ Bit 4
[5] $=$ Bit 5
[6] = Bit 6
$[7]=$ Bit 7
[8] = Bit 8
[9] $=$ Bit 9
[10] = Bit 10
[11] = Bit 11
[12] = Bit 12
[13] $=$ Bit 13
[14] = Bit 14
[15] = Bit 15
Dependency: Refer to: p8888, r8889
p8881[0...15] BI: IF2 binector-connector converter status word $2 /$ Bin/con ZSW2

A_INF, B_INF
S_INF, SERVO,
VECTOR

Can be changed: U, T
Data type: Unsigned32 / Binary
P-Group: Communications
Not for motor type: -

Min	Max	Factory setting
-	-	0

Description: Selects bits to be sent to the PROFIBUS/PROFINET master.
The individual bits are combined to form status word 2.
Index:
[0] $=$ Bit 0
[1] = Bit 1
[2] $=$ Bit 2
[3] = Bit 3
[4] $=$ Bit 4
[5] = Bit 5
[6] $=$ Bit 6
[7] = Bit 7
[8] $=$ Bit 8
[9] = Bit 9
$[10]=$ Bit 10
[11] = Bit 11
[12] = Bit 12
[13] = Bit 13
[14] = Bit 14

Dependency:	[15] = Bit 15		
	Refer to: p8888, r8889		
p8882[0...15]	BI: IF2 binector-connector converter status word 3 / Bin/con ZSW3		
A_INF, B_INF, S_INF, SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2489
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Selects bits to be sent to the PROFIBUS/PROFINET master. The individual bits are combined to form free status word 3.		
Index:	[0] = Bit 0		
	[1] = Bit 1		
	[2] = Bit 2		
	[3] = Bit 3		
	[4] = Bit 4		
	[5] = Bit 5		
	[6] = Bit 6		
	[7] = Bit 7		
	[8] = Bit 8		
	[9] = Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	[12] = Bit 12		
	$[13]=$ Bit 13$[14]=$ Bit 14		
	[15] $=$ Bit 15		
Dependency:	Refer to: p8888, r8889		
p8883[0...15]	BI: IF2 binector-connector converter status word 4 / Bin/con ZSW4		
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF, SERVO, } \\ & \text { VECTOR } \end{aligned}$	Can be changed: U, T Data type: Unsigned32 / Binary	Calculated: -	Access level: 3
		Dynamic index: -	Func. diagram: 2489
		Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Selects bits to be sent to the PROFIBUS/PROFINET master.		
	The individual bits are combined to form free status word 4.		
Index:	[0] = Bit 0		
	[1] = Bit 1		
	[2] = Bit 2		
	[3] = Bit 3		
	[4] = Bit 4		
	[5] $=$ Bit 5		
	[6] = Bit 6		
	[7] $=$ Bit 7		
	[8] $=$ Bit 8		
	[9] = Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	[12] = Bit 12		
	[13] = Bit 13		
	[14] = Bit 14		
	[15] = Bit 15		
Dependency:			

p8884[0...15]	BI: IF2 binector-connector converter status word 5 / Bin/con ZSW5			
$\begin{aligned} & \text { A_INF, B_INF, } \\ & \text { S_INF, SERVO, } \\ & \text { VECTOR } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2489	
	P-Group: Communications	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory 0	
Description:	Selects bits to be sent to the PROFIBUS/PROFINET master. The individual bits are combined to form free status word 5.			
Index:	$\begin{aligned} & {[0]=\text { Bit } 0} \\ & {[1]=\text { Bit } 1} \\ & {[2]=\text { Bit } 2} \\ & {[3]=\text { Bit } 3} \\ & {[4]=\text { Bit } 4} \\ & {[5]=\text { Bit } 5} \\ & {[6]=\text { Bit } 6} \\ & {[7]=\text { Bit } 7} \\ & {[8]=\text { Bit } 8} \\ & {[9]=\text { Bit } 9} \\ & {[10]=\text { Bit } 10} \\ & {[11]=\text { Bit } 11} \\ & {[12]=\text { Bit } 12} \\ & {[13]=\text { Bit } 13} \\ & {[14]=\text { Bit } 14} \\ & {[15]=\text { Bit } 15} \end{aligned}$			
Dependency:	Refer to: p8888, r8889			
p8888[0..4] IF2 invert binector-connector converter status				
A INF, B_INF, S_INF, SERVO, VECTOR	Can be changed: U, T	Calculated: - Access		
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 2489	
	P-Group: Communications	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting 0000 bin	
Description: Index:	Setting to invert the individual bin [0] = Status word 1 [1] = Status word 2 [2] = Free status word 3 [3] = Free status word 4 [4] = Free status word 5	of the binector conn	ter.	
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Bit 0	Inverted	Not inverted	-
	01 Bit 1	Inverted	Not inverted	-
	02 Bit 2	Inverted	Not inverted	-
	03 Bit 3	Inverted	Not inverted	-
	04 Bit 4	Inverted	Not inverted	-
	05 Bit 5	Inverted	Not inverted	-
	06 Bit 6	Inverted	Not inverted	-
	07 Bit 7	Inverted	Not inverted	-
	08 Bit 8	Inverted	Not inverted	-
	09 Bit 9	Inverted	Not inverted	-
	10 Bit 10	Inverted	Not inverted	-
	11 Bit 11	Inverted	Not inverted	-
	12 Bit 12	Inverted	Not inverted	-
	13 Bit 13	Inverted	Not inverted	-
	14 Bit 14	Inverted	Not inverted	-
	15 Bit 15	Inverted	Not inverted	-

		Bit 12	On	Off	
	13	Bit 13	On	Off	-
	14	Bit 14	On	Off	-
	15	Bit 15	On	Off	-
Dependency:	Refer to: r8850				
Note:	IF2: Interface 2				
r8891.0... 15	BO: IF2 PZD2 receive bit-serial / IF2 PZD2 recv bitw				
A_INF, B_INF, S_INF, SERVO, VECTOR	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dynamic index: -	Func. diagram: 2485, 2491, 9204, 9206	
	P-Group: Communications		Units group: -	Unit selection:-	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Binector output for bit-serial interconnection of PZD2 received via interface 2.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	On	Off	-
	01	Bit 1	On	Off	-
	02	Bit 2	On	Off	-
	03	Bit 3	On	Off	-
	04	Bit 4	On	Off	-
	05	Bit 5	On	Off	-
	06	Bit 6	On	Off	-
	07	Bit 7	On	Off	-
	08	Bit 8	On	Off	-
	09	Bit 9	On	Off	-
	10	Bit 10	On	Off	-
	11	Bit 11	On	Off	-
	12	Bit 12	On	Off	-
	13	Bit 13	On	Off	-
	14	Bit 14	On	Off	-
	15	Bit 15	On	Off	-
Dependency:	Refer to: r8850				
Note:	IF2: Interface 2				
r8892.0... 15	BO: IF2 PZD3 receive bit-serial / IF2 PZD3 recv bitw				
SERVO, VECTOR	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dynamic index: -	Func. diagram: 2485, 9204, 9206	
	P-Group: Communications		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Binector output for bit-serial interconnection of PZD3 received via interface 2.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	On	Off	-
	01	Bit 1	On	Off	-
	02	Bit 2	On	Off	-
	03	Bit 3	On	Off	-
	04	Bit 4	On	Off	-
	05	Bit 5	On	Off	-
	06	Bit 6	On	Off	-
	07	Bit 7	On	Off	-
	08	Bit 8	On	Off	-
	09	Bit 9	On	Off	-
	10	Bit 10	On	Off	-

	11	Bit 11	On	Off	-
	12	Bit 12	On	Off	-
	13	Bit 13	On	Off	-
	14	Bit 14	On	Off	-
	15	Bit 15	On	Off	-
Dependency:	Refer to: r8850				
Note:	IF2: Interface 2				
r8893.0... 15	BO: IF2 PZD4 receive bit-serial / IF2 PZD4 recv bitw				
SERVO, VECTOR	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dynamic index: -	Func. diagram: 2485, 9204, 9206	
	P-Group: Communications		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-	Factory setting	
Description:	Binector output for bit-serial interconnection of PZD4 (normally control word 2) received via interface 2.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	On	Off	-
	01	Bit 1	On	Off	-
	02	Bit 2	On	Off	-
	03	Bit 3	On	Off	-
	04	Bit 4	On	Off	-
	05	Bit 5	On	Off	-
	06	Bit 6	On	Off	-
	07	Bit 7	On	Off	-
	08	Bit 8	On	Off	-
	09	Bit 9	On	Off	-
	10	Bit 10	On	Off	-
	11	Bit 11	On	Off	-
	12	Bit 12	On	Off	-
	13	Bit 13	On	Off	-
		Bit 14	On	Off	-
		Bit 15	On	Off	-
Dependency:	Refer to: r8850				
Note:	IF2: Interface 2				
r8894.0... 15	BO: IF2 connector-binector converter binector output / Con/bin outp				
A_INF, B_INF,	Can be changed: -		Calculated: -	Access level: 3	
S_INF, SERVO,	Data type: Unsigned16		Dynamic index: -	Func. diagram: 2485, 2491	
	P-Group: Communications		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Binector output for bit-serial onward interconnection of a PZD word received from the PROFIBUS/PROFINET master.				
	The PZD is selected via p8899[0].				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	On	Off	-
	01	Bit 1	On	Off	-
	02	Bit 2	On	Off	-
	03	Bit 3	On	Off	-
	04	Bit 4	On	Off	-
	05	Bit 5	On	Off	-
	06	Bit 6	On	Off	-
	07	Bit 7	On	Off	-
	08	Bit 8	On	Off	-

	09	Bit 9	On	Off	-
	10	Bit 10	On	Off	-
	11	Bit 11	On	Off	-
	12	Bit 12	On	Off	-
	13	Bit 13	On	Off	-
	14	Bit 14	On	Off	-
	15	Bit 15	On	Off	-
Dependency:	Refer to: p8899				
r8895.0... 15	BO: IF2 connector-binector converter binector output / Con/bin outp				
A_INF, B_INF,	Can be changed: -		Calculated: -	Access level: 3	
S_INF, SERVO,	Data type: Unsigned16		Dynamic index: -	Func. diagram: 2485, 2491	
	P-Group: Communications		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of a PZD word received from the PROFIBUS/PROFINET master. The PZD is selected via p8899[1].				
Bit field:		Signal name	1 signal	0 signal	FP
		Bit 0	On	Off	-
		Bit 1	On	Off	-
		Bit 2	On	Off	-
	03	Bit 3	On	Off	-
	04	Bit 4	On	Off	-
	05	Bit 5	On	Off	-
	06	Bit 6	On	Off	-
	07	Bit 7	On	Off	-
	08	Bit 8	On	Off	-
	09	Bit 9	On	Off	-
	10	Bit 10	On	Off	-
		Bit 11	On	Off	-
		Bit 12	On	Off	-
		Bit 13	On	Off	-
		Bit 14	On	Off	-
		Bit 15	On	Off	-
Dependency:	Refer to: p8899				
p8898[0...1]	IF2 invert connector-binector converter binector output / Con/bin outp inv				
A_INF, B_INF,	Can be changed: U, T		Calculated: -	Access level: 3	
S_INF, SERVO,	Data type: Unsigned16		Dynamic index: -	Func. diagram: 2485, 2491	
	P-Group: Communications		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting 0000 bin	
Description:	Setting to invert the individual binector outputs of the connector-binector converter. Using p8898[0], the signals of Cl : p8899[0] are influenced. Using p8898[1], the signals of CI: p8899[1] are influenced.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Inverted	Not inverted	-
	01	Bit 1	Inverted	Not inverted	-
	02	Bit 2	Inverted	Not inverted	-
	03	Bit 3	Inverted	Not inverted	-
	04	Bit 4	Inverted	Not inverted	-
	05	Bit 5	Inverted	Not inverted	-
	06	Bit 6	Inverted	Not inverted	-
	07	Bit 7	Inverted	Not inverted	-
	08	Bit 8	Inverted	Not inverted	-

	09	Bit 9	Inverted	Not inverted	-
	10	Bit 10	Inverted	Not inverted	-
	11	Bit 11	Inverted	Not inverted	-
	12	Bit 12	Inverted	Not inverted	-
	13	Bit 13	Inverted	Not inverted	-
	14	Bit 14	Inverted	Not inverted	-
	15	Bit 15	Inverted	Not inverted	-
Dependency:	Refer to: r8894, r8895, p8899				
p8899[0...1]	CI: IF2 connector-binector converter signal source / Con/bin S_src				
A INF, B_INF, S_INF, SERVO, VECTOR	Can be changed: U, T		Calculated: -	Access level: 3	
	Data type: Unsigned32 / Integer16		Dynamic index: -	Func. diagram: 2485, 2491	
	P-Group: Communications		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting 0	
	-		-		
Description:	Sets the signal source for the connector-binector converter.				
	A PZD receive word can be selected as signal source. The signals are available to be serially passed-on (intercon nection).				
Dependency:	Refer to: r8894, r8895				
Note:	From the signal source set via the connector input, the corresponding lower 16 bits are converted.				
	p8899[0...1] together with r8894.0... 15 and r8895.0... 15 forms two connector-binector converters:				
	Connector input p8899[0] to binector output in r8894.0... 15				
	Connector input p8899[1] to binector output in r8895.0... 15				
p9300	SI Motion monitoring clock cycle (Motor Module) / SI Mtn clock MM				
SERVO, VECTOR	Can be changed: C 2		Calculated: -	Access level: 3	
	Data type: FloatingPoint32		Dynamic index: -	Func. diagram: -	
	P-Group: Safety Integrated		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	$\begin{aligned} & \operatorname{Min} \\ & 500.00[\mu \mathrm{~s}] \end{aligned}$		$\begin{aligned} & \operatorname{Max} \\ & 25000.00[\mu \mathrm{~s}] \end{aligned}$	Factory setting 12000.00 [$\mu \mathrm{s}$]	
Description:	Sets the monitoring clock cycle for safe motion monitoring.				
Dependency:	Refer to: p0115, p9500				
	Refer to: F01652				
Notice: This parameter is overwritten by the copy			ction of the safety functions integrated in the drive.		
Note:	The monitoring clock cycle must be a multiple of the position controller clock cycle.				
p9301	SI Motion enable safety functions (Motor Module) / SI Mtn enable MM				
SERVO, VECTOR	Can be changed: C2		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: -	
	P-Group: Safety Integrated		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting0000 bin	
	-		-		
Description:	Sets the enable signals for the safe motion monitoring.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		SOS/SLS enable	Enable	Inhibit	-
		Actual value synchronization enable	Enable	Inhibit	-
		Enable NX Hys Fil	Enable	Inhibit	-
Dependency:	Refer to: p9501				
	Refer to: F01682, F01683				
Notice:		parameter is overwritten by the copy fund	ction of the safety fu	rated in the driver	

Note:	A change only becomes effective after a POWER ON. SOS: Safe Operational Stop SLS: Safely Limited Speed			
p9302	SI Motion axis type (Motor Module) / SI Mtn AxisType MM			
SERVO, VECTOR	Can be changed: C2	Calculated: -	Acce	
	Data type: Integer16	Dynamic index: -	Func	
	P-Group: Safety Integrated	Units group: -	Unit	
	Not for motor type: -		Expe	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Fact 0	
Description:	Sets the axis type (linear axis or rotary axis/spindle).			
Value:	0: Linear axis 1: Rot axis/spindle			
Dependency:	Refer to: p9502			
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.			
Note:	For the commissioning software, after changing over the axis type, the units dependent on the axis type are only updated after a project upload.			
	A change only becomes effective after a POWER ON.			
p9311	SI Motion clock cycle actual value sensing (Motor Module) / SI Mtn clck act MM			
SERVO, VECTOR	Can be changed: C 2	Calculated: -	Acce	
	Data type: FloatingPoint32	Dynamic index: -	Fu	
	P-Group: Safety Integrated	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min 0.00 [$\mu \mathrm{s}$]	$\begin{aligned} & \operatorname{Max} \\ & 25000.00[\mu \mathrm{~s}] \end{aligned}$		
Description:	Sets the clock cycle time of the actual value sensing for safe motion monitoring.			
	The slower clock cycle time reduces the maximum permissible velocity - however, it ensures a lower load of the Control Unit for the safe actual value sensing.			
	The maximum permissible velocity, which when exceeded can mean that errors occur in the safe actual value sens ing, is displayed in parameter r 9730.			
	For a default value of 0 ms , the actual value sensing of the isochronous PROFIBUS clock cycle is used as clock cycle time or 1 ms if isochronous operation is not being used.			
Dependency:	Refer to: p0115, p9300, p9511			
	Refer to: F01652			
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.			
Note:	The parameter is only active for drive-based motion monitoring functions (p9801, bit $2=1$). The monitoring clock cycle from p9300 must be an integer multiple of this parameter. The clock cycle time of the actual value sensing must be an integer multiple of the current controller clock cycle and be at least a factor of 4 slower than the current control clock cycle.			
p9315	SI Motion coarse position value configuration (MM) / SI Mtn s config MM			
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3	
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -	
	P-Group: Safety Integrated	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting 0000 bin	
Description:	Sets the encoder configuration for the redundant coarse position value.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Incrementer	Yes	No	-
	01 Encoder CRC least significant byte first	Yes	No	-

p9319	SI Motion fine resolution G1_XIST1 (Motor Module) / SI Mtn G1_XIST1 MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 18 \end{aligned}$	Factory setting 11
Description:	Sets the fine resolution for G1_XIST1 in bits.		
	For safe functions that are not enabled ($\mathrm{p} 9301=0$), the following applies:		
	p9319 is automatically set the same as p0418 at run-up.		
	For safety functions that are enabled (p9301 > 0), the following applies:		
	p9319 is checked to see that it matches p0418.		
	The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter.		
Dependency:	Refer to: p0418		
	Refer to: F01670, F01671		
Note:	A change only becomes effective after a POWER ON.		
	G1_XIST1: Encoder 1 position actual value 1 (PROFIdrive)		
p9320	SI Motion spindle pitch (Motor Module) / SI Mtn sp_pitch MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.1000 [mm]	Max 8388.0000 [mm]	Factory setting 10.0000 [mm]
Description:	Sets the gear ratio between the encoder and load in $\mathrm{mm} /$ revolution for a linear axis with rotary encoder		
	The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter.		
Dependency:	Refer to: p9520		
Notice:	The fourth decimal point can be rounded-off depending on the size of the entered number (from three places before the decimal point).		
Note:	A change only becomes effective after a POWER ON.		
p9321[0...7]	SI Motion gearbox encoder/load denominator (Motor Module) / SI Mtn denom MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\underset{1}{\operatorname{Min}}$	$\begin{aligned} & \operatorname{Max} \\ & 2147000000 \end{aligned}$	Factory setting 1
Description:	Sets the denominator for the gearbox between the encoder and load.		
	The current gearbox stage is selected via safety-relevant inputs (SGE).		
	The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter.		
Index:	[0] = Gearbox 1		
	[1] = Gearbox 2		
	[2] = Gearbox 3		
	[3] = Gearbox 4		
	[4] = Gearbox 5		
	$[5]=$ Gearbox 6$[6]=$ Gearbox 7		

Dependency:	[7] = Gearbox 8		
	Refer to: p9322		
Note:	A change only becomes effective after a POWER ON.		
p9322[0...7]	SI Motion gearbox encoder/load numerator (Motor Module) / SI Mtn numer MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	${ }_{1}^{\operatorname{Min}}$	$\begin{aligned} & \text { Max } \\ & 2147000000 \end{aligned}$	Factory setting 1
Description:	Sets the numerator for the gearbox between the encoder and load.		
	The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter.		
Index:	[0] = Gearbox 1		
	[1] = Gearbox 2		
	[2] = Gearbox 3		
	[3] = Gearbox 4		
	[4] = Gearbox 5		
	[5] = Gearbox 6		
	[6] = Gearbox 7		
	[7] = Gearbox 8		
Dependency:	Refer to: p9321		
Note:	A change only becomes effective after a POWER ON.		
p9323	SI Motion redundant coarse pos. value valid bits (MM) / Valid bits MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{gathered} \text { Max } \\ 16 \end{gathered}$	Factory setting 9
Description:	Sets the number of valid bits of the redundant coarse postion value.		
	The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter.		
Dependency:	Refer to: r0470, p9523		
Note:	A change only becomes effective after a POWER ON.		
p9324	SI Motion redundant coarse pos. value fine resolution bits (MM) / SI Mtn fine bit MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \text { Min } \\ -16 \end{gathered}$	$\begin{aligned} & \operatorname{Max} \\ & 16 \end{aligned}$	Factory setting -2
Description:	Sets the number of valid bits for the fine resolution of the redundant coarse position value.		
	The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter.		
Dependency:	Refer to: r0471, p9524		
Note:	A change only becomes effective after a POWER ON.		

p9325	SI Motion redundant coarse pos. value relevant bits (MM) / Relevant bits MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \text { Min } \\ 0 \end{gathered}$	$\underset{16}{\operatorname{Max}}$	Factory setting 16
Description:	The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter.		
Dependency:	Refer to: p0414, r0472, p9525		
Note:	A change only becomes effective after a POWER ON.		
p9326	SI Motion encoder assignment (Motor Module) / SI Mtn encoder MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 3 \end{aligned}$	Factory setting 1
Description:	Sets the number of the encoder that the Motor Module uses for safe motion monitoring functions.		
Dependency:	For the safe motion monitoring functions, the redundant safety position actual value sensing must be activated in the appropriate encoder data set ($\mathrm{p} 0430.19=1$).		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	For p9326 = 1 the following applies: Motor Module uses an encoder for closed-loop speed control, it involves a 1 encoder system.		
	A change only becomes effective after a POWER ON.		
p9328[0...11]	SI Motion Sensor Module Node Identifier (Motor Module) / SI Mtn SM Ident MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max 00FF hex	Factory setting 0000 hex
Description:	Sets the node identifier of the Sensor Module that is used by the Motor Module for the motion monitoring functions.		
Dependency:	Refer to: r9881		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
p9329	SI Motion Gx_XIST1 safe most significant bit (MM) / Gx_XIST1 MSB MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{31}{\operatorname{Max}}$	Factory setting 14
Description:	The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter.		
Dependency:	Refer to: p0415, r0475, p9529		

Note:	A change only becomes effective after a POWER ON. MSB: Most Significant Bit		
p9330	SI Motion standstill tolerance (Motor Module) / SI Mtn SOS Tol MM		
SERVO (Safety rot), VECTOR (Safety rot)	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.000\left[{ }^{\circ}\right]$	$\begin{aligned} & \operatorname{Max} \\ & 100.000\left[{ }^{\circ}\right] \end{aligned}$	Factory setting 1.000 [${ }^{\circ}$]
Description:	Sets the tolerance for the function "Safe Operating Stop" (SOS).		
Dependency:	Refer to: p9530		
	Refer to: C01707		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
	SOS: Safe Operational Stop		
p9330	SI Motion standstill tolerance (Motor Module) / SI Mtn SOS Tol MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~mm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 100.000[\mathrm{~mm}] \end{aligned}$	Factory setting 1.000 [mm]
Description:	Sets the tolerance for the function "Safe Operating Stop" (SOS).		
Dependency:	Refer to: p9530		
	Refer to: C01707		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
	SOS: Safe Operational Stop		
p9331[0...3]	SI Motion SLS limit values (Motor Module) / SI Mtn SLS lim MM		
SERVO (Safety rot), VECTOR (Safety rot)	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [rev/min]	Max 1000000.00 [rev/min]	Factory setting 2000.00 [rev/min]
Description:	Sets the limit values for the function "Safely-Limited Speed" (SLS).		
Index:	$\begin{aligned} & {[0]=\text { Limit value SLS1 }} \\ & {[1]=\text { Limit value SLS2 }} \\ & {[2]=\text { Limit value SLS3 }} \\ & {[3]=\text { Limit value SLP4 }} \end{aligned}$		
Dependency:	Refer to: p9363, p9531		
	Refer to: C01714		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	SLS: Safely-Limited Speed		

p9331[0...3]	SI Motion SLS limit values (Motor Module) / SI Mtn SLS lim MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~mm} / \mathrm{min}] \end{aligned}$	Max 1000000.00 [mm/min]	Factory setting 2000.00 [$\mathrm{mm} / \mathrm{min}$]
Description: Index:	Sets the limit values for the function "Safely-Limited Speed" (SLS).$\begin{aligned} & {[0]=\text { Limit value SLS1 }} \\ & {[1]=\text { Limit value SLS2 }} \\ & {[2]=\text { Limit value SLS3 }} \\ & {[3]=\text { Limit value SLP4 }} \end{aligned}$		
Dependency:	Refer to: p9363, p9531		
	Refer to: C01714		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
	SLS: Safely-Limited Speed		
p9342	SI Motion act val comparison tol (crosswise) (Motor Module) / SI Mtn act tol MM		
SERVO (Safety rot), VECTOR (Safety rot)	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0010\left[^{\circ}\right] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 360.0000\left[{ }^{\circ}\right] \end{aligned}$	Factory setting 0.1000 [${ }^{\circ}$]
Description:	Sets the tolerance for the cross-check of the actual position between the two monitoring channels.		
Dependency:	Refer to: p9542		
	Refer to: C01711		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
p9342	SI Motion act val comparison tol (crosswise) (Motor Module) / SI Mtn act tol MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.0010 [mm]	$\begin{aligned} & \text { Max } \\ & 360.0000[\mathrm{~mm}] \end{aligned}$	Factory setting 0.1000 [mm]
Description:	Sets the tolerance for the cross-check of the actual position between the two monitoring channels.		
Dependency:	Refer to: p9542		
	Refer to: C01711		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		

p9347	SI Motion SSM velocity hysteresis (Motor Module) / SI Mtn SSM Hyst MM		
SERVO (Safety rot),	Can be changed: C2	Calculated: -	Access level: 3
VECTOR (Safety rot)	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.0010 [rev/min]	Max 500.0000 [rev/min]	Factory setting 10.0000 [rev/min]
Description: Dependency: Note:	Sets the velocity hysteresis Refer to: C01711 A change only becomes effe The velocity hysteresis is eff The parameter is included in SSM: Safe Speed Monitor (back signal to detect NER ON. function is enabled (p check of the two monit edback signal from the	$\mathrm{t} 16=1)$ toring)
p9347	SI Motion SSM velocity hysteresis (Motor Module) / SI Mtn SSM Hyst MM		
SERVO, VECTOR	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.0010 [$\mathrm{mm} / \mathrm{min}$]	Max 500.0000 [$\mathrm{mm} / \mathrm{min}$]	Factory setting 10.0000 [$\mathrm{mm} / \mathrm{min}$]
Description: Dependency: Note:	Sets the velocity hysteresis Refer to: C01711 A change only becomes effe The velocity hysteresis is eff The parameter is included in SSM: Safe Speed Monitor (back signal to detect NER ON. function is enabled (p check of the two monit edback signal from the	$\mathrm{t} 16=1)$ toring)
p9348	SI Motion SBR actual velocity tolerance (Motor Module) / SI Mtn SBR Tol MM		
SERVO (Safety rot),	Can be changed: C 2	Calculated: -	Access level: 3
VECTOR (Safety rot)	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [rev/min]	Max 120000.00 [rev/min]	Factory setting 300.00 [rev/min]
Description:	Sets the velocity tolerance for the "Safe Acceleration Monitor".		
Dependency:	Refer to: p9548		
	Refer to: C01706		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
p9348	SI Motion SBR actual velocity tolerance (Motor Module) / SI Mtn SBR Tol MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index:	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mathrm{mm} / \mathrm{min}$]	Max 120000.00 [$\mathrm{mm} / \mathrm{min}$]	Factory setting 300.00 [$\mathrm{mm} / \mathrm{min}$]
Description:	Sets the velocity tolerance for the "Safe Acceleration Monitor".		

Dependency:	Refer to: p9548
	Refer to: C01706
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:	A change only becomes effective after a POWER ON.
	SBR: Safe Acceleration Monitor

p9349	SI Motion slip velocity tolerance (Motor Module) / SI Mtn slip MM		
SERVO, VECTOR	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~mm} / \mathrm{min}] \end{aligned}$	Max 6000.00 [mm/min]	Factory setting 6.00 [$\mathrm{mm} / \mathrm{min}$]
Description:	Sets the velocity tolerance that is used for a 2-encoder system in cross-check between the Control Unit and the Motor Module.		
Dependency:	Refer to: p9301, p9342, p9549		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	If the "actual value synchronization" is not enabled ($\mathrm{p} 9301.3=0$), then the value parameterized in p 9342 is used as tolerance in the data cross-check.		

p9351	SI Motion SLS changeover delay time (Motor Module) / SI Mtn SLS t MM		
SERVO, VECTOR	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2825
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mu \mathrm{s}$]	Max $600000000.00[\mu \mathrm{~s}]$	Factory setting 100000.00 [$\mu \mathrm{s}$]
Description:	Sets the delay time for the SLS changeover or for the changeover from SLS to SOS for the function "Safely-Limited Speed" (SLS).		
	When transitioning from a higher to a lower safely-limited velocity/speed stage or to the safe operating stop (SOS), within this delay time, the "old" velocity stage remains active.		
	Even if SLS or SOS is activated from non safety-related operation, then this delay is still applied.		
Dependency:	Refer to: p9551		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
	SLS: Safely Limited Speed		
	SOS: Safe Operating Stop		

p9352	SI Motion transition time STOP C to SOS (Motor Module) / SI Mtn t C->SOS MM		
SERVO, VECTOR	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2825
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mu \mathrm{s}$]	Max $600000000.00[\mu \mathrm{~s}]$	Factory setting 100000.00 [$\mu \mathrm{s}$]
Description:	Sets the transition time from STOP C to "Safe Operating Stop" (SOS).		
Dependency:	Refer to: p9552		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
	SOS: Safe Operational Stop		
p9353	SI Motion transition time STOP D to SOS (Motor Module) / SI Mtn t D->SOS MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2825
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mu \mathrm{s}$]	Max 600000000.00 [$\mu \mathrm{s}$]	Factory setting 100000.00 [$\mu \mathrm{s}$]
Description:	Sets the transition time from STOP D to "Safe Operating Stop" (SOS).		
Dependency:	Refer to: p9553		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
	SOS: Safe Operating Stop		
p9355	SI Motion transition time STOP F to STOP B (Motor Module) / SI Mtn t F->B MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2825
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mu \mathrm{s}$]	Max 600000000.00 [$\mu \mathrm{s}$]	Factory setting 0.00 [$\mu \mathrm{s}$]
Description:	Sets the transition time from STOP F to STOP B.		
Dependency:	Refer to: C01711		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
p9356	SI Motion pulse suppression delay time (Motor Module) / SI Mtn IL t_del MM		
SERVO, VECTOR	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2825
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mu \mathrm{s}$]	Max 600000000.00 [$\mu \mathrm{s}$]	Factory setting 100000.00 [$\mu \mathrm{s}$]
Description:	Sets the delay time for the safe pulse suppression after STOP B / SS1.		
Dependency:	Refer to: p9360, p9556		
	Refer to: C01701		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		

Note:	A change only becomes effective after a POWER ON. SS1: Safe Stop 1		
p9357	SI Motion pulse supp	time (Motor Mod	n IL t MM
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mu \mathrm{s}$]	$\begin{aligned} & \operatorname{Max} \\ & 10000000.00[\mu \mathrm{~s}] \end{aligned}$	Factory setting 100000.00 [$\mu \mathrm{s}$]
Description:	Sets the time after which the pulses must have been suppressed when initiating the test stop.		
Dependency:	Refer to: p9557		
	Refer to: C01798		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
p9358	SI Motion acceptance test mode time limit (Motor Module) / SI Mtn acc t MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 5000000.00 [$\mu \mathrm{s}$]	$\begin{aligned} & \text { Max } \\ & 100000000.00[\mu \mathrm{~s}] \end{aligned}$	Factory setting 40000000.00 [$\mu \mathrm{s}$]
Description:	If the acceptance test mode takes longer than the selected time limit, then the mode is automatically terminated.	Sets the maximum time for the acceptance test mode.	
Dependency:	Refer to: p9558		
	Refer to: C01799		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
p9360	SI Motion pulse suppression shutdown velocity (Motor Module) / SI Mtn IL v_shutMM		
SERVO, SERVO (Lin), VECTOR	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mathrm{mm} / \mathrm{min}$]	Max 6000.00 [mm/min]	Factory setting 0.00 [$\mathrm{mm} / \mathrm{min}$]
Description:	Below this velocity "standstill" is assumed and for STOP B / SS1, the pulses are suppressed (by changing to STOP A).		
Dependency:	Refer to: p9356, p9560		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		

p9360	SI Motion pulse suppression shutdown speed (Motor Module) / SI Mtn IL n_shutMM		
SERVO (Safety rot),	Can be changed: C2	Calculated: -	Access level: 3
VECTOR (Safety rot)	Data type: FloatingPoint32	Dynamic index:-	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [rev/min]	Max 6000.00 [rev/min]	Factory setting 0.00 [rev/min]
Description:	Below this speed "standstill" is assumed and for STOP B / SS1, the pulses are suppressed(by changing to STOP A).		
Dependency:	Refer to: p9356, p9560		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
	SS1: Safe Stop 1		

p9363[0...3]	SI Motion SLS stop response (Motor Module) / SI Mtn SLS Stop MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting

Description:	Sets the stop response for the function "safely reduced speed" (SLS). These settings apply to the individual limit values for SLS.
Value:	0 0 STOP A
	1: STOP B
	2: STOP C
	3: STOP D
	4: STOP E
	10: STOP A with delayed pulse suppression when the bus fails
	11: STOP B with delayed pulse suppression when the bus fails
	12: STOP C with delayed pulse suppression when the bus fails
	13: STOP D with delayed pulse suppression when the bus fails
	14: STOP E with delayed pulse suppression when the bus fails
Index:	[0] = Limit value SLS1
	[1] = Limit value SLS2
	[2] = Limit value SLS3
	[3] = Limit value SLP4
Dependency:	Refer to: p9331, p9380, p9563
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
	Values 10 to 14 are being prepared and are presently ineffective.
Note:	A change only becomes effective after a POWER ON.
	SLS: Safely-Limited Speed / SG: Safely reduced speed

p9370	SI Motion acceptance test mode (Motor Module) / SI Mtn acc_mod MM		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	Max	Factory setting
	0000 hex	0000 hex	
Description:	Setting to select and de-select the acceptance test mode.		

Value:	0: [00 hex] De-select the acceptance test mode 172: [AC hex] Select the acceptance test mode		
Dependency:	Refer to: p9358, r9371		
	Refer to: C01799		
r9371	SI Motion acceptance test status (Motor Module) / SI Mtn acc_stat MM		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max 00AC hex	Factory setting
Description:	Displays the status of the acceptance test mode.		
Value:	0: [00 hex] Acc_mode 12: [OC hex] Acc_mode 13: [OD hex] Acc_mode 15: [OF hex] Acc_mode 172: [AC hex] Acc_mode	to POWER ON fault to incorrect ID in p9370 to expired Acc_timer	
Dependency:	Refer to: p9358, p9370		
	Refer to: C01799		
p9380	SI Motion pulse suppression delay bus failure (Motor Module) / SI Mtn t to IL MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mu \mathrm{s}$]	$\begin{aligned} & \operatorname{Max} \\ & 800000.00[\mu \mathrm{~s}] \end{aligned}$	Factory setting 0.00 [$\mu \mathrm{s}$]
Description:	Sets the delay time after which the pulses are safely suppressed after a bus failure.		
Dependency:	Refer to: p9363		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
r9390[0...3]	SI Motion version safety motion monitoring (Motor Module) / SI Mtn Version MM		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description: Index:	Displays the Safety Integrat [0] = Safety Version (major [1] = Safety Version (minor [2] = Safety Version (basele [3] = Safety Version (hotfix)	safety motion monitorin	n the Motor Modul
Dependency:	Refer to: r9590, r9770, r9870, r9890		
Note:	Example:	90[3] = 0 --> SI Motion	$0.01 .00$

r9450[0...29]	Reference value ch Ref_chg par n poss	er with unsucc	tion /
A_INF, B_INF, S_INF, SERVO, TM41, VECTOR	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned32	Dynamic index: -	Func. diagram:
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the parameters for which the re-calculation was unsuccesful after an internal system reference value change.		
Dependency:	Refer to: F07086		
r9451[0...29]	Units changeover adapted parameters / Unit_chngov par		
A_INF, B_INF, S_INF, SERVO, TM41, VECTOR	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned32	Dynamic index: -	Func. diagram:
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description: Dependency:	Displays the parameters whose parameter would have to be changed during a units changeover. Refer to: F07088		
r9481	Number of BICO interconnections / BICO count		
A_INF, B_INF,	Can be changed: -	Calculated: -	Access level: 3
CU_CX32, CU_I,	Data type: Unsigned16	Dynamic index: -	Func. diagram:
S_INF, SERVO,	P-Group: Commands	Units group: -	Unit selection: -
TB30, TM15,	Not for motor type: -		Expert list: 0
TM15DI_DO, TM17,			
TM31, TM41,			
TM54F_MA,			
TM54F_SL, VECTOR			
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of BICO interconnections (signal sinks) to other drive objects. The selected BICO interconnections should be entered into r9482[0...59] and r9483[0...59].		
Dependency:	Refer to: r9482, r9483		
r9482[0...59]	BICO interconnections $\mathrm{BI} / \mathrm{Cl}$ parameters / BICO BI/Cl par		
A_INF, B_INF, CU_CX32, CU_I, CU_LINK, CU_S, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram:
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min	Max	Factory setting
	-	-	
Description:	Displays the signal sinkss (Binector/Connector Inputs, $\mathrm{BI} / \mathrm{Cl}$ parameters) to other drive objects. The number of BICO interconnections to other drive objects is displayed in r9481.		

Dependency:	Refer to: r9481, r9483
Note:	The list is sorted according to signal sources and is structured as follows:
	r9842[0]: Interconnection 1 (signal sink, BICO coded), r9843[0]: Interconnection 1 (signal source, BICO coded)
	r9842[1]: Interconnection 2 (signal sink, BICO coded), r9843[1]: Interconnection 2 (signal source, BICO coded)

r9483[0...59]	BICO interconnections BO/CO parameters / BICO BO/CO par		
A_INF, B_INF,	Can be changed: -	Calculated: -	Access level: 3
CU_CX32, CU_I,	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
CU_LINK, CU_S,	P-Group: Commands	Units group: -	Unit selection: -
S_INF, SERVO,	Not for motor type: -	Expert list: 0	
TB30, TM15,			
TM15DI_DO, TM17,			
TM31, TM41,		Factory setting	
TM54F_MA,		- Max	
TM54F_SL, VEC-		-	
TOR			

Description:	Displays the signal sources (Binector/Connector Outputs, BO/CO parameters) to other drive objects.
	The number of BICO interconnections to other drive objects is displayed in r9481.
Dependency:	Refer to: r9481, r9482
Note:	The list is sorted according to signal sources and is structured as follows:
	r9842[0]: Interconnection 1 (signal sink, BICO coded), r9843[0]: Interconnection 1 (signal source, BICO coded)
	r9842[1]: Interconnection 2 (signal sink, BICO coded), r9843[1]: Interconnection 2 (signal source, BICO coded)

r9486

A_INF, B_INF,
CU_CX32, CU_I,
CU_LINK, CU_S,
S_INF, SERVO,
TB30, TM15,
BICO interconnections signal source search first index / BICO S_src srchldx

TM15DI_DO, TM17,
TM31, TM41,
TM54F_MA,
TM54F_SL, VEC-
TOR

	$\underline{M i n}$	Max	Factory setting
Description:	Displays the first index of the signal source being searched for.		
	The signal source to be searched is set in p9484 (BICO-coded).		
	The search result is contained in r9482[0...59] and r9483[0...59] and is specified by the count (r9485) and the first index (r9486).		
Dependency:	Refer to: r9481, r9482, r9483, p9484, r9485		
r9490	Number of BICO interconnections to other drives / Qty BICO to drive		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the number of signal sources from this drive to other drives/drive objects (Binector Output/Connector Output, BO/CO).		
Dependency:	Refer to: r9491, r9492, p9493		

r9491[0...9]	Bl/Cl of BICO interconnections to other drives / BI/Cl to drive		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Expert list: 1

r9492[0...9]	$\mathrm{BO} / \mathrm{CO}$ of BICO interconnections to other drives / BO/CO to drive		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the signal source list (Binector Output/Connector Output, $\mathrm{BO} / \mathrm{CO}$) for the first interconnections between this drive and other drives/drive objects.		
Dependency:	Refer to: r9490, r9491, p9493		
Notice:	A drive cannot be deleted if this list is not empty! Otherwise, another drive would continue to attempt to read a sig nal from a drive that no longer existed.		
Note:	All indices of r9491 to p9493 designate the same interconnection.		
	$r 9491[x]$ contains the signal receiver and $r 9492[x]$ the matching signal source; $p 9493[x]$ can be set to modify the interconnection.		

p9496	Restore BICO to the drive objects that are now activated / Rest BICO act obj		
A_INF, B_INF,	Can be changed: T	Calculated: -	Access level: 3
CU_CX32, CU_I,	Data type: Integer16	Dynamic index: -	Func. diagram: -
CU_LINK, CU_S,	P-Group: -	Units group: -	Unit selection: -
SERVO, TB30,		Expert list: 1	
TM15, TM15DI_DO, Not for motor type: -			
TM17, TM31, TM41,		Factory setting	
VECTOR	Max	0	

Description:	If this drive object has BICO interconnections to other drive objects that are either not operational or have been de-
activated, then using this parameter, all of the $\mathrm{BI} / \mathrm{Cl}$ parameters involved with this drive object can be re-estab-	
lished.	

Value:	$0: \quad$ Do not do anything			
	$1: \quad$ Restore the connections from the list			
Dependency:	$2: \quad$ Delete the connection from the list			
	Refer to: p9495, p9497, p9498, p9499			
Note:	Refer to: A01318, A01507	\quad		The BI/Cl parameters involved are listed in r9498[0...29] (drain).
:---	:---			
	The associated BO/CO parameters are listed in r9499[0...29] (source).			
	After setting p9496 to 1 or $2, r 9498$ and r9499 are reset, r9497 is set to 0 and p9496 itself is set to 0.			

p9500	SI Motion monitoring clock cycle (Control Unit) / SI Mtn mon_clk_cyc				
SERVO, VECTOR	Can be changed: C2		Calculated: -	Acce	
	Data type: FloatingPoint32		Dynamic index: -	Fun	
	P-Group: Safety Integrated		Units group: -	Unit	
	Not for motor type: -			Expe	
	$\begin{aligned} & \operatorname{Min} \\ & 0.50[\mathrm{~ms}] \end{aligned}$		$\begin{aligned} & \operatorname{Max} \\ & 25.00[\mathrm{~ms}] \end{aligned}$	Fact 12.00	
Description: Dependency:	Sets the monitoring clock cycle for safe motion monitoring.				
	Refer to: p0115				
	Refer to: F01652				
Note:	The monitoring clock cycle must be a multiple of the position controller clock cycle.				
p9501	SI	Motion enable safety function	(Control Unit)	nab fct	
SERVO, VECTOR	Can be changed: C2		Calculated: -	Acce	
	Data type: Unsigned32		Dynamic index: -	Func	
	P-Group: Safety Integrated		Units group: -	Unit	
	Not for motor type: -			Expe	
	Min		Max	Fact	
	-		-		
Description:	Sets the enable signals for the safe motion monitoring.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		SOS/SLS (SBH/SG) enable	Enable	Inhibit	-
		SLP (SE) enable	Enable	Inhibit	-
	02				-
		Actual value synchronization enable	Enable	Inhibit	-
		External ESR activation enable	Enable	Inhibit	-
		Override SLS (SG) enable	Enable	Inhibit	-
		External STOPs enable	Enable	Inhibit	-
		Cam synchronization enable	Enable	Inhibit	-
		SCA1+ (SN1+) enable	Enable	Inhibit	-
		SCA1- (SN1-) enable	Enable	Inhibit	-
		SCA2+ (SN2+) enable	Enable	Inhibit	-
		SCA2- (SN2-) enable	Enable	Inhibit	-
		SCA3+ (SN3+) enable	Enable	Inhibit	-
		SCA3- (SN3-) enable	Enable	Inhibit	-
		SCA4+ (SN4+) enable	Enable	Inhibit	-
		SCA4- (SN4-) enable	Enable	Inhibit	-
		Enable NX Hys Fil	Enable	Inhibit	-
Dependency:	Refer to: F01682, F01683				
Note:	A change only becomes effective after a POWER ON.				
	Re bit 06:				
	For the motion monitoring functions integrated in the drive, the enable for the external stops is of no significance. ESR: Extended Stopping and Retraction				
	SCA: Safe Cam / SN: Safe software cam				
	SLP: Safely-Limited Position / SE: Safe software limit switches				
	SLS: Safely-Limited Speed / SG: Safely reduced speed				
	SOS: Safe Operating Stop / SBH: Safe operating stop				

p9502	SI Motion axis type (Control Unit) / SI Mtn axis type				
SERVO, VECTOR	Can be changed: C2		Calculated: -	Access level: 3	
	Data type: Integer16		Dynamic index: -	Func. diagram: -	
	P-Group: Safety Integrated		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$		$\underset{1}{\operatorname{Max}}$	Factory setting 0	
Description: Value:	Sets the axis type (linear axis or rotary axis/spindle).				
	0 : Linear axis				
Note:	For the commissioning software, after changing over the axis type, the units dependent on the axis type are only updated after a project upload.				
	A change only becomes effective after a POWER ON.				
p9503	SI Motion SCA (SN) enable (Control Unit) / SI Mtn SCA enab				
SERVO, VECTOR	Can be changed: U, T		Calculated: -	Access level: 4	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: -	
	P-Group: Safety Integrated		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting 0000 bin	
Description:	Setting to enable the function "Safe Cam" (SCA).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	SCA1 (SN1) enable	Enable	Inhibit	-
		SCA2 (SN2) enable	Enable	Inhibit	-
		SCA3 (SN3) enable	Enable	Inhibit	-
		SCA4 (SN4) enab	Enable	Inhibit	-
		SCA5 (SN5) enab	Enable	Inhibit	-
	05	SCA6 (SN6) enable	Enable	Inhibit	-
	06	SCA7 (SN7) enable	Enable	Inhibit	-
	07	SCA8 (SN8) enable	Enable	Inhibit	-
	08	SCA9 (SN9) enable	Enable	Inhibit	-
	09	SCA10 (SN10) enable	Enable	Inhibit	-
	10	SCA11 (SN11) enable	Enable	Inhibit	-
	11	SCA12 (SN12) enable	Enable	Inhibit	-
	12	SCA13 (SN13) enable	Enable	Inhibit	-
	13	SCA14 (SN14) enable	Enable	Inhibit	-
	14	SCA15 (SN15) enable	Enable	Inhibit	-
	15	SCA16 (SN16) enable	Enable	Inhibit	-
	16	ESCA17 (SN17) enable	Enable	Inhibit	-
	17	SCA18 (SN18) enable	Enable	Inhibit	-
	18	SCA19 (SN19) enable	Enable	Inhibit	-
	19	SCA20 (SN20) enable	Enable	Inhibit	-
	20	SCA21 (SN21) enable	Enable	Inhibit	-
	21	SCA22 (SN22) enable	Enable	Inhibit	-
	22	SCA23 (SN23) enable	Enable	Inhibit	-
	23	SCA24 (SN24) enable	Enable	Inhibit	-
	24	SCA25 (SN25) enable	Enable	Inhibit	-
	25	SCA26 (SN26) enable	Enable	Inhibit	-
	26	SCA27 (SN27) enable	Enable	Inhibit	-
	27	SCA28 (SN28) enable	Enable	Inhibit	-
	28	SCA29 (SN29) enable	Enable	Inhibit	-
	29	SCA30 (SN30) enable	Enable	Inhibit	-
Dependency:	Refer to: p9501				
	Refer to: F01686				

Note:	The parameter is only active for drive-based motion monitoring functions (p9601, bit $2=1$). The monitoring clock cycle from p9500 must be an integer multiple of this parameter. The clock cycle time of the actual value sensing must be an integer multiple of the current controller clock cycle and be at least a factor of 4 slower than the current control clock cycle. The clock cycle time of the actual value sensing should not be set greater than 8 ms .
p9515	SI Motion coarse position value configuration (CU) / SI Mtn s config CU
SERVO, VECTOR	Can be changed: C2 Calculated: - Access level: 3 Data type: Unsigned32 Dynamic index: - Func. diagram: - P-Group: Safety Integrated Units group: - Unit selection: - Not for motor type: - Expert list: 1 Min Max Factory setting - - 0000 bin
Description: Bit field:	Sets the encoder configuration for the redundant coarse position value.
Dependency: Note:	Refer to: r0474, p9315 A change only becomes effective after a POWER ON. For safe functions that are not enabled (p9501 = 0), the following applies: - p9515 is automatically set the same as p0474 when the system boots. For safety functions that are enabled ($\mathrm{p} 9501>0$), the following applies: - p9515 is checked to see that it matches p0474.
p9516 SERVO, VECTOR	SI Motion motor encoder config., safety-relevant functions (CU) / SI Mtn enc_config
Description: Bit field:	Sets the configuration for the motor encoder and position actual value.
Dependency:	Refer to: p0404, p0410 Refer to: F01671
Note:	A change only becomes effective after a POWER ON. For safe functions that are not enabled ($\mathrm{p} 9501=0$), the following applies: - p9516.0 is automatically set when booting as for p0410.1. When booting, p9516.1 is automatically set as for p0404.0. For safety functions that are enabled ($\mathrm{p} 9501>0$), the following applies: - p9516.1 is checked to identify whether it coincides with p0404.0.

p9520	SI Motion spindle pitch (Control Unit) / SI Mtn Sp_pitch		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.1000[\mathrm{~mm}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 8388.0000[\mathrm{~mm}] \end{aligned}$	Factory setting 10.0000 [mm]
Description:	Sets the gear ratio between the encoder and load in $\mathrm{mm} /$ revolution for a linear axis with rotary encoder.		
Notice:	The fourth decimal point can be rounded-off depending on the size of the entered number (from three places before the decimal point).		
Note:	A change only becomes effective after a POWER ON.		
p9521[0...7]	SI Motion gearbox encoder/load denominator (Control Unit) / SI Mtn gear denom		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2147000000 \end{aligned}$	Factory setting 1
Description:	Sets the denominator for the gearbox between the encoder and load. The current gearbox stage is selected via safety-relevant inputs (SGE).		
Index:	[0] = Gearbox 1 [1] = Gearbox 2 [2] = Gearbox 3 [3] = Gearbox 4 [4] = Gearbox 5 [5] = Gearbox 6 [6] = Gearbox 7 [7] = Gearbox 8		
Dependency:	Refer to: p9522		
Note:	A change only becomes effective after a POWER ON.		
p9522[0...7]	SI Motion gearbox encoder/load numerator (Control Unit) / SI Mtn gear nume		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2147000000 \end{aligned}$	Factory setting 1
Description:	The current gearbox stage is selected via safety-relevant inputs (SGE).		
Index:	[0] = Gearbox 1 [1] = Gearbox 2 [2] = Gearbox 3 [3] = Gearbox 4 [4] = Gearbox 5 [5] = Gearbox 6 [6] = Gearbox 7 [7] = Gearbox 8		
Dependency:	Refer to: p9521		
Note:	A change only becomes effective after a POWER ON.		

p9523	SI Motion redundant coarse pos. value valid bits (CU) / Valid bits CU		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 16 \end{aligned}$	Factory setting 9
Description:	The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.		
Dependency:	Refer to: r0470, p9323		
Note:	A change only becomes effective after a POWER ON.		
	For safe functions that are not enabled (p9501 = 0), the following applies:		
	- p9523 is automatically set the same as r0470 when the system boots.		
	For safety functions that are enabled (p9501 > 0), the following applies:		
	- p9523 is checked to see that it matches r0470.		
p9524	SI Motion Redundant coarse pos. value fine resolution bits (CU) / SI Mtn fine bit CU		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{gathered} \text { Min } \\ -16 \end{gathered}$	$\begin{aligned} & \text { Max } \\ & 16 \end{aligned}$	Factory setting -2
Description:	The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.		
Dependency:	Refer to: r0471, p9324		
Note:	A change only becomes effective after a POWER ON.		
	For safe functions that are not enabled (p9501 = 0), the following applies:		
	- p9524 is automatically set the same as r0471 when the system boots.		
	For safety functions that are enabled (p9501 > 0), the following applies:		
p9525	SI Motion redundant coarse pos. value relevant bits (CU) / Relevant bits CU		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 16 \end{aligned}$	Factory setting 16
Description:	Sets the number of relevant bits for the redundant coarse position value.		
Dependency:	Refer to: p0414, r0472, p9325		
Note:	A change only becomes effective after a POWER ON.		
	For safe functions that are not enabled (p9501 = 0), the following applies:		
	For safety functions that are enabled (p9501 > 0), the following applies:		

p9530	SI Motion standstill tolerance (Control Unit) / SI Mtn standst_tol		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.000[\mathrm{~mm}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 100.000[\mathrm{~mm}] \end{aligned}$	Factory setting 1.000 [mm]
Description:	Sets the tolerance for the function "Safe Operating Stop" (SOS).		
Dependency:	Refer to: C01707		
Note:	A change only becomes effective after a POWER ON.		
	SOS: Safe Operating Stop / SBH: Safe operating stop		

p9531[0...3]	SI Motion SLS (SG) limit values (Control Unit) / SI Mtn SLS lim CU		
SERVO (Safety rot),	Can be changed: C2	Calculated: -	Access level: 3
VECTOR (Safety rot)	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [rev/min]	$\begin{aligned} & \text { Max } \\ & 1000000.00[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 2000.00 [rev/min]
Description:	Sets the limit values for the function "Safely-Limited Speed" (SLS).		
Index:	$\begin{aligned} & {[0]=\text { Limit value SLS1 }} \\ & {[1]=\text { Limit value SLS2 }} \\ & {[2]=\text { Limit value SLS3 }} \\ & {[3]=\text { Limit value SLP4 }} \end{aligned}$		
Dependency:	Refer to: p9532, p9561, p9563		
	Refer to: C01714		
Note:	A change only becomes effective after a POWER ON.		
	SLS: Safely-Limited Speed / SG: Safely reduced speed		

p9531[0...3]	SI Motion SLS (SG) limit values (Control Unit) / SI Mtn SLS lim CU		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~mm} / \mathrm{min}] \end{aligned}$	Max $1000000.00[\mathrm{~mm} / \mathrm{min}]$	Factory setting 2000.00 [$\mathrm{mm} / \mathrm{min}$]
Description:	Sets the limit values for the function "Safely-Limited Speed" (SLS).		
Index:	$\begin{aligned} & {[0]=\text { Limit value SLS1 }} \\ & {[1]=\text { Limit value SLS2 }} \\ & {[2]=\text { Limit value SLS3 }} \\ & {[3]=\text { Limit value SLP4 }} \end{aligned}$		
Dependency:	Refer to: p9532, p9561, p9563		
	Refer to: C01714		
Note:	A change only becomes effective after a POWER ON.		
	SLS: Safely-Limited Speed / SG: Safely reduced speed		

p9534[0...1]	SI Motion SLP (SE) upper limit values (Control Unit) / SI Mtn SLP up lim		
SERVO (Safety rot),	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR (Safety rot)	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -2147000.000\left[{ }^{\circ}\right] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2147000.000\left[{ }^{\circ}\right] \end{aligned}$	Factory setting 100000.000 [] $]$
Description:	Sets the upper limit for the function "Safely-Limited Position" (SLP).		
Index:	$\begin{aligned} & {[0]=\text { Limit value SLP1 (SE1) }} \\ & {[1]=\text { Limit value SLP2 (SE2) }} \end{aligned}$		
Dependency:	Refer to: p9501, p9535, p9562		
Note:	For the setting of these limit values, the following applies: p9534 > p9535		
	A change only becomes effective after a POWER ON.		
	SLP: Safely-Limited Position / SE: Safe software limit switches		

p9534[0...1]	SI Motion SLP (SE) upper limit values (Control Unit) / SI Mtn SLP up lim		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min}_{-2147000.000[m m} \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2147000.000[\mathrm{~mm}] \end{aligned}$	Factory setting 100000.000 [mm]
Description: Index:	Sets the upper limit for the fu [0] = Limit value SLP1 (SE1) [1] = Limit value SLP2 (SE2)	imited Position" (SLP)	
Dependency:	Refer to: p9501, p9535, p9562		
Note:	For the setting of these limit values, the following applies: p9534 > p9535		
	A change only becomes effective after a POWER ON.		
	SLP: Safely-Limited Position	vare limit switches	

p9535[0...1]	SI Motion SLP (SE) lower limit values (Control Unit) / SI Mtn SLP Iow lim		
SERVO (Safety rot),	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR (Safety rot)	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -2147000.000\left[{ }^{\circ}\right] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & \left.2147000.0000^{\circ}\right] \end{aligned}$	Factory setting -100000.000 [] ${ }^{\circ}$
Description: Index:	Sets the lower limit for the fu $[0]=$ Limit value SLP1 (SE1) [1] = Limit value SLP2 (SE2)	mited Position" (SLP)	
Dependency:	Refer to: p9501, p9534, p9562		
Note:	For the setting of these limit A change only becomes effe SLP: Safely-Limited Position	wing applies: p9534 NER ON. vare limit switches	

p9535[0..1]	SI Motion SLP (SE) lower limit values (Control Unit) / SI Mtn SLP Iow lim		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $-2147000.000[\mathrm{~mm}]$	Max $2147000.000[\mathrm{~mm}]$	Factory setting -100000.000 [mm]
Description:	Sets the lower limit for the function "Safely-Limited Position" (SLP).		
Index:	[0] = Limit value SLP1 (SE1)		
Dependency:	Refer to: p9501, p9534, p9562		
Note:	For the setting of these limit values, the following applies: p9534 > p9535		
	A change only becomes effective after a POWER ON.		
	SLP: Safely-Limited Position / SE: Safe software limit switches		

p9536[0...29]	SI Motion SCA (SN) plus cam position (Control Unit) / SI Mtn SCA+		
SERVO (Safety rot),	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR (Safety rot)	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & -2147000.000\left[{ }^{\circ}\right] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2147000.000\left[{ }^{\circ}\right] \end{aligned}$	Factory setting $10.000\left[^{\circ}\right]$
Description:	Sets the plus cam position for the function "Safe Cam" (SCA).		
Index:	[0] = Cam position SCA1 (SN1)		
	[1] = Cam position SCA2 (SN2)		
	[2] = Cam position SCA3 (SN3)		
	[3] = Cam position SCA4 (SN4)		
	[4] = Cam position SCA5 (SN5)		
	[5] = Cam position SCA6 (SN6)		
	[6] = Cam position SCA7 (SN7)		
	[7] = Cam position SCA8 (SN8)		
	[8] = Cam position SCA9 (SN9)		
	[9] = Cam position SCA10 (SN10)		
	[10] = Cam position SCA11 (SN11)		
	[11] = Cam position SCA12 (SN12)		
	[12] = Cam position SCA13 (SN13)		
	[13] = Cam position SCA14 (SN14)		
	[14] = Cam position SCA15 (SN15)		
	[15] = Cam position SCA16 (SN16)		
	[16] = Cam position SCA17 (SN17)		
	[17] = Cam position SCA18 (SN18)		
	[18] = Cam position SCA19 (SN19)		
	[19] = Cam position SCA20 (SN20)		
	[20] = Cam position SCA21 (SN21)		
	[21] = Cam position SCA22 (SN22)		
	[22] = Cam position SCA23 (SN23)		
	[23] = Cam position SCA24 (SN24)		
	[24] = Cam position SCA25 (SN25)		
	[25] = Cam position SCA26 (SN26)		
	[26] = Cam position SCA27 (SN27)		
	[27] = Cam position SCA28 (SN28)		
	[28] = Cam position SCA29 (SN29)		
	[29] = Cam position SCA30 (SN30)		
Dependency:	Refer to: p9501, p9503, p9537		
Note:	A change only becomes effective after	NER ON.	
	SCA: Safe Cam / SN: Safe software		

	[7] = Cam position SCA8 (SN8)		
	[8] = Cam position SCA9 (SN9)		
	[9] = Cam position SCA10 (SN10)		
	[10] = Cam position SCA11 (SN11)		
	[11] = Cam position SCA12 (SN12)		
	[12] = Cam position SCA13 (SN13)		
	[13] = Cam position SCA14 (SN14)		
	[14] = Cam position SCA15 (SN15)		
	[15] = Cam position SCA16 (SN16)		
	[16] = Cam position SCA17 (SN17)		
	[17] = Cam position SCA18 (SN18)		
	[18] = Cam position SCA19 (SN19)		
	[19] = Cam position SCA20 (SN20)		
	[20] = Cam position SCA21 (SN21)		
	[21] = Cam position SCA22 (SN22)		
	[22] = Cam position SCA23 (SN23)		
	[23] = Cam position SCA24 (SN24)		
	[24] = Cam position SCA25 (SN25)		
	[25] = Cam position SCA26 (SN26)		
	[26] = Cam position SCA27 (SN27)		
	[27] = Cam position SCA28 (SN28)		
	[28] = Cam position SCA29 (SN29)		
	[29] = Cam position SCA30 (SN30)		
Dependency:Note:	Refer to: p9501, p9503, p9536		
	A change only becomes effective after a POWER ON.		
	SCA: Safe Cam / SN: Safe software cam		
p9537[0...29]	SI Motion SCA (SN) plus cam position (Control Unit) / SI Mtn SCA-		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-2147000.000 [mm]	2147000.000 [mm]	-10.000 [mm]
Description:	Sets the minus cam position for the function "Safe Cam" (SCA).		
Index:	[0] = Cam position SCA1 (SN1)		
	[1] = Cam position SCA2 (SN2)		
	[2] = Cam position SCA3 (SN3)		
	[3] = Cam position SCA4 (SN4)		
	[4] = Cam position SCA5 (SN5)		
	[5] = Cam position SCA6 (SN6)		
	[6] = Cam position SCA7 (SN7)		
	[7] = Cam position SCA8 (SN8)		
	[8] = Cam position SCA9 (SN9)		
	[9] = Cam position SCA10 (SN10)		
	[10] = Cam position SCA11 (SN11)		
	[11] = Cam position SCA12 (SN12)		
	[12] = Cam position SCA13 (SN13)		
	[13] = Cam position SCA14 (SN14)		
	[14] = Cam position SCA15 (SN15)		
	[15] = Cam position SCA16 (SN16)		
	[16] = Cam position SCA17 (SN17)		
	[17] = Cam position SCA18 (SN18)		
	[18] = Cam position SCA19 (SN19)		
	[19] = Cam position SCA20 (SN20)		
	[20] = Cam position SCA21 (SN21)		
	[21] = Cam position SCA22 (SN22)		
	[22] = Cam position SCA23 (SN23)		
	[23] = Cam position SCA24 (SN24)		
	[24] = Cam position SCA25 (SN25)		

	$[25]=$ Cam position SCA26 (SN26)
	$[26]=$ Cam position SCA27 (SN27)
	$[27]=$ Cam position SCA28 (SN28)
	$[28]=$ Cam position SCA29 (SN29)
	$[29]=$ Cam position SCA30 (SN30)
Dependency:	Refer to: p9501, p9503, p9536
Note:	A change only becomes effective after a POWER ON.
	SCA: Safe Cam / SN: Safe software cam

p9538[0...29] SI Motion SCA (SN) cam track assignment (Control Unit) / SI Mtn SCA assign. SERVO, VECTOR

Can be changed: U, T
Data type: Unsigned32
P-Group: Safety Integrated
Not for motor type: -

Min	Max
100	414

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
[0] 100
[1] 101
[2] 102
[3] 103
[4] 104
5] 105
[6] 106
[7] 107
[8] 108
[9] 109
[10] 110
[11] 111
[12] 112
[13] 113
[14] 114
[15] 200
[16] 201
[17] 202
[18] 203
[19] 204
[20] 205
[21] 206
22] 207
[23] 208
[24] 209
[25] 210
[26] 211
[27] 212
[28] 213
[29] 214

Description: Assigns the individual cams to the maximum of 4 cam tracks and defines the numerical value for the SGA "cam range".
p9538[0...29] = CBA dec
$C=$ Assignment of the cam to the cam track.
Valid values are 1, 2, 3, 4.
BA = Numerical value for the SGA "cam range".
If the position lies in the range of this cam, the value BA is signaled to the safety-relevant logic via the SGA "cam range" of the cam track set using C.
Valid values are $0 \ldots 14$. Each numerical value may only be used once for each cam track.

p9540	SI Motion SCA (SN) tolerance (Control Unit) / SI Mtn SCA tol		
SERVO, VECTOR			
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.0010 [mm]	Max 10.0000 [mm]	Factory setting 0.1000 [mm]
Description:	Sets the tolerance for the function "Safe Cam" (SCA).		
	Within this tolerance, both monitoring channels may signal different signal states of the same safe cam.		
Note:	A change only becomes effec	WER ON.	
p9542	SI Motion act val comparison tol (crosswise) (Control Unit) / SI Mtn act val tol		
SERVO (Safety rot), VECTOR (Safety rot)	Can be changed: C 2	Calculated:-	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.0010\left[{ }^{\circ}\right]$	$\begin{aligned} & \text { Max } \\ & 360.0000\left[{ }^{\circ}\right] \end{aligned}$	Factory setting $\left.0.1000{ }^{[0]}\right]$
Description:	Sets the tolerance for the cross-check of the actual position between the two monitoring channels.		
Dependency:	Refer to: C01711		
Note:	A change only becomes effective after a POWER ON.		
p9542	SI Motion act val comparison tol (crosswise) (Control Unit) / SI Mtn act val to		
SERVO, VECTOR	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection:-
	Not for motor type: -		Expert list: 1
	Min 0.0010 [mm]	Max 360.0000 [mm]	Factory setting 0.1000 [mm]
Description:	Sets the tolerance for the cross-check of the actual position between the two monitoring channels.		
Dependency:	Refer to: C01711		
Note:	A change only becomes effective after a POWER ON.		
p9544	SI Motion actual value comparison tolerance (referencing) (CU) / SI Mtn ref to		
SERVO (Safety rot), VECTOR (Safety rot)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.0000 [${ }^{\circ}$]	Max $36.0000\left[^{\circ}\right]$	Factory setting $0.0100\left[^{\circ}\right]$
Description:	Sets the tolerance to check the actual values after referencing (incremental encoder) or when powering up (absolute encoder).		
Dependency:	Refer to: C01711		
Note:	A change only becomes effective after a POWER ON.		

p9544	SI Motion actual value comparison tolerance (referencing) (CU) / SI Mtn ref to		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.0000[\mathrm{~mm}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 36.0000[\mathrm{~mm}] \end{aligned}$	Factory setting 0.0100 [mm]
Description:	Sets the tolerance to check the actual values after referencing (incremental encoder) or when powering up (absolute encoder).		
Dependency:	Refer to: C01711		
Note:	A change only becomes effective after a POWER ON.		
p9545	SI Motion SSM (SGA n < nx) filter time (Control Unit) / SI Mtn SSM filt CU		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [ms]	$\begin{aligned} & \operatorname{Max} \\ & 100.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description: Note:	Sets the filter time for the SSM feedback signal to detect standstill.		
	The filter time is effective only if the function is enabled (p9300/p9500 Bit $16=1$).		
	The parameter is included in the data cross-check of the two monitoring channels.		
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)		
p9546	SI Motion SSM (SGA $\mathrm{n}<\mathrm{nx}$) velocity limit (CU) / SI Mtn SSM v_limCU		
SERVO (Safety rot), VECTOR (Safety rot)	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [rev/min]	$\begin{aligned} & \operatorname{Max} \\ & 1000000.00[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 20.00 [rev/min]
Description:	Sets the velocity limit for the SSM feedback signal to detect standstill ($n<n_{-}$).		
Caution: !	The function "Safe Accelera	R) is switched out after	threshold value is und
Note:	A change only becomes effective after a POWER ON.		
	F-DO: Failsafe Digital Output / SGA: Safety-related output		
	SBR: Safe Acceleration Monitor		
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) / SGA $n<n x$: Safetyrelated output $\mathrm{n}<\mathrm{nx}$		

p9546	SI Motion SSM (SGA n < nx) velocity limit (CU) / SI Mtn SSM v_limCU		
SERVO, VECTOR	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~mm} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 1000000.00[\mathrm{~mm} / \mathrm{min}] \end{aligned}$	Factory setting 20.00 [$\mathrm{mm} / \mathrm{min}$]
Description:	Sets the velocity limit for the SSM feedback signal to detect standstill ($n<n _x$).		
Caution:	The function "Safe Accelera	R) is switched out after	threshold value is u
Note:	A change only becomes effective after a POWER ON.		
	F-DO: Failsafe Digital Output / SGA: Safety-related output		
	SBR: Safe Acceleration Monitor		
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) / SGA $n<n x$: Safetyrelated output $\mathrm{n}<\mathrm{nx}$		
p9547	SI Motion SSM (SGA n < nx) velocity hysteresis (CU) / SI Mtn SSM hyst CU		
SERVO (Safety rot), VECTOR (Safety rot)	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.0010 [rev/min]	$\begin{aligned} & \text { Max } \\ & 500.0000[\mathrm{rev} / \mathrm{min}] \end{aligned}$	Factory setting 10.0000 [rev/min]
Description:	Sets the velocity hysteresis for the SSM feedback signal to detect standstill ($\mathrm{n}<\mathrm{nx}$).		
Dependency:	Refer to: C01711		
Note:	A change only becomes effective after a POWER ON.		
	The velocity hysteresis is effective only if the function is enabled (p9300/p9500 Bit $16=1$).		
	The parameter is included in the data cross-check of the two monitoring channels.		
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)		
p9547	SI Motion SSM (SGA n < nx) velocity hysteresis (CU) / SI Mtn SSM hyst CU		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.0010 [$\mathrm{mm} / \mathrm{min}$]	$\begin{aligned} & \operatorname{Max} \\ & 500.0000[\mathrm{~mm} / \mathrm{min}] \end{aligned}$	Factory setting 10.0000 [$\mathrm{mm} / \mathrm{min}$]
Description:	Sets the velocity hysteresis for the SSM feedback signal to detect standstill ($\mathrm{n}<\mathrm{nx}$).		
Dependency:	Refer to: C01711		
Note:	A change only becomes effective after a POWER ON.		
	The velocity hysteresis is effective only if the function is enabled (p9300/p9500 Bit $16=1$).		
	The parameter is included in the data cross-check of the two monitoring channels.		
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)		

p9548	SI Motion SBR actual velocity tolerance (Control Unit) / SI Mtn SBR tol		
SERVO (Safety rot), VECTOR (Safety rot)	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [rev/min]	Max 120000.00 [rev/min]	Factory setting 300.00 [rev/min]
Description: Dependency: Note:	Sets the velocity tolerance for the "Safe Acceleration Monitor".		
	Refer to: C01706		
	A change only becomes effective after a POWER ON.		
	SBR: Safe Acceleration Monitor		
p9548	SI Motion SBR actual velocity tolerance (Control Unit) / SI Mtn SBR tol		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~mm} / \mathrm{min}] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 120000.00[\mathrm{~mm} / \mathrm{min}] \end{aligned}$	Factory setting 300.00 [$\mathrm{mm} / \mathrm{min}$]
Description:	Sets the velocity tolerance for the "Safe Acceleration Monitor".		
Dependency:	Refer to: C01706		
Note:	A change only becomes effective after a POWER ON.		
	SBR: Safe Acceleration Monitor		
p9549	SI Motion slip velocity tolerance (Control Unit) / SI Mtn slip tol		
SERVO (Safety rot), VECTOR (Safety rot)	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [rev/min]	Max 6000.00 [rev/min]	Factory setting 6.00 [rev/min]
Description:	Sets the velocity tolerance that is used for a 2 -encoder system in crosswise comparison between the two monitoring channels.		
Dependency:	Refer to: p9501, p9542		
Note:	If the "actual value synchronization" is not enabled ($\mathrm{p} 9501.3=0$), then the value parameterized in p9542 is used as tolerance in the data cross-check.		
	A change only becomes effective after a POWER ON.		
p9549	SI Motion slip velocity tolerance (Control Unit) / SI Mtn slip tol		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00[\mathrm{~mm} / \mathrm{min}] \end{aligned}$	Max 6000.00 [$\mathrm{mm} / \mathrm{min}$]	Factory setting 6.00 [$\mathrm{mm} / \mathrm{min}$]
Description:	Sets the velocity tolerance that is used for a 2-encoder system in crosswise comparison between the two monitoring channels.		
Dependency:	Refer to: p9501, p9542		
Note:	If the "actual value synchronization" is not enabled ($\mathrm{p} 9501.3=0$), then the value parameterized in p 9542 is used as tolerance in the data cross-check.		

p9550	SI Motion SGE changeover tolerance time (Control Unit) / SI Mtn SGE_chg tol		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type:-		Expert list: 1
	Min 0.00 [ms]	Max 10000.00 [ms]	Factory setting 500.00 [ms]
Description:	Sets the tolerance time for the changeover of the safety-related inputs (SGE).A change only becomes effective after a POWER ON.		
Note:			
p9551	SI Motion SLS (SG) changeover delay time (Control Unit) / SI Mtn SLS t CU		
SERVO, VECTOR	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2825
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{0.00 \text { [ms] }}$	Max 600000.00 [ms]	Factory setting 100.00 [ms]
Description:	Sets the delay time for the SLS changeover or for the changeover from SLS to SOS for the function "Safely-Limited Speed" (SLS).		
	When transitioning from a higher to a lower safely-limited velocity/speed stage or to the safe operating stop (SOS), within this delay time, the "old" velocity stage remains active.		
	Even if SLS or SOS is activated from non safety-related operation, then this delay is still applied.		
Note:	A change only becomes effective after a POWER ON.SLS: Safely-Limited Speed / SG: Safely reduced speed		
	SOS: Safe Operating Stop / SBH: Safe operating stop		
p9552	SI Motion transition time STOP C to SOS (SBH) (Control Unit) / SI Mtn t C->SOS CU		
SERVO, VECTOR	Can be changed: C 2	Calculated:-	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2825
	P-Group: Safety Integrated	Units group: -	Unit selection:-
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00 \text { [ms] } \end{aligned}$	Max 600000.00 [ms]	Factory setting 100.00 [ms]
Description:	Sets the transition time from STOP C to "Safe Operating Stop" (SOS).		
Note:	A change only becomes effective after a POWER ON. SOS: Safe Operating Stop / SBH: Safe operating stop		
p9553	SI Motion transition time STOP D to SOS (SBH) (Control Unit) / SI Mtn t D->SOS CU		
SERVO, VECTOR	Can be changed: C 2	Calculated:-	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2825
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{0.00}$	Max 600000.00 [ms]	Factory setting 100.00 [ms]
Description:	Sets the transition time from STOP D to "Safe Operating Stop" (SOS).		
Note:	A change only becomes effective after a POWER ON. SOS: Safe Operating Stop / SBH: Safe porating stop		

p9558	SI Motion acceptance test mode time limit (Control Unit) / SI Mtn t accept		
SERVO, VECTOR	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $5000.00[\mathrm{~ms}]$	Max $100000.00 \text { [ms] }$	Factory setting 40000.00 [ms]
Description:	Sets the maximum time for the acceptance test mode.		
Dependency:	Refer to: C01799		
Note:	A change only becomes effective after a POWER ON.		
p9559	SI Motion forced checking procedure timer (Control Unit) / SI Mtn dyn timer		
SERVO, VECTOR	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.00 \text { [h] }$	$\begin{aligned} & \text { Max } \\ & 9000.00[\mathrm{~h}] \end{aligned}$	Factory setting 8.00 [h]
Description:	Sets the time to carry out the forced checking procedure and test the safety motion monitoring functions integrated in the drives.		
	Within the parameterized time, the safety functions must have been tested at least once including de-selecting the function "Safe Torque Off". The monitoring time is reset each time that the test is carried out.		
	The signal source to initiate the forced checking procedure is parameterized in p9705.		
Dependency:	Refer to: p9705		
	Refer to: C01798		
Note:	A change only becomes effective after a POWER ON.		
p9560	SI Motion pulse suppression shutdown velocity (Control Unit) / SI Mtn IL v_shutd		
SERVO (Lin)	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [$\mathrm{mm} / \mathrm{min}$]	Max 6000.00 [$\mathrm{mm} / \mathrm{min}$]	Factory setting 0.00 [$\mathrm{mm} / \mathrm{min}$]
Description:	Sets the shutdown velocity for pulse suppression.		
Dependency:	Refer to: p9556		
Note:	A change only becomes effective after a POWER ON.		
p9560	SI Motion pulse suppression shutdown speed (Control Unit) / SI Mtn IL n_shutCU		
SERVO (Safety rot), VECTOR (Safety rot)	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0.00 [rev/min]	Max 6000.00 [rev/min]	Factory setting 0.00 [rev/min]
Description:	Sets the shutdown speed for the pulse suppression.		
Dependency:	Refer to: p9556		

p9602	SI enable Safe Brake Control (Control Unit) / SI enable SBC CU		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: 2814
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 1 \end{aligned}$	Factory setting 0
Description:	Sets the enable signal for the function "Safe Brake Control" (SBC) on the Control Unit.		
Value:	0: Inhibit SBC		
Dependency:	Refer to: p9802		
Note:	The "Safe Brake Control" function is not activated until at least one safety monitoring function has been enabled (i.e. p9501 not equal to 0 and/or p9601 not equal to 0).		
	The parameterization "no motor holding brake available" and "Safe Brake Control" enabled (p1215 = 0, p9602 = p9802 = 1) is not practical if there is no motor holding brake.		
	The parameterization "motor holding brake the same as sequence control, connection via BICO" and "Safe Brake Control" enabled ($\mathrm{p} 1215=3, \mathrm{p} 9602=1, \mathrm{p} 9802=1$) is not practical.		
	It is not permissible to parameterize "motor holding brake without feedback signals" and also enable "safe brake control" (p1278 = 1, p9602 = 1, p9802 = 1).		
	CU: Control Unit		
	SBC: Safe Brake Control		
	SI: Safety Integrated		
p9610	SI PROFIsafe address (Control Unit) / SI PROFIsafe CU		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFE hex	Factory setting 0000 hex
Description:	Sets the PROFIsafe address of the Control Unit.		
Dependency:	Refer to: p9810		
p9620[0...7]	BI: SI signal source for STO (SH)/SBC/SS1 (Control Unit) / SI S_srcSTO/SS1 CU		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2810
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Sets the signal source for the foll STO: Safe Torque Off / SH: Safe SBC: Safe Brake Control SS1: Safe Stop 1 (time monitored)	ons on the Control	
Dependency:	Refer to: p9601		
Note:	The following signal sources are - fixed zero (standard setting). - digital inputs DI 0 to DI 7 on the - digital inputs DI 0 to DI 3 on the - digital inputs DI 0 to DI 3 on the	320 (CU320). Extensions (CX32, N t 310 (CU310).	

```
It is not permitted to establish an interconnection to a digital input in the simulation mode.
For a parallel circuit configuration of n power units, the following applies:
p9620[0] = Signal source for power unit 1
p9620[n-1] = Signal source for power unit n
```

p9650	SI SGE changeover tolerance time (Control Unit) / SI SGE_chg tol CU		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2810
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0.00 \text { [ms] } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2000.00[\mathrm{~ms}] \end{aligned}$	Factory setting 500.00 [ms]
Description:	Sets the tolerance time to change over the safety-related inputs (SGE) on the Control Unit.		
	An SGE changeover is not simultaneously effective due to the different runtimes in the two monitoring channels. After an SGE changeover, dynamic data is not subject to a data cross-check during this tolerance time.		
Dependency:	Refer to: p9850		
Note:	The parameterized time is internally rounded-off to an integer multiple of the monitoring clock cycle.		

p9652	SI Safe Stop 1 delay time (Control Unit) / SI Stop 1 t_del CU		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{0.00}$	$\begin{aligned} & \operatorname{Max} \\ & 300.00 \text { [s] } \end{aligned}$	Factory setting 0.00 [s]
Description:	Sets the delay time of the pulse suppression for the function "Safe Stop 1" (SS1) on the Control Unit to brake along the OFF3 down ramp (p1135).		
Dependency:	Refer to: p1135, p9852		
Note:	The parameterized time is internally rounded-off to an integer multiple of the monitoring clock cycle. SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)		

p9659	SI forced checking procedure timer / SI FrcdCkProcTimer		
SERVO, VECTOR	Can be changed: C 2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2810
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min $0.00 \text { [h] }$	Max $9000.00 \text { [h] }$	Factory setting 8.00 [h]
Description:	Sets the time to carry out the dynamic update and testing the safety shutdown paths (forced checking procedure). Within the parameterized time, STO must have been de-selected at least once. The monitoring time is reset each time that STO is de-selected.		
Dependency:	Refer to: A01699		
Note:	STO: Safe Torque Off / SH: Safe standstill		
p9700	SI Motion copy function / SI Mtn copy fct		
SERVO, VECTOR	Can be changed: C2, U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max 00D0 hex	Factory setting 0000 hex
Description:	After starting, the appropriate parameters are copied from the Control Unit to the Motor Module. After completing copying, parameters are automatically reset to 0 .		
Value:	0: [00 hex] Copy function ended 29: [1D hex] Start copy function node identifier 87: [57 hex] Start copy function SI parameters 208: [D0 hex] Start copy function SI basic parameters		
Note:	Re value $=57$ hex and D0 h The value can only be set if Re value = D0 hex: The following parameters ar p9601/p9801, p9602/p9802, SI: Safety Integrated	ssioning mode is se arting the copy function 650/p9850, p9652/p	ntegrated password wa 358
p9700	SI Motion copy function / SI Mtn copy fct		
TM54F_MA	Can be changed: C2, U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max 0057 hex	Factory setting 0000 hex
Description:	Setting to start the required After starting, the appropriat After completing copying, pa	copied from the Co	Motor Module.
Value:	0: [00 hex] Copy functio 29: [1D hex] Start copy 87: [57 hex] Start copy fu	ntifier eters	
Note:	Re value $=57$ hex: The value can only be set if the SI: Safety Integrated	ssioning mode is se	ntegrated password wa

r9718.23	CO/BO: SI Motion control signals 1 / SI Mtn ctrl_sig 1			
SERVO (Lin)	Can be changed: -	Calculated: -	Access level: 4	
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -	
	P-Group: Safety Integrated	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Control signal 1 for safety-relevant motion monitoring functions.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	23 Set offset for TfS to the current force	Set	Reset	-
Note:	TfS: Traverse to fixed stop			
r9718.23	CO/BO: SI Motion control signals 1 / SI Mtn ctrl_sig 1			
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 4	
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -	
	P-Group: Safety Integrated	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting	
	-	-		
Description:	Control signal 1 for safety-relevant motion monitoring functions.			
Bit field:	$\begin{array}{ll}\text { Bit } & \text { Signal name } \\ 23 & \text { Set offset for TfS to the current torque }\end{array}$	1 signal	0 signal	FP
	23 Set offset for TfS to the current torque	Set	Reset	
Note:	TfS: Traverse to fixed stop			
r9719.0... 31	CO/BO: SI Motion control signals 2 / SI Mtn ctrl_sig 2			
SERVO, VECTOR		Calculated: -	Access level: 3	
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -	
	P-Group: Safety Integrated	Units group: -	Unit selection: -	
	Not for motor type: -		Expert list: 1	
	Min	Max	Factory setting	
	-	-		
Description:	Control signal 2 for safety-relevant motion monitoring functions.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 De-select SOS/SLS (SBH/SG)	Yes	No	-
	01 De-select SOS (SBH)	Yes	No	-
	03 Select SLS (SG) bit 0	Set	Not set	-
	04 Select SLS (SG) bit 1	Set	Not set	-
	08 Gearbox selection, bit 0	Set	Not set	-
	09 Gearbox selection, bit 1	Set	Not set	-
	10 Gearbox selection, bit 2	Set	Not set	-
	12 Select SLP (SE)	SLP2 (SE2)	SLP1 (SE1)	-
	13 Close brake from control	Yes	No	-
	15 Select test stop	Yes	No	-
	16 SGE valid	Yes	No	-
	18 De-select external STOP A	Yes	No	-
	19 De-select external STOP C	Yes	No	-
	20 De-select external STOP D	Yes	No	-
	21 De-select external STOP E	Yes	No	-
	28 SLS (SG) override bit 0	Set	Not set	-
	29 SLS (SG) override bit 1	Set	Not set	-
	30 SLS (SG) override bit 2	Set	Not set	-
	31 SLS (SG) override bit 3	Set	Not set	-

Note: | Re r9719.0 and r9719.1: | |
| :--- | :--- |
| These two bits must be considered together. | |
| | - if SOS/SLS $(\mathrm{SBH} / \mathrm{SG})$ is de-selected using bit 0 , then assignment of bit 1 is irrelevant. |
| - if SOS/SLS (SBH/SG) is selected using bit 0 , then a changeover is made between SOS (SBH) and SLS (SG) | |
| using bit 1. | |
| SLP: Safely-Limited Position / SE: Safe software limit switches | |
| SLS: Safely-Limited Speed / SG: Safely reduced speed | |
| SOS: Safe Operating Stop / SBH: Safe operating stop | |

r9721.0... 15 CO/BO: SI Motion status signals / SI Mtn stat_sig
Can be changed: -
Data type: Unsigned32
P-Group: Safety Integrated
Not for motor type: -
Min

- -

Description: Status signal for safety-relevant motion monitoring functions.
Bit field: Bit Signal name

Bit	Signal name	1 signal	0 signal	FP
00	SOS or SLS active	Yes	No	-
01	SOS active	Yes	No	-
02	Pulse enable	Deleted	Enabled	-
03	Active SLS stage bit 0	Set	Not set	
04	Active SLS stage bit 1	Set	Not set	
05	Velocity below limit value n_x	Yes	No	-
06	Status signals valid	Yes	No	-
07	Safely referenced	Yes	No	-
12	STOP A or B active	Yes	No	-
13	STOP C active	Yes	No	-
14	STOP D active	Yes	Yes	No

r9722.0... 15	CO/BO: SI Motion status signals integrated in the drive / SI Mtn integ stat				
SERVO (Lin)	Can be changed: -		Calculated: -	Access level: 3	
		type: Unsigned32	Dynamic index: -	Func. diagram: 2840, 2855	
		oup: Safety Integrated	Units group: -	Unit selection: -	
		for motor type: -		Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Status signal for safety-relevant motion monitoring functions integrated in the drive.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		STO active	Yes	No	-
		SS1 active	Yes	No	-
		SS2 active	Yes	No	-
		SOS active	Yes	No	-
		SLS active	Yes	No	-
		Internal event	No	Yes	-
		Active SLS stage bit 0	Set	Not set	-
		Active SLS stage bit 1	Set	Not set	-
		SOS selected	Yes	No	-
		SSM (velocity below limit value)	Yes	No	-
Notice:	Re bit 07:				
	The signal state behaves in an opposite way to the PROFIsafe Standard.				
Note:	Re bit 07:				
	An internal even is displayed if a STOP A ... F is active.				
r9722.0... 15	CO/BO: SI Motion status signals integrated in the drive / SI Mtn integ stat				
SERVO, VECTOR	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: 2840, 2855	
	P-Group: Safety Integrated		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Status signal for safety-relevant motion monitoring functions integrated in the drive.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	STO active	Yes	No	-
	01	SS1 active	Yes	No	-
	02	SS2 active	Yes	No	-
	03	SOS active	Yes	No	-
		SLS active	Yes	No	-
		Internal event	No	Yes	-
		Active SLS stage bit 0	Set	Not set	-
		Active SLS stage bit 1	Set	Not set	-
		SOS selected	Yes	No	-
		SSM (speed below limit value)	Yes	No	-
Notice:	Re bit 07:				
	The signal state behaves in an opposite way to the PROFIsafe Standard.				
Note:	Re bit 07:				
	An internal even is displayed if a STOP A ... F is active.				

r9723.0	CO/BO: SI Motion diagnostic signals integrated in the drive / SI Mtn integ diag			
SERVO, VECTOR	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dynamic index: -	Fun	
	P-Group: Safety Integrated	Units group: -	Unit	
	Not for motor type: -		Exper	
	Min	Max	Facto	
Description:	Displays the diagnostic signals for safety-relevant motion monitoring functions integrated in the drive.			
Bit field:	Bit Signal name 00 Forced checking procedure required	$\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \end{aligned}$	0 signal No	FP
r9724	SI Motion crosswise comparison clock cycle / SI Mtn DCC clk cyc			
SERVO, VECTOR	Can be changed: -	Calculated: -	Acce	
	Data type: FloatingPoint32	Dynamic index: -	Func.	
	P-Group: Safety Integrated	Units group: -	Unit	
	Not for motor type: -		Exper	
	Min - [ms]	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{ms}] \end{aligned}$	Facto - [ms]	
Description:	Displays the crosswise comparison clock cycle (clock cycle time with which each individual DCC value is compared between both monitoring channels.			
Dependency:	Refer to: p9500			
Note:	Crosswise comparison clock cycle = monitoring clock cycle (p9500) * number of data to be crosswise compare DCC: Data cross-check			
r9725[0...2]	SI Motion, diagnostics STOP F / SI Mtn Diag STOP F			
SERVO, VECTOR	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned32	Dynamic index: -	Func.	
	P-Group: Safety Integrated	Units group: -	Unit	
	Not for motor type: -		Exper	
	Min	Max	Facto	
Description:	Rer9725[0]:			
	Displays the message value that resulted in the STOP F on the drive.			
	The Control Unit signaled a STOP F.			
	Value $=1$... 999 means:			
	Number of the incorrect cross-checked data between the Control Unit and second channel.			
	Value >= 1000 means:			
	Additional diagnostic values of the drive.			
	Rer9725[1]:			
	Displays the CU value that resulted in STOP F.			
	Rer9725[2]:			
	Displays the value of the 2nd channel that resulted in STOP F.			
Index:	[0] = DCC error number [1] = Control Unit DCC actual value [2] = Component DCC actual value			
Dependency:	Refer to: C01711			
Note:	The significance of the individual values is described in message C01711.			

Dependency:	Refer to: r9728		
	Refer to: F01680		
r9730	SI Motion Safe maxim	/ SI Mtn safe v	
SERVO (Safety rot), VECTOR (Safety rot)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [rev/min]	Max - [rev/min]	Factory setting - [rev/min]
Description:	Displays the safe maximum velocity (on the load side) that is permissible for the safe motion monitoring functions as a result of the actual value sensing.		
Note:	If the value displayed is exceeded, message C01711 is output indicating relevant subsequent faults.		
r9730	SI Motion Safe maximum velocity / SI Mtn safe v_max		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [mm/min]	Max - [mm/min]	Factory setting - [mm/min]
Description:	Displays the safe maximum velocity (on the load side) that is permissible for the safe motion monitoring functions as a result of the actual value sensing.		
Note:	If the value displayed is exceeded, message C01711 is output indicating relevant subsequent faults.		
r9731	SI Motion safe position accuracy / Safe Pos_accuracy		
SERVO (Safety rot), VECTOR (Safety rot)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & -\left[{ }^{\circ}\right] \end{aligned}$	$\begin{aligned} & \text { Max } \\ & -\left[{ }^{\circ}\right] \end{aligned}$	Factory setting - [${ }^{\circ}$]
Description:	Displays the safe position accuracy (on the load side) that can be achieved as a maximum for the safe motion monitoring functions as a result of the actual value sensing.		
r9731	SI Motion safe position accuracy / Safe Pos_accuracy		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [mm]	Max - [mm]	Factory setting - [mm]
Description:	Displays the safe position accuracy (on the load side) that can be achieved as a maximum for the safe motion monitoring functions as a result of the actual value sensing.		

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Actual value > upper limit, SN1+	Yes	No	-
	01	Actual value > lower limit, SN1+	Yes	No	-
	02	Actual value > upper limit, SN1-	Yes	No	-
	03	Actual value > lower limit, SN1-	Yes	No	-
	04	Actual value > upper limit, SN2+	Yes	No	-
	05	Actual value > lower limit, SN2+	Yes	No	-
	06	Actual value > upper limit, SN2-	Yes	No	-
	07	Actual value > lower limit, SN2-	Yes	No	-
	08	Actual value > upper limit, SN3+	Yes	No	-
	09	Actual value > lower limit, SN3+	Yes	No	-
	10	Actual value > upper limit, SN3-	Yes	No	-
	11	Actual value > lower limit, SN3-	Yes	No	-
	12	Actual value > upper limit, SN4+	Yes	No	-
	13	Actual value > lower limit, SN4+	Yes	No	-
	14	Actual value > upper limit, SN4-	Yes	No	-
	15	Actual value > lower limit, SN4-	Yes	No	-
	16	Actual value > upper limit, SN5+	Yes	No	-
	17	Actual value > lower limit, SN5+	Yes	No	-
	18	Actual value > upper limit, SN5-	Yes	No	-
	19	Actual value > lower limit, SN5-	Yes	No	-
		Actual value > upper limit, SN6+	Yes	No	-
		Actual value > lower limit, SN6+	Yes	No	-
		Actual value > upper limit, SN6-	Yes	No	-
	23	Actual value > lower limit, SN6-	Yes	No	-
Dependency:	Refer to: C01711				
r9736[0...1]	SI Motion diagnostics result list 4 / SI Mtn res_list 4				
SERVO, VECTOR	Can be changed: -		Calculated: -	Acce	
	Data type: Unsigned32		Dynamic index: -	Func	
	P-Group: Safety Integrated		Units group: -		
	Not for motor type: -			Expe	
	Min		Max	Fact	
Description:	Displays result list 4, that for the data cross-check with the control, led to the fault.				
Index:	[0] = Result list, second channel				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Actual value > upper limit, SN7+	Yes	No	-
		Actual value > lower limit, SN7+	Yes	No	-
		Actual value > upper limit, SN7-	Yes	No	-
	03	Actual value > lower limit, SN7-	Yes	No	-
	04	Actual value > upper limit, SN8+	Yes	No	-
	05	Actual value > lower limit, SN8+	Yes	No	-
	06	Actual value > upper limit, SN8-	Yes	No	-
	07	Actual value > lower limit, SN8-	Yes	No	-
	08	Actual value > upper limit, SN9+	Yes	No	-
		Actual value > lower limit, SN9+	Yes	No	-
		Actual value > upper limit, SN9-	Yes	No	
	11	Actual value > lower limit, SN9-	Yes	No	-
	12	Actual value > upper limit, SN10+	Yes	No	-
	13	Actual value > lower limit, SN10+	Yes	No	-
	14	Actual value > upper limit, SN10-	Yes	No	-
	15	Actual value > lower limit, SN10-	Yes	No	-
	16	Actual value > upper limit, SN11+	Yes	No	-
	17	Actual value > lower limit, SN11+	Yes	No	-
	18	Actual value > upper limit, SN11-	Yes	No	-
	19	Actual value > lower limit, SN11-	Yes	No	-
	20	Actual value > upper limit, SN12+	Yes	No	-
	21	Actual value > lower limit, SN12+	Yes	No	-

	05	Actual value > lower limit, SN20+	Yes	No	-
	06	Actual value > upper limit, SN20-	Yes	No	-
	07	Actual value > lower limit, SN20-	Yes	No	-
	08	Actual value > upper limit, SN21+	Yes	No	-
	09	Actual value > lower limit, SN21+	Yes	No	-
	10	Actual value > upper limit, SN21-	Yes	No	-
	11	Actual value > lower limit, SN21-	Yes	No	-
	12	Actual value > upper limit, SN22+	Yes	No	-
	13	Actual value > lower limit, SN22+	Yes	No	-
	14	Actual value > upper limit, SN22-	Yes	No	-
	15	Actual value > lower limit, SN22-	Yes	No	-
	16	Actual value > upper limit, SN23+	Yes	No	-
	17	Actual value > lower limit, SN23+	Yes	No	-
		Actual value > upper limit, SN23-	Yes	No	-
	19	Actual value > lower limit, SN23-	Yes	No	-
		Actual value > upper limit, SN24+	Yes	No	-
		Actual value > lower limit, SN24+	Yes	No	-
		Actual value > upper limit, SN24-	Yes	No	-
	23	Actual value > lower limit, SN24-	Yes	No	-
Dependency:	Refer to: C01711				
r9739[0...1]	SI Motion diagnostics result list 7 / SI Mtn res_list 7				
SERVO, VECTOR	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: -	
	P-Group: Safety Integrated		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays result list 7, that for the data cross-check with the control, led to the fault.				
Index:	[0] = Result list, second channel [1] = Result list, drive				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Actual value > upper limit, SN25+	Yes	No	-
		Actual value > lower limit, SN25+	Yes	No	-
		Actual value > upper limit, SN25-	Yes	No	-
	03	Actual value > lower limit, SN25-	Yes	No	-
	04	Actual value > upper limit, SN26+	Yes	No	-
	05	Actual value > lower limit, SN26+	Yes	No	-
	06	Actual value > upper limit, SN26-	Yes	No	-
	07	Actual value > lower limit, SN26-	Yes	No	-
	08	Actual value > upper limit, SN27+	Yes	No	-
	09	Actual value > lower limit, SN27+	Yes	No	-
	10	Actual value > upper limit, SN27-	Yes	No	-
	11	Actual value > lower limit, SN27-	Yes	No	-
	12	Actual value > upper limit, SN28+	Yes	No	-
	13	Actual value > lower limit, SN28+	Yes	No	-
	14	Actual value > upper limit, SN28-	Yes	No	-
	15	Actual value > lower limit, SN28-	Yes	No	-
	16	Actual value > upper limit, SN29+	Yes	No	-
	17	Actual value > lower limit, SN29+	Yes	No	-
	18	Actual value > upper limit, SN29-	Yes	No	-
	19	Actual value > lower limit, SN29-	Yes	No	-
	20	Actual value > upper limit, SN30+	Yes	No	-
	21	Actual value > lower limit, SN30+	Yes	No	-
	22	Actual value > upper limit, SN30-	Yes	No	-
	23	Actual value > lower limit, SN30-	Yes	No	-
Dependency:	Refer to: C01711				

Dependency:	Refer to: r9744, r9747, r974	r9753, r9754, r9756	
r9756[0...63]	Sl message time rem	/ SI t_msg rem	
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the relative system	when the safety me	
Dependency:	Refer to: r9744, r9747, r974	r9753, r9754, r9755	
p9761	SI password input / S		
SERVO, VECTOR	Can be changed: C1, T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 2800
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Enters the Safety Integrated		
Dependency:	Refer to: F01659		
Note:	It is not permissible to chang entered.	ted parameter settin	y Integrated password
p9762	SI password new / S		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 2800
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Enters a new Safety Integra		
Dependency:	A change made to the Safety Refer to: p9763	word must be ackno	ollowing parameter:
p9763	Sl password acknow	Sl ackn passw	
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 2800
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Acknowledges the new Safe	sword.	
Dependency:	Refer to: p9762		
Note:	The new password entered p9762 $=$ p9763 $=0$ is autom edged.	be re-entered in orde the new Safety Integ	has been successfully

r9770[0...3]	Sl vers. safety fcts that run indep. in the drive (Control Unit) / SI version Drv CU	
SERVO, VECTOR	Can be changed: -	Calculated: -
	Data type: Unsigned16	Dynamic index: -
	P-Group: Safety Integrated	Units group: -
	Not for motor type: -	Func. diagram: 2802
	Min	Max
	-	-
	Expert list: 1	

r9771	SI common functions (Control Unit) / SI common fct CU			
SERVO, VECTOR	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned32	Dynamic index: -	Func	
	P-Group: Safety Integrated	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min	Max	Fact	
	- -	-	-	
Description:	Displays the Safety Integrated monitoring functions supported on the Control Unit and Motor Module. The Control Unit determines this display.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 STO supported via terminals	Yes	No	2804
	01 SBC supported	Yes	No	2804
	02 SI Motion supported	Yes	No	2804
	03 SS1 supported	Yes	No	2804
	04 PROFIsafe supported	Yes	No	-
	05 Drive-based motion monitoring functions supported	- Yes	No	-
Dependency:	Refer to: r9871			
Note:	CU: Control Unit			
	SBC: Safe Brake Control			
	SI: Safety Integrated			
	SS1: Safe Stop 1			
	STO: Safe Torque Off / SH: Safe standstill			

r9772.0...19	CO/BO: SI status (Control Unit) / SI stat CU		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 2804
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1	
	Min	Max	Factory setting
Description:	-	-	-
Bit field:	Displays the Safety Integrated status on the Control Unit.	1 signal	Yes
	Bit Signal name	Yes	No signal
	00 STO selected on Control Unit	No	No

	02	SS1 active on Control Unit	Yes	No	2810
	04	SBC requested	Yes	No	2814
	09	STOP A cannot be acknowledged, active	Yes	No	2802
	10	STOP A active	Yes	No	2802
	15	STOP F active	Yes	No	2802
	16	STO cse: Safety comm. mode	Yes	No	-
	17	STO cause: selection via terminal	Yes	No	-
	18	STO cause selection via SMM	Yes	No	-
	19	STO cause parking axis	Yes	No	-
Dependency:	Refer to: r 9872				
Note:	Re bit 00:				
	When STO is selected, the cause is displayed in bits $16 \ldots 19$.				
	Re bit 18:				
	When the bit is set, STO is selected via PROFIsafe or Terminal Module 54F (TM54F).				
	SMM: Safe Motion Monitoring				
r9773.0... 31	CO/BO: SI status (Control Unit + Motor Module) / SI stat CU+MM				
SERVO, VECTOR	Can be changed: - C		Calculated: -	Access level: 2	
	Data type: Unsigned32 D		Dynamic index: -	Func. diagram: 2804	
	P-Group: Safety Integrated U		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Displays the Safety Integrated status on the drive (Control Unit + Motor Module).				
Recommend.:	STO should be selected before swicthing off the Motor Module, to ensure that the safe status is displayed correctly in r9773 (e.g. "STO active in drive").				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		STO selected in drive	Yes	No	2804
		STO active in drive	Yes	No	2804
		SS1 active in drive	Yes	No	2804
		SBC requested	Yes	No	2804
	31	Shutdown paths must be tested	Yes	No	2810
Dependency:	Refer to: r9772, r9872				
Note:	This status is formed from the AND operation of the relevant status of the two monitoring channels. If communication between the Control Unit and the Motor Module is interrupted (e.g. by switching off the Motor Module), the status of the Motor Module is no longer updated in r9872. Therefore the result of ANDing cannot be updated.				

Notice:	If a drive belonging to a group is de-activated via p0105, then the signals in r9774 can no longer be correctly displayed (Remedy: Before de-activating, remove this drive from the group).		
Note:	The status of a group of n drives is, for drives 1 to $n-1$ displayed with a delay of one monitoring clock cycle; this is a system-related effect.		
r9780	SI monitoring clock cycle (Control Unit) / SI monitor_clck CU		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2802
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [ms]	Max - [ms]	Factory setting - [ms]
Description: Dependency:	Displays the clock cycle time for the Safety Integrated Basic Functions on the Control Unit. Refer to: r9880		
r9781[0...1]	SI checksum to check changes (Control Unit) / Sl checksum chg CU		
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 3
CU_S	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Additional check sum that is formed to check changes (fingerprint for the safety logbook functionality) to safety parameters (that are relevant for checksums).		
Index:	[0] = Safety change tracking checksum functional [1] = Safety change tracking checksum hardware dependent		
Dependency:	Refer to: p9601, p9729, p9799		
	Refer to: F01690		
r9782[0...1]	SI time stamp to check changes (Control Unit) / SI TimeStamp CU		
CU_CX32, CU_I,	Can be changed: -	Calculated: -	Access level: 3
CU_S	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min - [h]	$\begin{aligned} & \operatorname{Max} \\ & -[\mathrm{h}] \end{aligned}$	Factory setting - [h]
Description:	Time stamp for the checksum that is saved in parameters p 9781 [0] and p9781[1] to track changes (fingerprint for the safety logbook functionality) made to safety parameters.		
Index:	[0] = SI time stamp change tracking checksum functional [1] = SI time stamp change tracking checksum hardware-dependent		
Dependency:	Refer to: p9601, p9729, p9799		
	Refer to: F01690		
r9794[0..19]	SI crosswise comparison list (Control Unit) / SI DCC_list CU		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 2802
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of the data that are being presently compared crosswise on the Control Unit.		

	Example:		
	r9794[0] = 1 (monitoring clock cycle)		
	r9794[1] $=2$ (enable safety-related functions)		
	r9794[2] = 3 (SGE changeover, tolerance time)		
	r9794[3] = 4 (transition time, STOP F to STOP A)		
	\cdots...		
	The list of crosswise compared data is obtained dependent on the particular application.		
Dependency:	Refer to: r9894		
Note:	The complete list of numbers for data cross-check is listed in Fault F01611.		
r9795	SI diagnostics STOP F (Control Unit) / SI diag STOP F CU		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 2802
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of the cross-checked data which has caused STOP F on the Control Unit.		
Dependency:	Refer to: r9895		
	Refer to: F01611		
Note:	The complete list of numbers for data cross-check is listed in Fault F01611.		
r9798	SI actual checksum SI parameters (Control Unit) / SI act_checksum CU		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 2800
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the checksum over the checked Safety Integrated parameters on the Control Unit (actual checksum).		
Dependency:	Refer to: p9799, r9898		
p9799	SI reference checksum SI parameters (Control Unit) / SI set_checksum CU		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 2800
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description: Dependency:	Refer to: r9798, p9899		
p9801	SI enable, functions integrated in the drive (Motor Module) / SI enable fct MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min -	Max	Factory setting 0000 bin
Description:	Sets the enable signals for safety functions on the Motor Module that are integrated in the drive.		

p9850	SI SGE changeover tolerance time (Motor Module) / SI SGE_chg tol MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2810
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mu \mathrm{~s}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 2000000.00[\mu \mathrm{~s}] \end{aligned}$	Factory setting 500000.00 [$\mu \mathrm{s}$]
Description:	An SGE changeover is not simultaneously effective due to the different runtimes in the two monitoring channels. After an SGE changeover, dynamic data is not subject to a data cross-check during this tolerance time.		
Dependency:	Refer to: p9650		
Note:	For a data cross-check betw The parameterized time is in SGE: Safety-related input (e	9850, a difference -off to an integer mu s)	nitoring clock cycle is tolerated. oring clock cycle.

p9852	SI Safe Stop 1 delay time (Motor Module) / SI Stop 1 t_del MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0.00[\mathrm{~ms}] \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & 300000.00[\mathrm{~ms}] \end{aligned}$	Factory setting 0.00 [ms]
Description:	Sets the delay time of the pulse suppression for the function "Safe Stop 1" (SS1) on the Motor Module to brake along the OFF3 down ramp (p1135).		
Dependency:	Refer to: p1135, p9652		
Note:	For a data cross-check betw The parameterized time is in SS1: Safe Stop 1 (correspon	9852, a difference -off to an integer mu gory 1 acc. to EN60	nitoring clock cycle is tolerated. toring clock cycle.

p9858	SI transition time STOP F to STOP A (Control Unit) / SI STOP F->A MM		
SERVO, VECTOR	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2802
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{0.00}[\mu \mathrm{~s}]$	Max 30000000.00 [$\mu \mathrm{s}$]	Factory setting 0.00 [Hs]
Description:	Sets the transition period from STOP F to STOP A on the Motor Module.		
Dependency:	Refer to: p9658, r9895		
	Refer to: F30611		
Note:	For a data cross-check betw The parameterized time is in STOP F: Defect in a monito STOP A: Pulse suppression	9858, a difference -off to an integer mu or in the data crossutdown path	nitoring clock cycle is tolerated. toring clock cycle.

r9870[0...3]	SI version safety functions integrated in drive (Motor Module) / SI version MM
SERVO, VECTOR	Can be changed: - Calculated: - Access level: 3
	Data type: Unsigned16 Dynamic index: - Func. diagram: 2802
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Expert list: 1
Description:	Displays the Safety Integrated version for the safety functions integrated in the drive on the Motor Module.
Index:	$\begin{aligned} & {[0]=\text { Safety Version (major release) }} \\ & {[1]=\text { Safety Version (minor release) }} \\ & {[2]=\text { Safety Version (baselevel or patch) }} \\ & {[3]=\text { Safety Version (hotfix) }} \end{aligned}$
Dependency:	Refer to: r9770, r9890
Note:	Example:
	r9870[0] $=2, \mathrm{r9870}[1]=60, \mathrm{r9870[2]}=1, \mathrm{r9870[3]} \mathrm{=} 0$--> Safety version V02.60.01.00

r9871	SI common functions (Motor Module / SI general fct MM			
SERVO, VECTOR	Can be changed: - Ca	Calculated: -	Acce	
	Data type: Unsigned32 Den	Dynamic index: -	Func	
	P-Group: Safety Integrated U	Units group: -	Unit	
	Not for motor type: -		Expe	
	Min	Max	Fact	
	-		-	
Description:	Displays the Safety Integrated monitoring functions supported on the Control Unit and Motor Module. The Motor Module determines this display.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 STO supported via terminals	Yes	No	2804
	01 SBC supported	Yes	No	2804
	02 SI Motion supported	Yes	No	2804
	03 SS1 supported	Yes	No	2804
	04 PROFIsafe supported	Yes	No	-
	05 Drive-based motion monitoring functions supported	- Yes	No	-
Dependency:	Refer to: r9771			
Note:	MM: Motor Module			
	SBC: Safe Brake Control			
	SI: Safety Integrated			
	SS1: Safe Stop 1			
	STO: Safe Torque Off / SH: Safe standstill			

r9872.0... 18 CO/BO: SI status list (Motor Module) / SI status MM

Can be changed: -
Data type: Unsigned32
P-Group: Safety Integrated
Not for motor type: -
Min Max

Description: Displays the Safety Integrated status on the Motor Module.
Bit field:

Calculated: -
Dynamic index: -
Units group: -

1 signal
Yes
Yes
Yes

Access level: 2
Func. diagram: 2804
Unit selection: -
Expert list: 1
Factory setting

Bit	Signal name	$\mathbf{1}$ signal	0 signal	FP
00	STO on Motor Module selected	Yes	No	2810
01	STO on Motor Module active	Yes	No	2810
02	SS1 on Motor Module active	Yes	No	2810

		SBC requested	Yes	No	2814
	09	STOP A cannot be acknowledged, active	Yes	No	2802
	10	STOP A active	Yes	No	2802
	15	STOP F active	Yes	No	2802
	16	STO cse: Safety comm. mode	Yes	No	-
	17	STO cause: selection via terminal	Yes	No	-
	18	STO cause selection via SMM	Yes	No	-
Dependency:	Refer to: r9772				
Notice:	If communication between the Control Unit and the Motor Module is interrrupted (e.g. by switching off the Motor Module), the status of the Motor Module is no longer updated in r9872. The last transferred status of the Motor Module is displayed.				
Note:	Re bit 00:				
	When STO is selected, the cause is displayed in bits $16 . .18$.				
	Re bit 18:				
	When the bit is set, STO is selected via PROFIsafe or Terminal Module 54F (TM54F).				
	SMM: Safe Motion Monitoring				
r9880	SI monitoring clock cycle (Motor Module) / SI monitor_clck MM				
SERVO, VECTOR	Can be changed: - C		Calculated: -	Acc	
	Data type: FloatingPoint32		Dynamic index: -	Fun	
	P-Group: Safety Integrated U		Units group: -	Unit	
	Not for motor type: -			Exp	
	Min - [ms]		Max - [ms]	Factory setting - [ms]	
Description: Dependency:	Displays the clock cycle time for the Safety Integrated Basic Functions on the Motor Module.				
	Refer to: r9780				
r9881[0...11]	SI Motion Sensor Module Node Identifier second channel / SI Mtn SM Ident				
SERVO, VECTOR	Can be changed: - C		Calculated: -	Access level: 3	
	Data type: Unsigned8		Dynamic index: -	Func. diagram: -	
	P-Group: Safety Integrated U		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-			-	
Description:	Displays the Node Identifier of the Sensor Module that the second channel uses for the motion monitoring functions.				
r9890[0...2]	SI	ersion (Sensor Module) / SI vers	n SM		
SERVO, VECTOR	Can be changed: -		culated: -	Access level: 3	
	Data type: Unsigned16 D		Dynamic index: -	Func. diagram: -	
	P-Group: Safety Integrated U		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-				
Description: Index:	Displays the Safety Integrated version on the Sensor Module.				
	[0] = Safety Version (major release)				
	[1] = Safety Version (minor release)				
	[2] = Safety Version (baselevel or patch)				
Dependency:	Refer to: r9770, r9870				
Note:	Example:				
	r9890[0] $=2$, r9890[1] = 3, r9890[2] = 1 --> Safety-Version V02.03.01				

p9902	Target topology nu	s / TargetTopo indi	
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Topology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	$\underset{1}{\operatorname{Min}}$	Max 65535	Factory setting 1
Description:	Sets the number of target topology indices.		
Dependency:	Refer to: p9903		
Note:	Only for internal Siemens use.		
	The parameter is not displayed for the STARTER commissioning software.		
p9903[0...n]	Target topology / Target topology		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: p9902	Func. diagram: -
	P-Group: Topology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 0
	Min 0000 hex	Max FFFF hex	Factory setting 0000 hex
Description:	Sets the target topology of the drive unit.		
	The target topology is sub-divided into several sections. Each of the following data is saved under an index General data on the topology:		
	- version		
	- attribute to compare the actual topology and target topology		
	- number of components		
	Data on a component:		
	- type component of the Node Identifier of the component		
	- number of DRIVE-CLiQ sockets in the Node Identifier		
	- manufacturer and version of the Node Identifier		
	- serial number of the Node Identifier (4 indices)		
	- index of the component		
	- order number (8 indices)		
	- attribute to compare the actual topology and target topology of the component		
	- component number		
	- number of port types		
	- port type		
	- number of ports of the port type		
	- component number of the associated/linked component		
	- number of the associated/linked port		
	- component number of the associated/linked component		
	- number of the associated/linked port		
	- etc.		
	Data on the next component:		
	- etc.		
Dependency:	Refer to: p9902		
Note:	The target topology can only be modified using the commissioning software.		
	Only for internal Siemens use.		
	The parameter is not displayed for the STARTER commissioning software.		
	Changes only become effective after acceptance using p9428 $=1$, or for a status change from $\mathrm{p} 9=101$ to $\mathrm{p} 9=0$ or to $\mathrm{p} 9=111$.		

p9906	Topology comparison, comparison stage of all components / Topo_cmpr tot comp		
CU_CX32, CU_I,	Can be changed: C 1 (1)	Calculated: -	Access level: 3
CU_S	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Topology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 99 \end{aligned}$	Factory setting 0
Description:	Sets the type of comparison between the actual topology and target topology. The comparison is started by setting the required value.		
Value:	0: High: Compares the complete electronic rating plate 1: Average: Compares the component type and the Orde 2: Low: Compares the component type 3: Minimum: Compares the component class 99: Topology has different comparison stages		
Note:	The electronic rating plate - component type (e.g. "S - Order No. (e.g. "6SL305 - manufacturer (e.g. SIEM - hardware version (e.g. "A" - Serial No. (e.g. "T-P3005 When comparing the topo p9906 = 0: Component typ p9906 = 1: Component ty p9906 = 2: Component typ p9906 $=3$: Component clas	owing data: data is compared in dware version, Manu odule or Motor Modu	tual topologies: No.
p9907	Topology comparison, comparison stage of the component number / Topo_cmpr comp_no		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: C 1 (1)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: Topology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{gathered} \text { Max } \\ 199 \end{gathered}$	Factory setting 0
Description:	Enters the number of the component where the setting of how the actual topology should be compared to the target topology should be changed.		
Dependency:	Refer to: p9908		
p9908	Topology comparison, comparison stage of a component / Topo_cmpr 1 comp		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: C 1 (1)	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Topology	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 99 \end{aligned}$	Factory setting 0
Description:	Sets the type of comparison of a component in the target topology with the actual topology. The comparison is started by setting the required value.		
Value:	0: High: Compares the complete electronic rating plate 1: Average: Compares the component type and the Order numb 2: Low: Compares the component type 3: Minimum: Compares the component class 99: Topology has different comparison stages		

$\begin{aligned} & \hline \text { p9911[0...3] } \\ & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Insert drive object / Drv_obj insert	
	Can be changed: $\mathrm{C} 1(1) \quad$ Calculated: -	Access level: 3
	Data type: Unsigned32 Dynamic index:-	Func. diagram: -
	P-Group: - Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 0
	Min Max 0 4294967295	Factory setting 0
Description:	New drive objects can be created using this parameter. Index 0: The values $2 \ldots 62$ are permissible. Index 1: Number of the drive object type (e.g. 11 for type SERVO). Index 2: Function modules defined for the drive object. Index 3: $=0$: Ready. = 1: Reset (only indices $0 \ldots 3$). = 2: Reset all (indices $0 \ldots 3$ and flagged entries). = 3: Check and flag for insertion.	
Index:	[0] = Drive object number [1] = Drive object type [2] = Drive object function module [3] = Reset or check and flag for insertion	
Note:	Only for internal Siemens use. The parameter is not displayed for the STARTER commissioning software.	
p9912[0...1]	Delete drive object / Drv_obj delete	
CU_CX32, CU_I,	Can be changed: $\mathrm{C} 1(3) \quad$ Calculated: -	Access level: 3
CU_S	Data type: Unsigned16 Dynamic index: -	Func. diagram: -
	P-Group: - Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 0
	Min Max 0 62	Factory setting 0
Description:	Drive objects can be deleted using this parameter. Index 0: The values $2 \ldots 62$ are permissible. Index 1: = 0: Ready. $=1$: Reset (only indices 0 and 1) = 2: Reset all (indices 0 and 1 and flagged entries). = 3: Check and flag for deletion.	
Index:	[0] = Drive object number [1] = Reset or check and flag for deletion	
Note:	Only for internal Siemens use. The parameter is not displayed for the STARTER commissioning software.	

p9914[0...2]	Change component number / Change comp_no	
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: C1 Calculated: -	Access level: 3
	Data type: Unsigned16 Dynamic index: -	Func. diagram: -
	P-Group: - Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 0
	Min Max 0 199	Factory setting 0
Description:	You can change the number of topology components using this parameter.	
	Index 0:	
	The values $2 \ldots 199$ are permissible.	
	Index 1:	
	The values $2 \ldots 199$ are permissible.	
	Index 2:	
	= 0: Ready	
	= 1: Reset (only indices $0 . . .2$).	
	= 2: Reset all (indices $0 \ldots 2$ and flagged entries).	
	= 3: Check and flag for modification.	
Index:	[0] = Component number old	
	[1] = Component number new	
	[2] = Reset or check and flag for modification	
Note:	Only for internal Siemens use.	
	The parameter is not displayed for the STARTER commissioning software.	

r9926	Firmware check status / Firmw check status		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays the status when 0 : Firmware not yet chec 1: Check running. 2: Check successfully co 3: Check indicates an er	cked on startup.	
Dependency:	Refer to: r9925		
p9930[0...8]	System logbook activation / SYSLOG activation		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 255 \end{aligned}$	Factory setting 0
Description: Index:	Only for service purposes. [0] = System logbook stage (0: Not active) [1] = COM2/COM1 (0: COM2, 1: COM1) [2] = Activate file write (0 : Not active) [3] = Display time stamp (0: Not displayed) [4] = Reserved [5] = Reserved [6] = Reserved [7] = Reserved [8] = System logbook file size (stages, each 10 kB)		
Notice:	Before powering down the Control Unit, ensure that the system logbook is switched out (p9930[0] = 0).		
p9931[0...99]	System logbook module selection / SYSLOG mod select.		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Only for service purposes.		
p9932	Save system logbook EEPROM / SYSLOG EEPROM save		
$\begin{aligned} & \text { CU_CX32, CU_I, } \\ & \text { CU_S } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 255 \end{aligned}$	Factory setting 0
Description:	Only for service purposes.		

p10003	SI forced checking procedure timer / SI FrcdCkProcTimer		
TM54F_MA	Can be changed: C2	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dynamic index: -	Func. diagram: 2848
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\operatorname{Min}_{0.00}$	$\begin{aligned} & \operatorname{Max} \\ & 8760.00[\mathrm{~h}] \end{aligned}$	Factory setting 8.00 [h]
Description:	Sets the time to carry out the forced checking procedure (test stop).		
	Within the parameterized time, the digital inputs/outputs must must have been subject to a forced checking procedure at least once. The forced checking procedure is started with BI : $\mathrm{p} 10007=0 / 1$ signal.		
Dependency:	Refer to: p10001, p10007, p10046		
r10004[0...1]	SI actual checksum TM54F parameters / SI act CRC TM54F		
TM54F_MA, TM54F_SL	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 2847
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual checksum of the checksum-checked parameters for the Terminal Module 54F (TM54F).		
p10005[0...1]	SI reference checksum TM54F parameters / SI ref CRC TM54F		
TM54F_MA, TM54F_SL	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 2847
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Displays the reference checksum of the checksum-checked parameters for the Terminal Module 54F (TM54F).		
p10006	SI acknowledgement internal event input terminal / SI ackn int event		
TM54F_MA, TM54F_SL	Can be changed: C2 Data type: Integer16 P-Group: Safety Integrated Not for motor type: -	Calculated: -	Access level: 3
		Dynamic index: -	Func. diagram: -
		Units group: -	Unit selection: -
			Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 255 \end{aligned}$	Factory setting 0
Description:	Select a safety-relevant digital input for the signal "acknowledge internal event" (internal fault). The signal is transferred to the corresponding control signal of all drives. The falling edge at this input resets the status "internal event" in the drives.		
Value:	0 : Statically active		
	1: F-DI 0 (X521.2/3/6)		
	2: F-DI 1 (X521.4/5/7)		
	3: F-DI 2 (X522.1/2/7)		
	4: F-DI 3 (X522.3/4/8)		
	5: F-DI 4 (X522.5/6/9)		
	6: F-DI 5 (X531.2/3/6)		
	7: F-DI 6 (X531.4/5/7)		
	8: F-DI 7 (X532.1/2/7)		
	9: F-DI 8 (X532.3/4/8)		
	$\begin{array}{ll}\text { 10: } & \text { F-DI } 9 \text { (X532.5/6/9) } \\ \text { 255: } & \text { Statically inact }\end{array}$		

p10007	BI: SI input terminal forced checking procedure F-DO 0 ... 3 / SI DI fcp F-DO		
TM54F_MA	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dynamic index: -	Func. diagram: 2848
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting 0
Description:	Selects an input terminal (input terminal of the Control Unit or a Terminal Module) to start the test stop. The test stop is started with a $0 / 1$ signal at the input terminal and is then only possible if the TM54F is not in the commissioning mode ($\mathrm{p} 0010=0$).		
Dependency:	Refer to: p10001, p10003, p10041, p10046		
Notice:	It is not permissible to use an input on the TM54F to start the test stop.		
p10008	SI operating mode TM54F / SI op_mode TM54F		
TM54F_MA,	Can be changed: C2	Calculated: -	Access level: 4
TM54F_SL	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\underset{1}{\operatorname{Max}}$	Factory setting 1
Description:	Sets the operating mode for the Terminal Module 54F (TM54F).		
Value:	0 : Function interface 1: Control interface		
Note:	Parameter is being prepared - for this firmware version, the function interface is not supported.		
p10010[0...5]	SI drive object assignment / SI drv_obj assign		
TM54F_MA,TM54F_SL	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index: -	Func. diagram: 2847, 2848
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \operatorname{Min} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 62 \end{aligned}$	Factory setting 0
Description: Index:	Sets the drive object number for the drives that are available.		
	[0] = Drive 1 [1] = Drive 2 [2] = Drive 3 [3] = Drive 4 [4] = Drive 5 [5] = Drive 6		
Notice:	If, for a drive, safety with TM54F is activated (p9601 = 5), then its drive object number must be precisely entered into one index of p10010.		
p10011[0...5]	SI drive group assignment / SI drv_gr assign		
TM54F_MA, TM54F_SL	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned16	Dynamic index:-	Func. diagram: 2848
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 1	Max 4	Factory setting 1
Description:	Sets the drive group for the drives that are available. A drive group is a combination of several drives with the same types of behavior.		

Index: \quad| $[0]$ | $=$ Drive 1 |
| ---: | :--- |
| | $[1]=$ Drive 2 |
| | $[2]=$ Drive 3 |
| | $[3]=$ Drive 4 |
| | $[4]=$ Drive 5 |
| | $[5]=$ Drive 6 |

p10012[0...5]	SI Motor Module Node Identifier Word 1 / SI MM Node ID 1	
TM54F_MA, TM54F_SL	Can be changed: C2 Calculated: -	Access level: 4
	Data type: Unsigned32 Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1
	Min Max 0000 hex FFFF FFFF hex	Factory setting 0000 hex
Description:	Sets the current Node Identifier (word 1, bit $0 \ldots .31$) for the Motor Modules.	
Index:	$\begin{aligned} & {[0]=\text { Drive } 1} \\ & {[1]=\text { Drive } 2} \\ & {[2]=\text { Drive } 3} \\ & {[3]=\text { Drive } 4} \\ & {[4]=\text { Drive } 5} \\ & {[5]=\text { Drive }} \end{aligned}$	
Dependency:	Refer to: p10013, p10014	
Note:	The Node Identifier (96 bit) is represented in the following 3 parameters.	
	...	
	p10012[5] word 1 (bit 0 ... 31) for Motor Module 6	
	p10013[0] word 2 (bit 32 ... 63) for Motor Module 1	
	...	
	p10013[5] word 2 (bit 32 ... 63) for Motor Module 6	
	p10014[0] word 3 (bit $64 \ldots 95$) for Motor Module 1	
	...	
	p10014[5] word 3 (bit 64 ... 95) for Motor Module 6	

p10013[0...5]	SI Motor Module Node Identifier Word 2 / SI MM Node ID 2		
TM54F_MA,	Can be changed: C2	Calculated: -	Access level: 4
TM54F_SL	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description:	Sets the current Node Identifier (word 2, bit 32 ... 63) for the Motor Modules.		
Index:	$[0]=$ Drive 1 $[1]=$ Drive 2 $[2]=$ Drive 3 $[3]=$ Drive 4 $[4]=$ Drive 5 $[5]=$ Drive 6		
Dependency:	Refer to: p10012, p10014		
Note:	The complete Node Identifie	sented in p10012, p	

p10014[0...5]	SI Motor Module Node Identifier Word 3 / SI MM Node ID 3		
TM54F_MA, TM54F_SL	Can be changed: C2	Calculated: -	Access level: 4
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description: Index:	$\begin{aligned} & {[0]=\text { Drive } 1} \\ & {[1]=\text { Drive } 2} \\ & {[2]=\text { Drive } 3} \\ & {[3]=\text { Drive } 4} \\ & {[4]=\text { Drive } 5} \\ & {[5]=\text { Drive } 6} \end{aligned}$		
Dependency:	Refer to: p10012, p10013		
Note:	The complete Node Identifier (96 bit) is represented in p10012, p10013 and p10014.		
p10020[0...3]	SI special operating mode selection / SI spec op sel		
TM54F_MA, TM54F_SL	Can be changed: C 2	Calculated: -	Access level: 4
	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 3 \end{aligned}$	Factory setting 1
Description:	Sets the special operating mod $0=$ Inactive 1 = Safe Operating Stop with 2 = Safe Operating Stop with 3 = Safely reduced speed wit 4 = Safely reduced speed with	ating mode "function S) SLS) S2 --> SLS)	
Index:	[0] = Drive group 1 [1] = Drive group 2 [2] = Drive group 3 [3] = Drive group 4		
Dependency:	Refer to: p10008		
Note:	Parameter is being prepared SS2: Safe Stop 2 SOS: Safe Operating Stop SLS: Safely-Limited Speed	re version, the function	t supported.
p10021[0...3]	SI Emergency Stop stop response / SI Emergency Stop		
TM54F_MA,	Can be changed: C2	Calculated: -	Access level: 4
TM54F_SL	Data type: Unsigned32	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated		Unit selection: -
	Not for motor type: -		
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 2 \end{aligned}$	Factory setting 0
Description:	Sets the stop response for th The input terminal for Emerg 0 = Stop reaction STO 1 = Stop reaction SS1 2 = Stop reaction SS2	Emergency Stop. in p10038.	

Index:	$\begin{aligned} & {[0]=\text { Drive group } 1} \\ & {[1]=\text { Drive group } 2} \\ & {[2]=\text { Drive group } 3} \\ & {[3]=\text { Drive group } 4} \end{aligned}$		
Dependency:	Refer to: p10008, p10038		
Note:	Parameter is being prepared - for this firmware version, the function interface is not supported.		
p10022[0..3]	SI STO input termina		
$\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 255 \end{aligned}$	Factory setting 0
Description:	Sets the input terminal for STO (operating mode "control interface").		
Value:	$\begin{array}{ll}\text { 0: } & \text { Statically active } \\ \text { 1: } & \text { F-DI } 0 \text { (X521.2/3/6) } \\ \text { 2: } & \text { F-DI } 1 \text { (X521.4/5/7) } \\ \text { 3: } & \text { F-DI 2 (X522.1/2/7) } \\ \text { 4: } & \text { F-DI } 3 \text { (X522.3/4/8) } \\ \text { 5: } & \text { F-DI } 4 \text { (X522.5/6/9) } \\ \text { 6: } & \text { F-DI } 5 \text { (X531.2/3/6) } \\ \text { 7: } & \text { F-DI } 6 \text { (X531.4/5/7) } \\ \text { 8: } & \text { F-DI 7 (X532.1/2/7) } \\ \text { 9: } & \text { F-DI 8 (X532.3/4/8) } \\ \text { 10: } & \text { F-DI } 9 \text { (X532.5/6/9) } \\ \text { 255: } & \text { Statically inact }\end{array}$		
Index:	[0] = Drive group 1 [1] = Drive group 2 [2] = Drive group 3 [3] = Drive group 4		
Note:	STO: Safe Torque Off Re value $=0$: No terminal assigned, safety Re value $=255$: No terminal assigned, safety	active. inactive.	
p10023[0..3]	SI SS1 input terminal / SI SS1 DI		
TM54F_MA, TM54F_SL	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 255 \end{aligned}$	Factory setting 0
Description:	Assignment of the input terminals for input SS1 (operating mode = control interface) Description, refer to P10022		
Value:	$\begin{array}{ll}\text { 0: } & \text { Statically active } \\ \text { 1: } & \text { F-DI } 0 \text { (X521.2/3/6) } \\ \text { 2: } & \text { F-DI } 1 \text { (X521.4/5/7) } \\ \text { 3: } & \text { F-DI 2 (X522.1/2/7) } \\ \text { 4: } & \text { F-DI } 3 \text { (X522.3/4/8) } \\ \text { 5: } & \text { F-DI } 4 \text { (X522.5/6/9) } \\ \text { 6: } & \text { F-DI } 5 \text { (X531.2/3/6) } \\ \text { 7: } & \text { F-DI } 6 \text { (X531.4/5/7) } \\ \text { 8: } & \text { F-DI 7 (X532.1/2/7) } \\ \text { 9: } & \text { F-DI 8 (X532.3/4/8) } \\ \text { 10: } & \text { F-DI } 9 \text { (X532.5/6/9) }\end{array}$		

	255: Statically inact		
Index:	$\begin{aligned} & {[0]=\text { Drive group } 1} \\ & {[1]=\text { Drive group } 2} \\ & {[2]=\text { Drive group } 3} \\ & \text { [3] = Drive group } 4 \end{aligned}$		
Note:	SS1: Safe Stop 1		
	Re value $=0$:		
	No terminal assigned, safety function always active.		
	Re value $=255$:		
	No terminal assigned, safety function always inactive.		
p10024[0...3]	SI SS2 input terminal / SI SS2 DI		
$\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 255 \end{aligned}$	Factory setting 0
Description:	Assignment of the input term Description, refer to P10022	Assignment of the input terminals for input SS2 (operating mode = control interface)	
Value:	0: Statically active		
	1: F-DI 0 (X521.2/3/6)		
	2: F-DI 1 (X521.4/5/7)		
	3: F-DI 2 (X522.1/2/7)		
	4: F-DI 3 (X522.3/4/8)		
	5: F-DI 4 (X522.5/6/9)		
	6: F-DI 5 (X531.2/3/6)		
	7: F-DI 6 (X531.4/5/7)		
	8: F-DI 7 (X532.1/2/7)		
	9: F-DI 8 (X532.3/4/8)		
	10: F-DI 9 (X532.5/6/9)		
	255: Statically inact		
Index:	$\begin{aligned} & {[0]=\text { Drive group } 1} \\ & {[1]=\text { Drive group } 2} \\ & \text { [2] }=\text { Drive group } 3 \\ & \text { [3] = Drive group } 4 \end{aligned}$		
Note:	SS2: Safe Stop 2		
	Re value $=0$:		
	No terminal assigned, safety function always active.		
	Re value $=255$:		
	No terminal assigned, safety function always inactive.		
p10025[0...3]	SI SOS input terminal / SI SOS DI		
TM54F_MA, TM54F_SL	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
			Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 255 \end{aligned}$	Factory setting 0
Description:	Assignment of the input terminals for input SOS (operating mode = control interface)		
Value:	0: Statically active 1: F-DI $0($ X521.2/3/6) 2: F-DI 1 (X521.4/5/7) 3: F-DI 2 (X522.1/2/7) 4: F-DI 3 (X522.3/4/8)		

	$5:$	F-DI $4(X 522.5 / 6 / 9)$
	$6:$	F-DI $5(X 531.2 / 3 / 6)$
	$7:$	F-DI $6(X 531.4 / 5 / 7)$
	$8:$	F-DI $7(X 532.1 / 2 / 7)$
	$9:$	F-DI $8(X 532.3 / 4 / 8)$
Index:	$10: \quad$ F-DI $9(X 532.5 / 6 / 9)$	
	$255: \quad$ Statically inact	
	$[0]=$ Drive group 1	
	$[1]=$ Drive group 2	
	$[2]=$ Drive group 3	
Note:	$[3]=$ Drive group 4	
	SOS: Safe Operating Stop	
	Re value $=0:$	
	No terminal assigned, safety function always active.	
	Re value = 255:	
	No terminal assigned, safety function always inactive.	

p10026[0...3]	SI SLS input terminal / SI SLS DI		
TM54F_MA,	Can be changed: C2	Calculated: -	Access level: 3
TM54F_SL	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	0	255	0

Description: \quad Assignment of the input terminals for input SLS (operating mode $=$ control interface)
Description, refer to P10022
Value: $\quad 0$ Statically active
F-DI 0 (X521.2/3/6)
F-DI 1 (X521.4/5/7)
F-DI 2 (X522.1/2/7)
F-DI 3 (X522.3/4/8)
F-DI 4 (X522.5/6/9)
F-DI 5 (X531.2/3/6)
F-DI 6 (X531.4/5/7)
F-DI 7 (X532.1/2/7)
F-DI 8 (X532.3/4/8)
F-DI 9 (X532.5/6/9)
255: Statically inact
Index: $\quad[0]=$ Drive group 1
[1] = Drive group 2
[2] = Drive group 3
[3] = Drive group 4
Note: SLS: Safely-Limited Speed
Re value $=0$:
No terminal assigned, safety function always active.
Re value $=255$:
No terminal assigned, safety function always inactive.

p10027[0...3]	SI SLS_Limit(1) input terminal / SI SLS_Limit(1) DI		
TM54F_MA,	Can be changed: C2	Calculated: -	Access level: 3
TM54F_SL	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the input terminal for SLS_Limit bit 0 (operating mode "control interface").		

Value:	0 :	Statically active		
	1:	F-DI 0 (X521.2/3/6)		
	2 :	F-DI 1 (X521.4/5/7)		
	3:	F-DI 2 (X522.1/2/7)		
	4:	F-DI 3 (X522.3/4/8)		
	5:	F-DI 4 (X522.5/6/9)		
	$6:$	F-DI 5 (X531.2/3/6)		
	7:	F-DI 6 (X531.4/5/7)		
	8:	F-DI 7 (X532.1/2/7)		
	9:	F-DI 8 (X532.3/4/8)		
	10:	F-DI 9 (X532.5/6/9)		
	255:	Statically inact		
Index:	[0] = Drive group 1			
	[1] = Drive group 2			
	[2] = Drive group 3			
	[3] = Drive group 4			
Note:	SLS: Safely-Limited Speed			
	Re value $=0$:			
	No terminal assigned, selection bit remains statically at "0".			
	Re value = 255:			
	No terminal assigned, selection bit remains statically at "1".			
p10028[0...3]	SI SLS_Limit(2) input terminal / SI SLS_Limit(2) DI			
TM54F_MA, TM54F_SL	Can be changed: C2		Calculated: -	Access level: 3
	Data type: Integer16		Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated		Units group: -	Unit selection: -
	Not for motor type: -			Expert list: 1
	Min		Max	Factory setting
	0		255	0
Description: Value:	Sets the input terminal for SLS_Limit bit 1 (operating mode "control interface").			
	0 0 Statically active			
	1: F-DI 0 (X521.2/3/6)			
	2: F-DI 1 (X521.4/5/7)			
	3: F-DI 2 (X522.1/2/7)			
	4: F-DI 3 (X522.3/4/8)			
	5: F-DI 4 (X522.5/6/9)			
	6: F-DI 5 (X531.2/3/6)			
	7: F-DI 6 (X531.4/5/7)			
	8: F-DI 7 (X532.1/2/7)			
	9: F-DI 8 (X532.3/4/8)			
	10: F-DI 9 (X532.5/6/9)			
	255: Statically inact			
Index:	[0] = Drive group 1			
	[1] = Drive group 2			
	[2] = Drive group 3			
	[3] = Drive group 4			
Note:	SLS: Safely-Limited Speed			
	Re value $=0$:			
	No terminal assigned, selection bit remains statically at "0".			
	Re value $=255$:			
	No terminal assigned, selection bit remains statically at "1".			

p10036[0...3]	SI special operating mode input terminal / SI spec op DI		
$\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$	Can be changed: C2	Calculated: -	Access level: 4
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	$\begin{aligned} & \text { Min } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 255 \end{aligned}$	Factory setting 0
Description:	Sets the input terminal for "special operating mode" (operating mode "function interface").		
Value:	0: Statically active		
	1: F-DI 0 (X521.2/3/6)		
	2: F-DI 1 (X521.4/5/7)		
	3: F-DI 2 (X522.1/2/7)		
	4: F-DI 3 (X522.3/4/8)		
	5: F-DI 4 (X522.5/6/9)		
	6: F-DI 5 (X531.2/3/6)		
	7: F-DI 6 (X531.4/5/7)		
	8: F-DI 7 (X532.1/2/7)		
	9: \quad F-DI 8 (X532.3/4/8)		
	10: F-DI 9 (X532.5/6/9)		
	255: Statically inact		
Index:	[0] = Drive group 1 [1] = Drive group 2 [2] = Drive group 3 [3] = Drive group 4		
Note:	Parameter is being prepared - for this firmware version, the function interface is not supported.		
	No terminal assigned, static special operation.		
	Re value $=255$:		
	No terminal assigned, static normal operation.		
p10037[0...3]	SI agreement input terminal / SI agreement DI		
$\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$	Can be changed: C2	Calculated: -	Access level: 4
	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	$\begin{aligned} & \text { Max } \\ & 255 \end{aligned}$	Factory setting 0
Description: Value:	Sets the input terminal for "agreement" (operating mode "function interface").		
	0 : Statically active		
	1: F-DI 0 (X521.2/3/6)		
	2: F-DI 1 (X521.4/5/7)		
	3: F-DI 2 (X522.1/2/7)		
	4: F-DI 3 (X522.3/4/8)		
	5: F-DI 4 (X522.5/6/9)		
	6: F-DI 5 (X531.2/3/6)		
	7: F-DI 6 (X531.4/5/7)		
	8: F-DI 7 (X532.1/2/7)		
	9: F-DI 8 (X532.3/4/8)		
	10: F-DI 9 (X532.5/6/9)		
	255: Statically inact		
Index:	$\begin{aligned} & {[0]=\text { Drive group } 1} \\ & {[1]=\text { Drive group } 2} \\ & {[2]=\text { Drive group } 3} \\ & {[3]=\text { Drive group } 4} \end{aligned}$		

Note: \quad Parameter is being prepared - for this firmware version, the function interface is not supported. \quad Re value $=0$: \quad No terminal assigned, no static agreement. \quad Re value $=255$: \quad No terminal assigned, static agreement.

p10038[0...3]	SI Emergency Stop input terminal / SI Emer Stop DI		
TM54F_MA,	Can be changed: C2	Calculated: -	
TM54F_SL	Data type: Integer16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting

Description:	Sets the input terminal for input "Emergency Stop" (operating mode "function interface"). The behavior of this input signal is set in p10021.
Value:	0 0 Statically active
	1: F-DI 0 (X521.2/3/6)
	2: F-DI 1 (X521.4/5/7)
	3: F-DI 2 (X522.1/2/7)
	4: F-DI 3 (X522.3/4/8)
	5: F-DI 4 (X522.5/6/9)
	6: F-DI 5 (X531.2/3/6)
	7: F-DI 6 (X531.4/5/7)
	8: F-DI 7 (X532.1/2/7)
	9: F-DI 8 (X532.3/4/8)
	10: F-DI 9 (X532.5/6/9)
	255: Statically inact
Index:	[0] = Drive group 1
	[1] = Drive group 2
	[2] = Drive group 3
	[3] = Drive group 4
Dependency:	Refer to: p10008, p10021
Note:	Parameter is being prepared - for this firmware version, the function interface is not supported.
	Re value $=0$:
	No terminal assigned, "Emergency Stop" statically active.
	Re value = 255:
	No terminal assigned, no "Emergency Stop" statically active.

p10039[0..3]	SI Safe State signal selection / SI Safe State Sel	
TM54F_MA, TM54F_SL	Can be changed: C2 Calculated: -	Access level: 3
	Data type: Unsigned32 Dynamic index: -	Func. diagram: 2856
	P-Group: Safety Integrated Units group: -	Unit selection: -
	Not for motor type: -	Expert list: 1
	Min Max	Factory setting 0001 bin
Description:	Sets the signals for the drive group specific signal "Safe State".	
	Bit $0=$ Power_removed	
	Bit 1 = SS1_active	
	Bit 2 = SS2_active	
	Bit 3 = SOS_active	
	Bit $4=$ SLS_active	
	Bit 5 = Reserved	
Index:	$\begin{aligned} & {[0]=\text { Drive group } 1} \\ & \text { [1] }=\text { Drive group } 2 \\ & {[2]=\text { Drive group } 3} \end{aligned}$	

	$[3]=$ Drive group 4			
Bit field:	Bit	Signal name	1 signal	signal
	00	Power_removed	Selected	Not selected
	01	SS1_active	Selected	Not selected
	02	SS2_active	Selected	Not selected
	03	SOS_active	Selected	Not selected
Note:	04	SLS_active	Selected	Not selected
	Bit $=0$ signal --> not selected		-	
	Bit $=1$ signal --> selected			
	The selected signals (high-active) are OR'ed The result of the logic operation results in the status "Safe State".			

p10040	SI F-DI input mode / SI F-DI inp_mode				
TM54F_MA, TM54F_SL	Can be changed: C 2		Calculated: - Access		
	Data type: Unsigned32		Dynamic index: -	Func. diagram: -	
	P-Group: Safety Integrated		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory 0000 bin	
Description:	Sets the input mode for the safety-relevant input terminals of terminal series 2.				
Bit field:		Signal name	1 signal	0 signal	FP
		F-DI 0, DI 1+ (X521.3)	NO contact	NC contact	2850
		F-DI 1, DI 3+ (X521.5)	NO contact	NC contact	2850
		F-DI 2, DI 5+ (X522.2)	NO contact	NC contact	2850
		F-DI 3, DI 7+ (X522.4)	NO contact	NC contact	2850
		F-DI 4, DI 9+ (X522.6)	NO contact	NC contact	2850
		F-DI 5, DI 11+ (X531.3)	NO contact	NC contact	2851
		F-DI 6, DI 13+ (X531.5)	NO contact	NC contact	2851
		F-DI 7, DI 15+ (X532.2)	NO contact	NC contact	2851
		F-DI 8, DI 17+ (X532.4)	NO contact	NC contact	2851
		F-DI 9, DI 19+ (X532.6)	NO contact	NC contact	2851
Note:	Only an NC contact can be connected to terminals that are not listed in the selection.				
p10041	SI F-DI enable for test / SI F-DI enab test				
TM54F_MA,	Can be changed: C 2		Calculated: -	Access level: 3	
TM54F_SL	Data type: Unsigned32		Dynamic index: -	Func. diagram: 2848	
	P-Group: Safety Integrated		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting 0000 bin	
Description:	Enable signal for the integration of F-DI in the test (forced checking procedure) of the sensor power supply.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	F-DI 0, power supply L1+	Test active	No test	-
	01	F-DI 1, power supply L1+	Test active	No test	-
	02	F-DI 2, power supply L1+	Test active	No test	-
	03	F-DI 3, power supply L1+	Test active	No test	-
	04	F-DI 4, power supply L1+	Test active	No test	-
	05	F-DI 5, power supply L2+	Test active	No test	-
	06	F-DI 6, power supply L2+	Test active	No test	-
	07	F-DI 7, power supply L2+	Test active	No test	-
	08	F-DI 8, power supply L2+	Test active	No test	-
	09	F-DI 9, power supply L2+	Test active	No test	-
Note:	F-DI: Failsafe Digital Input				

Note:

[5] = AND logic operation input 6
DO. Falsare Digial Output

p10044[0...5]	SI F-DO 2 signal sources / SIF-DO 2 S_src			
TM54F_MA, TM54F_SL	Can be changed: C2		Calc	
	Data type: Integer16		Dyn	
	P-Group: Safety Integrated		Unit	
	Not for motor type: -			
	Min		Max	
	0		779	0
Description:	Sets the signal sources for F-DO 2.			
	The 6 signal sources in p10044[0...5] are AND'ed and the result is output at F-DO 2.			
Value:	0 : No function			
	1: Drive group 1 pulses			
	2: Drive group 1 SS1 activ			
	3: Drive group 1 SS2 active			
	4: Drive group 1 SOS active			
	5: Drive group 1 SLS active			
	6: Drive group 1 SSM feedback signal active			
	7: Drive group 1 safe state			
	8: Drive group 1 SOS selec			
	9: Drive group 1 internal event			
	10: Drive group 1 active			
	11: Drive group 1 active			
	257: Drive group 2 pulses supp			
	258: Drive group 2 SS1 active			
	259: Drive group 2 SS2 activ			
	260: Drive group 2 SOS active			
	261: Drive group 2 SLS active			
	262: Drive group 2 SSM feedback signal active			
	263: Drive group 2 safe state			
	264: Drive group 2 SOS selected			
	265: Drive group 2 internal event			
	266: Drive group 2 active SLS stage bit			
	267: Drive group 2 active SLS sta			
	513: Drive group 3 pulses suppressed			
	514: Drive group 3 SS1 active			
	515: Drive group 3 SS2 active			
	516: Drive group 3 SOS active			
	517: Drive group 3 SLS active			
	518: Drive group 3 SSM feedback signal active			
	519: Drive group 3 safe state			
	520: Drive group 3 SOS selected			
	521: Drive group 3 internal event			
	522: Drive group 3 active SLS stage bit			
	523: Drive group 3 active SLS stage bit			
	769: Drive group 4 pulses suppressed			
	770: Drive group 4 SS1 active			
	771: Drive group 4 SS2 active			
	772: Drive group 4 SOS active			
	773: Drive group 4 SLS active			
	774: Drive group 4 SSM feedback signal active			
	775: Drive group 4 safe state			
	776: Drive group 4 SOS selected			
	777: Drive group 4 internal event			
	778: Drive group 4 active SLS stage bit 0			
	779:	Drive group 4 active		

	779: Drive group 4 active SLS stage bit 1				
Index:	[0] [1] [2] [3] [4] [5]	AND logic operation input 1 AND logic operation input 2 AND logic operation input 3 AND logic operation input 4 AND logic operation input 5 AND logic operation input 6			
Note:	F-DO: Failsafe Digital Output				
p10046	SI test sensor feedback signal input Dl 20 ... 23 / SI test sens FS				
TM54F_MA, TM54F_SL	Can	be changed: C2	Calculated: -	Acce	
	Dat	type: Unsigned32	Dynamic index: -	Func	
		oup: Safety Integrated	Units group: -	Unit	
	Not	or motor type: -		Expe	
	Min		Max	Facto 0000	
Description:	Sets the test of the feedback line for forced checking procedure.				
Bit field:		Signal name	1 signal	0 signal	FP
		Read back F-DO 0 in DI 20	Test active	No test	-
		Read back F-DO 1 in DI 21	Test active	No test	-
		Read back F-DO 2 in DI 22	Test active	No test	-
		Read back F-DO 3 in DI 23	Test active	No test	-
Note:	F-DO: Failsafe Digital Output				
r10051.0...9	CO/BO: SI digital inputs status / SI DI status				
TM54F_MA, TM54F_SL	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dynamic index: -	Func. diagram: -	
	P-Group: Safety Integrated		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
			Max	Factory setting	
Description:	Displays the single-channel status of the safety digital inputs F-DI 0 .. 9 at Terminal Module 54F (TM54F).				
	If a safety function is assigned to an input (e.g. via p10022), then the following applies:				
	- logical "0": The safety function is selected				
	- logical "1": The safety function is canceled				
	The interrelationship between the logical level and the external voltage level at the input depends on the parameterization (refer to p10040) of the input as either NC or NO contact and is aligned to the use of a safety function:				
	With 24 V at the input, NC contacts have a logical "1" level, for 0 V at the input, a logical "0" level.				
	This means that an NC/NC contact parameterization of 0 V at both inputs of the F - D selects the safety function, for 24 V at both inputs, deselects the safety function.				
	With 24 V at the input, $N O$ contacts have a logical " 0 " level, for 0 V at the input, a logical "1" level. This means that for an NC/NO contact parameterization, the level $0 \mathrm{~V} / 24 \mathrm{~V}$ selects the safety function, the level 24 $\mathrm{V} / 0 \mathrm{~V}$ deselects the safety function.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		F-DI 0	Logical 1	Logical 0	2850
	01	F-DI 1	Logical 1	Logical 0	2850
	02	F-DI 2	Logical 1	Logical 0	2850
		F-DI 3	Logical 1	Logical 0	2850
	04	F-DI 4	Logical 1	Logical 0	2850
	05	F-DI 5	Logical 1	Logical 0	2851
	06	F-DI 6	Logical 1	Logical 0	2851
	07	F-DI 7	Logical 1	Logical 0	2851
	08	F-DI 8	Logical 1	Logical 0	2851
		F-DI 9	Logical 1	Logical 0	2851
Note:	F-DI: Failsafe Digital Input				

r10052.0... 3	CO/BO: SI digital outputs status / SI DO status					
$\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$		be changed: -	Calculated: Dynamic index: -		Access level: 3	
		type: Unsigned32			Func. diagram: -	
		roup: Safety Integrated	Units group: -		Unit selection: -	
		for motor type: -			Expert list: 1	
	Min		Max		Factory setting	
	-		Max		-	
Description:	Displays the status of the digital outputs at the Terminal Module 54F (TM54F).					
Bit field:		Signal name		1 signal	0 signal	FP
		DO 0		High	Low	2853
		DO 1		High	Low	2853
		DO 2		High	Low	2853
		D0 3		High	Low	2853
Note:	F-DO: Failsafe Digital Output					
r10053.0... 3	CO/BO: SI digital inputs $20 . . .23$ status / SI DI 20... 23 stat					
TM54F_SL	Can be changed: -		Calculated: -		Access level: 3	
	Data	type: Unsigned32	Dynamic index: -		Func. diagram: 2848	
		roup: Safety Integrated	Units group: -		Unit selection: -	
		for motor type: -			Expert list: 1	
	Min		Max		Factory setting	
	-		-			
Description:	Displays the status of the digital inputs at the Terminal Module 54F (TM54F).					
Bit field:		Signal name		1 signal	0 signal	FP
		DI 20		High	Low	2853
		DI 21		High	Low	2853
		DI 22		High	Low	2853
		DI 23		High	Low	2853
r10054	SI	M54F failsafe eve	ail	afe act		
TM54F_MA, TM54F_SL	Can be changed: -		Calculated:		Access level: 3	
	Data type: Unsigned32		Dynamic index: -		Func. diagram: -	
	P-Group: Safety Integrated		Units group: -		Unit selection: -	
	Not for motor type: -				Expert list: 1	
	Min		Max		Factory setting	
Description:	Displays the events that lead to the transfer of failsafe signals to all drives assigned to the TM54F. If the second channel of the TM54F transmits failsafe signals, then these are synchronized to the other channel.					
	Possibilities of resolving the situation:					
	- error during test stop: correctly perform the test stop.					
	- internal software error: no possibility of resolving this problem, POWER ON.					
	- internal synchronization problem: no possibility of resolving this problem, POWER ON.					
	- all other causes: remove the cause of the error and carry out a safety-relevant acknowledgement (p10006).					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		Commissioning mode		Yes	No	2847
	01	Checksum error of the		Yes	No	-
	02	Internal synchronizatio RM54F		Yes	No	-
	03	Internal software error		Yes	No	-
	04	Overvoltage in the TM5		Yes	No	-
	05	Undervoltage in the TM		Yes	No	-
	06	Error at test stop		Yes	No	-
	07	Error for data cross-ch		Yes	No	-

	$\begin{aligned} & 08 \\ & 31 \end{aligned}$	Overvoltage in the TM54F Failsafe events active on another channel	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	-
r10055	SI TM54F communication status drive-specific / Failsafe events				
$\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32 D		Dynamic index: -	Func. diagram: 2846	
	P-Group: Safety Integrated U		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
	-			F	
Description:	Disp For All	ays the communication status of the individ $10055=0$, the following applies: rives assigned in p10010 communicate with	drives with the he TM54F.	al Module 54	
Bit field:	$\begin{aligned} & \text { Bit } \\ & 00 \end{aligned}$	Signal name	1 signal	0 signal	FP
		Communication between drive 1 and TM54F	Not configured	Configured	-
		Communication between drive 2 and TM54F	Not configured	Configured	-
		Communication between drive 3 and TM54F	Not configured	Configured	-
	03	Communication between drive 4 and TM54F	Not configured	Configured	-
		Communication between drive 5 and TM54F	Not configured	Configured	-
	05	Communication between drive 6 and TM54F	Not configured	Configured	-
r10056.0	CO/BO: SI Status / SI stat				
TM54F_MA	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32 Dy		Dynamic index: -	Func. diagram: -	
	P-Group: Safety Integrated U		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min		Max	Factory setting	
Description:	Displays the status of the Terminal Module 54F (TM54F).				
Bit field:		Signal name Test stop status	Active	0 signal Inactive	FP
p10061 TM54F_MA, TM54F_SL	SI password input TM54F / SI password inp				
	Can be changed: T C		Calculated: -	Access level: 3	
	Data type: Unsigned32 Dy		Dynamic index: -	Func. diagram: 2847	
	P-Group: Safety Integrated U		Units group: -	Unit selection: -	
	Not for motor type: -			Expert list: 1	
	Min 0000 hex		Max FFFF FFFF hex	Factory setting 0000 hex	
Description:	Enters the Safety Integrated password for the Terminal Module 54F (TM54F). This password is required to change the safety-relevant parameters.				

p10062	SI password new TM54F / SI password new		
TM54F_MA, TM54F_SL	Can be changed: C2	Calculated: -	Access level: 3
	Data type: Unsigned32	Dynamic index: -	Func. diagram: 2847
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description: Dependency:	A change made to the Safety Integrated password must be acknowledged in the following parameter: Refer to: p10063		
p10063	SI password acknowledgement TM54F / SI ackn password		
TM54F_MA,	Can be changed: C2	Calculated: -	Access level: 3
TM54F_SL	Data type: Unsigned32	Dynamic index: -	Func. diagram: 2847
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min 0000 hex	Max FFFF FFFF hex	Factory setting 0000 hex
Description: Dependency: Note:	Acknowledgement of the new Refer to: p10062 The new password entered $\mathrm{p} 10062=\mathrm{p} 10063=0$ is auto edged.	ed password for the be re-entered in or r the new Safety Int	$54 \mathrm{~F} \text { (TM54F). }$ ge. has been successfully
r10090[0...3]	SI TM54F version / SI TM54F version		
TM54F_MA,	Can be changed: -	Calculated: -	Access level: 3
M54F_SL	Data type: Unsigned16	Dynamic index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description: Index:	Displays the Safety Integrat [0] = Safety Version (major [1] = Safety Version (minor [2] = Safety Version (basele [3] = Safety Version (hotfix)	Terminal Module 5	
Dependency: Note:	Refer to: r9390, r9590, r977 Example: $r 10090[0]=2, r 10090[1]=6$	$\text { r10090[3] = } 0 \text {--> SI }$	V02.60.01.00
r61000[0...239]	PROFINET Name of Station / PN Name of Station		
CU_S (PROFINET),	Can be changed: -	Calculated: -	Access level: 3
CU_S	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	Max	Factory setting
Description:	Displays PROFINET Name of Station.		
Notice:	An ASCII table (excerpt) can be found, for example, in the following List Manual:		

r61001[0...3] PROFINET IP of Station / PN IP of Station

CU_S (PROFINET),	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dynamic index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -		Expert list: 1
	Min	-	Faxtory setting
	-		-
Description:	Displays PROFINET IP of Station.		

1.3 Parameters for data sets

1.3.1 Parameters for Command Data Sets (CDS)

Note:
References: /FH1/ SINAMICS S120 Function Manual Drive Functions Section "Data sets"

The following list contains the command-data-set-dependent parameters.

```
Product: SINAMICS S120/S150, Version: 2603400, Language: eng, Type: CDS
p0700[0...n] Macro Binector Input (BI) / Macro BI
p0820[0...n] BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0
p0821[0...n] BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1
p0822[0...n] BI: Drive Data Set selection DDS bit 2 / DDS select., bit 2
p0823[0...n] BI: Drive Data Set selection DDS bit 3 / DDS select., bit 3
p0824[0...n] BI: Drive Data Set selection DDS bit 4 / DDS select., bit 4
p0828[0...n] BI: Motor changeover, feedback signal / Mot_chng fdbk sig
p0840[0...n] BI: ON/OFF1 / ON/OFF1
p0844[0...n] BI: 1. OFF2 / 1. OFF2
p0845[0...n] BI: 2. OFF2 / 2. OFF2
p0848[0...n] BI: 1. OFF3 / 1. OFF3
p0849[0...n] BI: 2. OFF3 / 2. OFF3
p0852[0..n] BI: Operation enable / Operation enable
p0854[0...n] BI: Master control by PLC / Master ctrl by PLC
p0855[0\ldots..n] BI: Unconditionally release holding brake / Uncond open brake
p0856[0...n] BI: Velocity controller enable / v_ctrl enable
p0856[0...n] BI: Speed controller enable / n_ctrl enable
p0858[0...n] BI: Unconditionally close holding brake / Uncond close brake
p1000[0...n] Macro Connector Inputs (CI) for velocity setpoints / Macro Cl v_set
p1000[0...n] Macro Connector Inputs (CI) for speed setpoints / Macro Cl n_set
p1020[0...n] Bl: Fixed velocity setpoint selection Bit 0 / v_set_fixed Bit 0
p1020[0...n] BI: Fixed speed setpoint selection Bit 0 / n_set_fixed Bit 0
p1021[0...n] BI: Fixed velocity setpoint selection Bit 1/v_set_fixed Bit 1
p1021[0...n] BI: Fixed speed setpoint selection Bit 1/n_set_fixed Bit 1
p1022[0...n] BI: Fixed velocity setpoint selection Bit 2 / v_set_fixed Bit 2
p1022[0...n] BI: Fixed speed setpoint selection Bit 2 / n_set_fixed Bit 2
p1023[0...n] Bl: Fixed velocity setpoint selection Bit 3/v_set_fixed Bit 3
p1023[0...n] BI: Fixed speed setpoint selection Bit 3 / n_set_fixed Bit 3
p1035[0...n] BI: Motorized potentiometer setpoint raise / Mop raise
p1036[0...n] BI: Motorized potentiometer lower setpoint / Mop lower
p1039[0...n] BI: Motorized potentiometer inversion / Mop inversion
p1041[0...n] BI: Motorized potentiometer manual/automatic / Mop manual/auto
p1042[0...n] Cl: Motorized potentiometer automatic setpoint / Mop auto setpoint
p1043[0...n] BI: Motorized potentiometer accept setpoint / Mop accept set val
p1044[0..n] Cl: Motorized potentiometer setting value / Mop set val
p1055[0...n] BI: Jog bit 0 / Jog bit 0
p1056[0...n] BI: Jog bit 1 / Jog bit 1
p1070[0...n] Cl: Main setpoint / Main setpoint
```

p1071[0...n]	CI: Main setpoint scaling / Main setp scal
p1075[0...n]	CI: Supplementary setpoint / Suppl setpoint
p1076[0...n]	Cl : Supplementary setpoint scaling / Suppl setp scal
p1085[0...n]	CI: Velocity limit positive direction / v_limit pos
p1085[0...n]	CI: Speed limit in positive direction of rotation / n_limit pos
p1088[0...n]	Cl : Velocity limit negative direction / n_limit neg
p1088[0...n]	CI : Speed limit negative direction of rotation / n _limit neg
p1110[0...n]	BI: Inhibit negative direction / Inhib neg dir
p1111[0...n]	BI: Inhibit positive direction / Inhib pos dir
p1113[0...n]	BI: Setpoint inversion / Setp inv
p1122[0...n]	BI: Bypass ramp-function generator / Bypass RFG
p1140[0...n]	BI : Ramp-function generator enable / RFG enable
p1141[0...n]	BI: Start ramp-function generator / Start RFG
p1142[0...n]	BI: Velocity setpoint enable / v_set enable
p1142[0...n]	BI: Speed setpoint enable / n_set enable
p1143[0...n]	BI: Ramp-function generator, accept setting value / Accept RFG set val
p1144[0...n]	CI : Ramp-function generator setting value / RFG setting value
p1155[0...n]	CI: Velocity controller, velocity setpoint $1 / \mathrm{v}$ _ctrl n_set 1
p1155[0...n]	Cl : Speed controller speed setpoint $1 / \mathrm{n}$ _ctrl n_set 1
p1160[0...n]	CI : Velocity controller, velocity setpoint $2 / \mathrm{v}$ _ctrl n_set 2
p1160[0...n]	CI : Speed controller speed setpoint 2 / n_ctrl n_set 2
p1230[0...n]	BI : Armature short-circuit / DC brake activation / ASC act
p1235[0...n]	BI: External armature short-circuit, contactor feedback signal / ASC ext feedback
p1330[0...n]	CI : V/f control independent voltage setpoint / Vf V_set independ.
p1356[0...n]	Cl : V/f control, angular setpoint / Vf ang setpoint
p1430[0...n]	CI: Velocity pre-control / v_prectrl
p1430[0...n]	Cl : Speed pre-control / n_prectrl
p1437[0...n]	CI: Speed controller, reference model I component input / n_ctrRefMod I_comp
p1455[0...n]	Cl : Velocity controller, P gain adaptation signal / v_ctrl Adpt_sig Kp
p1455[0...n]	CI: Speed controller P gain adaptation signal / n_ctrl Adpt_sig Kp
p1466[0...n]	Cl : Velocity controller P gain scaling / v_ctrl Kp scal
p1466[0...n]	CI : Speed controller P-gain scaling / n_ctrl Kp scal
p1476[0...n]	BI: Velocity controller hold integrator / v_ctrl integ stop
p1476[0...n]	BI: Speed controller hold integrator / n_ctrl integ stop
p1477[0...n]	BI: Velocity controller set integrator value / v_ctrl integ set
p1477[0...n]	BI : Speed controller set integrator value / n_ctrl integ set
p1478[0...n]	CI: Velocity controller integrator value / v_ctr integ_setVal
p1478[0...n]	CI : Speed controller integrator setting value / n_ctr integ_setVal
p1479[0...n]	Cl : Speed controller integrator setting value scaling / n_ctrl I_val scal
p1486[0...n]	CI : Droop compensation torque / Droop M_comp
p1492[0...n]	BI: Droop feedback enable / Droop enable
p1495[0...n]	CI: Acceleration pre-control / a_prectrl
p1497[0...n]	Cl : Motor weight scaling / Mot_weight scal
p1497[0...n]	CI : Moment of inertia, scaling / M_mom inert scal
p1500[0...n]	Macro Connector Inputs (CI) for force setpoints / Macro CI F_set
p1500[0...n]	Macro Connector Inputs (CI) for torque setpoints / Macro CI M_set
p1501[0...n]	BI: Change over velocity/force control / Changeov n/F_ctrl
p1501[0...n]	BI: Change over between closed-loop speed/torque control / Changeov n/M_ctrl
p1503[0...n]	Cl : Torque setpoint / M_set
p1511[0...n]	CI: Supplementary force 1 / F_suppl 1
p1511[0...n]	Cl : Supplementary torque 1 / M_suppl 1
p1512[0...n]	CI: Supplementary force 1 scaling / F_suppl 1 scal
p1512[0...n]	CI : Supplementary torque 1 scaling / M_suppl 1 scal

p1513[0...n]	CI: Supplementary force 2 / F_suppl 2
p1513[0...n]	CI: Supplementary torque 2 / M_suppl 2
p1522[0...n]	CI : Force limit upper/motoring / F_max upper/mot
p1522[0...n]	Cl : Torque limit upper/motoring / M_max upper/mot
p1522[0...n]	Cl : Torque limit upper / M_max upper
p1523[0...n]	Cl : Force limit lower/regenerative / F_max lower/regen
p1523[0...n]	Cl : Torque limit lower/regenerative / M_max lower/regen
p1523[0...n]	Cl : Torque limit lower / M_max lower
p1528[0...n]	CI : Force limit upper/motoring scaling / F_max up/mot scal
p1528[0...n]	Cl : Torque limit upper/motoring scaling / M_max up/mot scal
p1528[0...n]	CI : Torque limit upper scaling / M_max upper scal
p1529[0...n]	CI : Force limit lower/regenerative scaling / F_max low/gen scal
p1529[0...n]	CI : Torque limit lower/regenerating scaling / M_max low/gen scal
p1529[0...n]	CI : Torque limit lower scaling / M_max lower scal
p1540[0...n]	CI: Torque limit speed controller upper scaling / M_max n-ctr upScal
p1541[0...n]	CI : Torque limit. speed controller lower scaling / M_max nctr lowScal
p1542[0...n]	CI: Travel to fixed stop force reduction / TfS F_red
p1542[0...n]	CI: Travel to fixed stop torque reduction / TfS M_red
p1545[0...n]	BI: Activates travel to a fixed stop / TfS activation
p1550[0...n]	BI: Transfer current force as force offset / Accept act force
p1550[0...n]	BI : Transfer current torque as torque offset / Accept act torque
p1551[0...n]	BI: Force limit variable/fixed signal source / F_lim var/fixS_src
p1551[0...n]	BI: Torque limit variable/fixed signal source / M_lim var/fixS_src
p1552[0...n]	CI: Force limit upper scaling without offset / F_max up offs scal
p1552[0...n]	CI : Torque limit upper scaling without offset / M_max up w/o offs
p1554[0...n]	CI : Force limit lower scaling without offset / M_max low w/o offs
p1554[0...n]	CI : Torque limit lower scaling without offset / M_max low w/o offs
p1555[0...n]	CI: Power limit / P_max
p1569[0...n]	CI: Supplementary force 3 / F_suppl 3
p1569[0...n]	Cl : Supplementary torque 3 / M_suppl 3
p1571[0...n]	CI: Supplementary flux setpoint / Suppl flux setp
p1640[0...n]	CI: Excitation current actual value / I_exc_act val
p2103[0...n]	BI: 1. Acknowledge faults / 1. Acknowledge
p2104[0...n]	BI: 2. Acknowledge faults / 2. Acknowledge
p2105[0...n]	BI: 3. Acknowledge faults / 3. Acknowledge
p2106[0...n]	BI: External fault 1 / External fault 1
p2107[0...n]	BI: External fault 2 / External fault 2
p2108[0...n]	BI: External fault 3 / External fault 3
p2112[0...n]	BI: External alarm 1 / External alarm 1
p2116[0...n]	BI: External alarm 2 / External alarm 2
p2117[0...n]	BI: External alarm 3 / External alarm 3
p2144[0...n]	BI: Motor stall monitoring enable (negated) / Mot stall enab neg
p2148[0...n]	BI: Ramp-function generator active / HLG active
p2151[0...n]	Cl : Velocity setpoint for messages/signals / v_set for msg
p2151[0...n]	CI: Speed setpoint for messages/signals / n_set for msg
p2154[0...n]	CI: Velocity setpoint $2 / \mathrm{v}$ _set 2
p2154[0...n]	CI : Speed setpoint 2 / n_set 2
p2200[0...n]	BI: Technology controller enable / Tec_ctrl enable
p2220[0...n]	BI: Technology controller fixed value selection bit 0 / Tec_ctrl sel bit 0
p2221[0...n]	BI: Technology controller fixed value selection bit 1 / Tec_ctrl sel bit 1
p2222[0...n]	BI: Technology controller fixed value selection bit 2 / Tec_ctrl sel bit 2
p2223[0...n]	BI: Technology controller fixed value selection bit 3 / Tec_ctrl sel bit 3
p2235[0...n]	BI: Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise

p2236[0...n]	BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower
p2253[0...n]	CI: Technology controller setpoint 1 / Tec_ctrl setp 1
p2254[0...n]	Cl : Technology controller setpoint 2 / Tec_ctrl setp 2
p2264[0...n]	CI : Technology controller actual value / Tec_ctrl act val
p2289[0...n]	CI: Technology controller pre-control signal / Tec_ctrl prectrl
p2296[0...n]	CI: Technology controller output scaling / Tec_ctrl outp scal
p2297[0...n]	$\mathrm{CI}:$ Technology controller maximum limiting / Tec_ctrl max_limit
p2298[0...n]	$\mathrm{CI}:$ Technology controller minimum limiting / Tec_ctrl min_lim
p3111[0...n]	BI: External fault 3, enable / Ext fault 3 enab
p3112[0...n]	BI: External fault 3 enable negated/ Ext flt 3 enab neg
p3750[0...n]	CI: APC acceleration sensor input / APC accel input
p3784[0...n]	BI: Sync-line-drive external increase voltage / Sync ext V incr
p3785[0...n]	BI: Sync-line-drive external decrease voltage / Sync ext V decr
p3802[0...n]	BI: Sync-line-drive enable / Sync enable

1.3.2 Parameters for Drive Data Sets (DDS)

Note:

References: /FH1/ | SINAMICS S120 Function Manual Drive Functions |
| :--- |
| Section "Data sets" |

The following list contains the drive-data-set-dependent parameters.

Product: SINAMICS S120/S150, Version: 2603400, Language: eng, Type: DDS	
p0186[0...n]	Motor Data Sets (MDS) number / MDS number
p0187[0...n]	Encoder 1 encoder data set number / Enc 1 EDS number
p0188[0...n]	Encoder 2 encoder data set number / Enc 2 EDS number
p0189[0...n]	Encoder 3 encoder data set number / Enc 3 EDS number
p0340[0...n]	Automatic calculation, motor/control parameters / Calc auto par
p0572[0...n]	Activate inhibit list / Act inhib list
p0578[0...n]	Calculate parameters that are dependent on the technology/units / Calc tec par
p0640[0...n]	Current limit / Current limit
p0642[0...n]	Encoderless operation current reduction / Encoderl op I_red
p1001[0...n]	CO: Fixed velocity setpoint $1 / \mathrm{n}$ _set_fixed 1
p1001[0...n]	CO: Fixed speed setpoint $1 / n _$set_fixed 1
p1002[0...n]	CO: Fixed velocity setpoint $2 / \mathrm{n}$ _set_fixed 2
p1002[0...n]	CO: Fixed speed setpoint $2 / n _$set_fixed 2
p1003[0...n]	CO: Fixed velocity setpoint $3 / \mathrm{n}$ _set_fixed 3
p1003[0...n]	CO: Fixed speed setpoint $3 / n$ n_set_fixed 3
p1004[0...n]	CO: Fixed velocity setpoint $4 / n$ _set_fixed 4
p1004[0...n]	CO: Fixed speed setpoint 4 / n_set_fixed 4
p1005[0...n]	CO: Fixed velocity setpoint $5 / \mathrm{n}$ _set_fixed 5
p1005[0...n]	CO: Fixed speed setpoint $5 / n$ _set_fixed 5
p1006[0...n]	CO: Fixed velocity setpoint $6 / \mathrm{n}$ _set_fixed 6
p1006[0...n]	CO: Fixed speed setpoint $6 / n$ set_fixed 6
p1007[0...n]	CO: Fixed velocity setpoint $7 / n _$set_fixed 7
p1007[0...n]	CO: Fixed speed setpoint $7 / n$ _set_fixed 7
p1008[0...n]	CO: Fixed velocity setpoint $8 / \mathrm{n}$ _set_fixed 8
p1008[0...n]	CO: Fixed speed setpoint $8 / n$ _set_fixed 8
p1009[0...n]	CO: Fixed velocity setpoint 9 / n _set_fixed 9

p1009[0...n]	CO: Fixed speed setpoint $9 / \mathrm{n}$ _set_fixed 9
p1010[0...n]	CO: Fixed velocity setpoint $10 / \mathrm{n}$ _set_fixed 10
p1010[0...n]	CO: Fixed speed setpoint $10 / n _$set_fixed 10
p1011[0...n]	CO: Fixed velocity setpoint $11 / \mathrm{n}$ _set_fixed 11
p1011[0...n]	CO: Fixed speed setpoint $11 / n$ set_fixed 11
p1012[0...n]	CO: Fixed velocity setpoint $12 / \mathrm{n}$ _set_fixed 12
p1012[0...n]	CO: Fixed speed setpoint $12 / n$ _set_fixed 12
p1013[0...n]	CO: Fixed velocity setpoint $13 / \mathrm{n}$ _set_fixed 13
p1013[0...n]	CO: Fixed speed setpoint 13 / n_set_fixed 13
p1014[0...n]	CO: Fixed velocity setpoint 14 / n_set_fixed 14
p1014[0...n]	CO: Fixed speed setpoint $14 / \mathrm{n}$ _set_fixed 14
p1015[0...n]	CO: Fixed velocity setpoint 15 / n_set_fixed 15
p1015[0...n]	CO: Fixed speed setpoint 15 / n_set_fixed 15
p1030[0...n]	Motorized potentiometer configuration / Mop configuration
p1037[0...n]	Motorized potentiometer maximum velocity / Mop n_max
p1037[0...n]	Motorized potentiometer maximum speed / Mop n_max
p1038[0...n]	Motorized potentiometer minimum velocity / Mop n_min
p1038[0...n]	Motorized potentiometer minimum speed / Mop n_min
p1040[0...n]	Motorized potentiometer starting value / Mop start value
p1047[0...n]	Motorized potentiometer ramp-up time / Mop ramp-up time
p1048[0...n]	Motorized potentiometer ramp-down time / Mop ramp-down time
p1058[0...n]	Jog 1 velocity setpoint / Jog 1 n_set
p1058[0...n]	Jog 1 speed setpoint / Jog 1 n_set
p1059[0...n]	Jog 2 velocity setpoint / Jog 2 n_set
p1059[0...n]	Jog 2 speed setpoint / Jog 2 n_set
p1063[0...n]	Velocity limit setpoint channel / v_limit setp
p1063[0...n]	Speed limit setpoint channel / n_limit setp
p1080[0...n]	Minimum velocity / Minimum speed
p1080[0...n]	Minimum speed / Minimum speed
p1082[0...n]	Maximum velocity / Maximum speed
p1082[0...n]	Maximum speed / Maximum speed
p1083[0...n]	CO: Velocity limit positive direction / v_limit pos
p1083[0...n]	CO: Speed limit in positive direction of rotation / n _limit pos
p1086[0...n]	CO: Velocity limit negative direction / v_limit neg
p1086[0...n]	CO: Speed limit negative direction of rotation / n _limit neg
p1091[0...n]	Skip velocity $1 / \mathrm{v}$ _skip 1
p1091[0...n]	Skip speed 1 / n_skip 1
p1092[0...n]	Skip velocity 2 / v_skip 2
p1092[0...n]	Skip speed 2 / n_skip 2
p1093[0...n]	Skip velocity 3 / v_skip 3
p1093[0...n]	Skip speed 3 /n_skip 3
p1094[0...n]	Skip velocity 4 / v_skip 4
p1094[0...n]	Skip speed 4 / n_skip 4
p1101[0...n]	Skip velocity bandwidth / v_skip bandwidth
p1101[0...n]	Skip speed bandwidth / n_skip bandwidth
p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time
p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time
p1130[0...n]	Ramp-function generator initial rounding-off time / RFG t_start_round
p1131[0...n]	Ramp-function generator final rounding-off time / RFG t_end_delay
p1134[0...n]	Ramp-function generator rounding-off type / RFG round-off type
p1135[0...n]	OFF3 ramp-down time / RFG OFF3 t_ramp-dn
p1136[0...n]	OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd
p1137[0...n]	OFF3 final rounding-off time / RFG OFF3 t_end_del

```
p1145[0\ldotsn] Ramp-function generator tracking intensity. / RFG track intens
p1148[0..n] Ramp-function gen., tolerance for ramp-up and ramp-down active / RFG tol HL/RL act
p1151[0...n] Ramp-function generator configuration / RFG config
p1189[0...n] Velocity setpoint configuration / v_ctrl config
p1189[0...n] Speed setpoint configuration / n_ctrl config
p1192[0...n] DSC enc selection / DSC enc selection
p1193[0...n] DSC encoder adaptation factor / DSC encodAdaptFact
p1200[0...n] FlyRest oper mode / FlyRest op_mode
p1202[0...n] FlyRest srch curr / FlyRest srch curr
p1203[0...n] Flying restart search rate factor / FlyRst v_Srch Fact
p1240[0...n] Vdc controller or Vdc monitoring configuration / Vdc_ctrl config
p1243[0...n] Vdc_max controller dynamic factor / Vdc_max dyn_factor
p1244[0...n] DC link voltage threshold upper / Vdc upper thresh
p1245[0...n] Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level
p1247[0..n] Vdc_min controller dynamic factor (kinetic buffering)/Vdc_min dyn_factor
p1248[0...n] DC link voltage threshold lower / Vdc lower thresh
p1249[0...n] Vdc_max controller speed threshold / Vdc_max n_thresh
p1250[0...n] Vdc controller proportional gain / Vdc_ctrl Kp
p1251[0...n] Vdc controller integral time / Vdc_ctrl Tn
p1252[0..n] Vdc controller rate time / Vdc_ctrl t_rate
p1255[0...n] Vdc_min controller time threshold / Vdc_min t_thresh
p1256[0...n] Vdc_min controller response (kinetic buffering) / Vdc_min response
p1257[0...n] Vdc_min controller speed threshold / Vdc_min n_thresh
p1262[0...n] Bypass dead time / Bypass t_dead
p1280[0...n] Vdc controller or Vdc monitoring configuration (V/f) / Vdc_ctr config V/f
p1283[0..n] Vdc_max controller dynamic factor (V/f) / Vdc_max dyn_factor
p1285[0...n] Vdc_min controller switch-in level (kinetic buffering) (V/f) / Vdc_min on_level
p1287[0...n] Vdc_min controller dynamic factor (kinetic buffering) (V/f) / Vdc_min dyn_factor
p1288[0...n] Vdc_max controller feedback coupling factor ramp-fct. gen. (V/f) / Vdc_max factor RFG
p1289[0...n] Vdc_max controller speed threshold (V/f) / Vdc_max n_thresh
p1290[0...n] Vdc controller proportional gain (V/f)/ Vdc_ctrl Kp
p1291[0...n] Vdc controller integral time (V/f) / Vdc_ctrl Tn
p1292[0...n] Vdc controller rate time (V/f)/Vdc_ctrl t_rate
p1293[0...n] Vdc controller output limit (V/f) / Vdc_ctrl outp_lim
p1295[0...n] Vdc_min controller time threshold (V/f) / Vdc_min t_thresh
p1296[0..n] Vdc_min controller response (kinetic buffering) (V/f / Vdc_min response
p1297[0...n] Vdc_min controller speed threshold (V/f) / Vdc_min n_thresh
p1300[0...n] Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode
p1310[0...n] Voltage boost permanent / V_boost perm
p1311[0...n] Voltage boost at acceleration / V_boost accelerate
p1317[0...n] V/f control diagnostics activation / Uf diagn act
p1318[0\ldots..n] V/f control ramp-up/ramp-down time / Uf t_rmp-up_rmp-dn
p1319[0\ldotsn] V/f control voltage at zero frequency / Uf V at f=0 Hz
p1320[0...n] V/f control programmable characteristic frequency 1/ Uf char f1
p1321[0...n] V/f control programmable characteristic voltage 1/ Vf char U1
p1322[0...n] V/f control programmable characteristic frequency 2 / Vf char f2
p1323[0\ldotsn] V/f control programmable characteristic voltage 2 / Vf char U2
p1324[0...n] V/f control programmable characteristic frequency 3 / Vf char f3
p1325[0..n] V/f control programmable characteristic voltage 3 / Vf char U3
p1326[0...n] V/f control programmable characteristic frequency 4 / Vf char f4
p1327[0...n] V/f control programmable characteristic voltage 4 / Vf char U4
p1335[0...n] Slip compensation, scaling / Slip comp scal
p1336[0...n] Slip compensation limit value / Slip comp lim val
```

p1338[0...n]	V/f mode resonance damping gain / Vf Res_damp gain
p1339[0...n]	V/f mode resonance damping filter time constant / Vf Res_damp T
p1340[0...n]	I_max frequency controller proportional gain / I_max_ctrl Kp
p1341[0...n]	I_max frequency controller integral time / I_max_ctrl Tn
p1345[0...n]	I_max voltage controller proportional gain / __max_V_ctrl Kp
p1346[0...n]	I_max voltage controller integral time / I_max_V_ctrl Tn
p1349[0...n]	V/f mode resonance damping maximum frequency / Vf res_damp F_max
p1350[0...n]	Soft starting / Soft starting
p1358[0...n]	Angular difference, symmetrizing, actual angle / Sym act angle
p1400[0...n]	Velocity control, configuration / v_ctrl config
p1400[0...n]	Speed control configuration / n_ctrl config
p1401[0...n]	Flux control configuration / Flux ctrl config
p1402[0...n]	Closed-loop current control and motor model configuration / I_ctrl config
p1404[0...n]	Encoderless operation changeover velocity / Encoderl op v_chg
p1404[0...n]	Encoderless operation changeover speed / Encoderl op n_chg
p1412[0...n]	Speed setpoint filter, dead time / n_set dead time
p1414[0...n]	Velocity setpoint filter activation / v_set_filt active
p1414[0...n]	Speed setpoint filter activation / n_set_filt act
p1415[0...n]	Velocity setpoint filter 1 type / v_setp_filt 1 typ
p1415[0...n]	Speed setpoint filter 1 type / n_set_filt 1 typ
p1416[0...n]	Velocity setpoint filter 1 time constant/v_set_filt 1 T
p1416[0...n]	Speed setpoint filter 1 time constant/n_set_filt 1 T
p1417[0...n]	Velocity setpoint filter 1 denominator natural frequency / v_set_filt 1 fn _d
p1417[0...n]	Speed setpoint filter 1 denominator natural frequency / n_set_filt 1 fn_d
p1418[0...n]	Velocity setpoint filter 1 denominator damping / v_set_filt 1 D_d
p1418[0...n]	Speed setpoint filter 1 denominator damping / n_set_filt 1 D_d
p1419[0...n]	Velocity setpoint filter 1 numerator natural frequency / v_set_filt 1 fn_n
p1419[0...n]	Speed setpoint filter 1 numerator natural frequency / n_set_filt 1 fn_n
p1420[0...n]	Velocity setpoint filter 1 numerator damping / v_set_filt 1 D_n
p1420[0...n]	Speed setpoint filter 1 numerator damping / n_set_filt 1 D _n
p1421[0...n]	Velocity setpoint filter 2 type / v_setp_filt 2 typ
p1421[0...n]	Speed setpoint filter 2 type / n_set_filt 2 typ
p1422[0...n]	Velocity setpoint filter 2 time constant/v_set_filt 2 T
p1422[0...n]	Speed setpoint filter 2 time constant/n_set_filt 2 T
p1423[0...n]	Velocity setpoint filter 2 denominator natural frequency / v_set_filt 2 fn _d
p1423[0...n]	Speed setpoint filter 2 denominator natural frequency / n_set_filt 2 fn_d
p1424[0...n]	Velocity setpoint filter 2 denominator damping / v_set_filt 2 D_d
p1424[0...n]	Speed setpoint filter 2 denominator damping / n_set_filt 2 D_d
p1425[0...n]	Velocity setpoint filter 2 numerator natural frequency / v_set_filt 2 fn_n
p1425[0...n]	Speed setpoint filter 2 numerator natural frequency / n_set_filt 2 fn _n
p1426[0...n]	Velocity setpoint filter 2 numerator damping / v_set_filt 2 D_n
p1426[0...n]	Speed setpoint filter 2 numerator damping / n_set_filt 2 D_n
p1428[0...n]	Velocity pre-control balancing dead time / n_prectrBal t_dead
p1428[0...n]	Speed pre-control balancing dead time / n_prectrBal t_dead
p1429[0...n]	Velocity pre-control balancing time constant / n_prectr bal T
p1429[0...n]	Speed pre-control balancing time constant / n_prectr bal T
p1433[0...n]	Velocity controller reference model natural frequency / v_ctrl RefMod fn
p1433[0...n]	Speed controller reference model natural frequency / n_ctrl RefMod fn
p1434[0...n]	Velocity controller reference model damping / v_ctrl RefMod D
p1434[0...n]	Speed controller reference model damping / n_ctrl RefMod D
p1435[0...n]	Velocity controller reference model dead time / v_ctrRefMod t_dead
p1435[0...n]	Speed controller reference model dead time / n_ctrRefMod t_dead
p1441[0...n]	Actual velocity smoothing time / v_act T_smooth

p1441[0...n]	Actual speed smoothing time / n_act T_smooth
p1442[0...n]	Speed controller speed actual value smoothing time / n_ctr n_act T_smth
p1452[0...n]	Speed controller speed actual value smoothing time (SLVC) / n_C n_act T_s SLVC
p1456[0...n]	Velocity controller P gain adaptation, lower starting point / v_ctrl AdaptKpLow
p1456[0...n]	Speed controller P gain adaptation lower starting point / n_ctrl AdaptKpLow
p1457[0...n]	Velocity controller P gain adaptation upper starting point / v_ctrl AdaptKp up
p1457[0...n]	Speed controller P gain adaptation upper starting point / n_ctrl AdaptKp up
p1458[0...n]	Adaptation factor, lower / Adapt_factor lower
p1459[0...n]	Adaptation factor, upper / Adapt_factor upper
p1460[0...n]	Velocity controller, P gain adaptation velocity, lower / v_ctrl Kp n lower
p1460[0...n]	Speed controller P gain adaptation speed, lower / n_ctrl Kp n lower
p1461[0...n]	Velocity controller, P gain adaptation velocity, upper / v_ctrl Kp n upper
p1461[0...n]	Speed controller Kp adaptation speed, upper scaling / n _ctrl Kp n upper
p1462[0...n]	Velocity contr. integral act. time adaptation velocity lower / v_ctrl Tn n lower
p1462[0...n]	Speed controller integral time adaptation speed lower / n_ctrl Tn n lower
p1463[0...n]	Velocity contr. integral act. time adaptation velocity upper / v_ctrl Tn n upper
p1463[0...n]	Speed controller Tn adaptation speed, upper scaling / n _ctrl Tn n upper
p1464[0...n]	Velocity controller adaptation velocity, lower / v_ctrl n lower
p1464[0...n]	Speed controller adaptation speed, lower / n_ctrl n lower
p1465[0...n]	Velocity controller adaptation velocity, upper / v_ctrl n upper
p1465[0...n]	Speed controller adaptation speed, upper / n_ctrl n upper
p1470[0...n]	Velocity controller encoderless operation P-gain / v_ctrl SLVC Kp
p1470[0...n]	Speed controller encoderless operation P-gain / n_ctrl SLVC Kp
p1472[0...n]	Velocity controller encoderless operation integral time / v_ctrl SLVC Tn
p1472[0...n]	Speed controller encoderless operation integral time / n_ctrl SLVC Tn
p1487[0...n]	Droop compensation torque scaling / Droop M_comp scal
p1488[0...n]	Droop input source / Droop input source
p1489[0...n]	Droop feedback scaling / Droop scaling
p1494[0...n]	Velocity controller integrator feedback time constant / v_ctr integ_fdbk T
p1494[0...n]	Speed controller integrator feedback time constant / n_ctr integ_fdbk T
p1496[0...n]	Acceleration pre-control scaling / a_prectrl scal
p1498[0...n]	Load mass / Load mass
p1498[0...n]	Load moment of inertia / Load mom of inert
p1499[0...n]	Accelerating for torque control, scaling / a for M_ctrl scal
p1514[0...n]	Supplementary torque 2 scaling / M_suppl 2 scal
p1517[0...n]	Acceleration force smoothing time constant / F_accel T_smooth
p1517[0...n]	Accelerating torque smoothing time constant / M_accel T_smooth
p1520[0...n]	CO: Force limit upper/motoring / F_max upper/mot
p1520[0...n]	CO: Torque limit upper/motoring / M_max upper/mot
p1520[0...n]	CO: Torque limit upper / M_max upper
p1521[0...n]	CO: Force limit lower/regenerative / F_max lower/regen
p1521[0...n]	CO: Torque limit lower/regenerative / M_max lower/regen
p1521[0...n]	CO: Torque limit lower / M_max lower
p1524[0...n]	CO: Force limit upper/motoring scaling / F_max up/mot scal
p1524[0...n]	CO: Torque limit upper/motoring scaling / M_max up/mot scal
p1524[0...n]	CO: Torque limit upper scaling / M_max upper scal
p1525[0...n]	CO: Force limit lower/regenerative scaling / F_max low/gen scal
p1525[0...n]	CO: Torque limit lower/regenerating scaling / M_max low/gen scal
p1525[0...n]	CO: Torque limit lower scaling / M_max lower scal
p1530[0...n]	Power limit motoring / P_max mot
p1531[0...n]	Power limit regenerating / P _max gen
p1532[0...n]	CO: Force offset, force limit / F_max offset
p1532[0...n]	CO: Torque limit offset / M_max offset

p1556[0...n]	Power limit scaling / P_max_scale
p1570[0...n]	CO: Flux setpoint / Flux setpoint
p1572[0...n]	Supplementary flux setpoint / Suppl flux setp
p1573[0...n]	Flux threshold value magnetizing / Flux thresh mag
p1574[0...n]	Voltage reserve dynamic / V_reserve dyn
p1576[0...n]	Flux boost, adaptation speed, lower / Flux boost n lower
p1577[0...n]	Flux boost adaptation speed, upper / Flux boost n upper
p1578[0...n]	Flux reduction flux decrease smoothing time / Flux red dec t_sm
p1579[0...n]	Flux reduction flux build-up smoothing time / Flux red up t_sm
p1580[0...n]	Efficiency optimization / Efficiency opt.
p1581[0...n]	Flux reduction factor / Flux red factor
p1582[0...n]	Flux setpoint smoothing time / Flux setp T_smth
p1584[0...n]	Field weakening operation, flux setpoint smoothing time / Field weak T_smth
p1585[0...n]	Flux actual value, smoothing time / Flux actVal T_smth
p1586[0...n]	Field weakening characteristic, scaling / Field weak scal
p1590[0...n]	Flux controller P gain / Flux controller Kp
p1592[0...n]	Flux controller integral.action time / Flux controller Tn
p1594[0...n]	Field-weakening controller, P gain / Field_ctrl Kp
p1596[0...n]	Field weakening controller integral-action time / Field_ctrl Tn
p1599[0...n]	Flux controller, excitation current difference / Flux ctr I_exc_dif
p1600[0...n]	P flux controller, P gain / P flux ctrl Kp
p1609[0...n]	Current setpoint for I/f operation / I_set I/f oper
p1610[0...n]	Torque setpoint static (SLVC) / M_set static
p1611[0...n]	Supplementary accelerating torque (SLVC) / M_suppl_accel
p1612[0..n]	Current setpoint, open-loop control, encoderless / I_setCtrEncoderl
p1616[0...n]	Current setpoint smoothing time / I_set T_smooth
p1619[0...n]	Setpoint/actual value tracking threshold / SetAct track thrsh
p1620[0...n]	Stator current, minimum / I_stator min
p1621[0...n]	Changeover speed, inner cos phi $=1 / \mathrm{n}$ _chngov cos phi=1
p1622[0..n]	Field-generating current setpoint smoothing time constant / Id_setp T_smth
p1625[0...n]	Excitation current setpoint calibration / I_exc_setp cal
p1628[0...n]	Current model controller, dynamic factor / I_mod_ctr dyn_fact
p1629[0...n]	Current model controller P gain / __mod_ctrl Kp
p1630[0...n]	Current model controller integral time / I_ctrl Tn
p1642[0...n]	Minimum excitation current / Min I_exc
p1643[0...n]	Gain factor, minimum excitation current closed-loop control / Min I_exc Kp
p1653[0...n]	Current setpoint torque-generating smoothing time minimum / Isq_s T_smth min
p1654[0...n]	Curr. setpoint torque-gen. smoothing time field weakening range / Isq_s T_smth FW
p1656[0...n]	Activates current setpoint filter / I_setp_filt act
p1657[0...n]	Current setpoint filter 1 type / I_set_filt 1 Typ
p1658[0...n]	Current setpoint filter 1 denominator natural frequency / I_set_filt 1 fn_n
p1659[0...n]	Current setpoint filter 1 denominator damping / I_set_filt 1 D_n
p1660[0...n]	Current setpoint filter 1 numerator natural frequency / I_set_filt 1 fn _z
p1661[0...n]	Current setpoint filter 1 numerator damping / I_set_filt 1 D_z
p1662[0...n]	Current setpoint filter 2 type / I_set_filt 2 Typ
p1663[0...n]	Current setpoint filter 2 denominator natural frequency / I_set_filt 2 fn_n
p1664[0...n]	Current setpoint filter 2 denominator damping / I_set_filt 2 D_n
p1665[0...n]	Current setpoint filter 2 numerator natural frequency / I_set_filt 2 fn_z
p1666[0...n]	Current setpoint filter 2 numerator damping / I_set_filt 2 D_z
p1667[0...n]	Current setpoint filter 3 type / I_set_filt 3 Typ
p1668[0...n]	Current setpoint filter 3 denominator natural frequency / I_set_filt 3 fn_n
p1669[0...n]	Current setpoint filter 3 denominator damping / I_set_filt 3 D_n
p1670[0...n]	Current setpoint filter 3 numerator natural frequency / I_set_filt 3 fn _z

p1671[0...n]	Current setpoint filter 3 numerator damping / I_set_filt 3 D_z
p1672[0...n]	Current setpoint filter 4 type / I_set_filt 4 Typ
p1673[0...n]	Current setpoint filter 4 denominator natural frequency / I_set_filt 4 fn_n
p1674[0...n]	Current setpoint filter 4 denominator damping / I_set_filt 4 D_n
p1675[0...n]	Current setpoint filter 4 numerator natural frequency / I_set_filt 4 fn_n
p1676[0...n]	Current setpoint filter 4 numerator damping / I_set_filt 4 D _z
p1701[0...n]	Current controller reference model dead time / I_ctrRefMod t_dead
p1702[0...n]	Isd current controller pre-control scaling / Isd_ctr_prectrScal
p1703[0...n]	Isq current controller pre-control scaling / Isq_ctr_prectrScal
p1704[0...n]	Isq current controller pre-control EMF scaling / Isq_ctrl EMF scal
p1705[0...n]	Isq controller setpoint/actual value tracking threshold / Isq ctrl trk thrsh
p1715[0...n]	Current controller P gain / I_ctrl Kp
p1717[0...n]	Current controller integral-action time / I_ctrl Tn
p1726[0...n]	Quadrature arm decoupling, scaling / Transv_decpl scal
p1727[0...n]	Quadrature arm decoupling at voltage limit scaling / TrnsvDecpIVmaxScal
p1740[0...n]	Gain resonance damping for encoderless closed loop control / Gain res_damp
p1744[0...n]	Motor model speed threshold stall detection / MotMod n_thr stall
p1745[0...n]	Motor model error threshold stall detection / MotMod ThreshStall
p1750[0...n]	Motor model configuration / MotMod config
p1752[0...n]	Motor model with encoder changeover velocity / MotMod v_chgov enc
p1752[0...n]	Motor model changeover speed operation with encoder / MotMod n_chgov enc
p1753[0...n]	Motor model changeover speed hysteresis operation with encoder / MotMod n_chgovHysE
p1754[0...n]	Flux angle difference smoothing time / Angle diff T_smth
p1755[0...n]	Motor model changeover velocity encoderless operation / MotMod v_chgSnsorl
p1755[0...n]	Motor model changeover speed encoderless operation / MotMod n_chgSnsorl
p1757[0...n]	Motor model w/o enc. op./cl.-loop controlled stab. controller Kp / MotMod w/o enc Kp
p1758[0...n]	Motor model changeover delay time closed/open-loop control / MotMod t cl_op
p1759[0...n]	Motor model changeover delay time open/closed loop control / MotMod top_cl
p1760[0...n]	Motor model with encoder speed adaptation Kp / MotMod wE n_ada Kp
p1761[0...n]	Motor model with encoder speed adaptation Tn / MotMod wE n_ada Tn
p1764[0...n]	Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp
p1767[0...n]	Motor model without encoder speed adaptation Tn / MotMod woE n_adaTn
p1774[0...n]	Motor model, offset voltage compensation alpha / MotMod offs comp A
p1775[0...n]	Motor model, offset voltage compensation beta / MotMod offs comp B
p1780[0...n]	Motor/converter model adaptation configuration / MotMod adapt conf
p1780[0...n]	Motor model adaptation configuration / MotMod adapt conf
p1781[0...n]	Motor model Rs adaptation integral time / MotMod Rs Tn
r1782[0...n]	Motor model Rs adaptation corrective value / MotMod Rs corr
p1783[0...n]	Motor model Rs adaptation Kp / MotMod Rs Kp
p1785[0...n]	Motor model Lh adaptation Kp / MotMod Lh Kp
p1786[0...n]	Motor model Lh adaptation integral time / MotMod Lh Tn
r1787[0...n]	Motor model Lh adaptation corrective value / MotMod Lh corr
p1795[0...n]	Motor model kT adaptation smoothing time / MotMod kT T_smth
p1795[0...n]	Motor model kT adaptation integral time / MotMod kT Tn
r1797[0...n]	Motor model kT adaptation corrective value / MotMod kT corr
p1800[0...n]	Pulse frequency / Pulse frequency
p1802[0...n]	Modulator mode / Modulator mode
p1803[0...n]	Maximum modulation depth / Modulat depth max
p1804[0...n]	Filter time constant smoothed modulation index / T_filt mod_idxSmth
p1806[0...n]	Filter time constant Vdc correction / T_filt Vdc_corr
p1811[0...n]	Pulse frequency wobbulation amplitude / f_Puls_wob Ampl
p1820[0...n]	Reverse the output phase sequence / Outp_ph_seq rev
p1821[0...n]	Direction / Direction

p1821[0...n]	Dir of rot / Dir of rot
p1840[0...n]	Actual value correction configuration / AVC config
p1845[0...n]	Actual value correction evaluation factor Lsig / ActV_corr FactLsig
p1846[0...n]	Actual value correction damping factor / ActV_corr D_factor
p1952[0...n]	Voltage emulation error final value / V_error final val
p1953[0...n]	Voltage emulation error current offset / V_error I_offset
p2140[0...n]	Hysteresis velocity 2 / v_hysteresis 2
p2140[0...n]	Hysteresis speed 2 / n_hysteresis 2
p2141[0...n]	Velocity threshold value $1 / \mathrm{v}$ _thresh val 1
p2141[0...n]	Speed threshold $1 / \mathrm{n}$ _thresh val 1
p2142[0...n]	Hysteresis velocity 1 / v_hysteresis 1
p2142[0...n]	Hysteresis speed 1 / n_hysteresis 1
p2149[0...n]	Monitoring configuration / Monit config
p2150[0...n]	Hysteresis velocity 3 / v_hysteresis 3
p2150[0...n]	Hysteresis speed 3 / n_hysteresis 3
p2153[0...n]	Velocity actual value filter time constant / v_act_filt T
p2153[0...n]	Speed actual value filter time constant / n_act_filt T
p2155[0...n]	Velocity threshold value $2 / \mathrm{v}$ _thresh val 2
p2155[0...n]	Speed threshold 2 / n_thresh val 2
p2156[0...n]	On delay, comparison value reached / t_on cmpr val rchd
p2161[0...n]	Velocity threshold value $3 / \mathrm{v}$ _thresh val 3
p2161[0...n]	Speed threshold $3 / n$ _thresh val 3
p2162[0...n]	Hysteresis velocity v_act > v_max / Hyst v_act>v_max
p2162[0...n]	Hysteresis speed n_act > n_max / Hyst n_act>n_max
p2163[0...n]	Velocity threshold value 4 / v_thresh val 4
p2163[0...n]	Speed threshold 4 / n_thresh val 4
p2164[0...n]	Hysteresis velocity 4 / v_hysteresis 4
p2164[0...n]	Hysteresis speed 4 / n_hysteresis 4
p2166[0...n]	Switch-off delay v_act = v_set / t_del_off v_i=v_se
p2166[0...n]	Off delay n _act = n_set / t_del_off n - $\mathrm{i}=\mathrm{n}$ _se
p2167[0...n]	Switch-on delay v_act = v_set / t_on v_act=v_set
p2167[0...n]	Switch-on delay n_act = n_set / t_on n_act=n_set
p2174[0...n]	Force threshold value 1 / F_thresh val 1
p2174[0...n]	Torque threshold value 1 / M_thresh val 1
p2175[0...n]	Motor locked, velocity threshold / Mot lock v_thresh
p2175[0...n]	Motor locked speed threshold / Mot lock n_thresh
p2177[0...n]	Motor locked delay time / Mot lock t_del
p2178[0...n]	Motor stalled delay time / Mot stall t_del
p2181[0...n]	Load monitoring response / Load monit resp
p2182[0...n]	Load monitoring velocity threshold 1 / n_thresh 1
p2182[0...n]	Load monitoring speed threshold value $1 / \mathrm{n}$ _thresh 1
p2183[0...n]	Load monitoring velocity threshold 2 / n_thresh 2
p2183[0...n]	Load monitoring speed threshold value 2 / n_thresh 2
p2184[0...n]	Load monitoring velocity threshold 3 /n_thresh 3
p2184[0...n]	Load monitoring speed threshold value 3 / n_thresh 3
p2185[0...n]	Load monitoring force threshold 1, upper / M_thresh 1 upper
p2185[0...n]	Load monitoring torque threshold 1, upper / M_thresh 1 upper
p2186[0...n]	Load monitoring force threshold 1, lower / M_thresh 1 lower
p2186[0...n]	Load monitoring torque threshold 1, lower / M_thresh 1 lower
p2187[0...n]	Load monitoring force threshold 2, upper / M_thresh 2 upper
p2187[0...n]	Load monitoring torque threshold 2, upper / M_thresh 2 upper
p2188[0...n]	Load monitoring force threshold 2, lower / M_thresh 2 lower
p2188[0...n]	Load monitoring torque threshold 2, lower / M_thresh 2 lower

p2189[0...n] Load monitoring force threshold 3, upper / M_thresh 3 upper
p2189[0...n] Load monitoring torque threshold 3, upper / M_thresh 3 upper
p2190[0...n] Load monitoring force threshold 3, lower / M_thresh 3 lower
p2190[0...n] Load monitoring torque threshold 3, lower / M_thresh 3 lower
p2192[0...n] Load monitoring delay time / Load monit t_del
p2194[0...n] Force threshold value 2 / F_thresh val 2
p2194[0...n] Torque threshold value 2 / M_thresh val 2
p2195[0...n] Force utilization switch-off delay / F_util t_off
p2195[0...n] Torque utilization switch-off delay / M_util t_off
p2201[0...n] CO: Technology controller, fixed value 1 / Tec_ctrl fix val 1
p2202[0...n] CO: Technology controller, fixed value 2 / Tec_ctrl fix val 2
p2203[0...n] CO: Technology controller, fixed value 3 / Tec_ctrl fix val 3
p2204[0...n] CO: Technology controller, fixed value 4 / Tec_ctrl fix val 4
p2205[0...n] CO: Technology controller, fixed value 5 / Tec_ctrl fix val 5
p2206[0...n] CO: Technology controller, fixed value $6 /$ Tec_ctrl fix val 6
p2207[0...n] CO: Technology controller, fixed value 7 / Tec_ctrl fix val 7
p2208[0...n] CO: Technology controller, fixed value 8 / Tec_ctrl fix val 8
p2209[0...n] CO: Technology controller, fixed value 9 / Tec_ctrl fix val 9
p2210[0...n] CO: Technology controller, fixed value 10 / Tec_ctrl fix val10
p2211[0...n] CO: Technology controller, fixed value 11 / Tec_ctrl fix val11
p2212[0...n] CO: Technology controller, fixed value 12 / Tec_ctrl fix val12
p2213[0...n] CO: Technology controller, fixed value 13 / Tec_ctrl fix val13
p2214[0...n] CO: Technology controller, fixed value 14 / Tec_ctrl fix val14
p2215[0...n] CO: Technology controller, fixed value 15 / Tec_ctrl fix val15
p2230[0...n] Technology controller motorized potentiometer configuration / Tec_ctr mop config
p2237[0...n] Technology controller motorized potentiometer maximum value / Tec_ctrl mop max
p2238[0...n] Technology controller motorized potentiometer minimum value / Tec_ctrl mop min
p2240[0...n] Technology controller motorized potentiometer starting value / Tec_ctrl mop start
p2247[0...n] Technology controller motorized potentiometer ramp-up time / Tec_ctr mop t_r-up
p2248[0...n] Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown
p2502[0...n] LR encoder assignment / Encoder assignment
p2503[0...n] LR length unit LU per $10 \mathrm{~mm} / \mathrm{LU}$ per 10 mm
p2504[0...n] LR motor/load motor path / Mot/load mot path
p2504[0...n] LR motor/load motor revolutions / Mot/load motor rev
p2505[0...n] LR motor/load load path / Mot/load load path
p2505[0...n] LR motor/load load revolutions / Mot/load load rev
p2506[0...n] LR length unit LU per load path / LU per load path
p2506[0...n] LR length unit LU per load revolution / LU per load rev
p2519[0...n] LR position actual value preprocessing config. DDS changeover / s_act config DDS
p2533[0...n] LR position setpoint filter, time constant / s_set_filt T
p2534[0...n] LR velocity pre-control factor / v_prectrl fact
p2534[0...n] LR speed pre-control factor / n_prectrl fact
p2535[0...n] LR velocity pre-control balancing filter dead time / v_prectrFIt t_dead
p2535[0...n] LR speed pre-control balancing filter dead time / n_prectrFlt t_dead
p2536[0...n] LR velocity pre-control, symmetrizing filter PT1 / n_prectrl filt PT1
p2536[0...n] LR speed pre-control, symmetrizing filter PT1 / n_prectrl filt PT1
p2538[0...n] LR proportional gain / Kp
p2539[0...n] LR integral time / Tn
p2546[0...n] LR dynamic following error monitoring tolerance / s_delta_monit tol
p2567[0...n] LR force pre-control mass / F_prectrl mass
p2567[0...n] LR torque pre-control moment of inertia / M_prectr M_inertia
p2634[0...n] EPOS fixed stop maximum following error / Following err max
p2720[0...n] Load gear configuration / Load gear config

p2721[0...n]	Load gear, rotary absolute gearbox, revolutions, virtual / Abs rot rev
p2722[0...n]	Load gear, position tracking tolerance window / Pos track tol
r2723[0...n]	CO: Load gear absolute value / Load gear abs_val
r2724[0...n]	CO: Load gear position difference / Load gear pos diff
p2900[0....n]	CO: Fixed value 1 [\%]/ Fixed value 1 [\%]
p2901[0...n]	CO: Fixed value 2 [\%]/ Fixed value 2 [\%]
p2930[0...n]	CO: Fixed value F [N] / Fixed value F [N]
p2930[0...n]	CO: Fixed value M Nm$]$ / Fixed value M [Nm]
p3201[0...n]	Excitation current outside the tolerance threshold value / I_exc n Tol thresh
p3202[0...n]	Excitation current outside the tolerance hysteresis / I_exc n Tol hyst
p3203[0...n]	Excitation current outside the tolerance delay time / I_exc n Tol t_del
p3204[0...n]	Flux outside the tolerance threshold value / Flux n tol thresh
p3205[0...n]	Flux outside the tolerance hysteresis / Flux n tol hyst
p3206[0...n]	Flux outside tolerance delay time / Flux n tol t_del
p3207[0...n]	Zero current signal threshold value / I_0_sig thresh
p3208[0...n]	Zero current signal hysteresis / I_0_sig hyst
p3209[0...n]	Zero current signal delay time / _ 0 sig t_del
p3704[0...n]	APC filter activation / APC filter act
p3705[0...n]	APC filter type / APC filter type
p3706[0...n]	APC sub-sampling, filter 2.x / APC sub-samp. 2.x
p3707[0...n]	APC sub-sampling, filter 3.x / APC sub-samp. 3.x
p3708[0...n]	APC velocity actual value smoothing time encoder 2 / APC v_act t_sm 2
p3708[0...n]	APC speed actual value smoothing time encoder $2 /$ APC n_act t_sm 2
p3709[0...n]	APC velocity actual value smoothing time encoder 3 / APC v_act t_sm 3
p3709[0...n]	APC speed actual value smoothing time encoder 3 / APC n_act t_sm 3
p3711[0...n]	APC filter 1.1 denominator natural frequency / APC Filt 1.1 fn_d
p3712[0...n]	APC filter 1.1 denominator damping / APC Filt 1.1 D_d
p3713[0...n]	APC filter 1.1 numerator natural frequency / APC Filt 1 fn_n
p3714[0...n]	APC filter 1.1 numerator damping / APC Filt 1.1 D_n
p3721[0...n]	APC filter 2.1 denominator natural frequency / APC Filt 2.1 fn_d
p3722[0...n]	APC filter 2.1 denominator damping / APC Filt 2.1 D_d
p3723[0...n]	APC filter 2.1 numerator natural frequency / APC Filt 2.1 fn_n
p3724[0...n]	APC filter 2.1 numerator damping / APC Filt 2.1 D_n
p3726[0...n]	APC filter 2.2 denominator natural frequency / APC Filt 2.2 fn_d
p3727[0...n]	APC filter 2.2 denominator damping / APC Filt 2.2 D_d
p3728[0...n]	APC filter 2.2 numerator natural frequency / APC Filt 2.2 fn_n
p3729[0...n]	APC filter 2.2 numerator damping / APC Filt 2.2 D_n
p3731[0...n]	APC filter 3.1 denominator natural frequency / APC Filt 3.1 fn_d
p3732[0...n]	APC filter 3.1 denominator damping / APC Filt 3.1 D_d
p3733[0...n]	APC filter 3.1 numerator natural frequency / APC Filt $3.1 \mathrm{fn} _\mathrm{n}$
p3734[0...n]	APC filter 3.1 numerator damping / APC Filt 3.1 D_n
p3736[0...n]	APC filter 3.2 denominator natural frequency / APC Filt 3.2 fn _d
p3737[0...n]	APC filter 3.2 denominator damping / APC Filt 3.2 D_d
p3738[0...n]	APC filter 3.2 numerator natural frequency / APC Filt 3.2 fn_n
p3739[0...n]	APC filter 3.2 numerator damping / APC Filt 3.2 D_n
p3751[0...n]	APC acceleration sensor high pass time constant / APC accel DT1 T
p3760[0...n]	APC load velocity controller 1 P gain / APC v_load ctr1 Kp
p3760[0...n]	APC load speed controller 1 P gain / APC n_load ctr1 Kp
p3761[0...n]	APC load velocity controller 1 rate time / APC v_load ctr1 Tv
p3761[0...n]	APC load speed controller 1 rate time / APC n_load ctr1 Tv
p3765[0...n]	APC load velocity controller 2 P gain / APC v_load ctr2 Kp
p3765[0...n]	APC load speed controller 2 P gain/ APC n_load ctr2 Kp
p3766[0...n]	APC load velocity controller 2 rate time / APC v_load ctr2 Tv

p3766[0...n]	APC load speed controller 2 rate time / APC n_load ctr2 Tv
p3778[0...n]	APC velocity limit / APC v_limit
p3778[0...n]	APC speed limit / APC n_limit
p3779[0...n]	APC velocity limit monitoring time / APC v_limit t
p3779[0...n]	APC speed limit monitoring time / APC n_limit t
p3800[0...n]	Sync-line-drive activation / Sync act
p3801[0...n]	Sync-line-drive, drive object number / Sync DO_No
p3806[0...n]	Sync-line-drive frequency difference threshold value / Sync f_diff thresh
p3809[0...n]	Sync-line-drive phase setpoint / Sync phase setp
p3811[0...n]	Sync-line-drive frequency limiting / Sync f_lim
p3813[0...n]	Sync-line-drive phase synchronism threshold value / Sync Ph_sync thrsh
p3815[0...n]	Sync-line-drive voltage difference threshold value / Sync V_diff thresh
p3820[0...n]	Friction characteristic, value v0 / Friction v0
p3820[0...n]	Friction characteristic, value n0 / Friction n0
p3821[0...n]	Friction characteristic, value v1 / Friction v1
p3821[0...n]	Friction characteristic, value $\mathrm{n} 1 /$ Friction n 1
p3822[0...n]	Friction characteristic, value v2 / Friction v2
p3822[0...n]	Friction characteristic, value n2 / Friction n2
p3823[0...n]	Friction characteristic, value v3 / Friction v3
p3823[0...n]	Friction characteristic, value n3 / Friction n3
p3824[0...n]	Friction characteristic, value v4/ Friction v4
p3824[0...n]	Friction characteristic, value n 4 / Friction n4
p3825[0...n]	Friction characteristic, value v5 / Friction v5
p3825[0...n]	Friction characteristic, value n5 / Friction n5
p3826[0...n]	Friction characteristic, value v6 / Friction v6
p3826[0...n]	Friction characteristic, value n6 / Friction n6
p3827[0...n]	Friction characteristic, value v7 / Friction v7
p3827[0...n]	Friction characteristic, value n 7 / Friction n 7
p3828[0...n]	Friction characteristic, value v8 / Friction v8
p3828[0...n]	Friction characteristic, value n8 / Friction n8
p3829[0...n]	Friction characteristic, value v9 / Friction v9
p3829[0...n]	Friction characteristic, value n9 / Friction n9
p3830[0...n]	Friction characteristic, value F0 / Friction F0
p3830[0...n]	Friction characteristic, value M0 / Friction M0
p3831[0...n]	Friction characteristic, value F1 / Friction F1
p3831[0...n]	Friction characteristic, value M1 / Friction M1
p3832[0...n]	Friction characteristic, value F2 / Friction F2
p3832[0...n]	Friction characteristic, value M2 / Friction M2
p3833[0...n]	Friction characteristic, value F3 / Friction F3
p3833[0...n]	Friction characteristic, value M3 / Friction M3
p3834[0...n]	Friction characteristic, value F4 / Friction F4
p3834[0...n]	Friction characteristic, value M4 / Friction M4
p3835[0...n]	Friction characteristic, value F5 / Friction F5
p3835[0...n]	Friction characteristic, value M5 / Friction M5
p3836[0...n]	Friction characteristic, value F6 / Friction F6
p3836[0...n]	Friction characteristic, value M6 / Friction M6
p3837[0...n]	Friction characteristic, value F7 / Friction F7
p3837[0...n]	Friction characteristic, value M7 / Friction M7
p3838[0...n]	Friction characteristic, value F8 / Friction F8
p3838[0...n]	Friction characteristic, value M8 / Friction M8
p3839[0...n]	Friction characteristic, value F9 / Friction F9
p3839[0...n]	Friction characteristic, value M9 / Friction M9
p3846[0...n]	Friction characteristic record ramp-up/ramp-down time / Frict rec t_RFG

p3847[0...n]	Friction characteristic record warm-up time / Frict rec t_warm
r3925[0...n]	Identification final display / Ident final_disp
r3927[0...n]	Motor data identification induction motor data determined / MotID ASM dat det
r3928[0...n]	Motor data identification synchronous motor data determined / Motld PEM dat det
r3998[0...n]	First drive commissioning / First drv_comm
p7035[0...n]	Par_circuit circulating current control operating mode / Circ_I mode
p7036[0...n]	Par_circuit circulating current control proportional gain / Circ_I Kp
p7037[0...n]	Par_circuit circulating current control integral time / I_circ Tn
p7038[0...n]	Par_circuit circulating current control limit / I_circ limit

1.3.3 Parameters for Encoder Data Sets (EDS)

p0430[0...n]	Sensor Module configuration / SM config
p0431[0...n]	Angular commutation offset / Ang_com offset
p0432[0...n]	Gearbox factor, encoder path / Grbx_fact enc_path
p0432[0...n]	Gearbox factor, encoder revolutions / Grbx_fact enc_rev
p0433[0...n]	Gearbox factor, motor/load path / Grbx_fact mot_path
p0433[0...n]	Gearbox factor, motor/load revolutions / Grbx_fact mot_rev
p0434[0...n]	Encoder SSI error bit / Enc SSI error bit
p0435[0...n]	Encoder SSI alarm bit / Enc SSI alarm bit
p0436[0...n]	Encoder SSI parity bit / Enc SSI parity bit
p0437[0...n]	Sensor Module configuration extended / SM config ext
p0438[0...n]	Squarewave encoder filter time / Enc t_filt
p0440[0...n]	Copy encoder serial number / Copy enc ser_no
p0441[0...n]	Encoder commissioning serial number part 1 / Enc comm ser_no 1
p0442[0...n]	Encoder commissioning serial number part 2 / Enc comm ser_no 2
p0443[0...n]	Encoder commissioning serial number part 3 / Enc comm ser_no 3
p0444[0...n]	Encoder commissioning serial number part 4 / Enc comm ser_no 4
p0445[0...n]	Encoder commissioning serial number part 5 / Enc comm ser_no 5
p0446[0...n]	Encoder SSI number of bits before the absolute value / Enc SSI bit before
p0447[0...n]	Encoder SSI number of bits absolute value / Enc SSI bit val
p0448[0...n]	Encoder SSI number of bits after the absolute value / Enc SSI bit after
p0449[0...n]	Encoder SSI number of bits, filler bits / Enc SSI fill bits
p0453[0...n]	Rect. signal enc.:nom. meas. time of pulse enc. signal eval. / Enct_MeasSign
p2507[0...n]	LR absolute encoder adjustment status / Abs_enc_adj stat
p2525[0...n]	CO: LR encoder adjustment, offset / Enc_adj offset
p4600[0...n]	Motor temperature sensor 1 sensor type / Temp_sens 1 type
p4601[0...n]	Motor temperature sensor 2 sensor type / Temp_sens 2 type
p4602[0...n]	Motor temperature sensor 3 sensor type / Temp_sens 3 type
p4603[0...n]	Motor temperature sensor 4 sensor type / Temp_sens 4 type
p4680[0...n]	Zero mark monitoring tolerance permissible / ZM_monit tol perm
p4681[0...n]	Zero mark monitoring, tolerance window limit 1 positive / ZM tol lim 1 pos
p4682[0...n]	Zero mark monitoring, tolerance window limit 1 negative / ZM tol lim 1 neg
p4683[0...n]	Zero mark monitoring, tolerance window limit 2 positive / ZM tol lim 2 pos
p4684[0...n]	Zero mark monitoring, tolerance window limit 2 negative / ZM tol lim 2 neg
p4685[0...n]	Changeover, average value generation / Average value mode
p4686[0...n]	Zero mark minimum length / ZM min length

1.3.4 Parameters for Motor Data Sets (MDS)

Note:

References: /FH1/ | SINAMICS S120 Function Manual Drive Functions | |
| :--- | :--- |
| | Section "Data sets" |

The following list contains the motor-data-set-dependent parameters.

Product: SINAMICS S120/S150, Version: 2603400, Language: eng, Type: MDS	
p0131[0...n]	Motor component number / Mot comp_no
p0300[0...n]	Motor type selection / Mot type sel
p0301[0...n]	Motor code number selection / Mot code No. sel
r0302[0...n]	Motor code number of motor with DRIVE-CLiQ / Motor code Mot DLQ
r0303[0...n]	Motor status word from motor with DRIVE-CLiQ / Motor ZSW Drv-CliQ
p0304[0...n]	Rated motor voltage / Mot V_rated
p0305[0...n]	Rated motor current / Mot I_rated
p0306[0...n]	Number of motors connected in parallel / Motor qty
p0307[0...n]	Rated motor power / Mot P_rated
p0308[0...n]	Rated motor power factor / Mot cos_phi_rated
p0309[0...n]	Rated motor efficiency / Mot eta_rated
p0310[0...n]	Rated motor frequency / Mot f_rated
p0311[0...n]	Rated motor velocity / Mot v_rated
p0311[0...n]	Rated motor speed / Mot n_rated
p0312[0...n]	Rated motor force / Mot F_rated
p0312[0...n]	Rated motor torque / Mot M_rated
r0313[0...n]	Motor pole pair number, current (or calculated) / Mot PolePairNo cur
p0314[0...n]	Motor pole pair number / Mot pole pair No.
p0315[0...n]	Motor pole pair width / MotPolePair width
p0316[0...n]	Motor force constant / Mot kT
p0316[0...n]	Motor torque constant / Mot kT
p0317[0...n]	Motor voltage constant / Mot kE
p0318[0...n]	Motor stall current / Mot I_standstill
p0319[0...n]	Motor stall force / Mot F_standstill
p0319[0...n]	Motor stall torque / Mot M_standstill
p0320[0...n]	Motor rated magnetizing current/short-circuit current / Mot I_mag_rated
p0322[0...n]	Motor maximum velocity / Mot v_max
p0322[0...n]	Maximum motor speed / Mot n_max
p0323[0...n]	Maximum motor current / Mot I_max
p0325[0...n]	Motor pole position identification current, 1st phase / Mot PollD I 1st ph
p0326[0...n]	Motor stall force correction factor / Mot F_stall_corr
p0326[0...n]	Motor stall torque correction factor / Mot M_stall_corr
p0327[0...n]	Optimum motor load angle / Mot phi_load opt
p0328[0...n]	Motor reluctance force constant / Mot kT_reluctance
p0328[0...n]	Motor reluctance torque constant / Mot kT_reluctance
p0329[0...n]	Motor pole position identification current / Mot PollD current
r0330[0...n]	Rated motor slip / Mot slip_rated
r0331[0...n]	Current motor magnetizing current/short-circuit current / Mot I_mag_rtd cur
r0332[0...n]	Rated motor power factor / Mot cos_phi_rated
r0333[0...n]	Rated motor force / Mot F_rated
r0334[0...n]	Current motor force constant / Mot kT cur
r0334[0...n]	Current motor-torque constant / Mot kT cur

p0335[0...n] Motor cooling type / Motor cooling type
r0336[0...n] Current rated motor frequency / Mot f_rated cur
r0337[0...n] Rated motor EMF / Mot EMF_rated
p0338[0...n] Motor limit current / Mot I_limit
r0339[0...n] Rated motor voltage / Mot V_rated
p0341[0...n] Motor weight / Mot weight
p0341[0...n] Motor moment of inertia / Mot M_mom of inert
p0342[0...n] Ratio between the total and motor force of inertia / Mot MomInert Ratio
p0342[0...n] Ratio between the total and motor moment of inertia / Mot MomInert Ratio
p0344[0...n] Motor weight (for the thermal motor model) / Mot weight th mod
r0345[0...n] Nominal motor starting time / Mot t_start_rated
p0346[0...n] Motor excitation build-up time / Mot t_excitation
p0347[0...n] Motor de-excitation time / Mot t_de-excitat.
p0348[0...n] Velocity at the start of field weakening Vdc $=600 \mathrm{~V} /$ Mot v_field weaken
p0348[0...n] Speed at the start of field weakening Vdc $=600 \mathrm{~V} /$ Mot n _field weaken
p0350[0...n] Motor stator resistance, cold / Mot R_stator cold
p0352[0...n] Cable resistance / Mot R_cable cold
p0353[0...n] Motor series inductance / Mot L_series
p0354[0...n] Motor rotor resistance cold / damping resistance d axis / Mot R_r cold / RDd
p0355[0...n] Motor damping resistance, q axis / Mot R_damp q
p0356[0...n] Motor stator leakage inductance / Mot L_stator leak.
p0357[0...n] Motor stator inductance, d axis / Mot L_stator d
p0358[0...n] Motor rotor leakage inductance / damping inductance, d axis / Mot L_r leak / LDd
p0359[0...n] Motor damping inductance, q axis / Mot L_damp q
p0360[0...n] Motor magnetizing inductance/magn. inductance, d axis saturated / Mot Lh/Lh d sat
p0361[0...n] Motor magnetizing inductance q axis, saturated / Mot L_magn q sat
p0362[0...n] Saturation characteristic flux 1 / Mot saturat.flux 1
p0363[0...n] Saturation characteristic flux 2 / Mot saturat.flux 2
p0364[0...n] Saturation characteristic flux 3 / Mot saturat.flux 3
p0365[0...n] Saturation characteristic flux 4 / Mot saturat.flux 4
p0366[0...n] Saturation characteristic I_mag 1 / Mot sat. I_mag 1
p0367[0...n] Saturation characteristic I_mag 2 / Mot sat. I_mag 2
p0368[0...n] Saturation characteristic I_mag 3 / Mot sat. I_mag 3
p0369[0...n] Saturation characteristic I_mag 4 / Mot sat. I_mag 4
r0370[0...n] Motor stator resistance, cold / Mot R_stator cold
r0372[0...n] Cable resistance / Mot R_cable
r0373[0...n] Motor rated stator resistance / Mot R_stator rated
r0374[0...n] Motor rotor resistance cold / damping resistance d axis / Mot R_r cold / RDd
r0375[0...n] Motor damping resistance, q axis / Mot R_damp q
r0376[0...n] Rated motor rotor resistance / Mot R_rotor rated
r0377[0...n] Motor leakage inductance, total / Mot L_leak total
r0378[0...n] Motor stator inductance, d axis / Mot L_stator_d
r0380[0...n] Motor damping inductance, d axis / Mot L_damping_d
r0381[0...n] Motor damping inductance, q axis / Mot L_damping_q
r0382[0...n] Motor magnetizing inductance transformed / Lh d axis saturated / Mot L_m tr/Lhd sat
r0383[0...n] Motor magnetizing inductance q axis, saturated / Mot L_magn q sat
r0384[0...n] Motor rotor time constant / damping time constant d axis / Mot T_rotor/T_Dd
r0385[0...n] Motor damping time constant, q axis / Mot T_Dq
r0386[0...n] Motor stator leakage time constant / Mot T_stator leak
r0387[0...n] Motor stator leakage time constant, q axis / Mot T_Sleak /T_Sq
p0389[0...n] Excitation rated no-load current / Exc I_noload_rated
p0390[0...n] Rated excitation current / Exc I_rated
p0391[0...n] Current controller adaptation, starting point KP / I_adapt pt KP

p0392[0...n]	Current controller adaptation, starting point KP adapted / I_adapt pt KP adap
p0393[0...n]	Current controller adaptation p gain adaptation / I_adapt Kp adapt
p0393[0...n]	Current controller adaptation P gain scaling / I_adapt Kp scal
r0395[0...n]	Current stator resistance / R_stator cur
r0396[0...n]	Current rotor resistance / R_rotor cur
p0600[0...n]	Motor temperature sensor for monitoring / Mot temp_sensor
p0601[0...n]	Motor temperature sensor type / Mot_temp_sens type
p0604[0...n]	Motor overtemperature alarm threshold / Mot TempAlrmThresh
p0605[0...n]	Motor overtemperature fault threshold / MotTempFaultThresh
p0606[0...n]	Motor overtemperature timer / Mot TempTimeStage
p0607[0...n]	Temperature sensor fault timer / Sensor fault time
p0610[0...n]	Motor overtemperature response / Mot temp response
p0611[0...n]	I2t motor model thermal time constant / I2t mot_mod T
p0612[0...n]	Thermal motor model configuration / Therm Mot_mod conf
p0615[0...n]	I2t motor model fault threshold / I2t mot_mod thresh
p0616[0...n]	Motor overtemperature alarm threshold 1 / Mot temp alarm 1
p0620[0...n]	Thermal adaptation, stator and rotor resistance / Mot therm_adapt R
p0621[0...n]	Identification stator resistance after restart / Rst_ident Restart
p0622[0...n]	Motor excitation time for Rs_ident after powering up again / t_excit Rs_id
p0624[0...n]	Motor Temperature Offset PT100 / Mot T_offset PT100
p0625[0...n]	Motor ambient temperature / Mot T_ambient
p0626[0...n]	Motor overtemperature, stator core / Mot T_over core
p0627[0...n]	Motor overtemperature, stator winding / Mot T_over stator
p0628[0...n]	Motor overtemperature rotor winding / Mot T_over rotor
r0630[0...n]	Motor temperature model ambient temperature / MotTMod T_amb.
r0631[0...n]	Motor temperature model, stator core temperature / MotTMod T_core
r0632[0...n]	Motor temperature model, stator winding temperature / MotTMod T_copper
r0633[0...n]	Motor temperature model, rotor temperature / MotTMod T_rotor
p0643[0...n]	Overvoltage protection for synchronous motors / Overvolt_protect
p0645[0...n]	Motor kT characteristic kT1 / Mot kT char kT1
p0646[0...n]	Motor kT characteristic kT3 / Mot kT char kT3
p0647[0...n]	Motor kT characteristic kT5 / Mot kT char kT5
p0648[0...n]	Motor kT characteristic kT7 / Mot kT char kT7
p0650[0...n]	Actual motor operating hours / Mot t_oper act
p0651[0...n]	Motor operating hours maintenance interval / Mot t_op maint
p0652[0...n]	Motor stator resistance, scaling / Mot R_stator scal
p0653[0...n]	Motor stator leakage inductance, scaling / Mot L_S_leak scal
p0655[0...n]	Motor magnetizing inductance, d axis saturated scaling / Mot L_m d sat scal
p0656[0...n]	Motor magnetizing inductance, q axis, saturated scaling / Mot L_m q sat scal
p0657[0...n]	Motor damping inductance, d axis scaling / Mot L_damp d scal
p0658[0...n]	Motor damping inductance, q axis scaling / Mot L_damp q scal
p0659[0...n]	Motor damping resistance, d axis scaling / Mot R_damp d scal
p0660[0...n]	Motor damping resistance, q axis scaling / Mot R_damp q scal
p0826[0...n]	Motor changeover, motor number / Mot_chng mot No.
p0827[0...n]	Motor changeover status word bit number / Mot_chg ZSW bitNo.
p1231[0...n]	Armature short-circuit / DC brake configuration / ASC config
p1232[0...n]	DC braking, braking current / DCBRK I_brake
p1233[0...n]	DC braking time / DCBRK time
p1234[0...n]	DC braking, starting velocity / DCBRK v_start
p1234[0...n]	Speed at the start of DC braking / DCBRK n_start
p1236[0...n]	Ext. armature short-cct., contactor feedback signal monit. time / ASC ext t_monit
p1237[0...n]	External armature short-circuit, waiting time when opening / ASC ext t_wait
p1909[0...n]	Motor data identification control word / MotID STW

p1958[0...n] Moving measurement ramp-up/ramp-down time / Mov meas t_r up/dn
p1958[0...n] Rotating measurement ramp-up/ramp-down time / Rot meas t_r up/dn
p1959[0...n] Moving measurement configuration / Mov meas config
p1959[0...n] Rotating measurement configuration / Rot meas config
p1980[0...n] Pole position identification technique / PollD technique
p1981[0...n] Pole position identification maximum distance / PollD distance max
p1982[0...n] Pole position identification selection / PollD selection
p1991[0...n] Motor changeover, angular commutation correction / Ang_com corr
p1993[0...n] Pole position identification current, motion-based / PollD I mot_bas
p1994[0...n] Pole position identification rise time motion-based / PolID T mot_bas
p1995[0...n] Pole position identification gain, motion-based / PollD kp mot_bas
p1996[0...n] Pole position identification, integral time motion-based / PolID Tn mot_bas
p1997[0...n] Pole position identification, smoothing time motion-based / PolID t_sm mot_bas
p1999[0...n] Ang. commutation offset calibr. and pole position ID - scaling / ComOffsCalib scal
p3049[0...n] Motld Speed at start of field weakening identified / v_Fieldweak ident
p3049[0...n] Motld Speed at start of field weakening identified / ident
p3050[0...n] Motorld stator resistance identified / R_stator ident
p3054[0...n] Motld rotor resistance identified / R_rotor ident
p3056[0...n] Motld stator leakage inductance identified / L_stator leak
p3058[0...n] Motld rotor leakage inductance identified / L_rotor leak
p3060[0...n] Motld magnetizing inductance identified / Motld Lh ident

1.3.5 Parameters for Power unit Data Sets (PDS)

Note:

References: /FH1/	SINAMICS S120 Function Manual Drive Functions
Section "Data sets"	

The following list contains the parameters that are dependent on the Power unit Data Sets.

```
Product: SINAMICS S120/S150, Version: 2603400, Language: eng, Type: PDS
p0121[0..n] Power unit component number / PU comp_no
p0124[0...n] Power unit detection via LED / PU detection LED
p0125[0...n] Activate/de-activate power unit components / PU_comp act/de-act
r0126[0...n] Power unit components active/inactive / PU comp act/inact
r0127[0...n] Power unit version EPROM data / PU EPROM version
r0128[0...n] Power unit, firmware version / PU FW version
r0200[0...n] Power unit current code number / PU code no. act
p0201[0...n] Power unit code number / PU code no.
r0203[0...n] Current power unit type / PU current type
r0204[0...n] Power unit hardware properties / PU HW property
p0251[0...n] Operating hours counter power unit fan / PU fan t_oper
p0895[0...n] BI: Activate/de-activate power unit components / PU_comp act/de-act
p3469[0...n] Latch delay time correction, zero crossover detection / t_latch corr PLL
p3902[0...n] Power unit EEPROM Vdc calibration / PU EEPROM Vdc_cal
p7001[0..n] Par_circuit power units enable / PU enable
r7002[0..n] Par_circuit status power units / Status PU
r7020[0\ldotsn] CO: Par_circuit deviation current in phase U / Phase U curr dev
r7021[0...n] CO: Par_circuit deviation current in phase V / Phase V curr dev
r7022[0...n] CO: Par_circuit deviation current in phase W / Phase W curr dev
```

r7030[0...n] CO: Par_circuit DC link voltage deviation / Vdc deviation
p7040[0...n] Par_circuit correction valve lockout time phase U / Comp t_lockout U
p7042[0...n] Par_circuit correction valve lockout time phase V / Comp t_lockout V
p7044[0...n] Par_circuit correction valve lockout time phase W / Comp t_lockout W
r7050[0...n] Par_circuit circulating current phase U / Circ_I_phase U
r7051[0...n] Par_circuit circulating current phase V / Circ_I_phase V
r7052[0...n] Par_circuit circulating current phase W / Circ_I_phase W
r7200[0...n] Par_circuit power unit overload I2T / PU overload I2T
r7201[0...n] Par_circuit power unit temperatures max. inverter / PU temp max inv
r7202[0...n] Par_circuit power unit temperatures max. depletion layer / PU TempMaxDepLayer
r7203[0...n] Par_circuit power unit temperatures max. rectifier / PU temp max rect
r7204[0...n] Par_circuit power unit temperatures air intake / PU temp air intake
r7205[0...n] Par_circuit power unit temperatures electronics / PU temp electr
r7206[0...n] Par_circuit power unit temperatures inverter 1 / PU temp inv 1
r7207[0...n] Par_circuit power unit temperatures inverter 2 / PU temp inv 2
r7208[0...n] Par_circuit power unit temperatures inverter 3 / PU temp inv 3
r7209[0...n] Par_circuit power unit temperatures inverter 4 / PU temp inv 4
r7210[0...n] Par_circuit power unit temperatures inverter 5 / PU temp inv 5
r7211[0...n] Par_circuit power unit temperatures inverter 6 / PU temp inv 6
r7212[0...n] Par_circuit power unit temperatures inverter 1 / PU temp rect 1
r7213[0...n] Par_circuit power unit temperatures inverter 2 / PU temp rect 2
r7214[0...n] Par_circuit power unit temperatures depletion layer 1 / PU temp DepLayer 1
r7215[0...n] Par_circuit power unit temperatures depletion layer 2 / PU temp DepLayer 2
r7216[0...n] Par_circuit power unit temperatures depletion layer 3 / PU temp DepLayer 3
r7217[0...n] Par_circuit power unit temperatures depletion layer 4 / PU temp DepLayer 4
r7218[0...n] Par_circuit power unit temperatures depletion layer 5 / PU temp DepLayer 5
r7219[0...n] Par_circuit power unit temperatures depletion layer 6 / PU temp DepLayer 6
r7220[0...n] Infeed par_circuit absolute current value motoring permissible / INF I_abs mot perm
r7220[0...n] CO: Par_circuit drive output current maximum / Drv I_outp max
r7221[0...n] Infeed par_circuit absolute current regenerating permissible / INF I_absRegenPerm
r7222[0...n] CO: Par_circuit absolute current actual value / I_act abs val
r7223[0...n] CO: Par_circuit phase current actual value phase U / I_phase U act val
r7224[0...n] CO: Par_circuit phase current actual value phase V / I_phase V act val
r7225[0...n] CO: Par_circuit phase current actual value phase W / I_phase W act val
r7226[0...n] CO: Par_circuit phase current actual value phase U offset / I_phase U offset
r7227[0...n] CO: Par_circuit phase current actual value phase V offset / I_phase V offset
r7228[0...n] CO: Par_circuit phase current actual value phase W offset / I_phase W offset
r7229[0...n] CO: Par_circuit phase current actual value sum U, V, W / I_phase sum UVW
r7230[0...n] CO: Par_circuit DC link voltage actual value / Vdc_act
r7231[0...n] CO: Par_circuit phase voltage actual value phase U / V_phase U act val
r7232[0...n] CO: Par_circuit phase voltage actual value phase V / V _phase V act val
r7233[0...n] CO: Par_circuit phase voltage actual value phase W / V_phase W act val
r7240[0...n] Par_circuit gating unit status word 1 / Gating unit ZSW1

Function diagrams

Content			
	2.1	Table of Contents	2-1171
	2.2	Explanations for the function diagrams	2-1182
	2.3	Overviews	2-1187
	2.4	CU310 input/output terminals	2-1211
	2.5	CU320 input/output terminals	2-1215
	2.6	CU_LINK	2-1222
	2.7	CX32 input/output terminals	2-1224
	2.8	PROFIdrive	2-1228
	2.9	Internal control/status words	2-1280
	2.10	Sequence control	2-1293
	2.11	Braking control	2-1296
	2.12	Safety Integrated	2-1301
	2.13	Setpoint channel	2-1318
	2.14	Setpoint channel not activated	2-1328
	2.15	Basic positioner (EPOS)	2-1330
	2.16	Position control	2-1346
	2.17	Encoder evaluation	2-1351
	2.18	Servo control	2-1360
	2.19	Vector control	2-1380
	2.20	Technology functions	2-1408
	2.21	Technology controller	2-1416
	2.22	Signals and monitoring functions	2-1420
	2.23	Diagnostics	2-1428

2.24	Data sets	$2-1434$
2.25	Basic Infeed	$2-1440$
2.26	Smart Infeed	$2-1447$
2.27	Active Infeed	$2-1456$
2.28	Terminal Board 30 (TB30)	$2-1468$
2.29	Communication Board CAN10 (CBC10)	$2-1473$
2.30	Terminal Module 15 for SINAMICS (TM15DI/DO)	$2-1480$
2.31	Terminal Module 31 (TM31)	$2-1484$
2.32	Terminal Module 41 (TM41)	$2-1495$
2.33	Auxiliaries	$2-1509$
2.34	Voltage Sensing Module (VSM)	$2-1512$
2.35	Basic Operator Panel 20 (BOP20)	$2-1516$
2.36	Braking Module external	$2-1518$

2.1 Table of Contents

2.2 Explanations for the function diagrams 2-1182
1020 - Explanation of the symbols (Part 1) 2-1183
1021 - Explanation of the symbols (Part 2) 2-1184
1024 - Explanation of the symbols (Part 3) 2-1185
1025 - Handling BICO technology 2-1186
2.3 Overviews 2-1187
1508 - CU310 input/output terminals 2-1188
1510 - CU320 input/output terminals 2-1189
1512 - CX32 input/output terminals 2-1190
1520 - PROFIdrive 2-1191
1530 - Internal control/status words, data sets 2-1192
1550 - Setpoint channel 2-1193
1580 - Servo control, encoder evaluation (position, speed, temperature) 2-1194
1590 - Servo control speed control and V/f control 2-1195
1610 - Servo control generation of the torque limits 2-1196
1630 - Servo control current control 2-1197
1680 - Vector control, encoder evaluation (position, speed, temperature) 2-1198
1690 - Vector control V/f control 2-1199
1700 - Vector control, speed control and generation of the torque limits 2-1200
1710 - Vector control current control 2-1201
1750 - Monitoring functions, faults, alarms 2-1202
1773 - Basic Infeed 2-1203
1774 - Active Infeed 2-1204
1775 - Smart Infeed 2-1205
1780 - Terminal Module 15 (TM15) 2-1206
1781 - Terminal Module 15 for SINAMICS (TM15DI/DO) 2-1207
1782 - Terminal Module 17 High Feature (TM17 High Feature) 2-1208
1790 - Terminal Board 30 (TB30) 2-1209
1840 - Terminal Module 31 (TM31) 2-1210
2.4 CU310 input/output terminals 2-1211
2020 - Digital inputs, electrically isolated (DI 0 ... DI 3) 2-1212
2030 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) 2-1213
2031 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) 2-1214
2.5 CU320 input/output terminals 2-1215
2120 - Digital inputs, electrically isolated (DI 0 ... DI 3) 2-1216
2121 - Digital inputs, electrically isolated (DI 4 ... DI 7) 2-1217
2130 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) 2-1218
2131 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) 2-1219
2132 - Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13) 2-1220
2133 - Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15) 2-1221
2.6 CU_LINK 2-1222
2211 - Data transfer 2-1223
2.7 CX32 input/output terminals 2-1224
2220 - Digital inputs, electrically isolated (DI 0 ... DI 3) 2-1225
2230 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) 2-1226
2231 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) 2-1227
2.8 PROFIdrive 2-1228
2410 - PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics 2-1230
2420 - Standard telegrams and process data (PZD) 2-1231
2422 - Manufacturer-specific telegrams and process data (PZD) 2-1232
2423 - Manufacturer-specific/free telegrams and process data (PZD) 2-1233
2425 - STW1_BM control word metals sector interconnection (p2038 = 0) 2-1234
2426 - STW2_BM control word metals sector interconnection (p2038 = 0) 2-1235
2427 - E_STW1_BM control word, infeed, metals sector interconnection 2-1236
2428 - ZSW1_BM status word metals sector interconnection (p2038 = 0) 2-1237
2429 - ZSW2_BM status word metals sector interconnection (p2038 = 0) 2-1238
2430 - E_ZSW1_BM status word, infeed, metals sector interconnection 2-1239
2439 - PZD receive signals interconnection profile-specific 2-1240
2440 - PZD receive signals interconnection manufacturer-specific 2-1241
2441 - STW1 control word interconnection (p2038 = 2) 2-1242
2442 - STW1 control word interconnection $($ p2038 = 0) 2-1243
2443 - STW1 control word interconnection (p2038 = 1) 2-1244
2444 - STW2 control word interconnection (p2038 = 0) 2-1245
2445 - STW2 control word interconnection (p2038 = 1) 2-1246
2447 - E_STW1 control word infeed interconnection 2-1247
2449 - PZD send signals interconnection profile-specific 2-1248
2450 - PZD send signals interconnection manufacturer-specific 2-1249
2451 - ZSW1 status word interconnection (p2038 = 2) 2-1250
2452 - ZSW1 status word interconnection (p2038 = 0) 2-1251
2453 - ZSW1 status word interconnection (p2038 = 1) 2-1252
2454 - ZSW2 status word interconnection (p2038 = 0) 2-1253
2455 - ZSW2 status word interconnection (p2038 = 1) 2-1254
2456 - MELDW status word interconnection 2-1255
2457 - E_ZSW1 status word infeed interconnection 2-1256
2462 - PosSTW pos control word interconnection (r0108.4 = 1) 2-1257
2463 - POS_STW1 positioning control word 1 interconnection (r0108.4 = 1) 2-1258
2464 - POS_STW2 positioning control word 2 interconnection (r0108.4 = 1) 2-1259
2466 - POS_ZSW1 positioning status word 1 interconnection (r0108.4 = 1) 2-1260
2467 - POS_ZSW2 positioning status word 2 interconnection (r0108.4 = 1) 2-1261
2468 - IF1 receive telegram, free interconnection via BICO (p0922 = 999) 2-1262
2470 - IF1 send telegram, free interconnection via BICO (p0922 = 999) 2-1263
2472 - IF1 status words, free interconnection 2-1264
2475 - STW1 control word 1 interconnection (r0108.4 = 1) 2-1265
2476 - SATZANW-Pos block selection interconnection (r0108.4 = 1) 2-1266
2479 - ZSW1 status word 1 interconnection (r0108.4 = 1) 2-1267
2480 - MDI_MOD-MDI mode interconnection (r0108.4 = 1) 2-1268
2481 - IF1 receive telegram, free interconnection via BICO (p0922 = 999) 2-1269
2483 - IF1 send telegram, free interconnection via BICO (p0922 = 999) 2-1270
2485 - IF2 receive telegram, free interconnection via BICO (p0922 = 999) 2-1271
2487 - IF2 send telegram, free interconnection via BICO (p0922 = 999) 2-1272
2489 - IF2 status words, free interconnection 2-1273
2491 - IF2 receive telegram, free interconnection via BICO (p0922 = 999) 2-1274
2493 - IF2 send telegram, free interconnection via BICO (p0922 = 999) 2-1275
2495 - CU_STW1 control word 1 Control Unit interconnection 2-1276
2496 - CU_ZSW1 status word 1 Control Unit interconnection 2-1277
2497 - A_DIGITAL interconnection 2-1278
2498 - E DIGITAL interconnection 2-1279
2.9 Internal control/status words 2-1280
2501 - Control word sequence control 2-1281
2503 - Status word sequence control 2-1282
2505 - Control word setpoint channel 2-1283
2520 - Control word speed controller 2-1284
2522 - Status word speed controller 2-1285
2526 - Status word, closed-loop control 2-1286
2530 - Status word, closed-loop current control 2-1287
2534 - Status word monitoring functions 1 2-1288
2536 - Status word monitoring functions 2 2-1289
2537 - Status word monitoring functions 3 2-1290
2546 - Control word, faults/alarms 2-1291
2548 - Status word, faults/alarms 1 and 2 2-1292
2.10 Sequence control 2-1293
2610 - Sequencer 2-1294
2634 - Missing enable signals, line contactor control, logic operation 2-1295
2.11 Braking control 2-1296
2701 - Basic braking control (r0108.14 = 0) 2-1297
2704 - Extended braking control, zero speed detection (r0108.14 = 1) 2-1298
2707 - Extended braking control / open/close brake (r0108.14 = 1) 2-1299
2711 - Extended braking control, signal outputs (r0108.14 = 1) 2-1300
2.12 Safety Integrated 2-1301
2800 - Basic functions, parameter manager 2-1302
2802 - Basic functions, monitoring and faults/alarms 2-1303
2804 - Basic functions, status words 2-1304
2810 - Basic functions, STO (Safe Stop Off)/SS1 (Safe Stop 1) 2-1305
2814 - Basic functions, SBC (Safe Brake Control) 2-1306
2825 - Extended functions, SS1, SS2, SOS, Internal STOP B, C, D, F 2-1307
2840 - Extended functions, control word and status word 2-1308
2846 - Extended functions, parameter manager 2-1309
2847 - Extended functions, TM54F parameter manager 2-1310
2848 - Extended functions, TM54F configuration, F-DI/F-DO test 2-1311
2850 - Extended functions, TM54F (F-DI 0 ... F-DI 4) 2-1312
2851 - Extended functions, TM54F (F-DI 5 ... F-DI 9) 2-1313
2853 - Extended functions, TM54F (F-DO 0 ... F-DO 3, DI 20 ... DI 23) 2-1314
2855 - Extended functions, TM54F control interface 2-1315
2856 - Extended functions, TM54F Safe State selection 2-1316
2857 - Extended functions, TM54F assignment (F-DO 0 ... F-DO 3) 2-1317
2.13 Setpoint channel 2-1318
3010 - Fixed speed setpoints 2-1319
3020 - Motorized potentiometer 2-1320
3030 - Main/supplementary setpoint, setpoint scaling, jogging 2-1321
3040 - Direction limiting and direction reversal 2-1322
3050 - Skip frequency bands and speed limiting 2-1323
3060 - Basic ramp-function generator 2-1324
3070 - Extended ramp-function generator 2-1325
3080 - Ramp-function generator selection, status word, tracking 2-1326
3090 - Dynamic Servo Control (DSC) 2-1327
2.14 Setpoint channel not activated 2-1328
3095 - Generating the speed limits $(r 0108.8=0)$ 2-1329
2.15 Basic positioner (EPOS) 2-1330
3610 - Jog mode (r0108.4 = 1) 2-1331
3612 - Referencing/reference point approach mode (r0108.4 = 1) (p2597 = 0 signal) 2-1332
3614 - Flying referencing mode (r0108.4 = 1) (p2597 = 1-signal) 2-1333
3615 - Traversing blocks, external block change mode (r0108.4 = 1) 2-1334
3616 - Traversing blocks mode (r0108.4 = 1) 2-1335
3617 - Traversing to fixed stop 2-1336
3618 - Direct setpoint input/MDI mode, dynamic values (r0108.4 = 1) 2-1337
3620 - Direct setpoint input/MDI mode (r0108.4 = 1) 2-1338
3625 - Mode control (r0108.4 = 1) 2-1339
3630 - Traversing range limits (r0108.4 = 1) 2-1340
3635 - Interpolator (r0108.4 = 1) 2-1341
3640 - Control word block selection/MDI selection (r0108.4 = 1) 2-1342
3645 - Status word 1 (r0108.3 = 1, r0108.4 = 1) 2-1343
3646 - Status word $2(r 0108.3=1, r 0108.4=1)$ 2-1344
3650 - Status word active traversing block/MDI active (r0108.4 = 1) 2-1345
2.16 Position control 2-1346
4010 - Position actual value preprocessing (r0108.3 = 1) 2-1347
4015 - Position controller (r0108.3 = 1) 2-1348
4020 - Standstill/positioning monitoring (r0108.3 = 1) 2-1349
4025 - Dynamic following error monitoring, cam controllers (r0108.3 = 1) 2-1350
2.17 Encoder evaluation 2-1351
4704 - Position and temperature sensing, encoders 1 ... 3 2-1352
4710 - Speed act. value and pole pos. sens., motor enc. (encoder 1) 2-1353
4711 - Speed actual value sensing, encoder 2, 3 (r0108.7 = 1, APC activated) 2-1354
4715 - Speed actual value and pole pos. sens., motor enc. ASM/SM (encoder 1) 2-1355
4720 - Encoder interface, receive signals, encoders 1 ... 3 2-1356
4730 - Encoder interface, send signals, encoders 1 ... 3 2-1357
4735 - Reference mark search with equivalent zero mark, encoders 1 ... 3 2-1358
4740 - Measuring probe evaluation, measured value memory, encoders 1 ... 3 2-1359
2.18 Servo control 2-1360
5020 - Speed setpoint filter and speed pre-control 2-1361
5030 - Reference model/pre-control balancing/speed limiting 2-1362
5040 - Speed controller with encoder 2-1363
5042 - Speed controller, torque-speed pre-control with encoder (p1402.4 = 1) 2-1364
5050 - Kp_n-/Tn_n adaptation 2-1365
5060 - Torque setpoint, changeover control type 2-1366
5210 - Speed controller without encoder 2-1367
5300 - V/f control for diagnostics 2-1368
5301 - Variable signaling function 2-1369
5490 - Speed control configuration 2-1370
5610 - Torque limiting/reduction/interpolator 2-1371
5620 - Motor/generator torque limit 2-1372
5630 - Upper/lower torque limit 2-1373
5640 - Mode changeover, power/current limiting 2-1374
5650 - Vdc_max controller and Vdc_min controller 2-1375
5710 - Current setpoint filter 2-1376
5714 - Iq and Id controller 2-1377
5722 - Field current / flux specification, flux reduction, flux controller 2-1378
5730 - Interface to the Motor Module (control signals, current actual values) 2-1379
2.19 Vector control 2-1380
6030 - Speed setpoint, droop 2-1381
6031 - Pre-control balancing reference/acceleration model 2-1382
6040 - Speed controller with / without encoder 2-1383
6050 - Kp_n-/Tn_n adaptation 2-1384
6060 - Torque setpoint 2-1385
6220 - Vdc_max controller and Vdc_min controller 2-1386
6300 - V/f characteristic and voltage boost 2-1387
6310 - Resonance damping and slip compensation 2-1388
6320 - Vdc_max controller and Vdc_min controller 2-1389
6490 - Speed control configuration 2-1390
6491 - Flux control configuration 2-1391
6495 - Excitation (FEM, p0300 = 5) 2-1392
6630 - Upper/lower torque limit 2-1393
6640 - Current/power/torque limits 2-1394
6710 - Current setpoint filter 2-1395
6714 - Iq and Id controller 2-1396
6721 - Id setpoint (PEM, p0300 = 2) 2-1397
6722 - Field weakening characteristic, Id setpoint (ASM, p0300 = 1) 2-1398
6723 - Field weakening controller, flux controller (ASM, p0300 = 1) 2-1399
6724 - Field weakening controller (PEM, p0300 = 2) 2-1400
6725 - Flux setpoint, field weakening controller (FEM, p0300 = 5) 2-1401
6726 - Field weakening controller, flux controller (FEM, p0300 = 5) 2-1402
6727 - Current model, excitation current monitoring, control cos phi (FEM, p0300 = 5) 2-1403
6730 - Interface to Motor Module (ASM, p0300 = 1) 2-1404
6731 - Interface to the Motor Module (PEM, p0300 = 2) 2-1405
6732 - Interface to Motor Module (FEM, p0300 = 5) 2-1406
6799 - Display signals 2-1407
2.20 Technology functions 2-1408
7008 - kT estimator 2-1409
7010 - Friction characteristic 2-1410
7012 - Advanced Positioning Control (APC, r0108.7 = 1) 2-1411
7014 - External armature short circuit (EASC, p0300 = 2xx or 4xx) 2-1412
7016 - Internal armature short-circuit (IVP, p0300 = 2xx or 4xx) 2-1413
7017 - DC injection brake (p0300 = 1xx) 2-1414
7020 - Synchronization 2-1415
2.21 Technology controller 2-1416
7950 - Fixed values (r0108.16 = 1) 2-1417
7954 - Motorized potentiometer (r0108.16=1) 2-1418
7958 - Closed-loop control (r0108.16 = 1) 2-1419
2.22 Signals and monitoring functions 2-1420
8010 - Speed signals 2-1421
8012 - Torque signals, motor locked/stalled 2-1422
8013 - Load monitoring (r0108.17 = 1) 2-1423
8014 - Thermal monitoring, power unit 2-1424
8016 - Thermal monitoring motor 2-1425
8017 - Thermal I2t motor model (PEM, p0300 = 2xx) 2-1426
8018 - Separately excited synchronous motor (FEM, p0300 = 5) 2-1427
2.23 Diagnostics 2-1428
8060 - Fault buffer 2-1429
8065 - Alarm buffer 2-1430
8070 - Fault/alarm trigger word (r2129) 2-1431
8075 - Fault/alarm configuration 2-1432
8134 - Measuring sockets 2-1433
2.24 Data sets 2-1434
8560 - Command Data Sets (CDS) 2-1435
8565 - Drive Data Set (DDS) 2-1436
8570 - Encoder data set (EDS) 2-1437
8575 - Motor Data Sets (MDS) 2-1438
8580 - Power unit Data Set, PDS 2-1439
2.25 Basic Infeed 2-1440
8720 - Control word sequence control infeed 2-1441
8726 - Status word sequence control infeed 2-1442
8732 - Sequencer 2-1443
8734 - Missing enable signals, line contactor control 2-1444
8750 - Interface to the Basic Infeed power unit (control signals, actual values) 2-1445
8760 - Signals and monitoring functions (p3400.0 = 0) 2-1446
2.26 Smart Infeed 2-1447
8820 - Control word sequence control infeed 2-1448
8826 - Status word sequence control infeed 2-1449
8828 - Status word infeed 2-1450
8832 - Sequencer 2-1451
8834 - Missing enable signals, line contactor control 2-1452
8850 - Interface to the Smart Infeed (control signals, actual values) 2-1453
8860 - Signals and monitoring functions, line supply voltage monitoring 2-1454
8864 - Signals and monitoring functions, line frequency and Vdc monitoring 2-1455
2.27 Active Infeed 2-1456
8920 - Control word sequence control infeed 2-1457
8926 - Status word sequence control infeed 2-1458
8928 - Status word infeed 2-1459
8932 - Sequencer 2-1460
8934 - Missing enable signals, line contactor control 2-1461
8940 - Controller modulation depth reserve / controller DC link voltage (p3400.0 = 0) 2-1462
8946 - Current pre-control / current controller / gating unit (p3400.0 = 0) 2-1463
8948 - Master/slave (r0108.19 = 1) 2-1464
8950 - Interface to the Active Infeed, control signals, actual values (p3400.0 $=0$) 2-1465
8960 - Signals and monitoring functions, line supply voltage monit. (p3400.0 = 0) 2-1466
8964 - Signals and monitoring functions, line frequency/Vdc monitoring (p3400.0 = 0) 2-1467
2.28 Terminal Board 30 (TB30) 2-1468
9100 - Digital inputs, electrically isolated (DI 0 ... DI 3) 2-1469
9102 - Digital outputs, electrically isolated (DO 0 ... DO 3) 2-1470
9104 - Analog inputs (AI 0 ... AI 1) 2-1471
9106 - Analog outputs (AO 0 ... AO 1) 2-1472
2.29 Communication Board CAN10 (CBC10) 2-1473
9204 - Receive telegram, free PDO mapping (p8744 = 2) 2-1474
9206 - Receive telegram, Predefined Connection Set (p8744=1) 2-1475
9208 - Send telegram, free PDO mapping (p8744 = 2) 2-1476
9210 - Send telegram Predefined Connection Set (p8744 = 1) 2-1477
9220 - Control word CANopen 2-1478
9226 - Status word CANopen 2-1479
2.30 Terminal Module 15 for SINAMICS (TM15DI/DO) 2-1480
9400 - Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 7) 2-1481
9401 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 15) 2-1482
9402 - Digital inputs/outputs, bidirectional (DI/DO 16 ... DI/DO 23) 2-1483
2.31 Terminal Module 31 (TM31) 2-1484
9550 - Digital inputs, electrically isolated (DI 0 ... DI 3) 2-1485
9552 - Digital inputs, electrically isolated (DI 4 ... DI 7) 2-1486
9556 - Digital relay outputs, electrically isolated (DO 0 ... DO 1) 2-1487
9560 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) 2-1488
9562 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) 2-1489
9566 - Analog input 0 (AI 0) 2-1490
9568 - Analog input 1 (AI 1) 2-1491
9572 - Analog outputs (AO 0 ... AO 1) 2-1492
9576 - Temperature evaluation KTY/PTC 2-1493
9577 - Sensor monitoring KTY/PTC 2-1494
2.32 Terminal Module 41 (TM41) 2-1495
9660 - Digital inputs, electrically isolated (DI 0 ... DI 3) 2-1496
9661 - Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 1) 2-1497
9662 - Digital inputs/outputs, bidirectional (DI/DO 2 ... DI/DO 3) 2-1498
9663 - Analog input (AI 0) 2-1499
9674 - Incremental encoder emulation (p4400 = 0) 2-1500
9676 - Incremental encoder emulation (p4400 = 1) 2-1501
9677 - STW1 control word interconnection (p0922 = 3) 2-1502
9678 - Control word sequence control 2-1503
9679 - STW2 control word interconnection (p0922 = 3) 2-1504
9680 - Status word sequence control 2-1505
9681 - ZSW1 status word interconnection (p0922 = 3) 2-1506
9682 - Sequencer 2-1507
9683 - ZSW2 status word interconnection (p0922 = 3) 2-1508
2.33 Auxiliaries 2-1509
9794 - Cooling system, control and feedback signals 2-1510
9795 - Cooling unit sequence control 2-1511
2.34 Voltage Sensing Module (VSM) 2-1512
9880 - Analog inputs (AI 0 ... AI 3) 2-1513
9886 - Temperature evaluation 2-1514
9887 - Sensor monitoring KTY/PTC 2-1515
2.35 Basic Operator Panel 20 (BOP20) 2-1516
9912 - Control word interconnection 2-1517
2.36 Braking Module external 2-1518
9951 - Sequencer (r0108.26 = 1) 2-1519

2.2 Explanations for the function diagrams

Function diagrams
1020 - Explanation of the symbols (Part 1) 2-1183
1021 - Explanation of the symbols (Part 2) 2-1184
1024 - Explanation of the symbols (Part 3) 2-1185
1025 - Handling BICO technology 2-1186

Handling BICO technology

```
Binector: ro723.15 Binectors are binary signals that can be freely interconnected (BO = Binector Output)
T0723.15 They represent a bit of a "BO:" display parameter (e.g. bit }15\mathrm{ from r0723)
Connector:
```

\qquad

``` Connectors are "analog signals" that can be freely interconnected (eg percentage variables, speeds or torques) Connectors are also "CO:" display parameters (CO = Connector Output).
```


Parameterization:

At the signal destination, the required binector or connector is selected using appropriate parameters:
"BI:" parameter for binectors ($\mathrm{BI}=$ Binector Input)
"CI:" parameter for connectors (CI = Connector Input)

Example:

The main setpoint for the speed controller (CI: p1070) should be received from the output of the motorized potentiometer (CO: r1050) and the "jog" command (BI: p1055) from digital input DI 0 (BO: r0722.0, X122.1 terminal) on the CU320.

2.3 Overviews

Function diagrams

1508 - CU310 input/output terminals	2-1188
1510 - CU320 input/output terminals	2-1189
1512 - CX32 input/output terminals	2-1190
1520 - PROFIdrive	2-1191
1530 - Internal control/status words, data sets	2-1192
1550 - Setpoint channel	2-1193
1580 - Servo control, encoder evaluation (position, speed, temperature)	2-1194
1590 - Servo control speed control and V/f control	2-1195
1610 - Servo control generation of the torque limits	2-1196
1630 - Servo control current control	2-1197
1680 - Vector control, encoder evaluation (position, speed, temperature)	2-1198
1690 - Vector control V/f control	2-1199
1700 - Vector control, speed control and generation of the torque limits	2-1200
1710 - Vector control current control	2-1201
1750 - Monitoring functions, faults, alarms	2-1202
1773 - Basic Infeed	2-1203
1774 - Active Infeed	2-1204
1775 - Smart Infeed	2-1205
1780 - Terminal Module 15 (TM15)	2-1206
1781 - Terminal Module 15 for SINAMICS (TM15DI/DO)	2-1207
1782 - Terminal Module 17 High Feature (TM17 High Feature)	2-1208
1790 - Terminal Board 30 (TB30)	2-1209
1840 - Terminal Module 31 (TM31)	2-1210

Function diagrams
Overviews

[^4]

[^5]| PROFIdrive receive／send telegram | |
| :---: | :---: |
| | E＿STW1 |
| 370 | E＿ZSW1 |

PROFIdrive
－Slave address
－Diagnostics
－Interconnection of the
free receive and send
telegrams

［2410］，［2460］，［2470］

Control words Status words	
STW1	ZSW1
\vdots	\vdots
\vdots	\vdots
\vdots	\vdots

［8920］．．．［8928］

［8932］，［8934］ $\begin{gathered}\text { Closed－loop } \\ \text { control }\end{gathered}$
control operation to SERVO／VECTOR

［8060］．．．［8075］

[^6]

[^7]

2.4 CU310 input/output terminals

Function diagrams

2020 - Digital inputs, electrically isolated (DI 0 ... DI 3) 2-1212
2030 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) 2-1213
2031 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) 2-1214

Function diagrams
CU310 input/output terminals

2.5 CU320 input/output terminals

Function diagrams	
2120 - Digital inputs, electrically isolated (DI $0 \ldots$ DI 3)	$2-1216$
2121 - Digital inputs, electrically isolated (DI $4 \ldots$ DI 7)	$2-1217$
2130 - Digital inputs/outputs, bidirectional (DI/DO $8 \ldots$ DI/DO 9)	$2-1218$
2131 - Digital inputs/outputs, bidirectional (DI/DO $10 \ldots$ DI/DO 11)	$2-1219$
2132 - Digital inputs/outputs, bidirectional (DI/DO $12 \ldots$ DI/DO 13)	$2-1220$
2133 - Digital inputs/outputs, bidirectional (DI/DO $14 \ldots$ DI/DO 15)	$2-1221$

(

Function diagrams
CU320 input/output terminals

Function diagrams
CU320 input/output terminals

2.6 CU_LINK

Function diagrams

2211 - Data transfer
2-1223

＜1＞The drive object CU＿LINK only exists for automation systems with integrated SINAMICS functionality（e．g．SINUMERIK NCU）and the corresponding expansion components（e．g．CX32，NX10）． The master functionality is available on the automation system，the slave functionality is available on the expansion components．
＜2＞p8800：CU＿LINK address．
Address of the CX32 resp．NX10／15，representing the DO CU LINK．
Address of the CX32 resp．NX10 The address correlates with the DRIVE－CliQ port of the CU connected to the CX／NX configured．
The address correlates with the DRIVE－CliQ po
Value range：See p0918（PROFIBUS address）
Only available within the unit，not visible in the STARTER，can be read，for example，through acyclic communication with DPV1 services．

1	2	3	4	5	6	7	8
DO：CU＿LINK，CU＿CX32					fp＿2211＿51＿eng．vsd	Function diagram	－2211－
CU＿LINK－Data transfer					23．06．08 V02．06．01	SINAMICS	

2.7 CX32 input/output terminals

Function diagrams

2220 - Digital inputs, electrically isolated (DI $0 \ldots$... 3)	$2-1225$
2230 - Digital inputs/outputs, bidirectional (DI/DO $8 \ldots$ DI/DO 9)	$2-1226$
2231 - Digital inputs/outputs, bidirectional (DI/DO $10 \ldots$ DI/DO 11)	$2-1227$

Function diagrams
CX32 input／output terminals

$2.8 \quad$ PROFIdrive

Function diagrams

2410 - PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics	2-1230
2420 - Standard telegrams and process data (PZD)	2-1231
2422 - Manufacturer-specific telegrams and process data (PZD)	2-1232
2423 - Manufacturer-specific/free telegrams and process data (PZD)	2-1233
2425 - STW1_BM control word metals sector interconnection (p2038 = 0)	2-1234
2426 - STW2_BM control word metals sector interconnection (p2038 = 0)	2-1235
2427 - E_STW1_BM control word, infeed, metals sector interconnection	2-1236
2428 - ZSW1_BM status word metals sector interconnection (p2038 = 0)	2-1237
2429 - ZSW2_BM status word metals sector interconnection (p2038 = 0)	2-1238
2430 - E_ZSW1_BM status word, infeed, metals sector interconnection	2-1239
2439 - PZD receive signals interconnection profile-specific	2-1240
2440 - PZD receive signals interconnection manufacturer-specific	2-1241
2441 - STW1 control word interconnection (p2038 = 2)	2-1242
2442 - STW1 control word interconnection (p2038 = 0)	2-1243
2443 - STW1 control word interconnection (p2038 = 1)	2-1244
2444 - STW2 control word interconnection (p2038 = 0)	2-1245
2445 - STW2 control word interconnection (p2038 = 1)	2-1246
2447 - E_STW1 control word infeed interconnection	2-1247
2449 - PZD send signals interconnection profile-specific	2-1248
2450 - PZD send signals interconnection manufacturer-specific	2-1249
2451 - ZSW1 status word interconnection (p2038 = 2)	2-1250
2452 - ZSW1 status word interconnection (p2038 = 0)	2-1251
2453 - ZSW1 status word interconnection (p2038 = 1)	2-1252
2454 - ZSW2 status word interconnection (p2038 = 0)	2-1253
2455 - ZSW2 status word interconnection (p2038 = 1)	2-1254
2456 - MELDW status word interconnection	2-1255
2457 - E_ZSW1 status word infeed interconnection	2-1256

2462 - PosSTW pos control word interconnection (r0108.4 = 1)	2-1257
2463 - POS_STW1 positioning control word 1 interconnection (r0108.4 = 1)	2-1258
2464 - POS_STW2 positioning control word 2 interconnection (r0108.4 = 1)	2-1259
2466 - POS_ZSW1 positioning status word 1 interconnection (r0108.4 = 1)	2-1260
2467 - POS_ZSW2 positioning status word 2 interconnection (r0108.4 = 1)	2-1261
2468 - IF1 receive telegram, free interconnection via BICO (p0922 = 999)	2-1262
2470 - IF1 send telegram, free interconnection via BICO (p0922 = 999)	2-1263
2472 - IF1 status words, free interconnection	2-1264
2475 - STW1 control word 1 interconnection (r0108.4 = 1)	2-1265
2476 - SATZANW-Pos block selection interconnection (r0108.4 = 1)	2-1266
2479 - ZSW1 status word 1 interconnection (r0108.4 = 1)	2-1267
2480 - MDI_MOD-MDI mode interconnection (r0108.4 = 1)	2-1268
2481 - IF1 receive telegram, free interconnection via BICO (p0922 = 999)	2-1269
2483 - IF1 send telegram, free interconnection via BICO (p0922 = 999)	2-1270
2485 - IF2 receive telegram, free interconnection via BICO (p0922 = 999)	2-1271
2487 - IF2 send telegram, free interconnection via BICO (p0922 = 999)	2-1272
2489 - IF2 status words, free interconnection	2-1273
2491 - IF2 receive telegram, free interconnection via BICO (p0922 = 999)	2-1274
2493 - IF2 send telegram, free interconnection via BICO (p0922 = 999)	2-1275
2495 - CU_STW1 control word 1 Control Unit interconnection	2-1276
2496 - CU_ZSW1 status word 1 Control Unit interconnection	2-1277
2497 - A_DIGITAL interconnection	2-1278
2498 - E_DIGITAL interconnection	2-1279

＜1＞Depending on the drive object，only specific telegrams can be used．
＜2＞If p0922 $=999$ is changed to another value，the telegram is automatically assigned as specified in［2420］－［2423］．
If $\mathrm{p} 0922 \neq 999$ is changed to p0922＝999，the＂old＂telegram assignment is maintained as specified in［2420］－［2423］． p2037 $=2$ should be set if STW1 is not transferred with PZD1 as specified in the PROFIdrive profile．
＜4＞The maximum number of PZD words depends on the drive object type．
＜5＞Only for S120／S150
＜6＞Freely interconn

Signal targets for STW1＿BM					＜1＞
Signal	Meaning	Interconnection parameters	［Function diagram］ internal control word	［Function diagram］ signal target	Inverted
STW1．0	$\mathcal{S}=\mathrm{ON}$（pulses can be enabled） $0=0$ OF1（braking with ramp－function generator，then pulse cancellation and ready－to－power－up）	p0840［0］$=$ r2090．0	［2501．3］	［2610］	－
STW1．1	$1=$ No OFF2（enable is possible） $0=$ OFF2（immediate pulse cancellation and power－on inhibit）	p0844［0］＝r2090． 1	［2501．3］	［2610］	－
STW1．2	1 ＝No OFF3（enable possible） $0=$ OFF3（braking with the OFF3 ramp p1135，then pulse cancellation and power－on inhibit）	p0848［0］$=$ r2090． 2	［2501．3］	［2610］	－
STW1．3	$\begin{aligned} & 1=\text { Enable operation (pulses can be enabled) } \\ & 0=\text { Inhibitit operation (cancel pulses) } \end{aligned}$	p2816［0］＝ 20090.3	［2501．3］	［2634．3］	－
STW1．4	$\begin{aligned} & 1=\text { Operating condition (the ramp-function generator can be enabled) } \\ & 0=\text { inhibit ramp-function generator (set the ramp-function generator output to zero) } \end{aligned}$	p1140［0］＝ 20090.4	［2501．3］	［3060］［3070］［3080］	－
STW1．5	1 ＝Enable the ramp－function generator $0=$ stop the ramp－function generator（freeze the ramp－function generator output）	p1141［0］$=$ r2090．5	［2501．3］	［3060］［3070］	－
STW1．6	$\begin{aligned} & 1=\text { Enable setpoint } \\ & 0=\text { inhibit setpoint (set the ramp-function generator input to zero) } \end{aligned}$	p1142［0］$=$ r2090．6	［2501．3］	［3060］［3070］［3080］	－
STW1．7	$\Lambda=$ Acknowledge faults	$\mathrm{p} 2103[0]=\mathrm{r} 2090.7$	［2546．1］	［8060］	－
STW1．8	Reserved	－	－	－	－
STW1．9	Reserved	－	－	－	－
STW1．10	1 ＝Control via PLC＜2＞	p0854［0］$=12090.10$	［2501．3］	［2501］	－
STW1．11	Reserved	－	－	－	－
STW1．12	Reserved	－	－	－	－
STW1．13	Reserved	－	－	－	－
STW1．14	Reserved	－	－	－	－
STW1．15	Reserved	－	－	－	－

＜1＞Used in telegrams 220.
＜2＞STW1．10 must be set to ensure that the drive object accepts the process data（PZD）．

1	2	3	4	5	6	7	8
DO：SERVO，VECTOR					fp＿2425＿54＿eng．vsd	Function diagram	－ 2425 －
PROFIdrive－STW1＿BM－control word metal industry interconnection					18．07．08 V02．06．01	S120／S150／G130／G150	

Signal sources for ZSW2_BM					
Signal	Meaning	Interconnection parameters	[Function diagram] internal status word	[Function diagram] signal source	Inverted
ZSW2.0	Reserved	-	-	-	-
ZSW2.1	Reserved	-	-	-	-
ZSW2. 2	Reserved	-	-	-	-
ZSW2.3	Reserved	-	-	-	-
ZSW2.4	Reserved	-	-	-	-
ZSW2.5	1 = Alarm class bit 0	p2081[5] = r2139.11	-	[2548]	-
zSW2.6	1 = Alarm class bit 1	p2081[6] = 2139.12	-	[2548]	-
ZSW2.7	Reserved	-	-	-	-
zSW2.8	Reserved	-	-	-	-
ZSW2.9	1 = Speed setpoint controll activ <2>	p2081[9] $=$ r1407.11	-	-	-
ZSW2. 10	1 = Upper torque limit <2>	p2081[10] = r1407.8	-	-	-
ZSW2.11	1 = Lower torque limit <2>	p2081[11] = r1407.9	-	-	-
zSW2. 12	Reserved	-	-	-	-
zSW2. 13	SS1_ACTIVE	p2081[13] = r9773.2	-	-	-
ZSW2.14	POWER-REMOVED	p2081[14] = r9773.1	-	-	-
ZSW2.15	Controller slave sign-of-life Toggle bit	p2081[15] $=$ r2093.15	-	-	-

<1> Used in telegrams 220.
<1> Used in telegrams 22.
$<2>$ Not for VECTOR V/f.

<1> When selecting a standard telegram or a manufacturer-specific telegram via p0922, these interconnection parameters of the command data set CDS0 are automatically set.
<2> Data type according to to the PROFIdrive profile: I16 $=$ Integer16, I32 $=$ Integer32, U16 $=$ Unsigned16, U32 $=$ Unsigned 32.
$<3>$ Only for SINAMICS S120.

<1> Data type according to the PROFIdrive profile: $\mathrm{I} 16=\operatorname{Integer} 16, \mathrm{I} 32=\operatorname{Integer32,~U16}=$ Unsigned16, U32 $=$ Unsigned32
<2> Only for SINAMICS S120.

1	2	3	4	5	6	7	8
DO: A_INF, B_INF, S_INF, SERVO, VECTOR					fp_2449_54_eng.vsd	Function diagram	- 2449 -
PROFldrive - PZD send signals connection of profile-specific					02.07.08 V02.06.01	S120/S150/G130/G150	

Signal targets for SATZANW (positioning mode, r0108.4 = 1) <1>									Refer to [1020.7]	
Signal	Meaning			Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target		Inverted		
SATZANW. 0	1 = Block selection, bit 0			$\mathrm{p} 2625=\mathrm{r} 2091.0$	-			-		
SATZANW. 1	1 = Block selection, bit 1			$\mathrm{p} 2626=\mathrm{r} 2091.1$	-			-		
SATZANW. 2	1 = Block selection, bit 2			p2627 = r2091. 2	-			-		
SATZANW. 3	1 = Block selection, bit 3			p 2628 = 2091.3	-			-		
SATZANW. 4	1 = Block selection, bit 4			p2629 = r2091.4	-			-		
SATZANW. 5	1 = Block selection, bit 5			$\mathrm{p} 2630=\mathrm{r} 2091.5$	-	[36		-		
SATZANW. 6	Reserved			-	-			-		
SATZANW. 7	Reserved			-	-			-		
SATZANW. 8	Reserved			-	-			-		
SATZANW. 9	Reserved			-	-			-		
SATZANW. 10	Reserved			-	-			-		
SATZANW. 11	Reserved			-	-			-		
SATZANW. 12	Reserved			-	-			-		
SATZANW. 13	Reserved			-	-	-		-		
SATZANW. 14	Reserved			-	-	-		-		
SATZANW. 15	1 = Activate MDI 0 = De-activate MDI			p2647 $=$ r2091.15	-			-		
<1> Used in telegrams 7, 9, 110.										
1	2	3	4	5	6			7		8
DO: SERVO, VECTOR					fp_2476_55_eng.vsd		Function diagram			2476
PROFIdrive - SATZANW-Block Selection interconnection (r0108.4 = 1)					30.09.08 V	02.06.01	SINA	MICS S	0/S150	2476

Signal targets for MDI_MOD (positioning mode, r0108.4 = 1)								<1> Inverted
Signal	Meaning				Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	
MDI_MOD. 0	Reserved				p2648 = 20094.0	-	-	-
MDI_MOD. 1	$0=$ Absolute positioning for modulo axis, along the shortest path	1 = Absolute positioning for modulo axis, in positive direction	2 = Absolute positioning for modulo axis, in negative direction	3 = Absolute positioning for modulo axis, along the shortest path	p2651 $=$ r2094.1	-	-	-
MDI_MOD. 2					p2652 $=$ r2094.2	-	-	-
MDI_MOD. 3	Reserved				-	-	-	-
MDI_MOD. 4	Reserved				-	-	-	-
MDI_MOD. 5	Reserved				-	-	-	-
MDI_MOD. 6	Reserved				-	-	-	-
MDI_MOD. 7	Reserved				-	-	-	-
MDI_MOD. 8	Reserved				-	-	-	-
MDI_MOD. 9	Reserved				-	-	-	-
MDI_MOD. 10	Reserved				-	-	-	-
MDI_MOD. 11	Reserved				-	-	-	-
MDI_MOD. 12	Reserved				-	-	-	-
MDI_MOD. 13	Reserved				-	-	-	-
MDI_MOD. 14	Reserved				-	-	-	-
MDI_MOD. 15	Reserved				-	-	-	-

＜1＞To comply with the PROFIdrive profile，receive word 1 for $A _I N F, B_{-}$INF and S＿INF must be used as control word（E＿STW1）（due to bit 10 ＂control requested＂）．
$<2>$ Using the two connector－binector converters，two of the PZD receive words 3 to 5 can be converted into binectors for continued interconnection．
＜3＞The following representation applies for words： 4000 hex $=100 \%$ ．
The reference variables p200x apply for the ongoing interconnection（ 100%－＞p200x）．

The following applies for temperature values： $100^{\circ} \mathrm{C}->100 \%=4000$ hex； $0^{\circ} \mathrm{C}->0 \%$ ．
1
1

$<1>$ In order to maintain the PROFIdrive profile, send word 1 must be used as status word 1 (E_ZSW1) for A_INF, B_INF and S_INF
<2> Using the binector/connector converters at [2472], bits of 4 send words can be interconnected with any binectors
<3> The following representation applies for words: 4000 hex $=100 \%$.
The reference variables p200x apply for the ongoing interconnection (100%-> p200x).
The following aplies for 20 mperature values: $100^{\circ} \mathrm{C}>100 \%=4000 \mathrm{hex} ; 0^{\circ} \mathrm{C}>0 \%$.
<5> Valid for A INF, B INF, S INF.

1	2	3	4	5	6	7	8
DO: A_INF, B_INF, CU_G, CU_S, S_INF, TB30, TM15DI_DO, TM31					fp_2483_54_eng.vsd	Function diagram	- 2483 -
PROFIdrive - IF1 send telegram, free interconnection via BICO (p0922 = 999)					06.12.07 V02.06.01	S120/S150/G130/G150	

＜1＞In order to maintain the PROFIdrive profile，receive word 1 must be used as control word（STW1）（due to bit 10 ＂control requested＂）
＜2＞Using the connector－binector converters，the bits can be extracted from two of the PZD receive words 5 to 16 and used as binectors．
＜3＞The following representation applies for words： 4000 hex $=100 \%$ for double words 400000000 hex $=100 \%$ ．
The reference variables p880x apply for the ongoing interconnection（ 100%－＞p880x）．
＜4＞The number of PZD receive words depends on the drive object type．
＜5＞The connector－binector converter only converts the lower 16 bits irrespective of the input variable．

1	2	3	4	5	6	7	8
DO：SERVO，VECTOR					fp＿2485＿54＿eng．vsd	Function diagram	－ 2485 －
PROFIdrive－IF2 receive telegram，free interconnection via BICO（p0922＝999）					06．12．07 V02．06．01	S120／S150／G130／	

<1> To comply with the PROFIdrive profile, send word 1 must be used as status word 1 (ZSW1), not as DWORD.
<2> Every PZD word can be assigned a word or a double word. Only one of the 2
interconnection parameters p8851 or p8861 may have a value $\neq 0$ for a PZD word.
Physical word and double word values are inserted in the telegram as referenced
variables. p880x apply as reference variables (telegram contents $=4000$ hex or 4000
variables. p880x apply as reference variables (telegram contents $=4000 \mathrm{hex}$ or
0000 hex in the case of double words, if the input variable has the value p880x)
The following applies for temperature values: $100^{\circ} \mathrm{C} \rightarrow 100 \%=4000$ hex; $0^{\circ} \mathrm{C} \rightarrow 0 \%$
$=40000000$ hex.
<4> The number of PZD send words depends on the drive object type.

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR					fp_2487_54_eng.vsd	Function diagram	- 2487 -
PROFIdrive - IF2 send telegram, free interconnection via BICO (p0922 = 999)					06.12.07 V02.06.01	S120/S150/G130/G	

（ 1 To comply with the PROFIdrive profile，receive word 1 must be used as control word（E＿STW1）（due to bit 10 ＂control requested＂）．
＜2＞Using the two connector－binector converters，two of the PZD receive words 3 to 5 can be converted into binectors for continued interconnection．
＜3＞The following representation applies for words： 4000 hex $=100 \%$ ．
The reference variables p880x apply for the ongoing interconnection（ 100%－＞p880x）．
The following applies for temperature values： $100^{\circ} \mathrm{C} \rightarrow 100 \%=4000 \mathrm{hex} ; 0^{\circ} \mathrm{C} \rightarrow 0 \%$ ．
＜4＞B INF and S INF only for S120．

1	2	3	4	5	6	7	8
DO：A＿INF，B＿INF，S＿INF					fp＿2491＿55＿eng．vsd	Function diagram	－ 2491 －
PROFIdrive－IF2 receive telegram，free interconnection via BICO（p0922＝999）					14．04．08 V02．06．01	SINAMICS S120／S150	

PROFIBUS
$<1>$ In order to maintain the PROFIdrive profile，send word 1 must be used as status word 1 （E＿ZSW1）．
＜2＞Using the binector／connector converters at［2472］，bits of 4 send words can be interconnected with any binectors．
＜3＞The following representation applies for words： 4000 hex $=100 \%$ ．
The reference variables p880x apply for the ongoing interconnection（ 100%－＞p880x）．
The following applies for temperature values： $100^{\circ} \mathrm{C} \rightarrow 100 \%=4000 \mathrm{hex} \cdot 0^{\circ} \mathrm{C} \rightarrow 0 \%$ ．
＜4＞B INF und S INF only for S120

1	2	3	4	5	6	
DO：A＿INF，B＿INF，S＿INF		6				
PROFIdrive－IF2 send telegram，free interconnection via BICO（p0922＝999）	fp＿2493＿55＿eng．vsd	Function diagram				

	Signal sources for CU＿ZSW1＜1＞									PROFIdrive sampling time Refer to［1020．7］	
	Signal	Meaning			Interconnection parameters	［Function diagram］ Internal status word	［Function signal s	iagram］ urce	Inverted		
	CU＿ZSW1．0	Reserved			－	－	－		－		
	CU＿ZSW1．1	Reserved			－	－	－		－		
	CU＿ZSW1．2	Reserved			－	－	－		－		
	CU＿ZSW1．3	1 ＝Fault present			$\mathrm{p} 2081[3]=\mathrm{r} 2139.3$	－	－		－		
	CU＿ZSW1．4	Reserved			－	－	－		－		
	CU＿ZSW1．5	Reserved			－	－			－		
$\overrightarrow{7}$	CU＿ZSW1．6	1 ＝Not ready to be powered－up			p2081［6］＝r0899．0	－	－		\checkmark		
	CU＿ZSW1．7	1 ＝Alarm present			$\mathrm{p} 2081[7]=\mathrm{r} 2139.7$	－	－		－		
＋	CU＿ZSW1．8	Synchronization（SYNC）			p2081［8］＝r0899．8	－	－		－		
	CU＿ZSW1．9	1 ＝No alarm present			p2081［9］＝r3114．9	－	－		\checkmark		
	CU＿ZSW1．10	1 ＝No fault present			p2081［10］$=$ r3114．10	－	－		\checkmark		
	CU＿ZSW1．11	1 ＝No safety message present			p2081［11］$=$ r3114．11	－	－		\checkmark		
	CU＿ZSW1．12	Slave sign－of－life bit 0			Implicitly interconnected						
	CU＿ZSW1．13	Slave sign－of－life bit 1									
	CU＿ZSW1．14	Slave sign－of－life bit 2									
	Cu＿ZSW1．15	Slave sign－of－life bit 3									
＜1＞Used in telegrams 390， 391 and 392.											
	1	2	3	4	5	6			7		8
	DO：CU＿G，CU＿S					fp＿2496＿54	eng．vsd	Func	on dia		－ 2496 －
	PROFIdrive－CU＿ZSW1 status word 1 Control Unit interconnection					26．11．08	2．06．01	S120	S150／G	30／G150	

2.9 Internal control/status words

Function diagrams	
2501 - Control word sequence control	2-1281
2503 - Status word sequence control	2-1282
2505 - Control word setpoint channel	2-1283
2520 - Control word speed controller	2-1284
2522 - Status word speed controller	2-1285
2526 - Status word, closed-loop control	2-1286
2530 - Status word, closed-loop current control	2-1287
2534 - Status word monitoring functions 1	2-1288
2536 - Status word monitoring functions 2	2-1289
2537 - Status word monitoring functions 3	2-1290
2546 - Control word, faults/alarms	2-1291
2548 - Status word, faults/alarms 1 and 2	2-1292

＜1＞Only relevant if the function module＂extended signa

1	2	3	4
DO：SERVO，VECTOR			
Internal control／status words－Status word，monitoring functions 2			

2.10 Sequence control

Function diagrams

2610 - Sequencer	$2-1294$
2634 - Missing enable signals, line contactor control, logic operation	$2-1295$

2.11 Braking control

Function diagrams	
2701 - Basic braking control $(r 0108.14=0)$	$2-1297$
2704 - Extended braking control, zero speed detection $(r 0108.14=1)$	$2-1298$
$2707-$ Extended braking control / open/close brake $(r 0108.14=1)$	$2-1299$
2711 - Extended braking control, signal outputs $(r 0108.14=1)$	$2-1300$

<1> Shutdown threshold of the standstill detection. In this case (e.g. when using a brake), another criterion than the speed actual value can be selected to clear the pulses. Otherwise, we recommend to keep the factory setting
<2> For p1276 $=300.000 \mathrm{~s}$, the timer is de-activated, i.e. the timer output is always 0 . Note: When operating a motor with a brake which must not be applied while the motor is rotating, the monitoring time of both timers motor with a brake wh
<3> For operation without brake, p1224[0...3] must be 0 (factory setting) in order to avoid undesirable interaction with the sequence control
<4> The internal signal comprises signals that lead to OFF1 or OFF3, e.g. BICO or fault response.
<5> Only for SINAMICS S120.

1	2	3	4	5	6	6
DO: SERVO, VECTOR						
Braking control - Extended braking control, zero-speed detection (r0108.14 = 1)	fp_2704_54_eng.vsd	Function diagram				

2.12 Safety Integrated

Function diagrams	$2-1302$
2800 - Basic functions, parameter manager	$2-1303$
2802 - Basic functions, monitoring and faults/alarms	$2-1304$
2804 - Basic functions, status words	$2-1305$
2810 - Basic functions, STO (Safe Stop Off)/SS1 (Safe Stop 1)	$2-1306$
2814 - Basic functions, SBC (Safe Brake Control)	$2-1307$
2825 - Extended functions, SS1, SS2, SOS, Internal STOP B, C, D, F	$2-1308$
2840 - Extended functions, control word and status word	$2-1309$
2846 - Extended functions, parameter manager	$2-1310$
2847 - Extended functions, TM54F parameter manager	$2-1311$
2848 - Extended functions, TM54F configuration, F-DI/F-DO test	$2-1312$
2850 - Extended functions, TM54F (F-DI 0 ... F-DI 4)	$2-1313$
2851 - Extended functions, TM54F (F-DI 5 ... F-DI 9)	$2-1314$
2853 - Extended functions, TM54F (F-DO 0 ... F-DO 3, DI 20 ... DI 23)	$2-1315$
$2855 ~-~ E x t e n d e d ~ f u n c t i o n s, ~ T M 54 F ~ c o n t r o l ~ i n t e r f a c e ~$	$2-1316$
2856 - Extended functions, TM54F Safe State selection	$2-1317$
2857 - Extended functions, TM54F assignment (F-DO 0 ... F-DO 3)	2

Motion PROFIsafe control word			Mtn integ STW
[2855.3] \rightarrow	Bit No.	Motion PROFIsafe control word	r9720
	0	1 = STO deselection	r9720.0 [2855.3]
[2855.3] \rightarrow	1	1-SS1 deselection	r9720.1 [2855.3]
$[2855.3] \rightarrow$	2	1 = SS2 deselection	r9720.2 [2855.3]
[2855.3] \rightarrow	3	1 = SOS deselection	r9720.3 [2855.3]
[2855.3] \rightarrow	4	1 = SLS deselection	[9720.4 [2855.3]
$[2855.3] \rightarrow$	5	Reserved	
	6	Reserved	
	7	1/0 = Acknowledgement	r9720.7 [2855.3]
	8	Reserved	
$[2855.3] \rightarrow$	9	$1=$ SLS selection bit 0 active	r9720.9 [2855.3]
$[2855.3] \rightarrow$	10	1 = SLS selection bit 1 active	[9720.10 [2855.3]

<1> Extended Functions only for S120 Booksize.

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR					fp_2840_55_eng.vsd	Function diagram	- 2840 -
Safety Integrated - Extended Functions, Control word and Status word					15.04.08 V02.06.01	SINAMICS S120/S	

<1> Comparator, see [1021]
<2> Analog signal memory, see [1021].
<3> The target checksum must be equal to the actual check sum
< $<4>$ Extended Functions only for S120 Booksize
Disabling Safety functions Resetting safety parameters

> Safety parameter
> p10000 ... p10099
> can be reset to factory settings via p0970, p3900

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR					fp_2846_55_eng.vsd	Function diagram	- 2846 -
Safety Integrated - Extended Functions, Parametermanager					15.04.08 V02.06.01	SINAMICS S120/S150	

<2> Analog signal memory, see [1021].
<3> The target checksum must be equal to the actual check sum.

1	2	3	4	5	6	7	8
DO: TM54F_MA, TM54F_SL					fp_2847_51_eng.vsd	Function diagram	- 2847 -
Safety Integrated - Extended Functions, Parametermanager					11.07.07 V02.06.01	SINAMICS S	

[^8]

2.13 Setpoint channel

Function diagrams	$2-1319$
3010 - Fixed speed setpoints	$2-1320$
3020 - Motorized potentiometer	$2-1321$
3030 - Main/supplementary setpoint, setpoint scaling, jogging	$2-1322$
3040 - Direction limiting and direction reversal	$2-1323$
3050 - Skip frequency bands and speed limiting	$2-1324$
3060 - Basic ramp-function generator	$2-1325$
3070 - Extended ramp-function generator	$2-1326$
3080 - Ramp-function generator selection, status word, tracking	$2-1327$
3090 - Dynamic Servo Control (DSC)	

[^9]\[

$$
\begin{gathered}
0000 \ldots 0111 \\
\mathrm{p} 1030[\mathrm{D}](0110)
\end{gathered}
$$
\]

Data save active $\quad 0 \quad$ The setpoint for the motorized potentiometer is not saved and after ON is entered using p1040
The setpoint for the motorized potentiometer is saved in a ashion after OFF and after ON set to the saved value
Without ramp generator in automatic mode（ramp－up／ramp－down time $=0$ ）
With ramp generator in automatic mode．
Without initial rounding
With initial rounding．The ramp－up／down time set is exceeded accordingly．
Not saved in the NVRAM．
Save in NVRAM active．
Save in NVRAM active

Refer to［1020．7］ ＜100＞ ＜101＞ ＜101＞

ןəииецэ ұи！одұәS
Function diagrams

2.14 Setpoint channel not activated

Function diagrams

3095 - Generating the speed limits $(r 0108.8=0)$

2.15 Basic positioner (EPOS)

Function diagrams	
3610 - Jog mode (r0108.4 = 1)	2-1331
3612 - Referencing/reference point approach mode (r0108.4 = 1) (p2597 = 0 signal)	2-1332
3614 - Flying referencing mode (r0108.4 = 1) (p2597 = 1-signal)	2-1333
3615 - Traversing blocks, external block change mode (r0108.4 = 1)	2-1334
3616 - Traversing blocks mode (r0108.4 = 1)	2-1335
3617 - Traversing to fixed stop	2-1336
3618 - Direct setpoint input/MDI mode, dynamic values (r0108.4 = 1)	2-1337
3620 - Direct setpoint input/MDI mode (r0108.4 = 1)	2-1338
3625 - Mode control (r0108.4 = 1)	2-1339
3630 - Traversing range limits (r0108.4 = 1)	2-1340
3635 - Interpolator (r0108.4 = 1)	2-1341
3640 - Control word block selection/MDI selection (r0108.4 = 1)	2-1342
3645 - Status word 1 (r0108.3 = 1, r0108.4 = 1)	2-1343
3646 - Status word 2 (r0108.3 = 1, r0108.4 = 1)	2-1344
3650 - Status word active traversing block/MDI active (r0108.4 = 1)	2-1345

MDI s_set $\sum^{\text {p2642 }}$ (p2690) \qquad Pos fixed value 147483647 [LU]
$-2147483648 \ldots 2147483647$ [LU]
p2690 (0) \qquad p2690
$\xrightarrow{\text { MDI v_set }}$ 1000 LU/min] \qquad p2691

Function diagrams
Basic positioner (EPOS)

© Siemens AG 2008 All Rights Reserved
SINAMICS S120/S150 List Manual (LH1), 10/2008, 6SL3097-2AP00-OBP7

2.16 Position control

Function diagrams

$4010-$ Position actual value preprocessing $(\mathrm{r} 0108.3=1)$	$2-1347$
4015 - Position controller (r0108.3 = 1)	$2-1348$
$4020-$ Standstill/positioning monitoring $(\mathrm{r} 0108.3=1)$	$2-1349$
$4025-$ Dynamic following error monitoring, cam controllers $(\mathrm{r} 0108.3=1)$	$2-1350$

2.17 Encoder evaluation

Function diagrams	$2-1352$
4704 - Position and temperature sensing, encoders $1 \ldots 3$	$2-1353$
4710 - Speed act. value and pole pos. sens., motor enc. (encoder 1)	$2-1354$
4711 - Speed actual value sensing, encoder 2, 3 (r0108.7 = 1, APC activated)	$2-1355$
4715 - Speed actual value and pole pos. sens., motor enc. ASM/SM (encoder 1)	$2-1356$
4720 - Encoder interface, receive signals, encoders $1 \ldots 3$	$2-1357$
4730 - Encoder interface, send signals, encoders $1 \ldots 3$	$2-1358$
4735 - Reference mark search with equivalent zero mark, encoders 1 ... 3	

<3> $00115[0](125.00 \mu \mathrm{~s})$

2.18 Servo control

Function diagrams	
5020 - Speed setpoint filter and speed pre-control	2-1361
5030 - Reference model/pre-control balancing/speed limiting	2-1362
5040 - Speed controller with encoder	2-1363
5042 - Speed controller, torque-speed pre-control with encoder (p1402.4 = 1)	2-1364
5050 - Kp_n-/Tn_n adaptation	2-1365
5060 - Torque setpoint, changeover control type	2-1366
5210 - Speed controller without encoder	2-1367
5300 - V/f control for diagnostics	2-1368
5301 - Variable signaling function	2-1369
5490 - Speed control configuration	2-1370
5610 - Torque limiting/reduction/interpolator	2-1371
5620 - Motor/generator torque limit	2-1372
5630 - Upper/lower torque limit	2-1373
5640 - Mode changeover, power/current limiting	2-1374
5650 - Vdc_max controller and Vdc_min controller	2-1375
5710 - Current setpoint filter	2-1376
5714 - Iq and Id controller	2-1377
5722 - Field current / flux specification, flux reduction, flux controller	2-1378
5730 - Interface to the Motor Module (control signals, current actual values)	2-1379

<1> Torque control can only be activated for operation with encode
A related message is output if

1) Sensorless operation is active and closed-loop torque control is requested (r1406.12 =0 --> 1).
2) Torque control is active and n act smooth > p1404
<2> Automatic changeover to sensorless operation (e.g. for extremely high-speed spindle drives).

1	2	3	4	5	6	7	8
DO: SERVO					fp_5060_01_eng.vsd	Function diagram	
Servo control - Torque setpoint, control type changeover					19.11.08 V02.06.01	SINAMICS S120 - 5060-	

<1> For synchronous motors, only speed setpoints with up to approximate 25% of the rated speed can be used in order to prevent any risk of resonant oscillation. <2> The changeover to V/f control (closed-loop control mode) is represented at [5730.2].

1	2	3	4	5	6	7	8
DO: SERVO					fp_5300_01_eng.vsd	Function diagram	-5300-
Servo control - V/f control for diagnostics					14.04.08 V02.06.01	SINAMICS S120	

[^10]

[^11]

$2.19 \quad$ Vector control

Function diagrams

6030 - Speed setpoint, droop	2-1381
6031 - Pre-control balancing reference/acceleration model	2-1382
6040 - Speed controller with / without encoder	2-1383
6050 - Kp_n-/Tn_n adaptation	2-1384
6060 - Torque setpoint	2-1385
6220 - Vdc_max controller and Vdc_min controller	2-1386
6300 - V/f characteristic and voltage boost	2-1387
6310 - Resonance damping and slip compensation	2-1388
6320 - Vdc_max controller and Vdc_min controller	2-1389
6490 - Speed control configuration	2-1390
6491 - Flux control configuration	2-1391
6495 - Excitation (FEM, p0300 = 5)	2-1392
6630 - Upper/lower torque limit	2-1393
6640 - Current/power/torque limits	2-1394
6710 - Current setpoint filter	2-1395
$\underline{6714-\mathrm{Iq} \text { and Id controller }}$	2-1396
6721 - Id setpoint (PEM, p0300 = 2)	2-1397
6722 - Field weakening characteristic, Id setpoint (ASM, p0300 = 1)	2-1398
6723 - Field weakening controller, flux controller (ASM, p0300 = 1)	2-1399
6724 - Field weakening controller (PEM, p0300 = 2)	2-1400
6725 - Flux setpoint, field weakening controller (FEM, p0300 = 5)	2-1401
6726 - Field weakening controller, flux controller (FEM, p0300 = 5)	2-1402
6727 - Current model, excitation current monitoring, control cos phi (FEM, p0300 = 5)	2-1403
6730 - Interface to Motor Module (ASM, p0300 = 1)	2-1404
6731 - Interface to the Motor Module (PEM, p0300 = 2)	2-1405
6732 - Interface to Motor Module (FEM, p0300 = 5)	2-1406
6799 - Display signals	2-1407

<1> If the lower transition point exceeds the upper transition point, the Kp-adaptation also changes over.

1	2	3	4	5	6	7	8
DO: VECTOR, VECTORGL, VECTORMV					fp_6050_51_eng.vsd	Function diagram -6050 - SINAMICS	-6050-
Vector control - Kp_n/Tn_n adaptation					24.10.08 V02.06.01		

[^12]

ノ๐џиоэ ィоџวәィ
Function diagrams

[^13]

[^14]

[^15]

ןодиоэ ィоџэәへ
Function diagrams

2.20 Technology functions

Function diagrams	
7008 - kT estimator	$2-1409$
7010 - Friction characteristic	$2-1410$
7012 - Advanced Positioning Control (APC, r0108.7 = 1)	$2-1411$
7014 - External armature short circuit (EASC, p0300 = 2xx or 4xx)	$2-1412$
7016 - Internal armature short-circuit (IVP, p0300 = 2xx or 4xx)	$2-1413$
$7017-$ DC injection brake (p0300 = 1xx)	$2-1414$
$7020-$ Synchronization	$2-1415$

2.21 Technology controller

Function diagrams

$7950-$ Fixed values $($ r0108.16 $=1)$	$2-1417$
$7954-$ Motorized potentiometer $(\mathrm{r0108.16=1)}$	$2-1418$
$7958-$ Closed-loop control $(\mathrm{r0108.16}=1)$	$2-1419$

2.22 Signals and monitoring functions

Function diagrams	
8010 - Speed signals	$2-1421$
8012 - Torque signals, motor locked/stalled	$2-1422$
8013 - Load monitoring (r0108.17 = 1)	$2-1423$
8014 - Thermal monitoring, power unit	$2-1424$
8016 - Thermal monitoring motor	$2-1425$
8017 - Thermal I2t motor model (PEM, p0300 = 2xx)	$2-1426$
$8018 ~-~ S e p a r a t e l y ~ e x c i t e d ~ s y n c h r o n o u s ~ m o t o r ~(F E M, ~ p 0300 ~=~ 5) ~$	$2-1427$

2.23 Diagnostics

Function diagrams

8060 - Fault buffer	$2-1429$
8065 - Alarm buffer	$2-1430$
8070 - Fault/alarm trigger word (r2129)	$2-1431$
8075 - Fault/alarm configuration	$2-1432$
8134 - Measuring sockets	$2-1433$

(e.g. as trigger condition to record traces)
Changing the acknowledge mode for maximum 20 faults <1>

<1> The fault response, acknowledge mode and message type for all faults and alarms are set to meaningful default values in the factory setting. Changes that may be required are only possible in specific value ranges specified by SIEMENS.
When the message type is changed, the supplementary information is tranferred from fault value r0949 to alarm value r 2124 and vice versa.

2.24
 Data sets

Function diagrams

8560 - Command Data Sets (CDS)	$2-1435$
8565 - Drive Data Set (DDS)	$2-1436$
8570 - Encoder data set (EDS)	$2-1437$
8575 - Motor Data Sets (MDS)	$2-1438$
8580 - Power unit Data Set, PDS	$2-1439$

<1> A BICO interconnection to a parameter which is part of a drive data set always influences the currently effective data set
<2> Only for SINAMICS S120/S150.

1 2	3	4	5	6	7	8
DO: SERVO, VECTOR, TM41				fp_8565_54_eng.vsd	Function diagram	- 8565 -
Data sets - Drive Data Sets, DDS				25.06.08 V02.06.01	S120/S150/G130/G150	

2.25 Basic Infeed

Function diagrams

8720 - Control word sequence control infeed	$2-1441$
8726 - Status word sequence control infeed	$2-1442$
8732 - Sequencer	$2-1443$
8734 - Missing enable signals, line contactor control	$2-1444$
8750 - Interface to the Basic Infeed power unit (control signals, actual values)	$2-1445$
8760 - Signals and monitoring functions $(p 3400.0=0)$	$2-1446$

рәәци э!seg

Line voltage monitoring when powering-up
 (p0210) incorrectly parameterized"

DC link monitoring

Precharge monitoring for the DC link

$4000.00 \mu \mathrm{~s}$
< $1>$

<1> For B_INF with Braking Module internal only.

1	2	3	4	5	6	7	8
DO: B_INF					fp_8760_01_eng.vsd	Function diagram	-8760-
Basic Infeed - Signals and monitoring functions (p3400.0 = 0)					14.07.08 V02.06.01	SINAMICS S120	

2.26 Smart Infeed

Function diagrams	
8820 - Control word sequence control infeed	$2-1448$
8826 - Status word sequence control infeed	$2-1449$
8828 - Status word infeed	$2-1450$
8832 - Sequencer	$2-1451$
8834 - Missing enable signals, line contactor control	$2-1452$
8850 - Interface to the Smart Infeed (control signals, actual values)	$2-1453$
8860 - Signals and monitoring functions, line supply voltage monitoring	$2-1454$
$8864-$ Signals and monitoring functions, line frequency and Vdc monitoring	$2-1455$

<1> The drive object is ready to accept data.
Smart Infeed - Status word, sequence control infeed

						2000.00 ss)
	Bit No.	Status word, infeed			$\stackrel{\text { INF ZSW }}{\substack{\text { r3405 }}}$	
	0	1 = Smart Mode active			r3405.0	
	1	1 = Vdc controller active			r3405.1	
	2	1 = Phase failure detected			[3405.2	
	3	$1=$ Current limit reached			[3405.3	
	4	$1=$ Infeed operates in the regenerative mode $0=$ Infeed operates in the motoring mode			r3405.4	
	5	1 = Motoring mode inhibited			3405.5	
	6	1 = Regenerative mode inhibited			r3405.6	
	7	Reserved				
	8	Reserved				
	9	Reserved				
	10	Reserved				
	11	Reserved				
	12	Reserved				
	13	Reserved				
	14	Reserved				
	15	Reserved				
2	3	4	5	6	7	8
DO: S_INF				fp_8828_01_eng.vsd	Function diagram	-8828-
Smart Infeed - Status word, infeed				14.04.08 V02.06.01	SINAMICS S120	

рәәли дешя
sueィ6е！р ио！џัип」

2.27 Active Infeed

Function diagrams

8920 - Control word sequence control infeed	$2-1457$
8926 - Status word sequence control infeed	$2-1458$
8928 - Status word infeed	$2-1459$
8932 - Sequencer	$2-1460$
8934 - Missing enable signals, line contactor control	$2-1461$
8940 - Controller modulation depth reserve / controller DC link voltage (p3400.0 = 0)	$2-1462$
8946 - Current pre-control / current controller / gating unit (p3400.0 = 0)	$2-1463$
8948 - Master/slave (r0108.19 = 1)	$2-1464$
$8950-$ Interface to the Active Infeed, control signals, actual values (p3400.0 = 0)	$2-1465$
$8960-$ Signals and monitoring functions, line supply voltage monit. (p3400.0 = 0)	$2-1466$
$8964-$ Signals and monitoring functions, line frequency/Vdc monitoring (p3400.0 = 0)	$2-1467$

<1> This controller increases (boosts) the DC link voltage when the modulation depth limit has been reached (p3480)
<2> When the pulses are enabled, the DC link voltage is ramped (p 3566) from the actual value to the setpoint p 3510 .
<3> Applies only if the " Master/slave" function module is activated (r0108.19 = 1).

рәәлиן әм!џจヲ
swe»6е!р ио!!эип」

2.28 Terminal Board 30 (TB30)

Function diagrams

9100 - Digital inputs, electrically isolated (DI $0 \ldots$ DI 3)	$2-1469$
9102 - Digital outputs, electrically isolated (DO 0 ... DO 3)	$2-1470$
9104 - Analog inputs (AI O ... AI 1)	$2-1471$
9106 - Analog outputs (AO $0 \ldots$ AO 1)	$2-1472$

Function diagrams
Terminal Board 30 (TB30)

2.29 Communication Board CAN10 (CBC10)

Function diagrams	$2-1474$
9204 - Receive telegram, free PDO mapping (p8744 = 2)	$2-1475$
9206 - Receive telegram, Predefined Connection Set (p8744=1)	$2-1476$
9208 - Send telegram, free PDO mapping (p8744 = 2)	$2-1477$
9210 - Send telegram Predefined Connection Set $(p 8744=1)$	$2-1478$
9220 - Control word CANopen	$2-1479$
9226 - Status word CANopen	

[^16]

Communication Board CAN10 (CBC10)

Signal targets for control word CANopen					
Signal	Meaning	Interconnection parameters <1>	[Function diagram] internal control word	[Function diagram] signal target	Inverted
STW1.0	$\boldsymbol{\Sigma}=$ ON (pulses can be enabled) $0=$ OFF1 (braking with ramp-function generator, then pulse cancellation and ready-to-power-up)	p0840[0] = r8890.0	[2501.3]	[2610]	-
STW1.1	1 = No coast-down activated (enable possible) $0=$ Activate coast-down (immediate pulse cancellation and power-on inhibit)	p0844[0] = r8890.1	[2501.3]	[2610]	-
STW1.2	$1=$ No fast stop activated (enable possible) $0=$ Activate fast stop (braking along an OFF3 ramp p1135, then pulse cancellation and power-on inhibit)	p0848[0] = r8890.2	[2501.3]	[2610]	-
STW1.3	1 = Enable operation (pulses can be enabled) $0=$ Inhibit operation (cancel pulses)	p0852[0] = r8890.3	[2501.3]	[2610]	-
STW1.4	Reserved	-	-	-	-
STW1.5	Reserved	-	-	-	-
STW1.6	Reserved	-	-	-	-
STW1.7	$\Phi=$ Acknowledge fault	$\mathrm{p} 2103[0]=\mathrm{r} 8890.7$	[2546.1]	[8060]	-
STW1.8	Reserved	-	-	-	-
STW1.9	Reserved	-	-	-	-
STW1.10	Reserved	-			-
STW1.11	Can be freely connected	pxxxx[y] $=$ r8890.11			-
STW1.12	Can be freely connected	pxxxx[y] $=\mathrm{r} 8890.12$	-	-	-
STW1.13	Can be freely connected	pxxxx[y] $=$ r8890.13	-	-	-
STW1.14	Can be freely connected	pxxxx[y] $=$ r8890.14	-	-	\cdot
STW1.15	Can be freely connected	pxxxx[y] $=$ r8890.15	-	-	-

2.30 Terminal Module 15 for SINAMICS (TM15DI/DO)

Function diagrams

9400 - Digital inputs/outputs, bidirectional (DI/DO $0 \ldots$ DI/DO 7)	$2-1481$
9401 - Digital inputs/outputs, bidirectional (DI/DO $8 \ldots$ DI/DO 15)	$2-1482$
9402 - Digital inputs/outputs, bidirectional (DI/DO $16 \ldots$ DI/DO 23)	$2-1483$

Function diagrams
Terminal Module 15 for SINAMICS (TM15DI/DO)

Function diagrams
Terminal Module 15 for SINAMICS (TM15DI/DO)

2.31 Terminal Module 31 (TM31)

Function diagrams	
9550 - Digital inputs, electrically isolated (DI $0 \ldots$ DI 3)	$2-1485$
9552 - Digital inputs, electrically isolated (DI $4 \ldots$ DI 7)	$2-1486$
9556 - Digital relay outputs, electrically isolated (DO $0 \ldots$... DO 1)	$2-1487$
9560 - Digital inputs/outputs, bidirectional (DI/DO $8 \ldots$ DI/DO 9)	$2-1488$
9562 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11)	$2-1489$
9566 - Analog input 0 (AI 0)	$2-1490$
9568 - Analog input 1 (AI 1)	$2-1491$
9572 - Analog outputs (AO 0 ... AO 1)	$2-1492$
9576 - Temperature evaluation KTY/PTC	$2-1493$
9577 - Sensor monitoring KTY/PTC	$2-1494$

Function diagrams
Terminal Module 31 （TM31）

Function diagrams
Terminal Module 31 （TM31）

＜1＞For KTY84－130 the threshold value of 50 Ohm corresponds to a temperature of $-140^{\circ} \mathrm{C}$ ．
＜2＞For KTY84－130 the threshold value of 1630 Ohm corresponds to a temperature of $+180^{\circ} \mathrm{C}$ ．

1	2	3	4	5	6	7	8
DO：TM31					fp＿9577＿51＿eng．vsd	Function diagram	－9577－
Terminal Module 31 （TM31）－Sensor monitoring KTY／PTC					25．04．07 V02．06．01	SINAMICS	

2.32 Terminal Module 41 (TM41)

Function diagrams	
9660 - Digital inputs, electrically isolated (DI 0 ... DI 3)	2-1496
9661 - Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 1)	2-1497
9662 - Digital inputs/outputs, bidirectional (DI/DO 2 ... DI/DO 3)	2-1498
9663 - Analog input (AI 0)	2-1499
9674 - Incremental encoder emulation (p4400 = 0)	2-1500
9676 - Incremental encoder emulation (p4400 = 1)	2-1501
9677 - STW1 control word interconnection (p0922 = 3)	2-1502
9678 - Control word sequence control	2-1503
9679 - STW2 control word interconnection (p0922 = 3)	2-1504
9680 - Status word sequence control	2-1505
9681 - ZSW1 status word interconnection (p0922 = 3)	2-1506
9682 - Sequencer	2-1507
9683 - ZSW2 status word interconnection (p0922 = 3)	2-1508

Function diagrams
Terminal Module 41 （TM41）

[^17]

Function diagrams
Terminal Module 41 (TM41)

2.33 Auxiliaries

Function diagrams

$9794-$ Cooling system, control and feedback signals	$2-1510$
$9795-$ Cooling unit sequence control	$2-1511$

2.34 Voltage Sensing Module (VSM)

Function diagrams

9880 - Analog inputs (AI 0 ... AI 3) 2-1513
9886 - Temperature evaluation 2-1514
9887 - Sensor monitoring KTY/PTC 2-1515

[^18]

[^19]
2.35 Basic Operator Panel 20 (BOP20)

Function diagrams

2.36 Braking Module external

Function diagrams

Function diagrams
Braking Module external

Faults and alarms

Content

3.1	Overview of faults and alarms	$3-1522$
3.2	List of faults and alarms	$3-1532$

3.1 Overview of faults and alarms

3.1.1 General information about faults and alarms

Indicating faults and alarms

If a fault occurs, the drive indicates the fault and/or alarm.
The following methods for displaying faults and alarms are available:

- Display via the fault and alarm buffer with PROFIBUS.
- Display online via the commissioning software.

Differences between faults and alarms

The differences between faults and alarms are as follows:

Table 3-1 Differences between faults and alarms

Type	\quad Description
Faults	What happens when a fault occurs? - The appropriate fault reaction is triggered. - Status signal ZSW1.3 is set. - The fault is entered in the fault buffer.
	How are faults eliminated? - Remove the original cause of the fault. - Acknowledge the fault.
Alarms	What happens when an alarm occurs? - Status signal ZSW1.7 is set. - The alarm is entered in the alarm buffer.
How are alarms eliminated?	
- Alarms acknowledge themselves. If the cause of the alarm is no	
longer present, then they automatically reset themselves.	

Fault reactions

The following fault reactions are defined:
Table 3-2 Fault reactions

List	PROFIdrive	Reaction	Description
NONE	-	None	No reaction when a fault occurs. Note: When the "Basic positioner" function module is activated (r0108.4 = 1) the following applies: When a fault occurs with fault reaction "NONE", an active traversing task is interrupted and a change is made into tracking mode until the fault has been rectified and acknowledged.
OFF1	ON/ OFF	Brake along the ramp generator deceleration ramp followed by pulse disable	Closed-loop speed control (p1300 = 20, 21) - $n _$set $=0$ is input immediately to brake the drive along the deceleration ramp (p1121). - When zero speed is detected, the motor holding brake (if parameterized) is closed (p 1215). The pulses are suppressed when the brake application time (p1217) expires. Zero speed is detected if the actual speed drops below the threshold in p1226 or if the monitoring time (p1227) started when speed setpoint <= speed threshold (p1226) has expired. Closed-loop torque control (p1300 = 23) - The following applies to closed-loop torque control mode: Reaction as for OFF2. - When changing over to closed-loop control using p1501, the following applies: There is no dedicated braking response. If the actual speed drops below the speed threshold (p 1226), or the timer stage (p 1227) has expired, the motor holding brake (if parameterized) is closed. The pulses are suppressed when the brake application time (p 1217) expires.
OFF2	$\begin{aligned} & \text { COAST } \\ & \text { STOP } \end{aligned}$	Internal/external pulse disable	Closed-loop speed and torque control - Instantaneous pulse suppression, the drive "coasts" to a standstill. - The motor holding brake (if one is being used) is closed immediately. - Switching on inhibited is activated.

Table 3-2 Fault reactions, continued

List	PROFIdrive	Reaction	Description
OFF3	QUICK STOP	Brake along the OFF3 deceleration ramp followed by pulse disable	Closed-loop speed control (p1300 = 20, 21) - n _set $=0$ is input immediately to brake the drive along the OFF3 deceleration ramp (p1135). - When zero speed is detected, the motor holding brake (if parameterized) is closed. The pulses are suppressed when the brake application time (p 1217) expires. Zero speed is detected if the actual speed drops below the threshold in p1226 or if the monitoring time (p1227) started when speed setpoint <= speed threshold (p1226) has expired. - Switching on inhibited is activated. Closed-loop torque control (p1300 = 23) - Changeover to speed-controlled operation and other reactions as described for speed-controlled operation.
STOP1	-		In preparation
STOP2	-	n _set $=0$	- $n _$set $=0$ is input immediately to brake the drive along the OFF3 deceleration ramp (p1135). - The drive remains in closed-loop speed control mode.
IASC/ DCBRAKE	-		- In the case of a synchronous motor the following applies: When a fault occurs with this fault reaction, an internal armature short circuit is triggered. The conditions for $\mathrm{p} 1231=4$ must be observed. - In the case of an induction motor the following applies: When a fault occurs with this fault reaction, DC injection braking is triggered. The DC brake must have been put into operation (p1232, p1233, p1234).
ENCODER	-	Internal/external pulse disable (p0491)	The fault reaction ENCODER is applied as a function of the setting in p0491. Factory setting: p0491 = 0 --> Encoder fault causes OFF2 Notice: When changing p0491, it is imperative that the information in the description of this parameter is carefully observed.

Acknowledgement of faults

The list of faults and alarms specifies how to acknowledge each fault after the cause has been remedied.

Table 3-3 Acknowledgement of faults

Acknowledgment	Description
POWER ON	The fault is acknowledged by a POWER ON process (switch drive unit off and on again). Note: If this action has not eliminated the fault cause, the fault is displayed again immediately after power up.
IMMEDIATELY	Faults can be acknowledged at an individual drive object (Points 1 to 3) or at all drive objects (point 4) as follows: 1 Acknowledge by setting parameter: $\text { p3981 = } 0 \text {--> } 1$ 2 Acknowledge via binector inputs: p2103 BI: 1. Acknowledge faults p2104 BI: 2. Acknowledge faults p2105 BI: 3. Acknowledge faults 3 Acknowledge using PROFIBUS control signal: STW1.7 = 0 --> 1 (edge) 4 Acknowledging all faults p2102 BI: Acknowledging all faults All of the faults at all of the drive objects of the drive system can be acknowledged using this binector input. Note: - These faults can also be acknowledged by a POWER ON operation. - If this action has not eliminated the fault cause, the fault is displayed again immediately after power up. - Safety Integrated faults The "Safe Stop" (SH) function must be deselected before these faults are acknowledged.
PULSE INHIBIT	The fault can only be acknowledged with a pulse inhibit (r0899.11 = 0). The same possibilities are available for acknowledging as described under acknowledge IMMEDIATELY.

Save fault buffer on POWER OFF

The contents of the fault buffer are saved to non-volatile storage when the Control Unit 320 (CU320) is powered down, i.e. the fault buffer history is still available when the unit is powered up again.

Note:

Preconditions:

- Firmware version 2.2 or higher.
- Control Unit 320 (CU320) with hardware version C or higher. The hardware version is shown on the rating plate or can be displayed online with the commissioning software (in Project Navigator under "Drive Unit" --> Configuration --> Version Overview).
If these conditions are not fulfilled, the contents of the fault buffer are deleted on every POWER ON.

The fault buffer of a drive object comprises the following parameters:

- r0945[0...63], r0947[0...63], r0948[0...63], r0949[0...63]
- r2109[0...63], r2130[0...63], r2133[0...63], r2136[0...63]

The fault buffer contents can be deleted manually as follows:

- Delete fault buffer for all drive objects: p2147 = 1 --> p2147 = 0 is automatically set after execution.
- Delete fault buffer for a specific drive object: p0952 = 0 --> The parameter belongs to the specified drive object.

The fault buffer contents are automatically deleted in response to the following events:

- Restore factory setting (p0009 = 30 and p0976 = 1).
- Download with modified structure (e.g. number of drive objects changed).
- Power-up after other parameter values have been loaded (e.g. p0976 = 10).
- Upgrade firmware to later version.

3.1.2 Explanation of the List of Faults and Alarms

The data in the following example has been chosen at random. A description can contain the information listed below. Some of the information is optional.

The list of faults and alarms (See Section 3.2) has the following layout:

Axxxxx (F, N)	Fault location (optional): Name
Message value:	Component number: \%1, cause: \%2
Drive object:	List of objects.
Reaction:	NONE
Acknowledgment:	NONE
Cause:	Description of possible causes. Fault value (r0949, interpret format): or alarm value (r2124, interpret format): (optional) Information about fault or alarm values (optional).
Remedy:	Description of possible remedies.
Reaction to F:	A_INFEED: OFF2 (OFF1, NONE) SERVO: NONE (OFF1, OFF2, OFF3) VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowledgement for F :	IMMEDIATELY (POWER ON)
Reaction to N :	NONE
Acknowledge-	

Axxxxx	Alarm xxxxx
Axxxxx (F, N)	Alarm xxxxx (message type can be changed to F or N)
Fxxxxx	Fault x xxxx
Fxxxxx (A, N)	Fault xxxxx (report type can be changed to F or N)
Nxxxxx	No message
Nxxxxx (A)	No message (message type can be changed to A)
Cxxxxx	Safety message (separate message buffer)

A report comprises a letter followed by the relevant number.
The meaning of the letters is as follows:

- A means "Alarm"
- F means "Fault"
- N means "No Report" or "Internal Report"
- C means "Safety message"

The optional brackets indicate whether the type specified for this report can be changed and which report types can be adjusted via parameter (p2118, p2119).
Information about reaction and acknowledgement is specified independently for a report with adjustable report type (e.g. reaction to F, acknowledgement for F).

Note:

You can change the default properties of a fault or alarm by setting parameters.
References: /IH1/ SINAMICS S120 Commissioning Manual Chapter "Diagnostics"

The list of faults and alarms (see Chapter 3.2) provide information referred to the properties of a message/report that have been set as standard. If the properties of a specific message/report are changed, then the appropriate information may have to be modified in this list.

Fault location (optional): Name

The fault location (optional), the name of the fault or alarm and the report number all serve to identify the report (e.g. with the commissioning software).

Message value:

The information provided under message value tells you about the composition of the fault/warning value.

Example:

Message value: Component number: \%1, cause: \%2
This fault value or warning value contains information about the component number and cause. The entries \%1 and \%2 are placeholders, which are filled appropriately in online operation with the commissioning software.

Drive object:

For each message (fault/alarm) it is specified in which drive object this message is present.

A message can belong to either one, several, or all drive objects.

Reaction: Default fault reaction (adjustable fault reaction)

Specifies the default reaction in the event of a fault.
The optional brackets indicate whether the default fault reactions can be changed and which fault reactions can be adjusted via parameters (p2100, p2101).

Note:

See Chapter 3.1.1

Acknowledgment: Default acknowledgement (adjustable acknowledgement)

Specifies the default method of fault acknowledgement after the cause has been eliminated.

The optional brackets indicate whether the default acknowledgement can be changed and which acknowledgement can be adjusted via parameter (p2126, p2127).

Note:

See Chapter 3.1.1

Cause:

Description of the possible causes of the fault/alarm A fault or alarm value is also specified as an option.

Fault value (r0949, format):
The fault value is entered in the fault buffer in r0949[0...63] and specifies additional, precise information about a fault.

Alarm value (r2124, format):
The alarm value specifies additional, precise information about an alarm.
The alarm value is entered in the alarm buffer in r2124[0...7] and specifies additional, precise information about an alarm.

Remedy:

Description of the potential methods for eliminating the cause of the active fault or alarm.

Alarm
In individual cases, the servicing and maintenance personnel are responsible for choosing a suitable method for eliminating the cause of faults.

3.1.3 Numerical ranges of faults and alarms

Note:

The following numerical ranges represent an overview for all faults and alarms in SINAMICS.

The faults and alarms for the product described in this List Manual are described in detail in Chapter 3.2.

Faults and alarms are organized into the following numerical ranges:
Table 3-4 Numerical ranges of faults and alarms

of	to	Range
1000	3999	Control Unit
4000	4999	Reserved
5000	5999	Power unit
6000	6899	Infeed
6900	6999	Braking Module
7000	7999	Drive
8000	8999	Option Board
9000	19999	Reserved
20000	29999	OEM
30000	30999	DRIVE-CLiQ component power unit
31000	31999	DRIVE-CLiQ component encoder 1
32000	32999	DRIVE-CLiQ component encoder 2 Note: Faults that occur are automatically output as alarm if the encoder is parameterized as direct measuring system and does not intervene in the motor control.
33000	33999	DRIVE-CLiQ component encoder 3 Note: Faults that occur are automatically output as alarm if the encoder is parameterized as direct measuring system and does not intervene in the motor control.
34000	34999	Voltage Sensing Module (VSM)
35000	35199	Terminal Module 54F (TM54F)
35200	35999	Terminal Module 31 (TM31)

Table 3-4 Numerical ranges of faults and alarms, continued

of	to	Range
40000	40999	Controller extension 32 (CX32)
41000	48999	Reserved
49000	49999	SINAMICS GM/SM/GL
50000	50499	Communication Board (COMM BOARD)
50500	59999	OEM Siemens
60000	65535	OEM external

3.2 List of faults and alarms

	Product: SINAMICS S120/S150, Version: 2603400, Language: eng, Objects: A_INF, B_INF, CU_CX32, CU_I, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
F01000	Internal software error
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline. - replace the Control Unit.
F01001	Internal software error
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.
F01002	Internal software error
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.
F01003	Acknowledgement delay when accessing the memory
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A memory area was accessed that does not return a "READY". Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - contact the Hotline.

N01004 (F, A)	Internal software error		
Message value:	\%1		
Drive object:	All objects		
Reaction:	NONE		
Acknowledge:	NONE		
Cause:	An internal software error has occurred.		
	Fault value (r0949, hexadecimal):		
	Only for internal Siemens troubleshooting.		
Remedy:	- read out diagnostics parameter (r9999).		
	- contact the Hotline.	\quad	See also: r9999 (Software error internal supplementary diagnostics)
:---	:---		

A01006	Firmware update for DRIVE-CLiQ component required
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The firmware of a DRIVE-CLiQ component must be updated as there is no suitable firmware or firmware version in the component for operation with the Control Unit. Alarm value (r2124, interpret decimal): Component number of the DRIVE-CLiQ component.
Remedy:	Firmware update using the commissioning software: The firmware version of all of the components on the "Version overview" page can be read in the Project Navigator under "Configuration" of the associated drive unit and an appropriate firmware update can be carried out. Firmware update via parameter: - take the component number from the alarm value and enter into p7828. - start the firmware download with p7829 = 1 .
A01007	POWER ON for DRIVE-CLiQ component required
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A DRIVE-CLiQ component must be powered up again (POWER ON) as, for example, the firmware was updated. Alarm value (r2124, interpret decimal): Component number of the DRIVE-CLiQ component. Note: For a component number $=1$, a POWER ON of the Control Unit is required.
Remedy:	Switch off the power supply of the specified DRIVE-CLiQ component and switch it on again.

A01009 (N)	CU: Control module overtemperature
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r0037[0]) of the control module (Control Unit) has exceeded the specified limit value.
Remedy:	- check the air intake for the Control Unit. - check the fan for the Control Unit (only for CU310).
	Note: The alarm automatically disappears after the limit value has been undershot.
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F01010 Drive type unknown
Message value: \%1
Drive object: All objects
Reaction: NONE

Acknowledge: IMMEDIATELY
Cause: An unknown drive type was found.
Fault value (r0949, interpret decimal): Drive object number (refer to p0101, p0107).
Remedy: - carry out a POWER ON (power off/on) for all components.

- upgrade firmware to later version.
- contact the Hotline.

F01011 (N)	Download interrupted
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The project download was interrupted. - the project download was prematurely ended by the user or by the commissioning software (e.g. STARTER, SCOUT). - the communication cable was interrupted (e.g. cable breakage, cable withdrawn). Note: The response to an interrupted download is the state "first commissioning".
Remedy:	- check the communication cable. - download the project again. - boot from previously saved files (power-down/power-up or p0976).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F01012 (N)	Project conversion error
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	When converting the project of an older firmware version, an error occurred. Fault value (r0949, interpret decimal): Parameter number of the parameter causing the error. For fault value $=600$, the following applies: The temperature evaluation is no longer assigned to the power unit but to the encoder evaluation. Notice: Monitoring of the motor temperature is no longer ensured.
Remedy:	Check the parameter indicated in the fault value and correctly adjust it accordingly. Re fault value $=600$: Parameter p0600 must be set to the values 1 , 2 or 3 in accordance with the assignment of the internal encoder evaluation to the encoder interface. Value 1 means: The internal encoder evaluation is assigned to the encoder interface 1 via p0187. Value 2 means: The internal encoder evaluation is assigned to the encoder interface 2 via p0188. Value 3 means: The internal encoder evaluation is assigned to the encoder interface 3 via p0189. If necessary, the internal encoder evaluation must be assigned to an encoder interface via parameters p0187, p0188 or p0189 accordingly. - If necessary, upgrade the firmware to a later version.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F01015	Internal software error
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.

A01016 (F)	Firmware changed
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one firmware file in directory /SIEMENS/SINAMICS/ has been changed without authorization with respect to version shipped from factory. No changes are permitted in this directory. Alarm value (r2124, interpret decimal): 0 : Checksum of one file is incorrect. 1: File missing. 2: Too many files. 3: Incorrect firmware version. 4: Incorrect checksum of the back-up file. See also: r9925 (Firmware file incorrect)
Remedy:	For the non-volatile memory for the firmware (memory card, device memory), restore the version shipped from factory. Note: The file involved can be read out using parameter r9925. See also: r9926 (Firmware check status)
Reaction upon F:	OFF2
Acknowl. upon F:	POWER ON
A01017	Component lists changed
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	On the memory card, one file in the directory /SIEMENS/SINAMICS/DATA or /ADDON/SINAMICS/DATA has been illegally changed with respect to that supplied from the factory. No changes are permitted in this directory. Alarm value (r2124, interpret decimal): The problem is indicated in the first digit of the alarm value: 1: File does not exist. 2: Firmware version of the file does not match the software version. 3: The file checksum is incorrect. The second digit of the alarm value indicates in which directory the file is located: 0: Directory /SIEMENS/SINAMICS/DATA/ 1: Directory /ADDON/SINAMICS/DATA/ The third digit of the alarm value indicates the file: 0: File MOTARM.ACX 1: File MOTSRM.ACX 2: File MOTSLM.ACX 3: File ENCDATA.ACX 4: File FILTDATA.ACX 5: File BRKDATA.ACX
Remedy:	For the memory card file involved, restore the status originally supplied from the factory.
F01030	Sign-of-life failure for master control
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, VECTOR
Reaction:	A_INFEED: OFF1 (NONE, OFF2) SERVO: OFF3 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2) VECTOR: OFF3 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	For active PC master control, no sign-of-life was received within the monitoring time. The master control was returned to the active BICO interconnection.
Remedy:	Set the monitoring time higher at the PC or, if required, completely disable the monitoring function. For the commissioning software, the monitoring time is set as follows: <Drive> -> Commissioning -> Control panel -> Button "Fetch master control" -> A window is displayed to set the monitoring time in milliseconds.

Notice:

The monitoring time should be set as short as possible. A long monitoring time means a late response when the communication fails!

F01031	Sign-Of-life failure for AOP OFF in REMOTE
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	A_INFEED: OFF1 (NONE, OFF2)
	SERVO: OFF3 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)
	VECTOR: OFF3 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)

A01035 (F)	ACX: Boot from the back-up parameter back-up files
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the Control Unit is booted, no complete data set was found from the parameter back-up files. The last time that the parameterization was saved, it was not completely carried out. Instead, a back-up data set or a back-up parameter back-up file is downloaded. Alarm value (r2124, interpret hexadecimal):

Remedy:	If you have saved the project using the commissioning software, carry out a new download for your project. Save using the function "Copy RAM to ROM" or with p0977 = 1 so that all of the parameter files are again completely writ- ten to the memory card card. Reaction upon F: A_INFEED: NONE (OFF2) SERVO: NONE (OFF1, OFF2, OFF3) VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY

Remedy:	- check whether one of the files to be overwritten has the attribute "read only" and change this file attribute to "writ- able". Check all of the files (PSxxxyyy. value. CCxxxyy.
	- replace the CompactFlash card. CAxxyyy.

Reaction upon A : Acknowl. upon A:	NONE NONE
F01040	Save parameter settings and carry out a POWER ON
Message value:	- Alobiect
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A parameter was changed in the drive system which means that it is necessary to save the parameters and re-boot (e.g. p0110).
Remedy:	- save the parameters (p0971/p0977). - carry out a POWER ON (power off/on) for all components.
F01041	Parameter save necessary
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Defective or missing files were detected on the memory card when booting. Fault value (r0949, interpret decimal): 1: Source file cannot be opened. 2: Source file cannot be read. 3: Target directory cannot be set up. 4: Target file cannot be set up/opened. 5: Target file cannot be written to. Additional values: Only for internal Siemens troubleshooting.
Remedy:	- save the parameters (p0977). - download the project again to the drive unit. - update the firmware - if required, replace the Control Unit and/or memory card card.
F01042	Parameter error during project download
Message value:	Parameter: \%1, Index: \%2, fault cause: \%3
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (NONE, OFF1, OFF3) VECTOR: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	An error was detected when downloading a project using the commissioning software (e.g. incorrect parameter value). For the specified parameter, it was detected that dynamic limits were exceeded that may possibly depend on other parameters. Fault value (r0949, interpret hexadecimal): ccbbaaaa hex aaaa $=$ parameter bb = index cc = fault cause 0: Parameter number illegal. 1: Parameter value cannot be changed. 2: Lower or upper value limit exceeded. 3: Sub-index incorrect. 4: No array, no sub-index. 5: Data type incorrect. 6: Setting not permitted (only resetting). 7: Descriptive element cannot be changed. 9: Descriptive data not available. 11: No master control. 15: No text array available.

17: Task cannot be executed due to operating status.
20: Illegal value.
21: Response too long.
22: Parameter address illegal.
23: Format illegal.
24: Number of values not consistent.
25: Drive object does not exist.
101: Presently de-activated.
104: Illegal value.
107: Write access not permitted when controller enabled.
108: Unit unknown.
109: Write access only in the commissioning state, encoder (p0010 = 4).
110: Write access only in the commissioning state, motor ($\mathrm{p} 0010=3$).
111: Write access only in the commissioning state, power unit (p0010=2).
112: Write access only in the quick commissioning mode (p0010 = 1).
113: Write access only in the ready mode (p0010 = 0).
114: Write access only in the commissioning state, parameter reset ($\mathrm{p} 0010=30$).
115: Write access only in the Safety Integrated commissioning state ($\mathrm{p} 0010=95$).
116: Write access only in the commissioning state, technological application/units (p0010 = 5).
117: Write access only in the commissioning state (p0010 not equal to 0).
118: Write access only in the commissioning state, download (p0010 = 29).
119: Parameter may not be written in download.
120: Write access only in the commissioning state, drive basis configuration (device: p0009 = 3).
121: Write access only in the commissioning state, define drive type (device: p0009 = 2).
122: Write access only in the commissioning state, data set basis configuration (device: p0009 = 4).
123: Write access only in the commissioning state, device configuration (device: p0009 = 1).
124: Write access only in the commissioning state, device download (device: p0009 = 29).
125: Write access only in the commissioning state, device parameter reset (device: p0009 = 30).
126: Write access only in the commissioning state, device ready (device: p0009 = 0).
127: Write access only in the commissioning state, device (device: p0009 not equal to 0).
129: Parameter may not be written in download.
130: Transfer of the master control is inhibited via BI: p0806.
131: Required BICO interconnection not possible because BICO output does not supply floating value
132: Free BICO interconnection inhibited via p0922.
133: Access method not defined.
200: Below the valid values.
201: Above the valid values.
202: Cannot be accessed from the Basic Operator Panel (BOP).
203: Cannot be read from the Basic Operator Panel (BOP).
204: Write access not permitted.
Remedy: - enter the correct value in the specified parameter.

- identify the parameter that restricts the limits of the specified parameter.

F01043

Message value:
Drive object:
Reaction: A_INFEED: OFF2 (OFF1)
SERVO: OFF2 (OFF1, OFF3)
VECTOR: OFF2 (OFF1, OFF3)
Acknowledge:
Cause: A fatal error was detected when downloading a project using the commissioning software.
Fault value (r0949, interpret decimal):
1: Device status cannot be changed to Device Download (drive object ON?).
2: Incorrect drive object number.
3: A drive object that has already been deleted is deleted again.
4: Deleting of a drive object that has already been registered for generation.
5: Deleting a drive object that does not exist.
6: Generating an undeleted drive object that already existed.
7: Regenerating a drive object already registered for generation.
8: Maximum number of drive objects that can be generated exceeded.
9: Error while generating a device drive object.
10: Error while generating target topology parameters (p9902 and p9903).

A01049

Message value:
Drive object:
Reaction:
Acknowledge: NONE
Cause: It is not possible to write into a write-protected file (PSxxxxxx.acx). The write request was interrupted. Alarm value (r2124, interpret decimal): Drive object number.
Remedy: Check whether the "write protected" attribute has been set for the files on the CompactFlash card under .../USER/SINAMICS/DATA/... When required, remove write protection and save again (e.g. set p0971 to 1).

F01050	CompactFlash card and device not compatible
Message value:	-
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (NONE, OFF1, OFF3) VECTOR: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The CompactFlash card and the device type do not match (e.g. a CompactFlash card for SINAMICS S is inserted in SINAMICS G).
Remedy:	- insert the matching CompactFlash card - use the matching Control Unit or power unit.
F01051	Drive object type is not available
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The drive object type in conjunction with the selected application-specific view is not available. The required descriptive file (PDxxxyyy.ACX) does not exist on the CompactFlash card. Fault value (r0949, interpret decimal): Index of p0103 and p0107. See also: p0103, r0103, p0107, r0107
Remedy:	- for this drive object type (p 0107), select a valid application-specific view (p 0103). - save the required descriptive file (PDxxxyyy.ACX) on the CompactFlash card. See also: p0103, r0103, p0107, r0107
A01052	CU: System overload calculated for the complete target topology
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A system overload was calculated based on a complete active target topology. Alarm value (r2124, interpret decimal): 2: Computing time load too high. 6: Cyclic computing time load too high.
Remedy:	- reduce the sampling time. - only use one data set (CDS, DDS). - de-activate the function module. - de-activate the drive object. - remove the drive object from the target topology. Note: After executing the appropriate counter-measure, a new calculation must be initiated with p9974 $=1$.
A01053	CU: System overload measured
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A system overload was determined based on measured values. Alarm value (r2124, interpret decimal): 2: Computing time load too high. 6: Cyclic computing time load too high. See also: r9976 (System load)
Remedy:	- reduce the sampling time. - only use one data set (CDS, DDS). - de-activate the function module. - de-activate the drive object. - remove the drive object from the target topology.

A01064 (F)	CU: Internal error (CRC)
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	CRC error in the Control Unit program memory
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (OFF1, OFF2, OFF3, STOP2) VECTOR: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A01065	Drive: Fault on non-active encoder
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	One or several inactive encoders indicate an error.
Remedy:	Remove the error for the inactive encoder.
A01099	Tolerance window of time synchronization exited
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time master exited the selected tolerance window for time synchronization. See also: p3109 (RTC real time synchronization, tolerance window)
Remedy:	Select the re-synchronization interval so that the synchronization deviation between the time master and drive system lies within the tolerance window. See also: r3108 (RTC last synchronization deviation)
A01100	CU: Memory card withdrawn
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory card (non-volatile memory) was withdrawn during operation. Notice: It is not permissible for the memory card to be withdrawn or inserted under voltage
Remedy:	- power down the drive system. - re-insert the memory card that was withdrawn - this card must match the drive system. - power up the drive system again.

F01105 (A)	CU: Insufficient memory
Message value:	\%1
Drive object:	All objects
Reaction:	OFF1
Acknowledge:	POWER ON
Cause:	Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets,
	OA applications, blocks, etc).
	Fault value (ro949, interpret decimal):
	Only for internal Siemens troubleshooting.

Remedy:	- change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, OA applications, blocks, etc). - use an additional Control Unit.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01107	CU: Save to CompactFlash card unsuccessful
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A data save to the CompactFlash card was not able to be successfully carried out. - CompactFlash card is defective. - CompactFlash card does not have sufficient memory space. Fault value (r0949, interpret decimal): 1: The file on the RAM was not able to be opened. 2: The file on the RAM was not able to be read. 3: A new directory was not able to be created on the CompactFlash card. 4: A new file was not able to be created on the CompactFlash card. 5: A new file was not able to be written to the CompactFlash card.
Remedy:	- try to save again. - use another CompactFlash card.
F01110	CU: More than one SINAMICS G on one Control Unit
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	More than one SINAMICS G type power unit is being operated from the Control Unit. Fault value (r0949, interpret decimal): Number of the second drive with a SINAMICS G type power unit.
Remedy:	Only one SINAMICS G drive type is permitted.
F01111	CU: impermissible mixed operation of drive units
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Illegal operation of various drive units on one Control Unit: - SINAMICS S together with SINAMICS G - SINAMICS S together with SINAMICS S Value or Combi Fault value (r0949, interpret decimal): Number of the first drive object with a different power unit type.
Remedy:	Only power units of one particular drive type may be operated with one Control Unit.
F01112	CU: Power unit not permissible
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The connected power unit cannot be used together with this Control Unit. Fault value (r0949, interpret decimal): 1: Power unit is not supported (e.g. PM240). 2: DC/AC power unit connected to CU310 not permissible.
Remedy:	Replace the power unit that is not permissible by a component that is permissible.

F01120 (A)	Terminal initialization has failed
Message value:	\%1
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error has occurred when initializing the terminal functions on the CU3xx, the TB30 or the TM31.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a PowER ON (power off/on) for all components.
	- upgrade firmware to later version.
- contact the Hotline.	

F01200	CU: Time slice management internal software error
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A time slice management error has occurred. It is possible that the sampling times have been inadmissibly set. Fault value (r0949, interpret hexadecimal): 998: Too many time slices occupied by OA (e.g. DCC) 999: Too many time slices occupied by the basic system Too many different sampling times may have been set. Further values for internal Siemens troubleshooting.
Remedy:	- check the sampling time setting (p0112, p0115, p4099). - contact the Hotline.
F01205	CU: Time slice overflow
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	Insufficient processing time is available for the existing topology. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- reduce the number of drives. - increase the sampling times.
F01210	CU: Basic clock cycle selection and DRIVE-CLiQ clock cycle do not match
Message value:	Parameter: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The parameter to select the basic clock cycle does not match the drive topology. Drives connected to the same DRIVE-CLiQ port of the Control Unit have been assigned different basic clock cycles. Fault value (r0949, interpret decimal): The fault value specifies the parameter involved. See also: r0111 (Basic sampling time selection)
Remedy:	Only those drive objects may be connected to the same DRIVE-CLiQ socket of the Control Unit that should run with the same basic clock cycle. For example, Active Line Modules and Motor Modules should be inserted at different DRIVE-CLiQ sockets as their basic clock cycles and current controller clock cycles are generally not identical.. See also: r0111 (Basic sampling time selection)
F01220	CU: Bas clk cyc too low
Message value:	Parameter: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The parameter for the basic clock cycle is set too short for the number of connected drives. Fault value (r0949, interpret decimal): The fault value specifies the parameter involved. See also: r0110 (Basic sampling times)
Remedy:	- increase the basic clock cycle. - reduce the number of connected drives and start to re-commission the unit. See also: r0110 (Basic sampling times)

F01221	CU: Bas clk cyc too low
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The closed-loop control / monitoring cannot maintain the envisaged clock cycle.
	The runtime of the closed-loop control/monitoring is too long for the particular clock cycle or the computing time
	remaining in the system is not sufficient for the closed-loop control/monitoring.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
	Increase the basic clock cycle of DRIVE-CLiQ communication.
Remedy:	See also: p0112 (Sampling times pre-setting p0115)

	Note:
	The topology rules should be noted when connecting up DRIVE-CLiQ.
	The rules are, provided in the following document:
	SINAMICS S120 Function Manual Drive Functions
	The parameters of the sampling times can also be changed with automatic calculations.
Remedy:	- check the DRIVE-CLiQ cables.
	- set a valid sampling time.
	See also: p0115, p0799, p4099

F01255	CU: Option Board EEPROM read-only data error
Message value:	\%1
Drive object:	All objects
Reaction:	NONE (OFF2)
Acknowledge:	POWER ON
Cause:	Error when reading the read-only data of the EEPROM in the Option Board.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON.
	- replace the Control Unit.

Reaction upon F : Acknowl. upon F:	NONE IMMEDIATELY
F01305	Topology: Component number missing
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The component number from the topology was not parameterized (p0121 (for power unit, refer to p0107), p0131 (for servo/vector drives, refer to p0107), p0141, p0151, p0161). Fault value (r0949, interpret decimal): The fault value includes the particular data set number. The fault also occurs if speed encoders were configured ($\mathrm{p} 0187 \ldots \mathrm{p} 0189$), however, no component numbers exist for them. In this case, the fault value includes the drive data set number plus 100 * encoder number (e.g. 3xx, if a component number was not entered into p0141 for the third encoder (p0189)). See also: p0121, p0131, p0141, p0142, p0151, p0161, p0186, p0187, p0188, p0189
Remedy:	Enter the missing component number or remove the component and restart commissioning. See also: p0121, p0131, p0141, p0142, p0151, p0161, p0186, p0187, p0188, p0189
A01306	Firmware of the DRIVE-CLiQ component being updated
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Firmware update is active for at least one DRIVE-CLiQ component. Alarm value (r2124, interpret decimal): Component number of the DRIVE-CLiQ component.
Remedy:	None necessary. This alarm automatically disappears after the firmware has been updated.
A01314	Topology: Component must not be present
Message value:	Component number: \%1, Component class: \%2, Connection number: \%3
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	For a component, "de-activate and not present" is set but this component is still in the topology. Alarm value (r2124, interpret hexadecimal): Byte 1: Component number Byte 2: Component class of the component Byte 3: Connection number Note: Component class and connection number are described in F01375.
Remedy:	- remove the corresponding component. - change the setting "de-activate and not present". Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison). See also: p0105, p0125, p0145, p0155
A01315	Drive object not ready for operation
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the active drive object involved, at least one activated component is missing. Note: All other active and operational drive objects can be in the "RUN" state.

Remedy:	The alarm automatically disappears again with the following actions: - de-activate the drive object involved ($\mathrm{p} 0105=0$). - de-activate the components involved ($\mathrm{p} 0125=0, \mathrm{p} 0145=0, \mathrm{p} 0155=0, \mathrm{p} 0165=0$). - re-insert the components involved. See also: p0105, p0125, p0145, p0155
A01316	Drive object inactive and again ready for operation
Message value:	- All
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	If, when inserting a component of the target topology, an inactive, non-operational drive object becomes operational again. The associated parameter of the component is, in this case, set to "activate" (p0125, p0145, p0155, p0165). Note: This is the only message that is displayed for a de-activated drive object.
Remedy:	The alarm automatically disappears again with the following actions: - activate the drive object involved (p0105 = 1). - again withdraw the components involved. See also: p0105 (Activate/de-activate drive object)
A01317 (N)	De-activated component again present
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	If a component of the target topology for an active drive object is inserted and the associated parameter of the component is set to "de-activate" (p0125, p0145, p0155, p0165). Note: This is the only message that is displayed for a de-activated component.
Remedy:	The alarm automatically disappears again with the following actions: - activate the components involved ($\mathrm{p} 0125=1, \mathrm{p} 0145=1, \mathrm{p} 0155=1, \mathrm{p} 0165=1$). - again withdraw the components involved. See also: p0125 (Activate/de-activate power unit components), p0145, p0155 (Voltage Sensing Module, activate/deactivate)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A01318	BICO: De-activated interconnections present
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	This alarm is output: If an inactive/non-operational drive object is again active/ready for operation and r9498[] or r9499[] are not empty and the connections listed in r9498[] and r9499 have actually been changed
Remedy:	Clear alarm: Set p9496 to 1 or 2 or de-activate DO again

A01319	Inserted component not initialized
Message value:	-
Drive object:	A_INF, B_INF, CU_LINK, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA,
	TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The inserted component has still not been initiated, as the pulses are enabled.
Remedy:	Pulse inhibit

A01320	Topology: Drive object number does not exist in configuration
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A drive object number is missing in p0978 Alarm value (r2124, interpret decimal): Index of p0101 under which the missing drive object number can be determined.
Remedy:	Set p0009 to 1 and change p0978: Rules: - p0978 must include all of the drive object numbers (p0101). - it is not permissible for a drive object number to be repeated. - by entering a 0 , the drive objects with PZD are separated from those without PZD. - only 2 partial lists are permitted. After the second 0 , all values must be 0 . - dummy drive object numbers (255) are only permitted in the first partial list.

A01321	Topology: Drive object number does not exist in configuration
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	p0978 contains a drive object number that does not exist. Alarm value (r2124, interpret decimal): Index of p0978 under which the drive object number can be determined.
Remedy:	Set p0009 to 1 and change p0978: Rules: - p0978 must include all of the drive object numbers (p0101). - it is not permissible for a drive object number to be repeated. - by entering a 0 , the drive objects with PZD are separated from those without PZD. - only 2 partial lists are permitted. After the second 0 , all values must be 0 . - dummy drive object numbers (255) are only permitted in the first partial list.

A01322	Topology: Drive object number present twice in configuration
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A drive object number is present more than once in p0978. Alarm value (r2124, interpret decimal): Index of p0978 under which the involved drive object number is located.
Remedy:	Set p0009 to 1 and change p0978: Rules: - p0978 must include all of the drive object numbers (p0101). - it is not permissible for a drive object number to be repeated. - by entering a 0 , the drive objects with PZD are separated from those without PZD. - only 2 partial lists are permitted. After the second 0 , all values must be 0 . - dummy drive object numbers (255) are only permitted in the first partial list.

A01323	Topology: More than two partial lists created
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Partial lists are available more than twice in p0978. After the second 0 , all must be 0 Alarm value (r 2124 , interpret decimal): Index of p0978 under which the illegal value is located.
Remedy:	Set p0009 to 1 and change p0978: Rules: - p0978 must include all of the drive object numbers (p0101). - it is not permissible for a drive object number to be repeated. - by entering a 0 , the drive objects with PZD are separated from those without PZD. - only 2 partial lists are permitted. After the second 0 , all values must be 0 . - dummy drive object numbers (255) are only permitted in the first partial list.

A01324	Topology: Dummy drive object number incorrectly created
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	In p0978, dummy drive object numbers (255) are only permitted in the first partial list. Alarm value (r 2124 , interpret decimal): Index of p0978 under which the illegal value is located.
Remedy:	Set p0009 to 1 and change p0978: Rules: - p0978 must include all of the drive object numbers (p0101). - it is not permissible for a drive object number to be repeated. - by entering a 0 , the drive objects with PZD are separated from those without PZD. - only 2 partial lists are permitted. After the second 0 , all values must be 0 . - dummy drive object numbers (255) are only permitted in the first partial list.

A01330	Topology: Quick commissioning not possible
Message value:	Fault cause: \%1, supplementary information: \%2, preliminary component number: \%3
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Unable to carry out a quick commissioning. The existing actual topology does not fulfill the requirements. Alarm value $($ r2124, interpret hexadecimal): ccccbbaa hex: cccc $=$ preliminary component number, bb $=$ supplementary information, aa $=$ fault cause aa $=01$ hex $=1$ dec:
	On one component illegal connections were detected.

$-\mathrm{bb}=01$ hex $=1 \mathrm{dec}$: For a Motor Module, more than one motor with DRIVE-CLiQ was detected.
$-\mathrm{bb}=02$ hex $=2$ dec: For a motor with DRIVE-CLiQ, the DRIVE-CLiQ cable is not connected to a Motor Module
aa $=02$ hex $=2$ dec:
The topology contains too many components of a particular type.
$-\mathrm{bb}=01$ hex $=1 \mathrm{dec}$: There is more than one master Control Unit.

- $\mathrm{bb}=02$ hex $=2$ dec: There is more than 1 infeed (8 for a parallel circuit configuration).
$-\mathrm{bb}=03$ hex $=3 \mathrm{dec}$: There are more than 10 Motor Modules (8 for a parallel circuit configuration).
- bb $=04$ hex $=4 \mathrm{dec}$: There are more than 9 encoders.
- bb = 05 hex $=5$ dec: There are more than 8 Terminal Modules.
- bb $=07$ hex $=7$ dec: Unknown component type
$-\mathrm{bb}=08$ hex $=8 \mathrm{dec}$: There are more than 6 drive slaves.
- bb = 09 hex = 9 dec: Connection of a drive slave not permitted
- $\mathrm{bb}=0 \mathrm{a}$ hex $=10 \mathrm{dec}$: There is no drive master.
$-\mathrm{bb}=0 \mathrm{~b}$ hex $=11 \mathrm{dec}$: There is more than one motor with DRIVE-CLiQ for a parallel circuit.
- cccc: Not used.
aa $=03$ hex $=3 \mathrm{dec}$:
More than 16 components are connected at a DRIVE-CLiQ socket of the Control Unit.
$-\mathrm{bb}=0,1,2,3$ means e.g. detected at the DRIVE-CLiQ socket X100, X101, X102, X103.
- cccc: Not used.
aa $=04$ hex $=4 \mathrm{dec}$:
The number of components connected one after the other is greater than 125.
- bb: Not used.
- cccc $=$ preliminary component number of the first component and component that resulted in the fault. aa $=05 \mathrm{hex}=5 \mathrm{dec}$:
The component is not permissible for SERVO.
$-\mathrm{bb}=01$ hex $=1 \mathrm{dec}$: SINAMICS G available.
- bb = 02 hex $=2$ dec: Chassis available.
- cccc = preliminary component number of the first component and component that resulted in the fault.
aa $=06$ hex $=6 \mathrm{dec}$:
On one component illegal EEPROM data was detected. These must be corrected before the system continues to boot.
- $\mathrm{bb}=01$ hex $=1 \mathrm{dec}$: The Order No. [MLFB] of the power unit that was replaced includes a space retainer. The space retainer (*) must be replaced by a correct character.
- cccc $=$ preliminary component number of the component with illegal EEPROM data.
aa $=07$ hex $=7 \mathrm{dec}$:
The actual topology contains an illegal combination of components.
- bb = 01 hex = 1 dec: Active Line Module (ALM) and Basic Line Module (BLM).
- bb = 02 hex = 2 dec: Active Line Module (ALM) and Smart Line Module (SLM).
$-\mathrm{bb}=03$ hex $=3$ dec: SIMOTION control (e.g. SIMOTION D445) and SINUMERIK component (e.g. NX15).
- bb = 04 hex = 4 dec: SINUMERIK control (e.g. SINUMERIK 730.net) and SIMOTION component (e.g. CX32).
- cccc: Not used.

Note:
Connection type and connection number are described in F01375.
See also: p0097 (Select drive object type), r0098 (Actual device topology), p0099 (Device target topology)
Remedy:

- adapt the output topology to the permissible requirements.
- carry out commissioning using the commissioning software.
- for motors with DRIVE-CLiQ, connect the power and DRIVE-CLiQ cable to the same Motor Module (Single Motor Module: DRIVE-CLiQ at X202, Double Motor Module: DRIVE-CLiQ from motor 1 (X1) to X202, from motor 2 (X2) to X203).
Re $a \mathrm{a}=06$ hex $=6 \mathrm{dec}$ and $\mathrm{bb}=01$ hex $=1 \mathrm{dec}$:
Correct the order number when commissioning using the commissioning software.
See also: p0097 (Select drive object type), r0098 (Actual device topology), p0099 (Device target topology)

A01331	Topology: At least one component not assigned to a drive object
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one component is not assigned to a drive object.
	- when commissioning, a component was not able to be automatically assigned to a drive object.
	- the parameters for the data sets are not correctly set.
	Alarm value (r2124, interpret decimal):
	Component number of the unassigned component.
	This component is assigned to a drive object.
	Check the parameters for the data sets.
	Examples:
	- power unit (p0121).
	- motor (p0131, p0186).
	- encoder interface (p0140, p0141, p0187 ... p0189).
	- encoder (p0140, p0142, p0187 ... p0189).
	- Terminal Module (p0151).
	- option board (p0161).

F01340	Topology: Too many components on one line
Message value:	Component number or connection number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	For the selected communications clock cycle, too many DRIVE-CLiQ components are connected to one line of the Control Unit. Fault value (r0949, interpret hexadecimal): xyy hex: $x=$ fault cause, $y y=$ component number or connection number. 1yy: The communications clock cycle of the DRIVE-CLiQ connection on the CU is not sufficient for all read transfers. 2yy: The communications clock cycle of the DRIVE-CLiQ connection on the CU is not sufficient for all write transfers. 3yy: Cyclic communication is fully utilized. 4yy: The DRIVE-CLiQ cycle starts before the earliest end of the application. An additional dead time must be added to the control. Sign-of-life errors can be expected. 5yy: Internal buffer overflow for net data of a DRIVE-CLiQ connection. $6 y y:$ Internal buffer overflow for receive data of a DRIVE-CLiQ connection. 7yy: Internal buffer overflow for send data of a DRIVE-CLiQ connection.
Remedy:	Check the DRIVE-CLiQ connection: Reduce the number of components on the DRIVE-CLiQ line involved and distribute these to other DRIVE-CLiQ connections of the Control Unit. This means that communication is uniformly distributed over several communication lines. Re fault value $=1 \mathrm{yy}-4 \mathrm{yy}$ in addition: - increase the sampling times (p0112, p0115).
F01354	Topology: Actual topology indicates an illegal component
Message value:	Fault cause: \%1, component number: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The actual topology indicates at least one illegal component. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ cause. $x x=1$: Component at this Control Unit not permissible. $x x=2$: Component in combination with another component not permissible. Note: Pulse enable is prevented.
Remedy:	Remove the illegal components and restart the system.
F01355	Topology: Actual topology changed
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The device target topology (p 0099) does not correspond to the device actual topology (r0098). The fault only occurs if the topology was commissioned using the automatic internal device mechanism and not using the commissioning software. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting. See also: r0098 (Actual device topology), p0099 (Device target topology)

Remedy:	One of the following counter-measures can be selected if no faults have occurred in the topology detection itself: If commissioning was still not completed: - carry out a self-commissioning routine (starting from p0009 = 1). General: Set p0099 to r0098, set p0009 to 0; for existing Motor Modules, this results in servo drives being automatically generated (p0107). Generating servo drives: Set p0097 to 1, set p0009 to 0. Generating vector drives: Set p0097 to 2, set p0009 to 0. Generating vector drives with parallel circuit: Set p0097 to 12, set p0009 to 0 . In order to set configurations in p0108, before setting p0009 to 0 , it is possible to first set p0009 to 2 and modify p0108. The index corresponds to the drive object (p0107). If commissioning was already completed: - re-establish the original connections and re-connect power to the Control Unit. - restore the factory setting for the complete equipment (all of the drives) and allow automatic self-commissioning again. - change the device parameterization to match the connections (this is only possible using the commissioning software). Notice: Topology changes that result in this fault being generated cannot be accepted by the automatic function in the device, but must be transferred using the commissioning software and parameter download. The automatic function in the device only allows constant topology to be used. Otherwise, when the topology is changed, all of the previous parameter settings are lost and replaced by the factory setting. See also: r0098 (Actual device topology)
F01360	Topology: Actual topology is illegal
Message value:	Fault cause: \%1, preliminary component number: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The detected actual topology is not permissible. Fault value (r0949, interpret hexadecimal): ccccbbaa hex: cccc = preliminary component number, aa = fault cause aa $=01$ hex $=1 \mathrm{dec}$: Too many components were detected at the Control Unit. The maximum permissible number of components is 199. $\mathrm{aa}=02 \mathrm{hex}=2 \mathrm{dec}:$ The component type of a component is not known. $\mathrm{aa}=03 \text { hex }=3 \mathrm{dec}:$ The combination of ALM and BLM is not permitted. $\text { aa }=04 \text { hex }=4 \text { dec: }$ The combination of ALM and SLM is not permitted. $\text { aa }=05 \text { hex }=5 \mathrm{dec}:$ The combination of BLM and SLM is not permitted. $\text { aa }=06 \text { hex }=6 \text { dec: }$ A CX32 was not directly connected to a permitted Control Unit. $\text { aa }=07 \text { hex }=7 \mathrm{dec}:$ An NX10 or NX15 was not directly connected to a permitted Control Unit. $\text { aa }=08 \text { hex }=8 \mathrm{dec}:$ A component was connected to a Control Unit that is not permitted for this purpose. $\mathrm{aa}=0 \mathrm{~A} \text { hex }=10 \mathrm{dec}:$ Too many components of a certain type detected. $\mathrm{aa}=0 \mathrm{~B} \text { hex }=11 \mathrm{dec}:$ Too many components of a certain type detected at a single line. Note: The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Re fault cause $=1$: Change the configuration. Connect less than 199 components to the Control Unit. Re fault cause $=2$: Remove the component with unknown component type. Re fault cause $=3,4,5$: Establish a valid combination.

Re fault cause $=6,7$:
Connect the expansion module directly to a permitted Control Unit.
Re fault cause $=8$:
Remove component.
Re fault cause $=10,11$:
Reduce the number of components.

A01361	Topology: Actual topology contains SINUMERIK and SIMOTION components
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The detected actual topology contains SINUMERIK and SIMOTION components. The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled. Fault value (r0949, interpret hexadecimal): ddccbbaa hex: $\mathrm{cc}=$ fault cause, $\mathrm{bb}=$ component class of the actual topology, $\mathrm{aa}=$ component number of the component cc $=01$ hex $=1 \mathrm{dec}$: An NX10 or NX15 was connected to a SIMOTION control. $c c=02$ hex $=2 \mathrm{dec}$: A CX32 was connected to a SINUMERIK control.
Remedy:	Re fault cause $=1$: Replace all NX10 or NX15 by a CX32. Re fault cause $=2$: Replace all CX32 by an NX10 or NX15.
F01375	Topology: Actual topology, duplicate connection between two components
Message value:	Preliminary component number: \%1, component class: \%2, connection number: \%3
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When detecting the actual topology, a ring-type connection was detected. Fault value (r0949, interpret hexadecimal): ccbbaaaa hex: $c c=$ connection number $\mathrm{bb}=$ component class aaaa $=$ preliminary component number of a component included in the ring Component class: 1: Control Unit 2: Motor Module 3: Line Module 4: Sensor Module (SM) 5: Voltage Sensing Module (VSM) 6: Terminal Module (TM) 7: DRIVE-CLiQ Hub Module 8: Controller Extension 32 (CX32, NX10, NX15) 49: DRIVE-CLiQ components (non-listed components) 50: Option slot (e.g. Terminal Board 30) 60: Encoder (e.g. EnDat) 70: Motor with DRIVE-CLiQ Component type: Precise designation within a component class (e.g. "SMC20"). Connection number: Consecutive numbers, starting from zero, of the appropriate connection or slot (e.g. DRIVE-CLiQ connection X100 on the Control Unit has the connection number 0).
Remedy:	Output the fault value and remove the specified connection. Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

F01380	Topology: Actual topology, defective EEPROM
Message value:	Preliminary component number: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	When detecting the actual topology, a component with a defective EEPROM was detected.
	Fault value (r0949, interpret hexadecimal):
bbbbaaaa hex:	
aaaa = preliminary component number of the defective components	
Output the fault value and remove the defected component.	

Remedy: Adapting the topologies:

- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).

Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01383	Topology: Comparison Terminal Module shifted
Message value:	Component number: \%1, Component class: \%2, Component (target): \%3, Connection number: \%4
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a Terminal Module in the actual topology that has been shifted with respect to the target topology. Alarm value (r2124, interpret hexadecimal): ddccbbaa hex: dd = connection number cc = component number bb = component class aa = component number of the component shifted in the target topology Note: The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. Component class and connection number are described in F01375. The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting the topologies: - undo the change to the actual topology by changing over the DRIVE-CLiQ cables. - commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project. - automatically remove the topology error (p9904). Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01384	Topology: Comparison DRIVE-CLiQ Hub Module shifted
Message value:	Component number: \%1, Component class: \%2, Component (target): \%3, Connection number: \%4
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a DRIVE-CLiQ Hub Module in the actual topology that has been shifted with respect to the target topology. Alarm value (r2124, interpret hexadecimal): ddccbbaa hex: dd = connection number cc = component number bb = component class aa = component number of the component shifted in the target topology Note: The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. Component class and connection number are described in F01375. The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting the topologies: - undo the change to the actual topology by changing over the DRIVE-CLiQ cables. - commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project. - automatically remove the topology error (p9904). Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01385	Topology: Comparison CX32 shifted
Message value:	Component number: \%1, Component class: \%2, Component (target): \%3, Connection number: \%4
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a controller extension 32 (CX32) in the actual topology that has been shifted with respect to the target topology. Alarm value (r2124, interpret hexadecimal): ddccbbaa hex: dd = connection number cc = component number bb = component class aa = component number of the component shifted in the target topology Note: The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. Component class and connection number are described in F01375. The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting the topologies: - undo the change to the actual topology by changing over the DRIVE-CLiQ cables. - commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project. - automatically remove the topology error (p9904). Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01386	Topology: Comparison DRIVE-CLiQ component shifted
Message value:	Component number: \%1, Component class: \%2, Component (target): \%3, Connection number: \%4
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a DRIVE-CLiQ component in the actual topology that has been shifted with respect to the target topology. Alarm value (r2124, interpret hexadecimal): ddccbbaa hex: dd = connection number cc = component number bb = component class aa = component number of the component shifted in the target topology Note: The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. Component class and connection number are described in F01375. The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting the topologies: - undo the change to the actual topology by changing over the DRIVE-CLiQ cables. - commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project. - automatically remove the topology error (p9904). Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01387	Topology: Comparison option slot component shifted
Message value:	Component number: \%1, Component class: \%2, Component (target): \%3, Connection number: \%4
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a option slot component in the actual topology that has been shifted with
	respect to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	dd = connection number
	cc = component number
	bb = component class
	aa component number of the component shifted in the target topology
	Note:
	The connection in the actual topology where the shifted component was detected is described in dd, cc and bb.
	Component class and connection number are described in F01375.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting the topologies:
	- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
	- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified
	project.
- automatically remove the topology error (p9904).	
	Note:
	Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. set-
point/actual value comparison).	

A01388	Topology: Comparison EnDat encoder shifted
Message value:	Component number: \%1, Component class: \%2, Component (target): \%3, Connection number: \%4
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected an EnDat encoder in the actual topology that has been shifted with respect
	to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	dd = connection number
	cc = component number
	bb component class
	aa = component number of the component shifted in the target topology
	Note:
	The connection in the actual topology where the shifted component was detected is described in dd, cc and bb.
	Component class and connection number are described in F01375.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting the topologies:
	- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
	- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified

A01389	Topology: Comparison motor with DRIVE-CLiQ shifted
Message value:	Component number: \%1, Component class: \%2, Component (target): \%3, Connection number: \%4
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a motor with DRIVE-CLiQ in the actual topology that has been shifted with respect to the target topology. Alarm value (r2124, interpret hexadecimal): ddccbbaa hex: dd = connection number cc = component number bb = component class aa = component number of the component shifted in the target topology Note: The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. Component class and connection number are described in F01375. The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting the topologies: - undo the change to the actual topology by changing over the DRIVE-CLiQ cables. - commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project. - automatically remove the topology error (p9904). Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01416	Topology: Comparison additional component in actual topology
Message value:	Component number: \%1, Component class: \%2, Connection number: \%3
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has found a component in the actual topology which is not specified in the target topology.
	The alarm value includes the component number and connection number of the component with which the additional
	component is connected.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	cc = connection number
	bb component class of the additional component
	aa = component number
	Note:
	- component class and connection number are described in F01375.
	- components that are connected to this additional component are not operational.
Remedy:	Adapting the topologies:
	- remove the additional component in the actual topology.
	- download the target topology that matches the actual topology (commissioning software).
	Note:
	Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. set-
	point/actual value comparison).

A01420	Topology: Comparison a component is different
Message value:	Component number: \%1, component class target: \%2, component class actual: \%3, fault cause: \%4
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected differences in the actual and target topologies in relation to one component.
	There are differences in the electronic rating plate.

	Alarm value (r2124, interpret hexadecimal): ddccbbaa hex: $\mathrm{aa}=$ component number of the component, $\mathrm{bb}=$ component class of the target tolopology, $\mathrm{cc}=\mathrm{com}-$ ponent class of the actual topology, $\mathrm{dd}=$ fault cause $\mathrm{dd}=01$ hex $=1 \mathrm{dec}$: Different component type. dd = 02 hex $=2$ dec: Different Order No. $\mathrm{dd}=03 \mathrm{hex}=3 \mathrm{dec}$: Different manufacturer. $\mathrm{dd}=04 \mathrm{hex}=4 \mathrm{dec}$: Connection changed over for a multi-component slave (e.g. Double Motor Module) or defective EEPROM data in the electronic rating plate. $\mathrm{dd}=05 \mathrm{hex}=5 \mathrm{dec}:$ A CX32 was replaced by an NX10 or NX15. $\mathrm{dd}=06 \text { hex }=6 \mathrm{dec}:$ An NX10 or NX15 was replaced by a CX32. Note: Component class and component type are described in F01375. The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting the topologies: - check the component soft-wired connections against the hardware configuration of the drive unit in the commissioning software and correct differences. - parameterize the topology comparison of all components (p9906). - parameterize the topology comparison of one components (p9907, p9908). Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
A01421	Topology: Comparison different components
Message value:	Component number: \%1, component class target: \%2, component class actual: \%3, fault cause: \%4
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected differences in the actual and target topologies in relation to one component. The component class, the component type or the number of connections differ. Alarm value (r2124, interpret hexadecimal): ddccbbaa hex: $\mathrm{aa}=$ component number of the component, $\mathrm{bb}=$ component class of the target tolopology, $\mathrm{cc}=\mathrm{com}-$ ponent class of the actual topology, $\mathrm{dd}=$ fault cause $\mathrm{dd}=01 \mathrm{hex}=1 \mathrm{dec}$: Different component class. dd $=02$ hex $=2$ dec: Different component type. $\mathrm{dd}=03 \mathrm{hex}=3 \mathrm{dec}:$ Different Order No. $\mathrm{dd}=04 \text { hex }=4 \mathrm{dec}:$ Different number of connections. Note: Component class, component type and connection number are described in F01375. The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Check the component soft-wired connections against the hardware configuration of the drive unit in the commissioning software and correct differences. Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01425	Topology: Comparison serial number of a component is different
Message value:	Component number: \%1, Component class: \%2, Differences: \%3
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected differences in the actual and target topologies in relation to one component. The serial number is different. Alarm value (r2124, interpret hexadecimal): ddccbbaa hex: cc = number of differences bb = component class $\mathrm{aa}=$ component number of the component Note: The component class is described in F01375. The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting the topologies: - change over the actual topology to match the target topology. - download the target topology that matches the actual topology (commissioning software). Re byte cc: cc = 1 --> can be acknowledged using p9904 or p9905. cc > 1 --> can be acknowledged using p9905 and can be de-activated using p9906 or p9907/p9908. Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison). See also: p9904 (Topology comparison, acknowledge differences), p9905 (Device specialization), p9906 (Topology comparison, comparison stage of all components), p9907 (Topology comparison, comparison stage of the component number), p9908 (Topology comparison, comparison stage of a component)

A01428	Topo: Comparison connection of a component is different
Message value:	Component number: \%1, Component class: \%2, Connection number1: \%3, Connection number2: \%4
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected differences in the actual and target topologies in relation to one component. A component was connected to another connection. The different connections of a component are described in the alarm value: Alarm value (r2124, interpret hexadecimal): ddccbbaa hex: dd = connection number of the target topology cc = connection number of the actual topology bb = component class aa = component number Note: Component class and connection number are described in F01375. The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting the topologies: - change over the actual topology to match the target topology. - download the target topology that matches the actual topology (commissioning software). - automatically remove the topology error (p9904). Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison). See also: p9904 (Topology comparison, acknowledge differences)

A01429	Topology: Comparison connection is different for more than one component
Message value:	Component number: \%1, Component class: \%2, Connection number1: \%3, Connection number2: \%4
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A topology comparison has found differences between the actual and target topology for several components. A component was connected to another connection. The different connections of a component are described in the alarm value: Alarm value (r2124, interpret hexadecimal): ddccbbaa hex: dd = connection number of the target topology cc = connection number of the actual topology bb = component class aa = component number Note: Component class and connection number are described in F01375. The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting the topologies: - change over the actual topology to match the target topology. - download the target topology that matches the actual topology (commissioning software). Note: In the software, a Double Motor Module behaves just like two separate DRIVE-CLiQ nodes. If a Double Motor Module is re-inserted, this can result in several differences in the actual topology. Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
F01451	Topology: Target topology is invalid
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An error was detected in the target topology. The target topology is invalid. Fault value (r0949, interpret hexadecimal): ccccbbaa hex: cccc = index error, $\mathrm{bb}=$ component number, $\mathrm{aa}=$ fault cause $a \mathrm{a}=1 \mathrm{~B}$ hex $=27 \mathrm{dec}$: Error not specified. aa $=1 \mathrm{C}$ hex $=28 \mathrm{dec}$: Value illegal. aa $=1 \mathrm{D}$ hex $=29 \mathrm{dec}$: Incorrect ID. aa $=1 \mathrm{E}$ hex $=30 \mathrm{dec}$: Incorrect ID length. aa $=1 \mathrm{~F}$ hex $=31 \mathrm{dec}$: Too few indices left. aa $=20$ hex $=32$ dec: component not connected to Control Unit.
Remedy:	Reload the target topology using the commissioning software.
F01470	Topology: Target topology ring-type connection
Message value:	Component number: \%1, Component class: \%2, Connection number: \%3
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A ring-type connection was detected when writing to the target topology. Fault value (r0949, interpret hexadecimal): ddccbbaa hex: cc = connection number bb = component class $a \mathrm{a}=$ component number of a component included in the ring Note: Component class and connection number are described in F01375.

Remedy:	Read out the fault value and remove one of the specified connections. Then download the target topology again using the commissioning software. Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
F01475	Topology: Target topology duplicate connection between two components
Message value:	Component number: \%1, Component class: \%2, Connection number1: \%3, Connection number2: \%4
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When writing the target topology, a duplicate connection between two components was detected. Fault value (r0949, interpret hexadecimal): ddccbbaa hex: dd = connection number 2 of the duplicate connection cc $=$ connection number 1 of the duplicate connection $\mathrm{bb}=$ component class $\mathrm{aa}=$ component number of one of the components connected twice Note: Component class and connection number are described in F01375.
Remedy:	Read out the fault value and remove one of the two specified connections. Then download the target topology again using the commissioning software. Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
A01481	Topology: Comparison power unit missing in the actual topology
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a power unit in the target topology that is not available in the actual topology. Alarm value (r2124, interpret decimal): Component number of the additional target components.
Remedy:	- delete the drive belonging to the power unit in the commissioning software project and download the new configuration to the drive unit. - check that the actual topology matches the target topology and if required, change over. - check DRIVE-CLiQ cables for interruption and contact problems. - check the 24 V supply voltage. - check that the power unit is working properly. Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01482

Message value:
Drive object: All objects

Reaction: NONE
Acknowledge: NONE
Cause:
All objects

Topology: Comparison Sensor Module missing in the actual topology

Component number: \%1

The topology comparison has detected a Sensor Module in the target topology that is not available in the actual topology. Alarm value (r2124, interpret decimal): Component number of the additional target components.

Remedy: - re-configure the drive belonging to the Sensor Module in the commissioning software project (encoder configuration) and download the new configuration to the drive unit.

- delete the drive belonging to the Sensor Module in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check the 24 V supply voltage.
- check that the Sensor Module is working properly.

Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01483	Topology: Comparison Terminal Module missing in the actual topology
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a Terminal Module in the target topology that is not available in the actual topology. Alarm value (r2124, interpret decimal): Component number of the additional target components.
Remedy:	- delete the Terminal Module in the commissioning software project and download the new configuration to the drive unit. - check that the actual topology matches the target topology and if required, change over. - check DRIVE-CLiQ cables for interruption and contact problems. - check the 24 V supply voltage. - check that the Terminal Module is working properly. Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01484	Topology: Comparison DRIVE-CLiQ Hub Module missing in the actual topology
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a DRIVE-CLiQ Hub Module in the target topology that does not exist in the actual topology. Alarm value (r2124, interpret decimal): Component number of the additional target components.
Remedy:	- delete the DRIVE-CLiQ Hub Module in the commissioning software project and download the new configuration to the drive unit. - check that the actual topology matches the target topology and if required, change over. - check DRIVE-CLiQ cables for interruption and contact problems. - check the 24 V supply voltage. - test the DRIVE-CLiQ Hub Module to ensure that it functions correctly. Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01485	Topology: Comparison CX32 missing in the actual topology
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a controller extension 32 (CX32) in the target topology that is not available in the actual topology.
	Alarm value (r2124, interpret decimal): Component number of the additional target components.

Remedy: \quad - delete the CX32 / NX in the commissioning software project and download the new configuration to the drive unit.

A01486	Topology: Comparison DRIVE-CLiQ components missing in the actual topology
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a DRIVE-CLiQ component in the target topology that is not available in the actual topology.
	Alarm value (r2124, interpret decimal): Component number of the additional target components.
	- delete the drive belonging to this component in the commissioning software project and download the new config- uration to the drive unit.
	- re-configure the drive belonging to this component in the commissioning software project and download the new
configuration to the drive unit.	
- check that the actual topology matches the target topology and if required, change over.	
	- check DRIVE-CLiQ cables for interruption and contact problems.
- check the 24 V supply voltage.	
- check that the component is working properly.	
	Note:
	Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. set-
point/actual value comparison).	

A01487	Topology: Comparison option slot components missing in the actual topology
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected an option slot module in the target topology that is not available in the actual topology. Alarm value (r2124, interpret decimal): Component number of the additional target components.
Remedy:	- delete the option board in the commissioning software project and download the new configuration to the drive unit. - re-configure the drive unit in the commissioning software project and download the new configuration to the drive unit. - check that the actual topology matches the target topology and if required, change over. - check that the option board is functioning correctly Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01488	Topology: Comparison EnDat encoder missing in the actual topology
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected an EnDat encoder in the target topology that is not available in the actual topology.
	Alarm value (r2124, interpret decimal): Component number of the additional target components.

Remedy:	- re-configure the drive belonging to the encoder in the commissioning software project (encoder configuration) and download the new configuration to the drive unit. - delete the drive belonging to the encoder in the commissioning software project and download the new configura- tion to the drive unit. - check that the actual topology matches the target topology and if required, change over. Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. set- point/actual value comparison).
A01489	Topology: Comparison motor with DRIVE-CLiQ missing in the actual topology
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE Cause:
The topology comparison has detected a motor with DRIVE-CLiQ in the target topology that is not available in the	
actual topology.	
Alarm value (r2124, interpret decimal):	
Component number of the additional target components.	

F01505 (A)	BICO: Interconnection cannot be established
Message value:	Parameter: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A PROFIdrive telegram has been set (p0922).
	An interconnection contained in the telegram was not able to be established.
	Fault value (r0949, interpret decimal):
	Parameter receiver that should be changed.
Remedy:	Establish another interconnection.
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F01506 (A) BICO: No standard telegram
Message value: Parameter: \%1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY

Cause:	The standard telegram in p0922 is not maintained and therefore p0922 is set to 999. Fault value (r0949, interpret decimal): BICO parameter for which the write attempt was unsuccessful.
Remedy:	Again set the required standard telegram (p0922).
Reaction upon A:	NONE
Acknowl. upon A:	NONE

A01507 (F, N)	BICO: Interconnections to inactive objects present
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	There are BICO interconnections as signal sink from a drive object that is either inactive/not operational. The $\mathrm{BI} / \mathrm{Cl}$ parameters involved are listed in r9498. The associated BO/CO parameters are listed in r9499. The list of the BICO interconnections to other drive objects is displayed in r9491 and r9492 of the de-activated drive object. Note: r9498 and r9499 are only written to, if p9495 is not set to 0 . Alarm value (r2124, interpret decimal): Number of BICO interconnections found to inactive drive objects.
Remedy:	- set all open BICO interconnections centrally to the factory setting with p9495 $=2$. - make the non-operational drive object active/operational again (re-insert or activate components).
Reaction upon F:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) VECTOR: OFF2 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A01508	BICO: Interconnections to inactive objects exceeded
Message value:	- All
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum number of BICO interconnections (signal sinks) when de-activating a drive object was exceeded. When de-activating a drive object, all BICO interconnections (signal sinks) are listed in the following parameters: - r9498[0...29]: List of the BI/Cl parameters involved. - r9499[0...29]: List of the associated BO/CO parameters.
Remedy:	The alarm automatically disappears as soon as no BICO interconnection (value $=0$) is entered in r9498[29] and r9499[29]. Notice: When re-activating the drive object, all BICO interconnections should be checked and if required, re-established.
F01510	BICO: Signal source is not float type
Message value:	Parameter: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested connector output does not have the correct data type. This interconnection is not established. Fault value (r0949, interpret decimal): Parameter number to which an interconnection should be made (connector output).
Remedy:	Interconnect this connector input with a connector output having a float data type.

F01511 (A) BICO: Interconnection between different normalizations
Message value: Parameter: \%1
Drive object: All objects
Reaction: NONE

Acknowledge: IMMEDIATELY
Cause: The requested interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values.

- the BICO output has different normalized units than the BICO input.
- message only for interconnections within a drive object.

	Example: The BICO output has, as normalized unit, voltage and the BICO input has current. This means that the factor p2002 (contains the reference value for current) / p2001 (contains the reference value for voltage) is calculated between the BICO output and BICO input. Fault value (r0949, interpret decimal): Parameter number of the BICO input (signal sink).
Remedy:	No correction needed.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01512	BICO: No normalization available
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (OFF1) SERVO: OFF2 VECTOR: OFF2
Acknowledge:	POWER ON
Cause:	An attempt was made to determine a conversion factor for a normalization that does not exist. Fault value (r0949, interpret decimal): Unit (e.g. corresponding to SPEED) for which an attempt was made to determine a factor.
Remedy:	Apply normalization or check the transfer value.
F01513 (A)	BICO: Spanning DO between different normalizations
Message value:	Parameter: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values. An interconnection is made between different drive objects and the BICO output has different normalized units than the BICO input or the normalized units are the same but the reference values are different. Example: The BICO output has, as standard unit, voltage and the BICO input has current; both lie in different drive objects. This means that the factor p2002 (contains the reference value for current) / p2001 (contains the reference value for voltage) is calculated between the BICO output and BICO input. Fault value (r0949, interpret decimal): Parameter number of the BICO input (signal sink).
Remedy:	None necessary.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A01514 (F)	BICO: Error when writing during a reconnect
Message value:	Parameter: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	During a reconnect operation (e.g. while booting or downloading - but can also occur in normal operation) a parameter was not able to be written to. Example: When writing to a double word BICO input in the second index, the memory areas overlap (e.g. p8861). The parameter is then reset to the factory setting. Alarm value (r2124, interpret decimal): Parameter number of the BICO input (signal sink).
Remedy:	None necessary.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY

F01515 (A)	BICO: Writing to parameter not permitted as the master control is active
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	While changing the number of CDS or when copying from CDS, the master control was active.
Remedy:	None necessary.
Reaction upon A :	NONE
Acknowl. upon A :	NONE
A01590 (F)	Drive: Motor maintenance interval expired
Message value:	Fault cause: \%1 bin
Drive object:	A_INF, B_INF, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected service/maintenance interval for this motor was reached. Alarm value (r2124, interpret decimal): Motor data set number. See also: p0650 (Actual motor operating hours), p0651 (Motor operating hours maintenance interval)
Remedy:	carry out service/maintenance and reset the service/maintenance interval (p0651).
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
F01600	SI CU: STOP A initiated
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-based "Safety Integrated" function in the Control Unit (CU) has detected a fault and initiated a STOP A (pulse suppression via the safety shutdown path of the Control Unit). - forced checking procedure of the safety shutdown path of the Control Unit unsuccessful. - subsequent response to fault F01611 (defect in a monitoring channel). Fault value (r0949, interpret decimal): 0: Stop request from the Motor Module. 1005: Pulses suppressed although STO not selected and there is no internal STOP A present. 1010: Pulses enabled although STO is selected or an internal STOP A is present. 1015: Feedback of the safe pulse suppression for Motor Modules connected in parallel are different. 9999: Subsequent response to fault F01611.
Remedy:	- select Safe Torque Off and de-select again. - replace the Motor Module involved. Re fault value = 9999: - carry out diagnostics for fault F01611. Note: CU: Control Unit MM: Motor Module SI: Safety Integrated STO: Safe Torque Off / SH: Safe standstill
F01611	SI CU: Defect in a monitoring channel
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-based "Safety Integrated" function in the Control Unit (CU) has detected a fault in the data cross-check between the CU and Motor Module (MM) and initiated a STOP F.

As a result of this fault, after the parameterized transition has expired (p9658), fault F01600 (SI CU: STOP A initiated) is output.
Fault value (r0949, interpret decimal):
0 : Stop request from the Motor Module.
1 to 999:
Number of the cross-checked data that resulted in this fault. This number is also displayed in r 9795.
1: SI monitoring clock cycle (r9780, r9880).
2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits.
3: SI SGE changeover tolerance time (p9650, p9850).
4: SI transition period STOP F to STOP A (p9658, p9858).
5: SI enable Safe Brake Control (p9602, p9802).
6: SI Motion enable, safety-relevant functions (p9501, internal value).
7: SI pulse suppression delay time for Safe Stop 1 (p9652, p9852).
8: SI PROFIsafe address (p9610, p9810).
1000: Watchdog timer has expired. Within a period corresponding to approximately 5 * p9650, too many switching operations have occurred at terminal EP of the Motor Module, or STO (including subsequent responses) has been triggered too frequently via PROFIsafe/TM54F.
1001, 1002: Initialization error, change timer / check timer.
2000: Status of the STO selection on the Control Unit and Motor Module are different.
2001: Feedback signal for safe pulse suppression on the Control Unit and Motor Module are different.
2002: Status of the delay timer SS1 on the Control Unit and Motor Module are different.
2004: Status of the STO selection for modules connected in parallel are different.
2005: Feedback signal of the safe pulse suppression on the Control Unit and Motor Modules connected in parallel are different.
Remedy: \quad Re fault value $=1$ to 5 and 7 to 999:

- check the cross-checked data that resulted in a STOP F.
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Re fault value $=6$:

- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Re fault value = 1000:

- check the EP terminal at the Motor Module (contact problems).
- PROFIsafe: rectify contact problems/faults on the PROFIBUS master/PROFINET controller.
- check the wiring of the fail-safe inputs on TM54F (contact problems).

Re fault value $=1001$, 1002:

- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Re fault value = 2000, 2001, 2002, 2004, 2005:

- check the tolerance time SGE changeover and if required, increase the value (p9650/p9850, p9652/p9852).
- check the wiring of the safety-relevant inputs (SGE) (contact problems).
- check the causes of STO selection in r9772. Active SMM functions (p9501=1) can also cause STO to be selected.
- replace the Motor Module involved.

Note:
CU: Control Unit
EP: Enable Pulses (pulse enable)
MM: Motor Module
SGE: Safety-relevant input
SI: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill
SMM: see r9772

F01612	SI CU: STO inputs for power units connected in parallel different
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-based "Safety Integrated" function on the Control Unit (CU) has identified different states of the AND'ed STO inputs for power units connected in parallel and has initiated a STOP F. As a result of this fault, after the parameterized transition has expired (p9658), fault F01600 (SI CU: STOP A initiated) is output. Fault value (r0949, interpret binary): Binary image of the digital inputs of the Control Unit that are used as signal source for the function "Safe Torque Off".
Remedy:	- check the tolerance time SGE changeover and if required, increase the value (p 9650). - check the wiring of the safety-relevant inputs (SGE) (contact problems). Note: CU: Control Unit SGE: Safety-relevant input SI: Safety Integrated STO: Safe Torque Off / SH: Safe standstill
N01620 (F, A)	SI CU: Safe Torque Off active
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Torque Off" (STO) function has been selected on the Control Unit (CU) using the input terminal and is active. Note: This message does not result in a safety stop response.
Remedy:	None necessary. Note: CU: Control Unit SI: Safety Integrated STO: Safe Torque Off / SH: Safe standstill
Reaction upon F :	OFF2
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon A:	NONE
Acknowl. upon A:	NONE
N01621 (F, A)	SI CU: Safe Stop 1 active
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Stop 1" (SS1) function has been selected on the Control Unit (CU) and is active. Note: This message does not result in a safety stop response.
Remedy:	None necessary. Note: CU: Control Unit SI: Safety Integrated SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
Reaction upon F :	OFF3
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F01625	SI CU: Sign-of-life error in safety data
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-based "Safety Integrated" function in the Control Unit (CU) has detected an error in the sign-of-life of the safety data between the CU and Motor Module (MM) and initiated a STOP A. - there is either a DRIVE-CLiQ communication error or communication has failed. - a time slice overflow of the safety software has occurred. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- select Safe Torque Off and de-select again. - carry out a POWER ON (power off/on) for all components. - check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified. - de-select all drive functions that are not absolutely necessary. - reduce the number of drives. - check the electrical cabinet design and cable routing for EMC compliance Note: CU : Control Unit MM: Motor Module SI: Safety Integrated
F01630	SI CU: Brake control error
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-based "Safety Integrated" function in the Control Unit (CU) has detected a brake control error and initiated a STOP A. Fault value (r0949, interpret decimal): 10, 11: Fault in "open holding brake" operation. - Parameter p1278 incorrectly set. - No brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 = 0 (SBC deactivated)). - Ground fault in brake cable. 20: Fault in "brake open" state. - Short-circuit in brake winding. 30, 31: Fault in "close holding brake" operation. - No brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 = 0 (SBC deactivated)). - Short-circuit in brake winding. 40: Fault in "brake closed" state. 50: Fault in the brake control circuit of the Control Unit or communication fault between the Control Unit and Motor Module (brake control). Note: The following causes may apply to fault values: - motor cable is not shielded correctly. - defect in control circuit of the Motor Module.

Remedy:	- check parameter p1278 (for SBC, only p1278 $=0$ is permissible). - select Safe Torque Off and de-select again. - check the motor holding brake connection. - check the function of the motor holding brake. - check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified. - check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are tightly screwed to the housing). - replace the Motor Module involved. Operation with Safe Brake Module: - check the Safe Brake Modules connection. - replace the Safe Brake Module. Note: CU: Control Unit SBC: Safe Brake Control SI: Safety Integrated
F01649	SI CU: Internal software error
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal error in the Safety Integrated software on the Control Unit has occurred. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - re-commission the "Safety Integrated" function and carry out a POWER ON. - upgrade the Control Unit software. - contact the Hotline. - replace the Control Unit. Note: CU: Control Unit MM: Motor Module SI: Safety Integrated
F01650	SI CU: Acceptance test required
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-based "Safety Integrated" function in the Control Unit requires an acceptance test. Note: This fault results in a STOP A that can be acknowledged. Fault value (r0949, interpret decimal): 130: Safety parameters for the Motor Module not available. 1000: Reference and actual checksum on the Control Unit are not identical (booting). - at least one checksum-checked piece of data is defective. 2000: Reference and actual checksum on the Control Unit are not identical (commissioning mode). - reference checksum incorrectly entered into the Control Unit (p9799 not equal to r9798). - when de-activating the safety functions, p9501 or p9503 are not deleted. 2001: Reference and actual checksum on the Motor Module are not identical (commissioning mode). - reference checksum incorrectly entered into the Motor Module (p9899 not equal to r9898). - when de-activating the safety functions, p9501 or p9503 are not deleted. 2002: Enable of safety-related functions between the Control Unit and Motor Module differ (p9601 not equal to p9801). 2003: Acceptance test is required as a safety parameter has been changed. 2004: An acceptance test is required because a project with enabled safety-functions has been downloaded.

2005: The Safety LogBook has identified that a functional safety checksum has changed. An acceptance test is required.
2010: Safe Brake Control is enabled differently between the Control Unit and Motor Module (p9602 not equal to p9802).
2020: Error when saving the safety parameters for the Motor Module.
3003: Acceptance test is required as a hardware-related safety parameter has been changed.
3005: The Safety LogBook has identified that a hardware-related safety checksum has changed. An acceptance test is required.
9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.

Remedy: $\quad \operatorname{Re}$ fault value $=130:$

- carry out safety commissioning routine

Re fault value $=1000$:

- again carry out safety commissioning routine.
- replace the CompactFlash card.

Re fault value $=2000$

- check the safety parameters in the Control Unit and adapt the reference checksum (p9799).

Re fault value = 2001:

- check the safety parameters in the Motor Module and adapt the reference checksum (p9899).

Re fault value = 2002:

- enable the safety-related functions in the Control Unit and check in the Motor Module (p9601 = p9801).

Re fault value $=2003$, 2004, 2005

- Carry out an acceptance test and generate an acceptance report.

The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the documentation for SINAMICS Safety Integrated.
The fault with fault value 3005 can only be acknowledged when the "STO" function is deselected.
Re fault value $=2010$:

- check enable of the safety-related brake control in the Control Unit and Motor Module (p9602 = p9802).

Re fault value $=2020$:

- again carry out safety commissioning routine.
- replace the CompactFlash card.

Re fault value = 3003:

- carry out the function checks for the modified hardware and generate an acceptance report.

The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:
SINAMICS S120 Function Manual Safety Integrated
Re fault value $=3005$:

- carry out the function checks for the modified hardware and generate an acceptance report.

The fault with fault value 3005 can only be acknowledged when the "STO" function is deselected.
Re fault value = 9999:

- carry out diagnostics for the other safety-related fault that is present.

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated
STO: Safe Torque Off
See also: p9799 (SI reference checksum SI parameters (Control Unit)), p9899 (SI reference checksum SI parameters (Motor Module))

F01651

Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

SI CU: Synchronization safety time slices unsuccessful

\%1
A_INF, B_INF, CU_LINK, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
OFF2
IMMEDIATELY (POWER ON)
The "Safety Integrated" function requires a synchronization of the safety time slices between the Control Unit (CU) and Motor Module (MM) and between the Control Unit and the higher-level control. This synchronization routine was unsuccessful.
Note:
This fault results in a STOP A that cannot be acknowledged

	Fault value (r0949, interpret decimal): 150: Fault in the synchronization to the PROFIBUS master. All other values: Only for internal Siemens troubleshooting. See also: p9510 (SI Motion clock-cycle synchronous PROFIBUS master)
Remedy:	Re fault value $=150$: - check the setting of p9510 (SI Motion clock-cycle synchronous PROFIBUS master) and if required, correct. General: - carry out a POWER ON (power off/on) for all components. - upgrade the Motor Module software. - upgrade the Control Unit software. - upgrade the software of the higher-level control. Note: CU: Control Unit MM: Motor Module SI: Safety Integrated
F01652	SI CU: Illegal monitoring clock cycle
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	One of the Safety Integrated monitoring clock cycles is not permissible: - the drive-based monitoring clock cycle cannot be maintained due to the communication conditions required in the system. - the monitoring clock cycle for safe motion monitoring functions with the higher-level control is not permissible (p9500). - The sampling time for the current controller (p0112, p0115) cannot be supported. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, interpret decimal): - for enabled drive-based SI monitoring (p9601/p9801 > 0): Minimum setting for the monitoring clock cycle (in $\mu \mathrm{s}$). - with the motion monitoring function enabled (p9501>0): 100: No matching monitoring clock cycle was able to be found. 101: The monitoring clock cycle is not an integer multiple of the actual value sensing clock cycle. 102: An error has occurred when transferring the DP clock cycle to the Motor Module (MM). 103: An error has occurred when transferring the DP clock cycle to the Sensor Module. 104,105: - four times the sampling time of the current controller is greater than 1 ms when operating with a non-clock-cycle synchronous PROFIBUS. - Four times the sampling time of the current controller is greater than the DP clock cycle when operating with a clockcycle synchronous PROFIBUS. - the DP clock cycle is not an integer multiple of the sampling time of the current controller. 106: The monitoring clock cycle does not match the monitoring clock cycle of the TM54F. 107: Four times the sampling time of the current controller is greater than the actual value sensing clock cycle (p9511) or the actual value sensing clock cycle is not an integer multiple of the sampling time of the current controller. 108: The parameterized actual value sensing clock cycle cannot be set on this component
Remedy:	For enabled drive-based SI monitoring (p9601/p9801 > 0) : - upgrade the Control Unit software. For enabled motion monitoring function (p9501 > 0) : - correct the monitoring clock cycle (p9500) and carry out POWER ON. Re fault value 101 : - the actual value sensing clock cycle is per default the position control clock cycle / DP clock cycle. - for the drive-based motion monitoring functions (p9601/p9801bit $2=1$) the actual value sensing clock cycle can be directly parameterized in p9511/p9311.

Re fault value $=104,105$:

- set a separate actual value sensing clock cycle in p9511.
- restrict operation to a maximum of two vector drives. For the standard settings in p0112, p0115, the current controller sampling time is automatically reduced to $250 \mu \mathrm{~s}$. If the standard values were changed, then the current controller sampling time ($\mathrm{p} 0112, \mathrm{p} 0115$) should be appropriately set.
- increase the DP clock cycle for operation with a clock-cycle synchronous PROFIBUS so that there is a multiple clock cycle ratio of at least $4: 1$ between the DP clock cycle and the current controller sampling time. Re fault value 106:
- set the parameters for the monitoring clock cycles the same (p10000 and p9500 / p9300).

Re fault value 107:

- set an actual value sensing clock cycle in p9511 that matches the current control clock cycle

Re fault value 108:

- set a suitable actual value sensing clock cycle in p9511.
- if, when operating with clock-cycle synchronous PROFIBUS, the DP clock cycle is used as actual value sensing clock cycle ($\mathrm{p} 9511=0$) a suitable DP clock cycle must be configured.
A suitable multiple of the DP clock cycle (e.g. $1,2,3,4,5,6,8,10$) must be parameterized on the D410.
Otherwise, the clock cycle must be set to less than 8 ms
Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

F01653	SI CU: PROFIBUS configuration error
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	There is a PROFIBUS configuration error for using Safety Integrated monitoring functions with a higher-level control (SINUMERIK or F-PLC). Note: For safety functions that have been enabled, this fault results in a STOP A that cannot be acknowledged. Fault value (r0949, interpret decimal): 200: A safety slot for receive data from the control has not been configured. 210, 220: The configured safety slot for the receive data from the control has an unknown format. 230: The configured safety slot for the receive data from the F-PLC has the incorrect length. 240: The configured safety slot for the receive data from the SINUMERIK has the incorrect length. 250: A PROFIsafe slot is configured in the higher-level F control, however PROFIsafe is not enabled in the drive. 300: A safety slot for the send data to the control has not been configured. 310, 320: The configured safety slot for the send data to the control has an unknown format. 330: The configured safety slot for the send data to the F-PLC has the incorrect length. 340: The configured safety slot for the send data to the SINUMERIK has the incorrect length.
Remedy:	Re fault value $=250$: - remove the PROFIsafe configuring in the higher-level F control or enable PROFIsafe in the drive. The following generally applies: - check the PROFIBUS configuration of the safety slot on the master side and, if necessary, correct. - upgrade the Control Unit software.
F01655	SI CU: Align monitoring functions
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An error has occurred when aligning the Safety Integrated monitoring functions on the Control Unit (CU) and Motor Module (MM). Control Unit and Motor Module were not able to determine a common set of supported SI monitoring functions. - there is either a DRIVE-CLiQ communication error or communication has failed. - Safety Integrated software releases on the Control Unit and Motor Module are not compatible with one another. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.

Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade the Motor Module software. - upgrade the Control Unit software. - check the electrical cabinet design and cable routing for EMC compliance Note: CU: Control Unit MM: Motor Module SI: Safety Integrated
F01656	SI CU: Motor Module parameter error
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When accessing the Safety Integrated parameters for the Motor Module (MM) on the CompactFlash card, an error has occurred. Note: This fault results in a STOP A that can be acknowledged. Fault value (r0949, interpret decimal): 129: Safety parameters for the Motor Module corrupted. 131: Internal Motor Module software error. 132: Communication errors when uploading or downloading the safety parameters for the Motor Module. 255: Internal software error on the Control Unit.
Remedy:	- re-commission the safety functions. - upgrade the Control Unit software. - upgrade the Motor Module software. - replace the CompactFlash card. Re fault value $=132$: - check the electrical cabinet design and cable routing for EMC compliance Note: CU: Control Unit MM: Motor Module SI: Safety Integrated
F01659	SI CU: Write request for parameter rejected
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The write request for one or several Safety Integrated parameters on the Control Unit (CU) was rejected. Note: This fault does not result in a safety stop response. Fault value (r0949, interpret decimal): 1: The Safety Integrated password is not set. 2: A reset of the drive parameters was selected. However, the Safety Integrated parameters cannot be reset, as Safety Integrated is presently enabled. 3: The interconnected STO input is in the simulation mode. 10: An attempt was made to enable the STO function although this cannot be supported. 11: An attempt was made to enable the SBC function although this cannot be supported. 12: An attempt was made to enable the SBC function although this cannot be supported for a parallel circuit configuration. 13: An attempt was made to enable the SS1 function although this cannot be supported. 14: An attempt was made to enable the PROFIsafe communication - although this cannot be supported or the version of the PROFIsafe driver used on the CU and MM is different. 15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported. 16: An attempt was made to enable the STO function although this cannot be supported when the internal voltage protection (p 1231) is enabled. See also: p0970, p3900, r9771, r9871

Remedy:	Re fault value $=1$: - set the Safety Integrated password (p9761). Re fault value $=2$: - inhibit Safety Integrated and again reset the drive parameters. Re fault value $=3$: - end the simulation mode for the digital input (p0795). Re fault value $=10,11,12,13,14,15$: - check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry out diagnostics for the faults involved. - use a Motor Module that supports the required function ("Safe Torque Off", "Safe Brake Control", "PROFIsafe/PROFIsafe V2", "motion monitoring functions integrated in the drive"). - upgrade the Motor Module software. - upgrade the Control Unit software. Re fault value = 16: - inhibit the internal voltage protection (p1231). Note: CU: Control Unit MM: Motor Module SBC: Safe Brake Control SI: Safety Integrated SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204) STO: Safe Torque Off / SH: Safe standstill See also: p9501 (SI Motion enable safety functions (Control Unit)), p9601 (SI enable, functions integrated in the drive (Control Unit)), p9620 (SI signal source for STO (SH)/SBC/SS1 (Control Unit)), p9761 (SI password input), p9801 (SI enable, functions integrated in the drive (Motor Module))
F01660	SI CU: Safety-related functions not supported
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The Motor Module (MM) does not support the safety-related functions (e.g. the Motor Module version is not the correct one). Safety Integrated cannot be commissioned. Note: This fault does not result in a safety stop response.
Remedy:	- use a Motor Module that supports the safety-related functions. - upgrade the Motor Module software. Note: CU: Control Unit MM: Motor Module SI: Safety Integrated
F01663	SI CU: Copying of SI parameters rejected
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	One of the following values is stored in p9700 or has been entered offline: 87 or 208. This is the reason that the system is attempting to copy the SI parameters from the Control Unit to the Motor Module during booting. However, no safety function is selected on the Control Unit (p9501 = 0, p9601 = 0) which is why the copy operation is rejected Note: This fault does not result in a safety stop response. See also: p9700 (SI Motion copy function)
Remedy:	- set p9700 $=0$. - check p9501and p9601 and correct if necessary. - start the copy function again by entering the appropriate value in p9700.

F01664	SI CU: No automatic firmware update
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When booting, parameter p7826 "automatic firmware update" did not have the value "1" that is required for the automatic firmware upgrade/downgrade. This means that when the safety functions are enabled, an inadmissible combination of versions can occur. Note: This fault does not result in a safety stop response. See also: p7826 (Firmware update automatic)
Remedy:	For enabled drive-based SI monitoring: 1. Set parameter p7826 to the value 1 2. Save the parameter $(p 0977=1)$ and carry out a power-on reset When de-activating the drive-based SI monitoring (p9601 = 0), the alarm can be acknowledged after exiting the safety commissioning mode.
F01670	SI Motion: Invalid parameterization Sensor Module
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameterization of a Sensor Module used for Safety Integrated is not permissible. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, interpret decimal): 1: No encoder was parameterized for Safety Integrated. 2: An encoder was parameterized for Safety Integrated that does not have an A/B track (sine/cosine). 3: The encoder data set selected for Safety Integrated is still not valid. 4: A communication error with the encoder has occurred. 10: For an encoder used for Safety Integrated, not all of the Drive Data Sets (DDS) are assigned to the same Encoder Data Set (EDS) (p0187 ... p0189).
Remedy:	Re fault value $=1,2$: - use and parameterize an encoder that Safety Integrated supports (encoder with track A/B sine-wave, p0404.4 = 1). Re fault value $=3$: - check whether the drive or drive commissioning function is active and if required, exit this (p0009 = p00010 = 0), save the parameters (p0971 = 1) and carry out a POWER ON Re fault value $=4$: - check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Sensor Module involved and if required, carry out a diagnostics routine for the faults identified. Re fault value = 10: - align the EDS assignment of all of the encoders used for Safety Integrated (p0187 ... p0189). Note: SI: Safety Integrated
F01671	SI Motion: Parameterization encoder error
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameterization of the encoder used by Safety Integrated is different to the parameterization of the standard encoder. Note: This fault does not result in a safety stop response. Fault value (r0949, interpret decimal): Parameter number of the non-corresponding safety parameter.
Remedy:	Align the encoder parameterization between the safety encoder and the standard encoder. Note: SI: Safety Integrated

F01672	SI Motion: Motor Module software/hardware incompatible
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The existing Motor Module software does not support safe motion monitoring or is not compatible to the software on the Control Unit or there is a communications error between the Control Unit and Motor Module. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, interpret decimal): 1: The existing Motor Module software does not support the safe motion monitoring function. 4,5,7: The existing Motor Module software is not compatible to the software on the Control Unit. $2,3,6,8$: There is a communications error between the Control Unit and Motor Module.
Remedy:	- check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry out the appropriate diagnostics routine for the particular faults. Re fault value $=1$: - use a Motor Module that supports safe motion monitoring Re fault value $=4,5,7$: - upgrade the Motor Module software. Re fault value $=2,3,6,8$: - check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified. Note: SI: Safety Integrated
F01673	SI Motion: Sensor Module software/hardware incompatible
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The existing Sensor Module software and/or hardware does not support the safe motion monitoring function with the higher-level control. Note: This fault does not result in a safety stop response. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- upgrade the Sensor Module software. - use a Sensor Module that supports the safe motion monitoring function. Note: SI: Safety Integrated
F01680	SI Motion CU: Checksum error safety monitoring functions
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The actual checksum calculated by the drive and entered in r9728 via the safety-relevant parameters does not match the reference checksum saved in p9729 at the last machine acceptance. Safety-relevant parameters have been changed or a fault is present. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, interpret decimal): 0: Checksum error for SI parameters for motion monitoring. 1: Checksum error for SI parameters for actual values. 2: Checksum error for SI parameters for component assignment.

Remedy:	- Check the safety-relevant parameters and if required, correct.
	- carry out a POWER ON.
	- carry out an acceptance test.
	Note:
	SI: Safety Integrated

F01684	SI Motion: Safely limited position limit values interchanged
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the function "Safely-Limited Position" (SE), a lower value is in p9534 than in p9535.
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	1: Limit values SLP1 interchanged.
	2: Limit values SLP2 interchanged.
	Correct the limit values in p9534 and p9535 and carry out a Power on.
	Note: SI: Safety Integrated
	SLP: Safely-Limited Position / SE: Safe software limit switches

F01687	SI Motion: Illegal parameterization modulo value SCA (SN)
Message value:	
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameterized modulo value for the "Safe Cam" (SCA) function is not a multiple of 360000 mDegrees . Note: This fault does not result in a safety stop response.
Remedy:	Correct the modulo value for SCA and carry out a POWER ON. Note: SCA: Safe Cam / SN: Safe software cam SI: Safety Integrated See also: p9505 (SI Motion SCA (SN) modulo value (Control Unit))
F01688	SI Motion CU: Actual value synchronization not permissible
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	It is not permissible to simultaneously enable the actual value synchronization and a monitoring function with absolute reference (SCA/SLP). Note: This fault results in a STOP A that cannot be acknowledged.
Remedy:	Either de-select the function "actual value synchronization" or the monitoring functions with absolute reference (SCA/SLP) and carry out a POWER ON. Note: SCA: Safe Cam / SN: Safe software cam SI: Safety Integrated SLP: Safely-Limited Position / SE: Safe software limit switches See also: p9501 (SI Motion enable safety functions (Control Unit))
C01689	SI Motion: Axis re-configured
Message value:	Parameter: \%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The axis configuration was changed (e.g. changeover between linear axis and rotary axis). Parameter p0108.13 is internally set to the correct value. Note: This fault does not result in a safety stop response. Fault value (r0949, interpret decimal): Parameter number of parameter that initiated the change. See also: p9502 (SI Motion axis type (Control Unit))
Remedy:	The following should be carried out after the changeover: - exit the safety commissioning mode (p0010). - save all parameters (p0977 = 1 or "copy RAM to ROM"). - carry out a POWER ON. Once the Control Unit has been switched on, safety message F01680 or F30680 indicates that the checksums in r9398[0] and r9728[0] have changed in the drive. The following must, therefore, be carried out: - activate safety commissioning mode again. - complete safety commissioning of the drive. - exit the safety commissioning mode (p0010). - save all parameters (p 0977 = 1 or "copy RAM to ROM"). - carry out a POWER ON. Note: For the commissioning software, the units are only consistently displayed after a project upload.

F01690	SI Motion: Data save problem for the NVRAM
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (OFF1, OFF2, OFF3) VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	There is not sufficient memory space in the NVRAM on the drive to save parameters r9781 and r9782 (safety logbook). Note: This fault does not result in a safety stop response. Fault value (r0949, interpret decimal): 0 : There is no physical NVRAM available in the drive. 1: There is no longer any free memory space in the NVRAM.
Remedy:	Re fault value $=0$: - use a Control Unit NVRAM. Re fault value $=1$: - deselect functions that are not required and that take up memory space in the NVRAM. - contact the Hotline.
A01691 (F)	SI Motion: Ti and To unsuitable for DP cycle
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configured times for PROFIBUS communication are not permitted and the DP cycle is used as the actual value acquisition cycle for the safe movement monitoring functions: Isochronous PROFIBUS: the total of Ti and To is too high for the set DP cycle. The DP cycle should be at least 1 current controller cycle greater than the sum of Ti and To . Non-isochronous PROFIBUS: the DP cycle must be at least 4 x current controller cycle.
Remedy:	Configure Ti and To low so that they are suitable for the DP cycle or increase the DP cycle time. Option for enabled drive-based SI monitoring (p9601/p9801>0): Use the actual value sampling cycle p9511/p9311 and, therefore, set it independently of the DP cycle. See also: p9511 (SI Motion clock cycle actual value sensing (Control Unit))
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A01696 (F)	SI Motion: Testing of the motion monitoring functions selected when booting
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The test of the motion monitoring functions was already illegally active when booting. This is the reason that the test is only carried out again after selecting the forced checking procedure parameterized in p9705. Note: This message does not result in a safety stop response. See also: p9705 (SI Motion: Test stop signal source)
Remedy:	De-select the forced checking procedure of the safety motion monitoring functions and then select again. The signal source for initiation is parameterized in binector input p9705. Note: SI: Safety Integrated See also: p9705 (SI Motion: Test stop signal source)
Reaction upon F :	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

A01697 (F)	SI Motion: Motion monitoring functions must be tested
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time set in p9559 for the forced checking procedure of the safety motion monitoring functions has been exceeded. A new test is required. After next selecting the forced checking procedure parameterized in p9705, the message is withdrawn and the monitoring time is reset. Note: This message does not result in a safety stop response. See also: p9559 (SI Motion forced checking procedure timer (Control Unit)), p9705 (SI Motion: Test stop signal source)
Remedy:	Carry out the forced checking procedure of the safety motion monitoring functions. The signal source for initiation is parameterized in BI: p9705. Note: SI: Safety Integrated See also: p9705 (SI Motion: Test stop signal source)
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

A01698 (F)	SI CU: Commissioning mode active
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The commissioning of the "Safety Integrated" function is selected.
	This message is withdrawn after the safety functions have been commissioned.
	Note:
	This message does not result in a safety stop response.
	See also: p0010
	None necessary.
Remedy:	Note:
	CU: Control Unit
	SI: Safety Integrated
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2)
	SERVO: NONE (OFF1, OFF2, OFF3)
	VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

A01699 (F)	SI CU: Shutdown path must be tested
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time set in p9659 for the forced checking procedure of the safety shutdown paths has been exceeded. The
	safety shutdown paths must be re-tested.
	After the next time the "STO" function is de-selected, the message is withdrawn and the monitoring time is reset.
	Note:
	This message does not result in a safety stop response.
	See also: p9659 (SI forced checking procedure timer)
	Select STO and then deselect again.
Remedy:	Note:
	CU: Control Unit
	SI: Safety Integrated
Reaction upon F:	STO: Safe Torque Off / SH: Safe standstill
NONE (OFF1, OFF2, OFF3)	
Acknowl. upon F:	IMMEDIATELY (POWER ON)

$\mathbf{C 0 1 7 0 0}$	SI Motion CU: STOP A initiated
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP A (pulses are suppressed via the safety shutdown path of the Control Unit). Possible causes: - stop request from the higher-level control. - pulses not suppressed after a parameterized time (p9557) after test stop selection. - subsequent response to the message C01706 "SI Motion CU: Safe Acceleration Monitoring limit exceeded". - subsequent response to the message C01714 "SI Motion CU: Safely-Limited Speed exceeded". - subsequent response to the message C01701 "SI Motion CU: STOP B initiated".
Remedy:	- remove the fault cause in the control and carry out a POWER ON. - check the value in p9557, if necessary, increase the value, and carry out POWER ON. - check the shutdown path of the Control Unit (check DRIVE-CLiQ communication). - carry out a diagnostics routine for message C01706. - carry out a diagnostics routine for message C01714. - carry out a diagnostics routine for message C01701. - replace Motor Module. - replace Control Unit. This message can only be acknowledged as follows in the acceptance test mode without POWER ON: - motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe - motion monitoring functions with SINUMERIK: Via the machine control panel. Note: SI: Safety Integrated
C01701	SI Motion CU: STOP B initiated
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF3
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via STOP B (braking along the OFF3 deceleration ramp). As a result of this fault, after the time parameterized in p9556 has expired, or the speed threshold parameterized in p9560 has been undershot, message C01700 "STOP A initiated" is output. Possible causes: - stop request from the higher-level control. - subsequent response to the message C01714 "SI Motion: Safely reduced speed exceeded". - subsequent response to the message C01711 "SI Motion: Defect in a monitoring channel".
Remedy:	- remove the fault cause in the control and carry out a POWER ON. - carry out a diagnostics routine for message C01714. - carry out a diagnostics routine for message C01711. This message can only be acknowledged as follows in the acceptance test mode without POWER ON: - motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe - motion monitoring functions with SINUMERIK: Via the machine control panel. Note: SI: Safety Integrated

C01706 SI Motion CU: Safe Acceleration Monitor limit exceeded

Message value:

After initiating STOP B or STOP C, the velocity has exceeded the selected tolerance. The drive is shut down by the message C01700 "SI Motion: STOP A initiated".

Remedy:	Check the braking behavior, if required, adapt the tolerance for "Safe Acceleration Monitor". This message can only be acknowledged as follows in the acceptance test mode without POWER ON: - motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe - motion monitoring functions with SINUMERIK: Via the machine control panel. Note: SBR: Safe Acceleration Monitor SI: Safety Integrated See also: p9548 (SI Motion SBR actual velocity tolerance (Control Unit))
C01707	SI Motion CU: Tolerance for safe operating stop exceeded
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The actual position has distanced itself further from the target position than the standstill tolerance. The drive is shut down by the message C01701 "SI Motion: STOP B initiated".
Remedy:	- check whether safety faults are present and if required carry out the appropriate diagnostic routines for the particular faults. - check whether the standstill tolerance matches the accuracy and control dynamic performance of the axis. - carry out a POWER ON. This message can only be acknowledged as follows in the acceptance test mode without POWER ON: - motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe - motion monitoring functions with SINUMERIK: Via the machine control panel Note: SI: Safety Integrated SOS: Safe Operating Stop / SBH: Safe operating stop See also: p9530 (SI Motion standstill tolerance (Control Unit))
C01708	SI Motion CU: STOP C initiated
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	STOP2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via STOP C (braking along the OFF3 deceleration ramp). "Safe Operating Stop" (SOS) is activated after the parameterized timer has expired. Possible causes: - stop request from the higher-level control. - subsequent response to the message C01714 "SI Motion: Safely reduced speed exceeded". - subsequent response to the message C01715 "SI Motion: Safe end stop exceeded". See also: p9552 (SI Motion transition time STOP C to SOS (SBH) (Control Unit))
Remedy:	- remove the cause of the fault at the control. - carry out a diagnostics routine for message C01714. This message can be acknowledged as follows: - motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe - motion monitoring functions with SINUMERIK: Via the machine control panel Note: SI: Safety Integrated SOS: Safe Operating Stop / SBH: Safe operating stop
C01709	SI Motion CU: STOP D initiated
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP D (braking along the path). "Safe Operating Stop" (SOS) is activated after the parameterized timer has expired.

	Possible causes: - stop request from the higher-level control. - subsequent response to the message C01714 "SI Motion: Safely reduced speed exceeded". - subsequent response to the message C01715 "SI Motion: Safe end stop exceeded". See also: p9553 (SI Motion transition time STOP D to SOS (SBH) (Control Unit))
Remedy:	- remove the cause of the fault at the control. - carry out a diagnostics routine for message C01714. This message can be acknowledged as follows: - motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe - motion monitoring functions with SINUMERIK: Via the machine control panel Note: SI: Safety Integrated SOS: Safe Operating Stop / SBH: Safe operating stop
C01710	SI Motion CU: STOP E initiated
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP E (retraction motion). "Safe Operating Stop" (SOS) is activated after the parameterized timer has expired. Possible causes: - stop request from the higher-level control. - subsequent response to the message C01714 "SI Motion: Safely reduced speed exceeded". - subsequent response to the message C01715 "SI Motion: Safe end stop exceeded". See also: p9554 (SI Motion transition time STOP E to SOS (SBH) (Control Unit))
Remedy:	- remove the cause of the fault at the control. - carry out a diagnostics routine for message C01714. This message can be acknowledged as follows: - motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe - motion monitoring functions with SINUMERIK: Via the machine control panel Note: SI: Safety Integrated SOS: Safe Operating Stop / SBH: Safe operating stop
C01711	SI Motion CU: Defect in a monitoring channel
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When cross-checking and comparing the two monitoring channels, the drive detected a difference between the input data or results of the monitoring functions and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible. If at least one monitoring function is active, then after the parameterized timer has expired, the message C01701 "SI Motion: STOP B initiated" is output. The message value that resulted in a STOP F is displayed in r9725. The described message values involve the data cross-check between the Control Unit and Motor Module. If the drive is operated together with a SINUMERIK, the message values are described in message 27001 of SINUMERIK. Message value (r9749, interpret decimal): 0 to 999: Number of the cross-checked data that resulted in this fault. Fault values, which are not listed below, are intended solely for Siemens internal troubleshooting. 0 : Stop request from the other monitoring channel. 1: Status image of monitoring functions SOS, SLS or SLP (result list 1) (r9710[0], r9710[1]). 2: Status image of monitoring function SCA or $n<n x$ (result list 2) (r9711[0], r9711[1]). 3: Pos. act. val. (r9712). 4: Error when synchronizing the crosswise data comparison between the two channels. 5: Function enable signals (p9501, p9301). 6: Limit value for SLS1 (p9531[0], p9331[0]). 7: Limit value for SLS2 (p9531[1], p9331[1]). 8: Limit value for SLS3 (p9531[2], p9331[2]). 9: Limit value for SLS4 (p9531[3], p9331[3]).

10: Standstill tol. (p9530, p9330).
31: Pos. tol. (p9542, p9342).
33: Time, velocity changeover ($\mathrm{p} 9551, \mathrm{p} 9351$).
35: Delay time, pulse supp. (p9556, p9356).
36: Checking time, pulse supp (p9557, p9357).
37: Trans. time, STOP C to SOS (p9552, p9352).
38: Trans. time STOP D to SOS (p9553, p9353).
40: Stop response for SLS.
42: Shutdown speed, pulse supp. (p9560, p9360).
43: Memory test, stop response (STOP A).
44: Position actual value + limit value SLS1 / safety monitoring clock cycle.
45: Pos. act. val. - limit value SLS1 / safety monitoring clock cycle.
46: Pos. act. val. + limit value SLS2 / safety monitoring clock cycle.
47: Pos. act. val. - limit value SLS2 / safety monitoring clock cycle.
48: Pos. act. val. + limit value SLS3 / safety monitoring clock cycle.
49: Pos. act. val. - limit value SLS3 / safety monitoring clock cycle.
50: Pos. act. val. + limit value SLS4 / safety monitoring clock cycle.
51: Pos. act. val. - limit value SLS4 / safety monitoring clock cycle.
52: Standstill position + tolerance.
53: Standstill position - tolerance
54: Pos. act. val. + limit value nx / safety monit. clock cycle + tolerance.
55: Pos. act. val. + limit value $n x /$ safety monit. clock cycle.
56: Pos. act. val. - limit value $n x$ / safety monit. clock cycle.
57: Pos. act. val. - limit value $n x$ / safety monit. clock cycle - tolerance.
58: Current stop request.
75: Velocity limit $n x$ (p9546, p9346).
76: Stop response for SLS1 (p9563[0], p9363[0]).
77: Stop response for SLS2 (p9563[1], p9363[1]).
78: Stop response for SLS3 (p9563[2], p9363[2]).
79: Stop response for SLS4 (p9563[3], p9363[3]).
81: Velocity tolerance for SBR (p9548, p9348).
82: SGEs for SLS correction factor.
83: Acceptance test timer (p9558, p9358).
84: Trans. time STOP F (p9555, p9355).
85: Trans. time bus failure (p9580, p9380).
86: Ident. 1-encoder system.
87: Encoder assignment, 2nd channel (p9526, p9326).
89: Encoder limit freq.
230: Filter time constant for $n<n x$.
231: Hysteresis tolerance for $n<n x$.
232: Smoothed velocity actual value.
233: Smoothed velocity actual value + limit value nx / safety monitoring clock cycle + hysteresis tolerance.
234: Smoothed velocity actual value + limit value $n x /$ safety monitoring clock cycle.
235: Smoothed velocity actual value - limit value $n x /$ safety monitoring clock cycle.
236: Smoothed velocity actual value - limit value $n x$ / safety monitoring clock cycle - hysteresis tolerance.
237: SGA n < nx.
1000: Watchdog timer has expired. Too many signal changes have occurred at safety-relevant inputs.
1001: Initialization error of watchdog timer.
1005: Pulses already suppressed for test stop selection.
1011: Acceptance test status between the monitoring channels differ.
1012: Plausibility violation of the actual value from the encoder.
1020: Cyc. communication failure between the monit. cycles.
1021: Cyc. communication failure between the monit. channel and Sensor Module.
1022: Sign-of-life for DQL Sensor Module CU
1032: Sign-of-life for DQL Sensor Module MM
1033: Error occurred during check of offset between POS1 and POS2 for DQL Sensor Module CU
1034: Error occurred during check of offset between POS1 and POS2 for DQL Sensor Module MM
5000 ... 5140: PROFIsafe message values.
$5000,5014,5023,5024,5030 \ldots 5032,5042,5043,5052,5053,5068,5072,5073,5082 \ldots 5087,5090,5091,5122$
... 5125, 5132 ... 5135, 5140: An internal software error has occurred (only for internal Siemens troubleshooting).
5012: Error when initializing the PROFIsafe driver.
5013: The result of the initialization is different for the two controllers.
5022: Error when evaluating the F parameters. The values of the transferred F parameters do not match the expected values in the PROFIsafe driver.

5025: The result of the F parameterization is different for the two controllers.
5026: CRC error for the F parameters. The transferred CRC value of the F parameters does not match the value calculated in the PST.
5065: A communications error was identified when receiving the PROFIsafe telegram.
5066: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
6000 ... 6166: PROFIsafe message values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFINET).
Message values 6000, 6072:

- an internal software error has occurred (only for internal Siemens troubleshooting).

Message values 6064 ... 6071:

- Error when evaluating the F parameters. The values of the transferred F parameters do not match the expected values in the PROFIsafe driver.
6064: Destination address and PROFIsafe address are different (F_Dest_Add).
6065: Destination address not valid (F_Dest_Add).
6066: Source address not valid (F_Source_Add).
6067: Watchdog time not valid (F_WD_Time).
6068: Incorrect SIL level (F_SIL).
6069: Incorrect F-CRC length (F CRC Length).
6070: Incorrect F parameter version (F_Par_Version).
6071: CRC error for the F parameters (CRC1). The transferred CRC value of the F parameters does not match the value calculated in the PROFIsafe driver.
6165: A communications error was identified when receiving the PROFIsafe telegram.
6166: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
See also: p9555 (SI Motion transition time STOP F to STOP B (Control Unit)), r9725 (SI Motion, diagnostics STOP F)
Remedy:
The following generally applies:
The monitoring clock cycles in both channels should be checked for equality and if required, set the same.
Re fault value $=0$:
- no error was identified in this monitoring channel. Note the error message of the other monitoring channel (for MM:

F30711).
Re fault value $=4$:
The monitoring clock cycles in both channels should be checked for equality and if required, set the same.
Re fault value = 1 ... 999:

- if the fault value is listed under cause: check the cross-checked parameters to which the fault value refers.
- copy the safety parameters.
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
- correction of the encoder evaluation. The actual values differ as a result of mechanical faults (V belts, travel to a mechanical endstop, wear and window setting that is too narrow, encoder fault, ...).
Re fault value $=1000$:
- investigate the signal associated with the safety-relevant input (contact problems).

Re fault value $=1001$:

- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Re fault value $=1005$:

- check the conditions for pulse enable.

Re fault value = 1011:

- for diagnostics, refer to parameter (r9571).

Re fault value = 1012:

- upgrade the Sensor Module software.

Re fault value = 1020, 1021:

- check the communication link.
- carry out a POWER ON (power off/on) for all components.
- replace the hardware.

Re fault value $=5000,5014,5023,5024,5030,5031,5032,5042,5043,5052,5053,5068,5072,5073,5082 \ldots$
5087, 5090, 5091, $5122 \ldots 5125,5132 \ldots 5135,5140$:

- carry out a POWER ON (power off/on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.

Re fault value $=5012$:

- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810). It is not permissible for the PROFIsafe address to be 0 or FFFF!
Re fault value $=5013,5025$:
- carry out a POWER ON (power off/on) for all components.
- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810).
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
Re fault value $=5022$:
- check the setting of the values of the F parameters at the PROFIsafe slave (F_SIL, F_CRC_Length,

F_Par_Version, F_Source_Add, F_Dest_add, F_WD_Time).
Re fault value $=5 \overline{0} 26$:

- check the settings of the values of the F parameters and the F parameter CRC (CRC1) calculated from these at the PROFIsafe slave and update.
Re fault value $=5065$:
- check the configuration and communication at the PROFIsafe slave (cons. No. / CRC).
- check the setting of the value for F parameters F_WD_Time at the PROFIsafe slave and increase if necessary.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
Re fault value $=5066$:
- check the setting of the value for F parameters F_WD_Time at the PROFIsafe slave and increase if necessary.

Re fault value $=6000$, 6072:

- carry out a POWER ON (power off/on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.

Re fault value $=6064$:

- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave.
- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810).

Re fault value $=6065$:

- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave. It is not permissible for the destination address to be either 0 or FFFF!
Re fault value $=6066$:
- check the setting of the value in the F parameter F_Source_Add at the PROFIsafe slave. It is not permissible for the source address to be either 0 or FFFF!
Re fault value $=6067$:
- check the setting of the value in the F parameter F_WD_Time at the PROFIsafe slave. It is not permissible for the watch time ito be 0 !
Re fault value $=6068$:
- check the setting of the value in the F parameter F_SIL at the PROFIsafe slave. The SIL level must correspond to SIL2!
Re fault value $=6069$:
- check the setting of the value in the F parameter F_CRC_Length at the PROFIsafe slave. The setting of the CRC2 length is 2-byte CRC in the V1 mode and 3-byte CRC in the V2 mode!
Re fault value $=6070$:
- check the setting of the value in the F parameter F_Par_Version at the PROFIsafe slave. The value for the F parameter version is 0 in the V1 mode and 1 in the V2 mode!
Re fault value $=6071$:
- check the settings of the values of the F parameters and the F parameter CRC (CRC1) calculated from these at the PROFIsafe slave and, if required, update.
Re fault value $=6165$:
- check the configuration and communication at the PROFIsafe slave.
- check the setting of the value for F parameters F_WD_Time at the PROFIsafe slave and increase if necessary.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
Re fault value $=6166$:
- check the configuration and communication at the PROFIsafe slave.
- check the setting of the value for F parameters F_WD_Time at the PROFIsafe slave and increase if necessary. This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel

See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))

C01714	SI Motion CU: Safely-Limited Speed exceeded
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive has moved faster than that specified by the velocity limit value (p9531). The drive is stopped as a result of the configured stop response (p9563). Message value (r9749, interpret decimal): 100: SLS1 exceeded. 200: SLS2 exceeded. 300: SLS3 exceeded. 400: SLS4 exceeded. 1000: Encoder limit frequency exceeded.
Remedy:	- check the traversing/motion program in the control. - check the limits for "Safely-Limited Speed (SLS) and if required, adapt (p9531). This message can be acknowledged as follows: - motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe - motion monitoring functions with SINUMERIK: Via the machine control panel Note: SI: Safety Integrated SLS: Safely-Limited Speed / SG: Safely reduced speed See also: p9531 (SI Motion SLS (SG) limit values (Control Unit)), p9563 (SI Motion SLS (SG)-specific stop response (Control Unit))
C01745	SI Motion CU: Checking braking torque for the brake test
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	POWER ON (IMMEDIATELY)
Cause:	The normalization of the brake torque for the brake test can be changed using parameter p2003. An acceptance test must be carried out again for the braking test. This determines whether the braking test is still carried out with the correct braking torque.
Remedy:	- carry out a POWER ON (power off/on) for all components. - repeat the acceptance test for the safe brake test if the brake test is used. See also: p2003
C01750	SI Motion CU: Hardware fault safety-relevant encoder
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The encoder that is used for the safety-relevant motion monitoring functions signals a hardware fault. Message value (r9749, interpret decimal): Encoder status word 1, encoder status word 2 that resulted in the message.
Remedy:	- check the encoder connection. - replace the encoder. This message can be acknowledged as follows: - motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe - motion monitoring functions with SINUMERIK: Via the machine control panel.

C01751	SI Motion CU: eff.test error safe encoder
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The DQ encoder used for the safety-relevant motion monitoring functions signals an effectiveness test error Message value (r9749, interpret decimal): 1 - TFD bit in EncoderStatusWord2 set in last effectiveness test set 2 - Actual effectiveness test no. in last effectiveness test set smaller/greater than expected 3 - IG1/IG2 bits in EncoderStatusWord2 in last effectiveness test set longer than expected 4 - F1/F2 bits in EncoderStatusWord2 in last effectiveness test set not dynamized 5 - Effectiveness tests performed too frequently 6 - LS1/LS2 were not frozen during effectiveness test 7 - Effectiveness tests performed too rarely or not at all
Remedy:	- check the encoder connection. - replace the encoder. This message can be acknowledged as follows: - motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe - motion monitoring functions with SINUMERIK: Via the machine control panel.

A01796 (F, N)	SI Motion CU: Wait for communication
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive waits for communication to be established with SINUMERIK or TM54F to execute the safety-relevant motion monitoring functions. Note: In this state, the pulses are safely suppressed.
Remedy:	After a longer period of time, if the message is not automatically withdrawn, the following checks should be made dependent on the communication: For communication with SINUMERIK, the following applies: - check additional messages that are present regarding PROFIBUS communication and resolve. - check the correct assignment of the axes on the higher-level control to the drives in the drive unit. - check the enable signal of the safety-relevant motion monitoring functions for the corresponding axis on the higher- level control - and if required, set For communication with TM54F, the following applies: - check additional messages that are present regarding DRIVE-CLiQ communication with TM54F and resolve. - check the setting of p10010. All of the drive objects controlled by the TM54F must be listed. See also: p9601 (SI enable, functions integrated in the drive (Control Unit)), p9801 (SI enable, functions integrated in the drive (Motor Module)), p10010 (SI drive object assignment)
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

C01798 SI Motion CU: Test stop running

Message value:

Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The test stop is active.
Remedy: None necessary.
The message is withdrawn when the test stop is finished. Note:
SI: Safety Integrated

C01799	SI Motion CU: Acceptance test mode active
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The acceptance test mode is active. The POWER ON signals of the safety-relevant motion monitoring functions can be acknowledged during the acceptance test using the RESET button of the higher-level control.
Remedy:	None necessary. The message is withdrawn when exiting the acceptance test mode. Note: SI: Safety Integrated
F01800	DRIVE-CLiQ: Hardware/configuration error
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A DRIVE-CLiQ connection fault has occurred. Fault value (r0949, interpret decimal): $100 \ldots 107$ Communication via DRIVE-CLiQ sockets X100 ... X107 has not switched to cyclic mode. The cause may be an incorrect structure or a configuration that results in an impossible bus timing. $10:$ Loss of the DRIVE-CLiQ connection. The cause may be, for example, that the DRIVE-CLiQ cable was withdrawn from the Control Unit or as a result of a short-circuit for motors with DRIVE-CLiQ. This fault can only be acknowledged in cyclic communication. 11: Repeated faults when detecting the connection. This fault can only be acknowledged in cyclic communication. 12: A connection was detected but the node ID exchange mechanism does not function. The reason is probably that the component is defective. This fault can only be acknowledged in cyclic communication.
Remedy:	Re fault value = $100 \ldots 107$: - ensure that the DRIVE-CLiQ components have the same firmware releases. - avoid longer topologies for short current controller clock cycles. Re fault value = 10: - check the DRIVE-CLiQ cables at the Control Unit. - remove any short-circuit for motors with DRIVE-CLiQ. - carry out a POWER ON. Re fault value $=11$: - check the electrical cabinet design and cable routing for EMC compliance Re fault value = 12: - replace the component involved.
F01802 (A)	CU DRIVE-CLiQ: POWER ON due to basic sampling times
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (OFF1) SERVO: OFF2 (IASC/DCBRAKE, OFF1) VECTOR: OFF2 (IASC/DCBRAKE, OFF1)
Acknowledge:	POWER ON
Cause:	It is not possible to change the DRIVE-CLiQ basic sampling times p0110 in operation. POWER ON is required. Fault value (r0949, interpret decimal): Index of p0110.
Remedy:	- save (p0971 = 1). - carry out a POWER ON.
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F01840	SMI: Component found with changed data
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	Another Sensor Module Integrated (SMI) was found. The reasons could be as follows: 1. A motor with DRIVE-CLiQ (SMI) and another order No. were used as replacement. 2. A Sensor Module Integrated was used as spare part where there is no encoder data and motor data or the incorrect data are present. Fault value (r0949, interpret hexadecimal): The value should be interpreted as follows as 8 -digit hexadecimal number AAAABBBB: BBBB $=$ Reserved. AAAA $=$ Component number of the component involved.
Remedy:	Re 1. - restore the factory setting. - carry out the first commissioning. Re 2. - download the SMI data from the back-up (p4690, p4691). - carry out a POWER ON (power off/on) for all components.
A01900 (F)	PROFIBUS: Configuration telegram error
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A PROFIBUS master attempts to establish a connection using an incorrect configuring telegram. Alarm value (r2124, interpret decimal): 50: Syntax error. 51: Connection established to more drive objects than configured in the device. The drive objects for process data exchange and their sequence were defined using p0978. 52: Too many data words for input or output to a drive object. A maximum of 16 words is permitted for SERVO and VECTOR; and a maximum of 5 words for A_INFEED, TB30, TM31 and CU320. 53: Uneven number of bytes for input or output.
Remedy:	Check the bus configuring on the master and slave sides. Re alarm value $=51$: Check the list of the drive objects with process data exchange ($p 0978$). With $p 0978[x]=0$, all of the following drive objects in the list are excluded from the process data exchange.
Reaction upon F:	NONE (OFF1)
Acknowl. upon F:	IMMEDIATELY
A01901 (F)	PROFIBUS: Parameterizing telegram error
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A PROFIBUS master attempts to establish a connection using an incorrect parameterizing telegram. Alarm value (r2124, interpret decimal): 1: Incorrect parameterizing bits. 10: Illegal length of an optional parameterizing block. 11: Illegal ID of an optional parameterizing block. 20: Double parameterizing block for clock synchronization. 21: Incorrect parameterizing block for clock synchronization. 22: Incorrect parameterizing bits for clock synchronization. 23: Illegal clock synchronization for PZD interface 2. 30: Double parameterizing block for peer-to-peer data transfer. 31: Incorrect parameterizing block for peer-to-peer data transfer.

Remedy:	Check the bus configuration: - bus addresses - slave configuring
Reaction upon F:	NONE (OFF1)
Acknowl. upon F:	IMMEDIATELY
A01902	IF1: PB/PN clock cycle synchronous operation parameterization not permissible
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm value (r2124, interpret decimal): 0 : Bus cycle time Tdp $<0.5 \mathrm{~ms}$. 1: Bus cycle time Tdp > 32 ms . 2: Bus cycle time Tdp is not an integer multiple of the current controller clock cycle. 3: Instant of the actual value sensing $\mathrm{Ti}>$ Bus cycle time Tdp or $\mathrm{Ti}=0$. 4: Instant of the actual value sensing Ti is not an integer multiple of the current controller clock cycle. 5: Instant of the setpoint acceptance To >= Bus cycle time Tdp or To $=0$. 6: Instant of the setpoint acceptance To is not an integer multiple of the current controller clock cycle. 7: Master application cycle time Tmapc is not an integer multiple of the speed controller clock cycle. 8: Bus reserve bus cycle time Tdp - data exchange time Tdx less than two current controller clock cycles. 9: Bus cycle time Tdp has been modified with respect to the first time that the connection was established. 10: Instant of the setpoint acceptance not To <= data exchange time Tdx + To_min. 11: Master application cycle time Tmapc > 14 or Tmapc $=0$. 12: PLL tolerance window Tpll_w > Tpll_w_max. 13: Bus cycle time Tdp is not a multiple of all basic clock cycles $p 0110[x]$. 14: For COMM BOARD with the setting To - $1=\mathrm{Tdp}-\mathrm{Ti}$, the instant of the setpoint acceptance is not To <= Data exchange time Tdx + 2 * To_min. 15: This configuration is not permitted for $\mathrm{Tdp}<1 \mathrm{~ms}$. 16: Instant of the actual value sensing Ti is less than the permitted value (COMM BOARD: $\mathrm{Ti}>=2$). 17: The setting ($\mathrm{To}+\mathrm{Ti}=\mathrm{Tdp}+2$) is not permitted for COMM BOARD.
Remedy:	- adapt the parameterizing telegram. - adapt the current and speed controller clock cycle. Re alarm value $=9$: - carry out a POWER ON. Re alarm value $=15$: - check the number of specific drive object types in the configuration. Note: IF1: Interface 1 PB: PROFIBUS PN: PROFINET
A01903 (F)	COMM INT: Receive configuration data invalid
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive unit did not accept the receive configuration data. Alarm value (r2124, interpret decimal): Return value of the receive configuration data check. 0 : Configuration accepted. 1: Connection established to more drive objects than configured in the device. The drive objects for process data exchange and their sequence were defined using p0978. 2: Too many data words for input or output to a drive object. A maximum of 16 words is permitted for SERVO and VECTOR; and a maximum of 5 words for A_INFEED, TB30, TM31 and CU320. 3: Uneven number of bytes for input or output. 4: Setting data for synchronization not accepted. 5: Drive still not in cyclic operation. 6: Buffer system not accepted. 7: Cyclic channel length too short for this setting. 8: Cyclic channel address not initialized.

	9: 3-buffer system not permitted. 10: DRIVE-CLiQ fault. 11: CU-Link fault. 12: CX32 not in cyclic operation.
Remedy:	Check the receive configuration data. Re alarm value $=1$: Check the list of the drive objects with process data exchange (p 0978). With $\mathrm{p} 0978[\mathrm{x}]=0$, all of the following drive objects in the list are excluded from the process data exchange.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (OFF1, OFF2, OFF3) VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
F01910 (N, A)	PROFIBUS: Setpoint timeout
Message value:	-
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2) VECTOR: OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The receipt of setpoints from the PROFIBUS interface is interrupted because the bus connection is interrupted or the PROFIBUS master is switched off or was set to the STOP state. See also: p2047 (PROFIBUS additional monitoring time)
Remedy:	Restore the bus connection and set the PROFIBUS master to RUN. See also: p2047 (PROFIBUS additional monitoring time)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01911	IF1: PB/PN clock cycle synchronous operation clock cycle failure
Message value:	-
Drive object:	All objects
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	The global control telegram to synchronize the clock cycles has failed - in cyclic operation - for several DP clock cycles or has violated the time grid specified in the parameterizing telegram over several consecutive DP clock cycles (refer to the bus cycle time, Tdp and Tpllw).
Remedy:	- check the PROFIBUS cables and connectors. - check whether communication was briefly or permanently interrupted. - check the bus and master for utilization level (e.g. bus cycle time Tdp was set too short). Note: IF1: Interface 1 PB: PROFIBUS PN: PROFINET
F01912	IF1: PB/PN clock cycle synchronous operation sign-of-life failure
Message value:	- ${ }^{\text {- }}$
Drive object:	All objects
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	The maximum permissible number of errors in the master sign-of-life (clock synchronous operation) has been exceeded in cyclic operation.

Remedy:

- check the physical bus configuration (terminating resistor, shielding, etc.).
- correct the interconnection of the master sign-of-life (p2045).
- check whether the master correctly sends the sign-of-life (e.g. create a trace with STW2.12 ... STW2.15 and trigger
signal ZSW1.3).
- check the permissible telegram failure rate (p0925).
- check the bus and master for utilization level (e.g. bus cycle time Tdp was set too short).
Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET

F01913 (N, A)	COMM INT: Monitoring time sign-of-life expired
Message value:	-
Drive object:	All objects
Reaction:	A_INFEED: OFF1 (NONE, OFF2) SERVO: OFF1 (NONE, OFF2, OFF3) VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring time for the sign-of-life counter has expired. The connection between the drive and the higher-level control (SIMOTION, SINUMERIK) has been interrupted for the following reasons: - the control was reset. - the data transfer to the control was interrupted.
Remedy:	- wait until the control has re-booted. - restore data transfer to the control.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F01914 (N, A) COMM INT: Monitoring time configuration expired
Message value: $\% 1$
Drive object: All objects

Reaction:	A_INFEED: OFF1 (NONE, OFF2) SERVO: OFF1 (NONE, OFF2, OFF3) VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring time for the configuration has expired. Fault value (r0949, interpret decimal): 0 : The transfer time of the send configuration data has been exceeded. 1: The transfer time of the receive configuration data has been exceeded
Remedy:	- acknowledge faults that are present. - carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A :	NONE

A01920 (F) PROFIBUS: Interruption cyclic connection
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: \quad The cyclic connection to the PROFIBUS master is interrupted.
Remedy: Establish the PROFIBUS connection and activate the PROFIBUS master in the cyclic mode.

Reaction upon $F:$	NONE (OFF1)
Acknowl. upon F:	IMMEDIATELY

A01921 (F)	PROFIBUS: Receive setpoints after To
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Output data of PROFIBUS master (setpoints) received at the incorrect instant in time within the PROFIBUS clock cycle. - check bus configuration.
Remedy:	- check parameters for clock cycle synchronization (ensure To > Tdx). Note: To: Time of setpoint acceptance
Tdx: Data exchange time	
Reaction upon F:	NONE (OFF1)
	IMMEDIATELY

A01930 IF1: PB/PN current controller clock cycle clock cycle synchronous not equal

Message value: \%1
Drive object: All objects
Reaction: NONE

Acknowledge: NONE
Cause: The current controller clock cycle of all drives must be set the same for the clock cycle synchronous operation. Alarm value (r2124, interpret decimal):
Number of the drive object with different current controller clock cycle.
Remedy: Set current controller clock cycles to identical values (p0115[0]).
Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET
See also: p0115

A01931	IF1: PB/PN speed controller clock cycle clock cycle synchronous not equal
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The speed controller clock cycle of all drives must be set the same for the clock cycle synchronous operation.
	Alarm value (r2124, interpret decimal):
	Number of the drive object with the different speed controller clock cycle.
Remedy:	Set the speed controller clock cycles the same (p0115[1]).
	Note:
	IF1: Interface 1
	PB: PROFIBUS
	PN: PROFINET
	See also: p0115

A01932	IF1: PB/PN clock cycle synchronization missing for DSC
Message value:	-
Drive object:	SERVO, TM41
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is no clock cycle synchronization and DSC is selected.
	Note:
	DSC: Dynamic Servo Control
Remedy:	Set the clock cycle synchronization when configuring the bus.

A01940	IF1: PB/PN clock cycle synchronism not reached
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. It was not possible to synchronize to the clock cycle specified by the master. - the master does not send a clock synchronous global control telegram although clock synchronous operation was selected when configuring the bus. - the master is using another clock synchronous DP clock cycle than was transferred to the slave in the parameterizing telegram. - at least one drive object (that is not controlled from PROFIBUS/PROFINET) has a pulse enable.
Remedy:	- check the master application and bus configuration. - check the consistency between the clock cycle input when configuring the slave and clock cycle setting at the master. - ensure that the pulses of drive objects that are not controlled by PROFIBUS/PROFINET are not enabled. Only enable the pulses after synchronizing the PROFIBUS/PROFINET drives. Note: IF1: Interface 1 PB: PROFIBUS PN: PROFINET
A01941	IF1: PB/PN clock cycle signal missing when establishing bus communication
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. The global control telegram for synchronization is not being received.
Remedy:	Check the master application and bus configuration. Note: IF1: Interface 1 PB: PROFIBUS PN: PROFINET
A01943	IF1: PB/PN clock cycle signal error when establishing bus communication
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. The global control telegram for synchronization is being irregularly received. -.the master is sending an irregular global control telegram. - the master is using another clock synchronous DP clock cycle than was transferred to the slave in the parameterizing telegram.
Remedy:	- check the master application and bus configuration. - check the consistency between the clock cycle input when configuring the slave and clock cycle setting at the master. Note: IF1: Interface 1 PB: PROFIBUS PN: PROFINET

A01944	IF1: PB/PN sign-of-life synchronism not reached
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. Synchronization with the master sign-of-life (STW2.12 ... STW2.15) could not be completed because the sign-of-life is changing differently to how it was configured in the Tmapc time grid.
Remedy:	- ensure that the master correctly increments the sign-of-life in the master application clock cycle Tmapc. - correct the interconnection of the master sign-of-life (p2045). Note: IF1: Interface 1 PB: PROFIBUS PN: PROFINET
A01945	PROFIBUS: Connection to the Publisher failed
Message value:	Fault cause: \%1 bin
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	For PROFIBUS peer-to-peer data transfer, the connection to at least one Publisher has failed. Alarm value (r2124, interpret binary): Bit $0=1$: Publisher with address in r 2077 [0], connection failed. Bit $15=1$: Publisher with address in r2077[15], connection failed.
Remedy:	- check the PROFIBUS cables. - carry out a first commissioning of the Publisher that has the failed connection. See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)
F01946 (A)	PROFIBUS: Connection to the Publisher aborted
Message value:	Fault cause: \%1 bin
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	A_INFEED: OFF1 (NONE, OFF2) SERVO: OFF1 (NONE, OFF2, OFF3) VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	At this drive object, the connection to at least one Publisher for PROFIBUS peer-to-peer data transfer in cyclic operation has been aborted. Alarm value (r2124, interpret binary): Bit $0=1$: Publisher with address in r2077[0], connection aborted. ... Bit 15 = 1: Publisher with address in r2077[15], connection aborted.
Remedy:	- check the PROFIBUS cables. - check the state of the Publisher that has the aborted connection. See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01950 (N, A)	IF1: PB/PN clock cycle synchronous operation synchronization unsuccessful
Message value:	-
Drive object:	All objects
Reaction:	OFF1 (NONE)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Synchronization of the internal clock cycle to the global control telegram has failed. The internal clock cycle exhibits an unexpected shift.

Remedy:	Only for internal Siemens troubleshooting. IF1: Interface 1 PB: PROFIBUS PN: PROFINET
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F01951	CU DRIVE-CLiQ: Synchronization application clock cycle missing
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	If DRIVE-CLiQ components with different application clock cycle are operated at a DRIVE-CLiQ port, then this requires synchronization with the Control Unit. This synchronization routine was unsuccessful. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting. - carry out a POWER ON (power off/on) for all components. - upgrade the software of the DRIVE-CLiQ components. - upgrade the Control Unit software.

F01952 CU DRIVE-CLiQ: Synchronization of component not supported
Message value: \%1
Drive object: All objects
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY (POWER ON)

Cause: The existing system configuration requires that the connected DRIVE-CLiQ components support the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and the application clock cycle. However, not all DRIVE-CLiQ components have this functionality. Fault value (r0949, interpret decimal): Component number of the first faulty DRIVE-CLiQ component.
Remedy: Upgrade the firmware of the component specified in the fault value. Note: If required, also upgrade additional components in the DRIVE-CLiQ line.

A01953

CU DRIVE-CLiQ: Synchronization not completed
Message value: \%1
Drive object: All objects

Reaction: NONE
Acknowledge: NONE
Cause: After the drive system is powered up, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started but was not completed within the selected time tolerance. Alarm value (r2124, interpret decimal): Only for internal Siemens troubleshooting.
Remedy: Carry out a POWER ON (power off/on) for all components. If the error occurs after the drive sampling times were adjusted, and if a TM31 module is being used, the sampling times ($\mathrm{p} 0115, \mathrm{p} 4099$) should be set as integer multiples to the drive clock cycles (p 0115).

F01954	CU DRIVE-CLiQ: Synchronization unsuccessful
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	After the drive system is powered up, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started and was not able to be successfully completed. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	1. Ensure perfect functioning of the DRIVE-CLiQ. 2. Initiate a new synchronization, e.g. as follows: - remove the PROFIBUS master and re-insert again. - restart the PROFIBUS master. - power down the Control Unit and power it up again. - press the Control Unit reset button. - reset the parameter and download the saved parameters (p0009=30, p0976=2).

A01955	CU DRIVE-CLiQ: Synchronization DO not completed
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	After the drive system is powered up, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started but was not completed within the selected time tolerance.
	Alarm value (r2124, interpret decimal): Only for internal Siemens troubleshooting. Carry out a POWER ON (power off/on) for all components of the DO.
Remedy:	

A02000 Function generator: Start not possible

Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: \quad The function generator has already been started.

Remedy: Stop the function generator and restart again if necessary.
Note:
The alarm is reset as follows:

- remove the cause of this alarm
- restart the function generator.

See also: p4800 (Function generator control)

A02005	Function generator: Drive does not exist
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive object specified for connection does not exist.
	See also: p4815 (Function generator drive number)
Remedy:	Use the existing drive object with the corresponding number.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.
	See also: p4815 (Function generator drive number)

A02006	Function generator: No drive specified for connection
Message value:	- Alt
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	No drive specified for connection in p4815. See also: p4815 (Function generator drive number)
Remedy:	At least one drive to be connected must be specified in p4815. Note: The alarm is reset as follows: - remove the cause of this alarm. - restart the function generator. See also: p4815 (Function generator drive number)
A02007	Function generator: Drive not SERVO / VECTOR
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive object specified for connection is not a SERVO / VECTOR. See also: p4815 (Function generator drive number)
Remedy:	Use a SERVO / VECTOR drive object with the corresponding number. Note: The alarm is reset as follows: - remove the cause of this alarm. - restart the function generator.

A02008	Function generator: Drive specified a multiple number of times
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive object specified for connection is already specified.
	Alarm value (r2124, interpret decimal): Drive object number of the drive object that is specified a multiple number of times. Specify a different drive object. The alarm is reset as follows: - remove the cause of this alarm. - restart the function generator.

A02009	Function generator: Illegal mode
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The set operating mode (p 1300) of the drive object is not permissible when using the function generator. Alarm value (r2124, interpret decimal): Number of the drive object involved.
Remedy:	Change the operating mode for this drive object to p1300 $=20$ (encoderless speed control) or p1300 $=21$ (speed control with encoder). Note: The alarm is reset as follows: - remove the cause of this alarm. - restart the function generator.

A02010	Function generator: Speed setpoint from the drive is not zero
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The speed setpoint of a drive selected for connection is greater than the value for the standstill detection set using p1226. Alarm value (r2124, interpret decimal): Number of the drive object involved.
Remedy:	For all of the drives specified for connection, set the speed setpoints to 0 . Note: The alarm is reset as follows: - remove the cause of this alarm. - restart the function generator.
A02011	Function generator: The actual drive speed is not zero
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The speed actual value of a drive selected for connection is greater than the value for the standstill detection set using p1226. Alarm value (r2124, interpret decimal): Number of the drive object involved.
Remedy:	Set the relevant drives to zero speed before starting the function generator. Note: The alarm is reset as follows: - remove the cause of this alarm. - restart the function generator.
A02015	Function generator: Drive enable signals missing
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The master control and/or enable signals are missing to connect to the specified drive. Alarm value (r2124, interpret decimal): Number of the drive object involved. See also: p4815 (Function generator drive number)
Remedy:	Fetch the master control to the specified drive object and set all enable signals. Note: The alarm is reset as follows: - remove the cause of this alarm. - restart the function generator.
A02016	Function generator: Magnetizing running
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Magnetizing has not yet been completed on a drive object specified for connection. Alarm value (r2124, interpret decimal): Number of the drive object involved. See also: p4815 (Function generator drive number)

Remedy:	Wait for magnetizing of the motor (r0056.4).
	Note:
The alarm is reset as follows:	
- restart the function generator.	
See also: r0056 (Status word, closed-loop control)	

A02020	Function generator: Parameter cannot be changed
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	This parameter setting cannot be changed when the function generator is active ($p 4800=1$). See also: p4810, p4812, p4813, p4815, p4820, p4821, p4822, p4823, p4824, p4825, p4826, p4827, p4828, p4829
Remedy:	- stop the function generator before parameterizing ($p 4800=0$). - if required, start the function generator ($\mathrm{p} 4800=1$). Note: The alarm is reset as follows: - remove the cause of this alarm. - restart the function generator. See also: p4800 (Function generator control)

A02025 Function generator: Period too short
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: The value for the period is too short See also: p4821 (Function generator period)
Remedy: Check and adapt the value for the period.

Note:
The alarm is reset as follows:

- remove the cause of this alarm.
- restart the function generator

See also: p4821 (Function generator period)

A02026	Function generator: Pulse width too high
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected pulse width is too high.
	The pulse width must be less than the period duration.
	See also: p4822 (Function generator pulse width)
Remedy:	Reduce pulse width.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.
	See also: p4821 (Function generator period), p4822 (Function generator pulse width)

A02030	Function generator: Physical address equals zero
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The specified physical address is zero.
	See also: p4812 (Function generator physical address)

Remedy:	Set a physical address with a value other than zero. Note: The alarm is reset as follows: - remove the cause of this alarm. - restart the function generator. See also: p4812 (Function generator physical address)
A02040	Function generator: Illegal value for offset
Message value:	- All
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The value for the offset is higher than the value for the upper limit or lower than the value for the lower limit. See also: p4826 (Function generator offset)
Remedy:	Adjust the offset value accordingly. Note: The alarm is reset as follows: - remove the cause of this alarm. - restart the function generator. See also: p4826 (Function generator offset), p4828 (Function generator lower limit), p4829 (Function generator upper limit)
A02041	Function generator: Illegal value for bandwidth
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The bandwidth referred to the time slice clock cycle of the function generator has either been set too low or too high. Depending on the time slice clock cycle, the bandwidth is defined as follows: Bandwidth_max $=1$ / (2 * time slice clock cycle) Bandwidth_min = Bandwidth_max / 100000 Example: Assumption: p4830 $=125 \mu \mathrm{~s}$ --> Bandwidth_max $=1 /(2$ * $125 \mu \mathrm{~s})=4000 \mathrm{~Hz}$ --> Bandwidth_min $=4000 \mathrm{~Hz} / 100000=0.04 \mathrm{~Hz}$ Note: p4823: Function generator bandwidth p4830: Function generator time slice clock cycle See also: p4823 (Function generator bandwidth), p4830 (Function generator time slice cycle)
Remedy:	Check the value for the bandwidth and adapt accordingly. Note: The alarm is reset as follows: - remove the cause of this alarm. - restart the function generator.
A02047	Function generator: Time slice clock cycle invalid
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time slice clock cycle selected does not match any of the existing time slices. See also: p4830 (Function generator time slice cycle)
Remedy:	Enter an existing time slice clock cycle. The existing time slices can be read out via p7901. Note: The alarm is reset as follows: - remove the cause of this alarm. - restart the function generator. See also: r7901 (Time slice cycle times)

A02050	Trace: Start not possible
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace has already been started. See also: p4700 (Trace control)
Remedy:	Stop the trace and, if necessary, start again.
A02055	Trace: Recording time too short
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace duration is too short. The minimum is twice the value of the trace clock cycle. See also: p4721 (Trace recording time)
Remedy:	Check the selected recording time and, if necessary, adjust.
A02056	Trace: Recording cycle too short
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected recording cycle is shorter than the selected basic clock cycle 0 ($\mathrm{p} 0110[0]$). See also: p4720 (Trace recording cycle)
Remedy:	Increase the value for the trace cycle.
A02057	Trace: Time slice clock cycle invalid
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time slice clock cycle selected does not match any of the existing time slices. See also: p4723 (Time slice cycle for trace)
Remedy:	Enter an existing time slice clock cycle. The existing time slices can be read out via p7901. See also: r7901 (Time slice cycle times)
A02058	Trace: Time slice clock cycle for endless trace not valid
Message value:	- All objects
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected time slice clock cycle cannot be used for the endless trace See also: p4723 (Time slice cycle for trace)
Remedy:	Enter the clock cycle of an existing time slice with a cycle time $>=2 \mathrm{~ms}$ for up to 4 recording channels or $>=4 \mathrm{~ms}$ from 5 recording channels per trace. The existing time slices can be read out via p7901. See also: r7901 (Time slice cycle times)

A02059	Trace: Time slice clock cycle for 2×8 recording channels not valid
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected time slice clock cycle cannot be used for the setting p4702 $=1$ (2×8 recording channels $)$. See also: p4723 (Time slice cycle for trace)
Remedy:	Enter the clock cycle of an existing time slice with a cycle time >=4 ms or reduce the number of recording channels to 4 per trace. The existing time slices can be read out via p7901. See also: r7901 (Time slice cycle times)

A02060 Trace: Signal to be traced missing
Message value: -
Drive object: All objects
Reaction: NONE

Acknowledge: NONE
Cause: - a signal to be traced was not specified.

- the specified signals are not valid.

See also: p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace record signal 3)
Remedy: - specify the signal to be traced. - check whether the relevant signal can be traced.

A02061	Trace: Invalid signal
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	- the specified signal does not exist. - the specified signal can no longer be traced (recorded). See also: p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace record signal 3)
Remedy:	- specify the signal to be traced. - check whether the relevant signal can be traced.

A02062	Trace: Invalid trigger signal
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	- a trigger signal was not specified. - the specified signal does not exist. - the speciiied signal is not a fixed-point signal. - the specified signal cannot be used as a trigger signal for the trace. See also: p4719 (Trace trigger signal) Specify a valid trigger signal.

A02063	Trace: Invalid data type
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The specified data type to select a signal using a physical address is invalid. See also: p4711 (Trace trigger signal), p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace record signal 3)

Remedy: Use a valid data type.

A02070	Trace: Parameter cannot be changed
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace parameter settings cannot be changed when the trace is active. See also: p4700, p4710, p4711, p4712, p4713, p4714, p4715, p4716, p4720, p4721, p4722, p4730, p4731, p4732, p4733, p4780, p4781, p4782, p4783, p4789, p4795
Remedy:	- stop the trace before parameterization. - if required, start the trace.

A02075	Trace: Pretrigger time too long
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected pretrigger time must be shorter than the trace time. Semedy:
Check the pretrigger time setting and change if necessary.	

F02080 Trace: Delete trace because units changed over
Message value: -
Drive object: All objects
Reaction: NONE

Acknowledge: IMMEDIATELY
Cause: The trace was deleted due to the fact that the units were changed over or the reference parameters changed
Remedy:

A02099	Trace: Insufficient Control Unit memory
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory space still available on the Control Unit is no longer sufficient for the trace function.
Remedy:	Reduce the memory required, e.g. as follows: - increase the trace clock cycle. See also: r4708 (Trace memory space required), r4799 (Trace memory location free)

A02100	CU: Computing dead time current controller too short
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The value in p0118 produces a dead time of one clock cycle because it is prior to setpoint availability. A possible cause could be, for example, that the system characteristics no longer match those parameterized after a component has been replaced.
	Alarm value (r2134, floating point): The minimum value for p0118 where a dead time no longer occurs.
	- set p0118 to a value greater than or equal to the alarm value. Remedy:
	- set p0117 to an automatic setting.

A02150	OA: Application cannot be loaded
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The system was not able to load an OA application. Alarm value (r2124, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline. Note: OA: Open Architecture See also: r4950, r4955, p4956, r4957
F02151 (A)	OA: Internal software error
Message value:	\%1
Drive object:	All objects
Reaction:	A INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (NONE, OFF1, OFF3) VECTOR: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error has occurred within an OA application. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline. - replace the Control Unit. Note: OA: Open Architecture See also: r4950, r4955, p4956, r4957
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F02152 (A)	OA: Insufficient memory
Message value:	\%1
Drive object:	All objects
Reaction:	OFF1
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, OA applications, blocks, etc). Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, OA applications, blocks, etc). - use an additional Control Unit. Note: OA: Open Architecture
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F03500 (A)	TM: Initialization
Message value:	\%1
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When initializing the Terminal Modules, the terminals of the Control Unit or the Terminal Board 30, an internal software error has occurred. Fault value (r0949, interpret decimal): The thousands digit = $1 \ldots 3$: The component number (p0151) of the module involved is specified at the units, tens and hundreds digit.
Remedy:	- power down the power supply for the Control Unit and power it up again. - check the DRIVE-CLiQ connection. - if required, replace the Terminal Module. The Terminal Module should be directly connected to a DRIVE-CLiQ socket of the Control Unit. If the fault occurs again, replace the Terminal Module.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A03501	TM: Sampling time change
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The sampling times of the inputs/outputs were changed. This change only becomes valid after the next boot.
Remedy:	Carry out a POWER ON.
F03505 (N, A)	TM: Analog input wire breakage
Message value:	\%1
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The input current of the Terminal Module analog input has exceeded the threshold value parameterized in $\mathrm{p} 4061[\mathrm{x}]$. This fault can only occur if $\mathrm{p} 4056[\mathrm{x}]=3(4 \ldots 20 \mathrm{~mA}$ with monitoring $)$ is set. Index $x=0$: Analog input 0 (X522.1 to .3) Index $x=1$: Analog input 1 (X522.4 to .5) Fault value (r0949, interpret decimal): The component number (p 0151) of the module involved is specified the units, tens and hundreds digit. The thousands digit specifies the analog input involved: 0 : Analog input 0 (AI 0), 1: Analog input 1 (AI 1)
Remedy:	Check the connection to the signal source for interruptions. Check the magnitude of the injected current - it is possible that the infed signal is too low. Please note that the input has a load resistance of 250 Ohm. The input current measured by the Terminal Module can be read out from r4052[x].
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A03506 (F, N)	24 V power supply missing
Message value:	\%1
Drive object:	A_INF, B_INF, CU_I, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The 24 V power supply for the digital outputs (X124) is missing.
Remedy:	Check the terminals for the power supply voltage (X124, L1+, M).

Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A03550	TM: Speed setpoint filter natural frequency > Shannon frequency
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The natural filter frequency of the speed setpoint filter (p1417) is greater than the Shannon frequency. The Shannon frequency is calculated according to the following formula: 0.5 / 00115 [0] See also: p1417
Remedy:	Reduce the natural frequency of the speed setpoint filter (PT2 low pass) (p1417).
F03590 (N, A)	TM: Module not ready
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE) SERVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: OFF2 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The Terminal Module involved does not send a ready signal and no valid cyclic data. Fault value (r0949, interpret decimal): Drive object number of the Terminal Module involved.
Remedy:	- check the 24 V power supply. - check the DRIVE-CLiQ connection. - check whether the sampling time of the drive object involved is not equal to zero (p4099[0]).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A05000 (N)	Power unit: Heat sink overtemperature
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for overtemperature at the inverter heat sink has been reached. The response is set using p0290. If the temperature of the heat sink increases by an additional 5 K , then fault F30004 is initiated.
Remedy:	Check the following: - is the ambient temperature within the defined limit values? - have the load conditions and the load duty cycle been appropriately dimensioned? - has the cooling failed?
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A05001 (N)	Power unit: Chip overtemperature
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for overtemperature of the power semiconductor in the AC converter has been reached. The response is set using p0290. If the chip temperature increases by an additional 15 K , then fault F30025 is initiated.

Remedy:	Check the following: - is the ambient temperature within the defined limit values? - have the load conditions and the load duty cycle been appropriately dimensioned? - has the cooling failed? - pulse frequency too high? See also: r0037, p0290 (Power unit overload response)
Reaction upon N: NONE	
Acknowl. upon N: NONE	

A05002 (N)	Power unit: Air intake overtemperature
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for the air intake overtemperature has been reached. For air-cooled power units, the threshold is $42^{\circ} \mathrm{C}$ (hysteresis 2 K). The response is set using p0290. If the air intake temperature increases by an additional 13 K, then fault F30035 is output. Check the following: - is the ambient temperature within the defined limit values?
Remedy:	- has the fan failed? Check the direction of rotation.
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A05003 (N) Power unit: Electronics board overtemperature
Message value: -

Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for the overtemperature of the electronics module has been reached. The response is set using p0290. If the temperature of the electronics module increases by an additional 5 K, then fault F30036 is initiated. Check the following:
Remedy:	- is the ambient temperature within the defined limit values? - has the fan failed? Check the direction of rotation.
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A05004 (N)	Power unit: Rectifier overtemperature
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for the overtemperature of the rectifier has been reached. The response is set using p0290. If the temperature of the rectifier increases by an additional 5 K , then fault F30037 is initiated. Check the following:
Remedy:	- is the ambient temperature within the defined limit values? - have the load conditions and the load duty cycle been appropriately dimensioned?
- has the fan failed? Check the direction of rotation.	
- has a phase of the line supply failed?	

A05005	Cooling system: Cooling medium flow rate too low
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	Cooling system: Alarm - flow rate has fallen below the alarm value
Remedy:	
A05006 (N)	Power unit: Overtemperature thermal model
Message value:	-
Drive object:	A_INF, S_INF, SERVO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature difference between the chip and heat sink has exceeded the permissible limit value (for blocksize power units only). Depending on p0290, a suitable overload response is initiated. See also: r0037
Remedy:	None necessary. The alarm automatically disappears when the limit value is undershot. Note: If the alarm does not disappear automatically and the temperature continues to rise, this can trigger fault F30024. See also: p0290 (Power unit overload response)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A05006 (N)	Power unit: Overtemperature thermal model
Message value:	-
Drive object:	VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature difference between the chip and heat sink has exceeded the permissible limit value (for blocksize power units only). Depending on p0290, a suitable overload response is initiated. See also: r0037
Remedy:	None necessary. The alarm automatically disappears when the limit value is undershot. Note: If the alarm does not disappear automatically and the temperature continues to rise, this can trigger fault F30024. - If DC brake is active: reduce braking current (see p1232). See also: p0290 (Power unit overload response)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
N05007 (A)	Power unit: Overtemperature thermal model (chassis PU)
Message value:	-
Drive object:	A_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature difference between the chip and heat sink has exceeded the permissible limit value (r0293) (for chassis power units only). Depending on p0290, a suitable overload response is initiated. See also: r0037, r0293 (Power unit alarm threshold model temperature)
Remedy:	None necessary. The alarm automatically disappears when the limit value is undershot. See also: p0290 (Power unit overload response)
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F05050	Parallel circuit: Pulse enable in spite of pulse inhibit
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, VECTOR
Reaction:	A INFEED: OFF2 (NONE, OFF1) VECTOR: OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	A power unit signals that the pulses are enabled although the pulses are inhibited. Fault value (r0949, interpret decimal): Number of the power unit involved.
Remedy:	The power unit is defective and must be replaced.
F05051	Parallel circuit: Power unit pulse enable missing
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, VECTOR
Reaction:	A INFEED: OFF2 (NONE, OFF1) VECTOR: OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	For one or several power units, the pulses were not able to be enabled. Fault value (r0949, interpret decimal): Number of the power unit involved.
Remedy:	- acknowledge power unit faults that are still present. - inhibit the pulses of the power unit involved (p7001)

A05052 (F)	Parallel circuit: Illegal current dissymmetry
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The deviation of the individual currents of the power units exceeds the alarm threshold specified in p7010.
	Alarm value (r2124, interpret decimal):
	1: Phase U.
	2: Phase V.
	3: Phase W.
Remedy:	- inhibit the pulses of the faulted power unit (p7001).
	- check the connecting cables. Loose contacts can cause current spikes.
	- the motor reactors are non-symmetrical or faulty and must be replaced.
Reaction upon F:	- the CTs must be calibrated or replaced.
	A_INFEED: NONE (OFF1, OFF2)
AECRnowl. upon F:	VECTOR: NONE (OFF1, OFF2, OFF3, STOP1, STOP2)
IMMEDIATELY	

A05053 (F)	Parallel circuit: Inadmissible DC link voltage dissymmetry
Message value:	-
Drive object:	A_INF, B_INF, S_INF, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The deviation of the DC link voltage measured values exceeds the alarm threshold specified in p7011.
Remedy:	- inhibit the pulses of the faulted power unit (p7001). - check the DC link connecting cables.
	- the DC link voltage measurement is incorrect and must be calibrated or renewed.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2)
Acknowl. upon F:	VECOR: NONE (OFF1, OFF2, OFF3, STOP1, STOP2)
IMMEDIATELY	

A05054	Parallel circuit: Power unit de-activated
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the drive object involved, fewer power unit components connected in parallel are active than exist in the target topology. Operation is only possible at reduced power (power de-rating). Re-activate the de-activated power unit components. See also: p0125 (Activate/de-activate power unit components), p0895 (Activate/de-activate power unit components), p0897 (Parking axis selection)

F05059	Parallel circuit: VSM firmware versions differ
Message value:	Parameter: \%1
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The firmware versions of the Voltage Sensing Module (VSM) do not match. Fault value (r0949, interpret decimal): Parameter in which the first different version number was detected.
Remedy:	For parallel circuit configurations, only Voltage Sensing Modules (VSM) with identical firmware versions may be used.
F05060	Parallel circuit: Power unit firmware version does not match
Message value:	Parameter: \%1
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Firmware from version V02.30.01.00 is required when connecting the power units in parallel.
Remedy:	Update the firmware of the power units (at least V02.30.01.00).
F05061	Infeed, number of VSM
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The number of active Voltage Sensing Modules (VSM) for the drive object infeed with chassis power units is not correct. For A_Infeed, each active power unit must be assigned an active VSM also for a parallel circuit configuration. For S_Infeed, the active drive object, must be assigned at least one active VSM. Fault value (r0949, interpret decimal): Number of VSMs that are currently assigned to the drive object.
Remedy:	Adapts the number of active Voltage Sensing Modules (VSM).
F06000	Infeed: Precharging monitoring time expired
Message value:	-
Drive object:	A_INF, B_INF, S_INF
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	After the line contactor closes the power unit does not signal the READY state within the monitoring time (p0857). The end of the DC link pre-charging was not able to be completed for one of the following reasons: 1) There is no line supply voltage connected. 2) The line contactor/line side switch has not been closed. 3) The line supply voltage is too low. 4) Line supply voltage incorrectly set (p0210). 5) The pre-charging resistors are overheated as there were too many pre-charging operations per time unit. 6) The pre-charging resistors are overheated as the DC link capacitance is too high. 7) The pre-charging resistors are overheated because when there is no "ready for operation" (r0863.0) of the infeed unit, power is taken from the DC link. 8) The pre-charging resistors are overheated as the line contactor was closed during the DC link fast discharge through the Braking Module. 9) The DC link has either a ground fault or a short-circuit. 10) The pre-charging circuit is possibly defective (only for chassis units). See also: p0210 (Drive unit line supply voltage), p0857 (Power unit monitoring time)

Remedy:	In general: - check the line supply voltage at the connecting terminals. - check the line supply voltage setting (p0210). - check the monitoring time and, if required, increase (p0857). - where relevant, observe additional power unit messages/signals (e.g. F30027). - the following applies to booksize units: Wait (approx. 8 min .) until the pre-charging resistors have cooled down. The infeed unit must be disconnected from the supply for this purpose. $\operatorname{Re} 5)$: - carefully observe the permissible pre-charging frequency (refer to the appropriate Equipment Manual). Re 6): - check the total capacitance of the DC link and if required, correspondingly reduce the maximum permissible DC link capacitance (refer to the appropriate Equipment Manual). Re 7): - interconnect the ready for operation signal of the infeed unit (r0863.0) in the enable logic of the drives connected to this DC link. Re 8): - check the connections of the external line contactor. The line contactor must be open during the DC link fast discharge. $\operatorname{Re} 9)$: - check the DC link regarding ground fault or short-circuit.
F06010	Infeed: Power unit EP 24 V missing in operation
Message value:	-
Drive object:	A_INF, B_INF, S_INF
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	In operation, withdraw the pulse enable at terminal EP at the Line Module (X21.3, X21.4).
Remedy:	- do not open the Line Side Switch in operation - only when the pulses are inhibited. - check the wiring of the DP input (X21.3, X21.4) at the Line Module to exclude any poor contacts.
F06050	Infeed: Smart Mode not supported
Message value:	-
Drive object:	A_INF, S_INF
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The power unit does not support the Smart Mode.
Remedy:	- set the suitable sampling time $250 \mu \mathrm{~s}<=\mathrm{p} 0115[0]<=400 \mu \mathrm{~s}$ (e.g. by setting p0112 and p0115 to the factory setting). - upgrade the power unit software and/or hardware for the Smart Mode. The availability of the Smart Mode function is displayed in r0192. - for A_INF the following applies: De-activate the Smart Mode with p3400.0 = 0 and activate the voltage control with $\mathrm{p} 3400.3=1$. For booksize power units, it must be noted that for a supply voltage p0210>415 V only the Smart Mode is possible in the pre-setting. If DC link voltages above 660 V are permissible in the application, then voltage-controlled operation can be activated with p0280, p0210, p3400 and p3510. The information regarding p0210 should be carefully noted. See also: r0192 (Power unit firmware properties)
F06052	Infeed: Filter temperature evaluation not supported
Message value:	-
Drive object:	A_INF, S_INF
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The power unit does not support filter temperature evaluation (r0192.11). This feature is required when using an Active Interface Module as line filter (p0220 = 41 ... 45).
Remedy:	Upgrade the firmware for the power unit to a later version. See also: r0192 (Power unit firmware properties), p0220 (Infeed line filter type)

$\overline{\mathrm{F} 06100}$	Infeed: Shutdown due to line supply undervoltage condition
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The filtered (steady-state) value of the line supply voltage is less than the fault threshold (p0283). Fault condition: Vrms < p0283 * p0210 Fault value (r0949, floating point): Current steady-state line supply voltage. See also: p0283 (Line supply undervoltage, shutdown (trip) threshold)
Remedy:	- check the line supply. - check the line supply voltage (p 0210). - check the fault threshold (p0283).
A06105 (F)	Infeed: Line supply undervoltage
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	The filtered (steady-state) value of line supply voltage is lower than the alarm threshold (p 0282). Alarm condition: Vrms < p0282 * p0210 Alarm value (r2124, floating point): Current steady-state line supply voltage. See also: p0282 (Line supply undervoltage, alarm threshold)
Remedy:	- check the line supply. - check the line supply voltage (p 0210). - check the alarm threshold (p0282).
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
F06200	Infeed: Failure of one or several line phases
Message value:	-
Drive object:	A_INF, S_INF
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Failure overvoltage in one or several line supply phases. The fault can be output in two operating states: 1. During the power-on phase of the infeed unit. The measured line supply angle deviates from the regular characteristic for a 3-phase system - the PLL cannot be synchronized. The fault occurs immediately after power-up if, when operating with a VSM, the phase assignment L1, L2, L3 at the VSM differs from the phase assignment at the power unit. 2. While the infeed is operational. After a voltage dip has been detected or an overvoltage (note A06205) in one or several line phases a fault occurred within 100 ms (also refer to other relevant messages). Generally, before fault message F06200 is output, Alarm A06205 occurs at least once, whose warning value can provide information regarding the cause of the line supply fault. Probable causes of the fault: - voltage dip on the line side or phase failure or overvoltage lasting longer than 10 ms . - overload condition on the load side with peak current. - commutating reactor missing.
Remedy:	- check the line supply and fuses. - check the connection and size (rating) of the line commutating reactor. - check and correct the phase assignment at the VSM (X521 or X522) and at the power unit. - check the load. - if failed in operation, carefully note the previous alarm messages A6205 with alarm values. See also: p3463 (Infeed, line angle change, phase failure detection)

A06205 (F)	Infeed: Voltage dip in at least one line supply phase
Message value:	\%1
Drive object:	A_INF, S_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	Voltage dip or overvoltage in one or several line supply phases has been detected in operation. The pulses are then inhibited for a time of at least 8 ms . The operating signal of the infeed unit in r0863.0 remains and the pulse inhibit due to the phase failure is displayed in r3405.2. Alarm value (r2124, bitwise coded cause of the alarm): Bit 0: Line angle deviation (limit value p3463) due to a line supply fault Bit 2: Active current deviation Bit 3: Line frequency deviation (limit values: 115 \% * p0284, 85 \% * p0285) Bit 4: Line overvoltage (limit value 120 \% * p0281 * p0210) Bit 5: Line undervoltage (limit value 20 \% * p0210) Bit 7: Peak current fault Bit 8: Smart Mode without VSM (p3400.5 = 0): Line angle deviation Bit 9: Smart Mode: DC link voltage dip Bit 10: Smart Mode: Line currents not symmetrical
Remedy:	Generally, the following applies when an alarm message is output: - check the line supply and fuses. - check the line supply quality and system fault level. - check the load. Dependent on the alarm value in r2124, the following applies: Bit $0=1$: Line fault occurred or poor/incorrect controller setting. For poor line quality or frequent line supply changeover operations, when required, limit value p3463 can be increased until the alarm value no longer occurs. Bit $2=1$: Line fault occurred or poor/incorrect controller setting. - check the controller setting and load. Bit 3 = 1: Line fault occurred. For poor line quality or frequent line changeover operations, when required, limit values p0284 and p0285 can be increased until the alarm value no longer occurs. Bit 4 = 1: Line interrupted or line overvoltage has occurred. Bit $5=1$: Line interrupted or line undervoltage has occurred. Bit $7=1$: Peak current trip due to line fault or overload. Check the load. Bit $8=1$: Line fault occurred. Bit $9=1$: Line undervoltage or overload. Check the load. Bit $10=1$: Line supply interrupted in at least one line phase. Check the fuses. See also: r3405 (Status word infeed), p3463 (Infeed, line angle change, phase failure detection)
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
F06207 (N, A)	Infeed: Line currents not symmetrical
Message value:	-
Drive object:	A_INF, S_INF
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Asymmetry of the currents in the line phase too high. The most probable cause is failure of a line phase.
Remedy:	- check the line supply and fuses. - check the connection and size (rating) of the line commutating reactor. - note the previous alarm messages A6205 with alarm values.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F06210	Infeed: Summation current too high
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The smoothed total of the phase currents ($\mathrm{i} 1+\mathrm{i} 2+\mathrm{i} 3$) is greater than 4% of the maximum power unit current (r0209). Possible causes: - the DC link has a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, commutating reactor or line filter! - the zero point calibration of the current measurement was not carried out (p3491, A06602). - defective current measurement in the power unit. Fault value (r0949, floating point): Smoothed total of the phase currents.
Remedy:	- check the DC link for a low-ohmic or high-ohmic ground fault and if present, remove. - increase the monitoring time of the current offset measurement (p3491). - if required, replace the power unit.

A06215 (F)	Infeed: Summation current too high
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	The smoothed total of the phase currents ($\mathrm{i} 1+\mathrm{i} 2+\mathrm{i} 3$) is greater than 3 \% of the maximum power unit current (r0209). Possible causes: - the DC link has a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, commutating reactor or line filter! - the zero point calibration of the current measurement was not carried out (p3491, A06602). - defective current measurement in the power unit.
Alarm value (r2124, floating point): Smoothed total of the phase currents.	
Remedy:	- check the DC link for a low-ohmic or high-ohmic ground fault and if present, remove. - increase the monitoring time of the current offset measurement (p3491). - if required, replace the power unit.
Reaction upon F:	NONE (OFF1, OFF2) IMMEDIATELY (POWER ON)

Remedy:	- check the parameterized value of the filter capacitance (p0221). - check the correct wiring of the Voltage Sensing Module (VSM): Differential voltages u12 and u23 must be present at the 100 V/690 V inputs of the VSM; the phase currents of the line filter must be connected to the 10 V inputs through a current - voltage converter. - check the alarm limits for the permissible filter capacitance deviation (p3676). - check the normalization of the line supply voltage measurement using the VSM (p366). - check the normalization of the filter current measurement using the VSM (p3670). - check the line filter capacitors and if required, replace the line filter. See also: p0221 (Infeed filter capacitance), p3660 (VSM input line supply voltage, voltage scaler), p3670 (VSM 10 V input CT gain), p3676 (VSM line filter capacitance alarm threshold)
NONE (OFF1, OFF2)	

- the filter temperature is too high. Allow the system to cool down.
- the internal fan of the filter module is defective. If required, replace the fan.
- defective temperature switch of the filter module. If required, replace the filter module

F06300	Infeed: Line voltage too high at power on
Message value:	\%1
Drive object:	A_INF, S_INF
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The RMS line supply voltage Vrms was so high when powering up that controlled operation is not possible without
	exceeding the permissible maximum voltage in the DC link (p0280).
	Fault condition: Vrms * 1.5 > p0280.
	Fault value (ro949, floating point):
	Lowest possible controlled DC link voltage for the line supply voltage presently connected.
	See also: p0280 (DC link voltage maximum steady-state)
	- check the line supply voltage

A06301 (F)	Infeed: Line supply overvoltage
Message value:	Line supply voltage: \%1
Drive object:	A_INF, B_INF, S_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	The filtered (steady-state) value of the rms line supply voltage Vrms is higher than the alarm threshold (p0281).
	Alarm condition: Vrms > p0281 * p0210. Alarm value (r2124, floating point): Current steady-state line supply voltage. See also: p0281 (Line supply overvoltage, alarm threshold)
	- check the line supply.
- check the line supply voltage (p0210).	

F06310 (A)	Supply voltage (p0210) incorrectly parameterized
Message value:	-
Drive object:	SERVO
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For AC/AC drive units, the measured DC voltage lies outside the tolerance range after pre-charging has been com- pleted. The following applies for the tolerance range: 1.16 * p0210 < r0070 < 1.6 * p0210.
	The fault can only be acknowledged when the drive is powered down. See also: p0210 (Drive unit line supply voltage)
	- check the parameterized supply voltage and if required change (p0210).

Remedy:	- check the interconnection to control the multiplexer (CI: p3572). - check the signal source signal value of the BICO interconnection. See also: p3572 (Master/slave active current setpoint, multiplexer selection)
F06321	Master/slave: 6-channel multiplexer control not valid
Message value:	\%1
Drive object:	A_INF
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Values $0,1,2,3,4$ and 5 are valid to control the 6 -channel multiplexer via $\mathrm{Cl}: 3577$. In this case, an invalid value was identified. The control remains effective with the previous value. Fault value (r0949, interpret decimal): Invalid value to control the multiplexer. See also: p3577 (Master/slave current distribution factor, multiplexer selection)
Remedy:	- check the interconnection to control the multiplexer (CI: p3577). - check the signal source signal value of the BICO interconnection. See also: p3577 (Master/slave current distribution factor, multiplexer selection)
A06350 (F)	Infeed: Measured line frequency too high
Message value:	Line frequency: \%1
Drive object:	A_INF, S_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	The actual line frequency f_line is higher than the parameterized alarm threshold (f_line > p0211 * p0284). The alarm can be output in two operating states: 1. During the power-on phase of the infeed unit. Consequence: Synchronization of the infeed to the line supply is interrupted and is restarted. 2. While the infeed is operational. Consequence: The infeed remains in the operating (run) state and alarm A6350 is output. This signifies a critical operational fault. Alarm value (r2124, floating point): Current line frequency determined. See also: p0284 (Line supply frequency exceeded, alarm threshold)
Remedy:	- check the parameterized line frequency and if required change (p0211). - check the alarm threshold (p0284). - check the line supply. - check the line supply quality. See also: p0211 (Rated line freq), p0284 (Line supply frequency exceeded, alarm threshold)
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A06351 (F)	Infeed: Measured line frequency too low
Message value:	Line frequency: \%1
Drive object:	A_INF, S_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	The actual line frequency f_line is lower than the parameterized alarm threshold (f_line < p0211 * p0285). The alarm can be output in two operating states: 1. During the power-on phase of the infeed unit. Consequence: Synchronization of the infeed to the line supply is interrupted and is restarted. 2. While the infeed is operational. Consequence: The infeed remains in the operating (run) state and alarm A06351 is output. This signifies a critical operational fault. Alarm value (r2124, floating point): Current line frequency determined. See also: p0285 (Line supply frequency undershot, alarm threshold)

Remedy:	- check the parameterized line frequency and if required change (p0211).
- check the alarm threshold (p0285).	
- check the line supply.	
- check the line supply quality.	
See also: p0211 (Rated line freq), p0285 (Line supply frequency undershot, alarm threshold)	
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F: \quad IMMEDIATELY (POWER ON)	

A06400	Infeed: Line supply data identification selected/active
Message value:	-
Drive object:	A_INF, S_INF $^{\text {Reaction: }}$
NONE	
Acknowledge:	NONE
Cause:	The line supply data identification is selected and active.
	The line inductance and the DC link capacitance are measured at the next pulse enable.
	See also: p3410 (Infeed identification method)
Remedy:	No remedial action required.

F06500 Infeed: Line synchronization not possible

Message value:

Drive object: A_INF, S_INF
Reaction: OFF2 (OFF1)

Acknowledge: IMMEDIATELY (POWER ON)
Cause: The line synchronization is not possible within the monitoring time. The infeed was re-synchronized to the line supply because it was interrupted due to a line frequency that was determined to be either too low or too high. After 20 attempts, synchronization - and therefore also the power-on operation - were interrupted.
Remedy: - check the parameterized line frequency and if required change (p 0211).

- check the setting of the threshold values (p0284, p0285).
- check the line supply.
- when a Voltage Sensing Module (VSM) is used: check the line supply to the VSM terminals X521 or X522.
- check the line supply quality.

See also: p0211 (Rated line freq), p0284 (Line supply frequency exceeded, alarm threshold), p0285 (Line supply frequency undershot, alarm threshold)

A06601 (F)	Infeed: Current offset measurement interrupted
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	Defective current measurement or a DC current is present during the offset measurement.
	Alarm value (r2124, interpret decimal): 1: Excessively high phase current has occurred during the current offset calibration.
	2: The measured current offset is greater than the 3% of the maximum permissible converter current (e.g. due to a ground fault in the DC link).
	Re alarm value = 1:
	- possible counter-measure if there is no line contactor: Power up an adequately long time before OFF1 = 1.

A06602 (F)	Infeed: Current offset measurement not possible
Message value:	-
Drive object:	A_INF, B_INF, S_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	After an OFF1 = 1 no valid current offset measurement was able to be made within the monitoring time (p3491) before closing the line contactor. The current offset is set to 0. See also: p3491 (Infeed l-offset measurement monitoring time)
- check the DC link for a ground fault. A ground fault can destroy parts and components!	
Remedy:	- Check the monitoring time setting and if required increase (p3491). At least 100 ms is required for a valid measure- ment (p3491 > 100 ms).

\(\left.\begin{array}{ll} \& Possible causes include:

\& - line supply voltage dip or another line supply fault.

\& - overload of the infeed.

- for ALM: Incorrect controller parameterization.

See also: p0279 (DC link voltage offset alarm threshold), r0296 (DC link voltage undervoltage threshold)\end{array}\right]\)| | - check the line voltage and line supply quality. |
| :--- | :--- |
| - reduce the power drawn, avoid step-like load changes | |
| Remedy: | - for ALM: Adapt the controller parameterization, e.g. using an automatic line supply identification (p3410 = 4, 5). |
| Reaction upon F: | NONE (OFF1, OFF2) |
| Acknowl. upon F: | IMMEDIATELY (POWER ON) |

A06905	Braking Module internal I2t shutdown alarm
Message value:	\%1
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	The internal Braking Module outputs an alarm due to the high $12 t$ value. 80% of the maximum switch-on duration of the braking resistor has been reached. Note: This message is also displayed via BO: p3685. See also: r3685 (Digital Braking Module: Pre-alarm 12 t shutdown)
Remedy:	Reduce the number of braking operations.
F06906 (A)	Braking Module internal fault
Message value:	\%1
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The internal Braking Module outputs a fault due to overcurrent or an excessively high 12 t value and is therefore inhibited. Note: This message is also displayed via BO: p3686. Fault value (r0949, interpret bitwise binary): Bit $0=1$: 12 t exceeded Bit $1=1$: overcurrent See also: r3686 (Digital Braking Module Fault)
Remedy:	Reduce the number of braking operations.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F06907	Braking Module internal overtemperature
Message value:	-
Drive object:	B_INF
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The temperature sensor connected to the braking resistor signals an overtemperature. The Braking Module is still active. If the overtemperature continues for an additional 60s, the Braking Module is shut down (F6908). See also: r3687 (Digital Braking Module pre-alarm overtemperature)
Remedy:	- reduce the temperature at the sensor. - check the temperature sensor connection.
F06908	Braking Module internal shutdown due to overtemperature
Message value:	-
Drive object:	B_INF
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	Shutdown of the Braking Module due to overtemperature at the temperature sensor of the braking resistor for more than 60s. See also: r3688 (Digital Braking Module fault overtemperature)
Remedy:	- reduce the temperature at the sensor. - check the temperature sensor connection.

F06909	Braking Module internal Vce fault
Message value:	\%1
Drive object:	B_INF
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Trip due to Vce fault. Collector emitter voltage dip (Vce) See also: r3689 (Digital Braking Module Vce fault)
Remedy:	- Power ON - replace the unit.
F07011	Drive: Motor overtemperature
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	KTY: The motor temperature has exceeded the fault threshold (p 0605) or the timer (p 0606) after the alarm threshold was exceeded (p 0604) has expired. The response parameterized in p 0610 becomes active. PTC: The response threshold of 1650 Ohm was exceeded and the timer (p 0606) has expired. The response parameterized in p0610 becomes active. Possible causes: - motor is overloaded. - motor ambient temperature too high. - wire breakage or sensor not connected. Fault value (r0949, interpret decimal): For SME selected ($\mathrm{p} 0601=10$), number of the sensor channel leading to the message. For 12 t motor model activated (p 0612 bit $0=$ yes, $\mathrm{p} 0611>0$), fault value $=200$ refers to a fault that was initiated by the I2t motor model. See also: p0604 (Motor overtemperature alarm threshold), p0605 (Motor overtemperature fault threshold), p0606 (Motor overtemperature timer), p0610 (Motor overtemperature response)
Remedy:	- reduce the motor load. - check the ambient temperature. - check the wiring and sensor connector. See also: p0604 (Motor overtemperature alarm threshold), p0605 (Motor overtemperature fault threshold), p0606 (Motor overtemperature timer)
A07012 (N)	Drive: 12t motor model overtemperature
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The thermal 12 t motor model identified that the temperature alarm threshold was exceeded. See also: r0034 (Motor utilization), p0605 (Motor overtemperature fault threshold), p0611 (I2t motor model thermal time constant)
Remedy:	- check the motor load and if required, reduce. - check the motor ambient temperature. - check the thermal time constant p0611. - check the overtemperature fault threshold p0605 (= alarm threshold for the I2t motor model)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A07015	Drive: Motor temperature sensor alarm
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected when evaluating the temperature sensor set in p0600 and p0601. With the fault, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is output; however, at the earliest, 1 s after alarm A07015. Possible causes: - wire breakage or sensor not connected (KTY: R > 1630 Ohm). - measured resistance too low (PTC: $\mathrm{R}<20 \mathrm{Ohm}, \mathrm{KTY}$: $\mathrm{R}<50 \mathrm{Ohm}$). Alarm value (r 2124 , interpret decimal): For SME selected ($\mathrm{p} 0601=10$), number of the sensor channel leading to the message.
Remedy:	- check that the sensor is connected correctly. - check the parameterization (p0600, p0601). See also: r0035, p0600, p0601, p0607, p4600, p4601, p4602, p4603, r4620
F07016	Drive: Motor temperature sensor fault
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	An error was detected when evaluating the temperature sensor set in p0600 and p0601. Possible causes: - wire breakage or sensor not connected (KTY: R > 1630 Ohm). - measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm). Note: If alarm A07015 is present, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is output; however, at the earliest, 1 s after alarm A07015. Fault value (r0949, interpret decimal): For SME selected ($\mathrm{p} 0601=10$), number of the sensor channel leading to the message. See also: p0607 (Temperature sensor fault timer)
Remedy:	- check that the sensor is connected correctly. - check the parameterization (p0600, p0601). - induction motors: De-activate temperature sensor fault (p0607 = 0). See also: r0035, p0600, p0601, p0607, p4600, p4601, p4602, p4603, r4620
F07080	Drive: Incorrect control parameter
Message value:	Parameter: \%1
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The closed-loop control parameters have been parameterized incorrectly (e.g. p0356 $=$ L_spread $=0$). Fault value (r0949, interpret decimal): The fault value includes the parameter number involved. The following parameter numbers only occur as fault values for vector drives: p0310, for synchronous motors: p0341, p0344, p0350, p0357 The following parameter numbers do not occur as fault values for synchronous motors: p0354, p0358, p0360 See also: p0310, p0311, p0341, p0344, p0350, p0354, p0356, p0357, p0358, p0360, p0400, p0404, p0408, p0640, p1082, p1300
Remedy:	Modify the parameter indicated in the fault value (r0949) (e.g. p0640 = current limit >0). See also: p0311, p0341, p0344, p0350, p0354, p0356, p0358, p0360, p0400, p0404, p0408, p0640, p1082

F07082	Macro: Execution not possible
Message value:	Fault cause: \%1, supplementary information: \%2, preliminary parameter number: \%3
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The macro cannot be executed. Fault value (r0949, interpret hexadecimal): ccccbbaa hex: cccc $=$ preliminary parameter number, $\mathrm{bb}=$ supplementary information, $\mathrm{aa}=$ fault cause Fault causes for the trigger parameter itself: -20: Called file is not valid for parameter 15. -21: Called file is not valid for parameter 700. -22: Called file is not valid for parameter 1000. -23: Called file is not valid for parameter 1500. -24: Data type of a TAG is incorrect (e.g.: Index, number or bit is not U16). Fault causes for the parameters to be set: -25: Error level has an undefined value. -26: Mode has an undefined value. -27: A value was entered as string in the tag value that is not "DEFAULT". -31: Entered drive object type unknown. -32: A device was not able to be found for the determined drive object number. -34: A trigger parameter was recursively called. -35: It is not permissible to write to the parameter via macro. -36: Check, writing to a parameter unsuccessful, parameter can only be read, not available, incorrect data type, value range or assignment incorrect. -37: Source parameter for a BICO interconnection was not able to be determined. -38: An index was set for a non-indexed (or CDS-dependent) parameter. -39: No index was set for an indexed parameter. -41: A bit operation is only permissible for parameters with the parameter format DISPLAY_BIN. -42: A value not equal to 0 or 1 was set for a BitOperation. -43: Reading the parameter to be changed by the BitOperation was unsuccessful. -51: Factory setting for DEVICE may only be executed on the DEVICE. -61: The setting of a value was unsuccessful.
Remedy:	- check the parameter involved. - check the macro file and BICO interconnection. See also: p0015, p0700, p1000, p1500
F07083	Macro: ACX file not found
Message value:	Parameter: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The ACX file (macro) to be executed was not able to be found in the appropriate directory. Fault value (r0949, interpret decimal): Parameter number with which the execution was started. See also: p0015, p0700, p1000, p1500
Remedy:	- check whether the file is saved in the appropriate directory on the memory card. Example: If p0015 is set to 1501, then the selected ACX file must be located in the following directory: ... /PMACROS/DEVICE/P15/PM001501.ACX
F07084	Macro: Condition for WaitUntil not fulfilled
Message value:	Parameter: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The WaitUntil condition set in the macro was not fulfilled in a certain number of attempts. Fault value (r0949, interpret decimal): Parameter number for which the condition was set.

Remedy:	Check and correct the conditions for the WaitUntil loop.
F07085	Drive: Open-loop/closed-loop control parameters changed
Message value:	Parameter: \%1
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Parameters of the open-loop/closed-loop control had to be changed as they exceeded dynamic limits as a result of other parameters. Fault value (r0949, interpret decimal): The fault value includes the modified parameter number. 340: The motor and control parameters were automatically calculated ($\mathrm{p} 0340=1$), because the vector control was subsequently activated as configuration (r0108.2). See also: p0640, p1082, p1300, p1800
Remedy:	It is not necessary to change the parameters as they have already been correctly limited.
F07086	Units changeover: Parameter limit violation due to reference value change
Message value:	Parameter: \%1
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A reference parameter was changed in the system. This resulted in the fact that for the parameters involved, the selected value was not able to be written in the per unit representation (cause: e.g. the steady-state minimum/maximum limit or that defined in the application was violated). The values of the parameters were set to the corresponding violated minimum/maximum limit or to the factory setting. Fault value (r0949, parameter): Diagnostics parameter r9450 to display the parameters that were not able to be re-calculated. See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
Remedy:	Check the adapted parameter value and if required correct. See also: r9450 (Reference value change parameter with unsuccessful calculation)
F07087	Drive: Encoderless operation not possible for the selected pulse frequency
Message value:	Parameter: \%1
Drive object:	SERVO
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Encoderless operation is not possible for the selected pulse frequency (p1800). Encoderless operation is activated under the following conditions: - the changeover speed for encoderless operation (p 1404) is less than the maximum speed (p 0322). - a control type with encoderless operation has been selected (p1300). - encoder faults of the motor encoder result in a fault response with encoderless operation (p 0491). See also: p0491, p1300, p1404, p1800
Remedy:	Increase the pulse frequency (p1800). Note: In encoderless operation, the pulse frequency must be at least as high as half the current controller clock cycle (1/p0115[0]).
F07088	Units changeover: Parameter limit violation due to units changeover
Message value:	Parameter: \%1
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A changeover of units was initiated. Possible causes for the violation of a parameter limit are: - when rounding off a parameter corresponding to its decimal places, the steady-state minimum or maximum limit was violated. - inaccuracies for the data type "Floating Point".

	In these cases, when the minimum limit is violated then the parameter value is rounded up and when the maximum limited is violated the parameter value is rounded down. Fault value (r0949, interpret decimal): Diagnostics parameter r9451 to display all parameters whose value had to be adapted. See also: p0100 (IEC/NEMA mot stds), p0349 (System of units, motor equivalent circuit diagram data), p0505 (Selecting the system of units), p0595 (Selecting technological units)
Remedy:	Check the adapted parameter values and if required correct. See also: r9451 (Units changeover adapted parameters)
A07089	Changing over units: Adding a function module blocked if units changed over
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An attempt was made to add a function module. This is not permissible if the units have already been changed over See also: p0100 (IEC/NEMA mot stds), p0349 (System of units, motor equivalent circuit diagram data), p0505 (Selecting the system of units)
Remedy:	Restore units that have been changed over to the default value.
F07090	Drive: Upper torque limit less than the lower torque limit
Message value:	-
Drive object:	SERVO
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The upper torque limit is lower than the lower torque limit.
Remedy:	P 1 must be >= P 2 if parameter P 1 is connected to p 1522 and parameter P2 to p1523.
F07100	Drive: Sampling times cannot be reset
Message value:	Parameter: \%1
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When resetting drive parameter (p0976) sampling times cannot be reset using p0111, p0112, p0115. Fault value (r0949, interpret decimal): Parameter whose setting prevents the sampling times being reset. See also: r0110 (Basic sampling times)
Remedy:	- continue to work with the set sampling times. - before resetting the drive parameters, set the basic clock cycle p0110[0] to the original value. See also: r0110 (Basic sampling times)
F07110	Drive: Sampling times and basic clock cycle do not match
Message value:	Parameter: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The parameterized sampling times do not match the basic clock cycle. Fault value (r0949, interpret decimal): The fault value specifies the parameter involved. See also: r0110, r0111, p0115
Remedy:	Enter the current controller sampling times so that they are identical to the basic clock cycle, e.g. by selecting p0112. Note which basic clock cycle is selected in p0111. The sampling times in p0115 can only be changed manually in the sampling times presetting "Expert" (p0112). See also: r0110, r0111, p0112, p0115

A07200	Drive: Master control ON/OFF1 command present
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The ON/OFF1 command is not 0, either via binector input p0840 (current CDS) or in control word p3982 bit 0.
Remedy:	The signal at binector input p0840 (current CDS) as well as p3982 bit 0 must be 0 .
F07210	Master control PC/AOP inhibited
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The transfer of master control is disabled via binector input p3985.
Remedy:	Change the signal via binector input p3985.
F07220 (N, A)	Drive: Master control by PLC missing
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	A_INFEED: OFF1 (NONE, OFF2) SERVO: OFF1 (NONE, OFF2, OFF3, STOP1, STOP2) VECTOR: OFF1 (NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The "master control by PLC" signal was missing in operation. - interconnection of the binector input for "master control by PLC" is incorrect (p0854). - the higher-level control has withdrawn the "master control by PLC" signal. - data transfer via the fieldbus (master/drive) was interrupted.
Remedy:	- check the interconnection of the binector input for "master control by PLC" (p0854). - check the "master control by PLC" signal and, if required, switch in. - check the data transfer via the fieldbus (master/drive). Note: If the drive should continue to operate after withdrawing "master control by PLC" then fault response must be parameterized to NONE or the message type should be parameterized as alarm.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07300 (A)	Drive: Line contactor feedback signal missing
Message value:	- ${ }^{\text {d }}$
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	- the line contactor was not able to be closed within the time in p0861. - the line contactor was not able to be opened within the time in 00861. - the line contactor has dropped out in operation. - the line contactor has closed although the drive converter is powered down.
Remedy:	- check the setting of p0860. - check the feedback circuit from the line contactor. - increase the monitoring time in p0861. See also: p0860 (Line cont. fdbk sig), p0861 (Line contactor monitoring time)
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F07311	Bypass motor switch
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault value: Bit field BYPASS_CONTACTOR_ERROR_STATE Bit 1 BYPASS_CONTACTOR_ERR_FBK_ON_MISSING Switch "Closed" feedback signal missing Bit 2 BYPASS_CONTACTOR_ERR_FBK_OFF_MISSING Switch "opened" feedback signal missing Bit 3 BYPASS_CONTACTOR_ERR_TOO_SLOW Switch feedback signal too slow: After switching, the system waits for the positive feedback signal. If the feedback signal is received later than the specified time, then a fault trip (shutdown) is issued. Bit 6 BYPASS_CONTACTOR_ERR_BYPASS_INCONSISTENCY Drive switch feedback signal is not consistent with the bypass state: When powering up or for STAGING, the drive switch is closed. See also: p1260 (Bypass configuration), r1261 (Bypass control/status word), p1266 (Bypass, control command), p1267 (Bypass changeover source configuration), p1269 (Bypass switch feedback signal), p1274 (Bypass switch monitoring time)
Remedy:	- check the transfer of the feedback signals. - check the switch
F07312	Bypass LSS:
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault value: Bit field BYPASS_CONTACTOR_ERROR_STATE Bit 1 BYPASS_CONTACTOR_ERR_FBK_ON_MISSING Switch "Closed" feedback signal missing Bit 2 BYPASS_CONTACTOR_ERR_FBK_OFF_MISSING Switch "opened" feedback signal missing Bit 3 BYPASS_CONTACTOR_ERR_TOO_SLOW Switch feedback signal too slow: After switching, the system waits for the positive feedback signal. If the feedback signal is received later than the specified time, then a fault trip (shutdown) is issued. Bit 6 BYPASS_CONTACTOR_ERR_BYPASS_INCONSISTENCY Line Side Switch feedback signal is not consistent with the bypass state: When powering up or for STAGING, the Line Side Switch is closed without this having been requested from the bypass. See also: p1260 (Bypass configuration), r1261 (Bypass control/status word), p1266 (Bypass, control command), p1267 (Bypass changeover source configuration), p1269 (Bypass switch feedback signal), p1274 (Bypass switch monitoring time)
Remedy:	- check the transfer of the feedback signals. - check the switch

F07320	Drive: Automatic restart interrupted
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	- The specified number of restart attempts (p 1211) has been completely used up because within the monitoring time (p 1213) the faults were not able to be acknowledged. The number of restart attempts (p 1211) is decremented at each new start attempt. - there is no active ON command. - the monitoring time for the power unit has expired (p0857). - when exiting commissioning or at the end of the motor identification routine or the speed controller optimization, the drive unit is not automatically powered up again. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- increase the number of restart attempts (p1211). The current number of starting attempts is displayed in r1214. - increase the delay time in p1212 and/or the monitoring time in p1213. - issue an ON command (p0840). - either increase or disable the monitoring time of the power unit (p0857).

A07321	Drive: Automatic restart active
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic restart (AR) is active. When the line supply returns and/or the causes of the existing faults are removed the drive is automatically restarted. The pulses are enabled and the motor starts to rotate.
Remedy:	- the automatic restart (AR) should, if required, be inhibited (p1210 $=0$). - an automatic restart can be directly interrupted by withdrawing the power-on command (BI: p0840).

A07329 (N)	Drive: kT estimator, kT(iq) characteristic or voltage compensation does not function
Message value:	\%1
Drive object:	SERVO
Reaction:	NONE
Acknowledge:	NONE
Cause:	A function of the function module "extended torque control" (r0108.1) was activated - however the (complete) function is not available. Fault value (r0949, interpret decimal): $1 \ldots 3$: The kT estimator is active ($\mathrm{p} 1780.3=1$) without a functioning compensation of the voltage emulation error in the drive converter. This means that the accuracy is severely restricted. 1: The drive converter voltage emulation error "final value" is 0 ($p 1952$). 2: The drive converter voltage emulation error "current offset" is 0 (p 1953). 3: The compensation of the voltage emulation error is disabled ($p 1780.8=0$). 4: The kT estimator ($\mathrm{p} 1780.3=1$), the kT (iq) characteristic ($\mathrm{p} 1780.9=1$) or the compensation of the voltage emulation error ($p 1780.8=1$) was activated without activating the function module "extended torque control" (when the function module is activated, the following must apply: r0108.1 = 1).
Remedy:	Re fault value $=1,2$: - carry out an identification of the voltage emulation error in the drive converter (p1909.14 = 1, p1910 = 1). - set the parameter to compensate the voltage emulation error in the drive converter (p1952, p1953). Re fault value $=3$: - enable the compensation of the voltage emulation error in the drive converter (p1780.8 = 1). Re fault value $=4$: - activate the function module "extended torque control" (r0108.1 = 1) or de-activate the corresponding functions (p1780.3 = 0, p1780.8 = 0, p1780.9 = 0) .
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F07330	Flying restart: Measured search current too low
Message value:	-
Drive object:	VECTOR
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	During a flying restart, it was identified that the search current reached is too low. Remedy:
	It is possible that the motor is not connected. Check the motor feeder cables.

F07331 FlyRestart: Not supported

Message value:
Drive object:
VECTOR
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY

Cause: It is not possible to power up with the motor rotating (no flying restart). In the following cases, the "flying restart" function is not supported:
Permanent-magnet and separately-excited synchronous motors (PEM, FEM): Operation with V/f characteristic. Permanent-magnet synchronous motor (PEM): Encoderless operation without a Voltage Sensing Module (VSM) being connected.
Remedy: - de-activate the "flying restart" function (p1200 = 0).

- change the open-loop/closed-loop control mode (p1300).
- connect a Voltage Sensing Module (VSM) (voltage measurement).

A07350 (F)	Drive: Measuring probe parameterized to a digital output
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measuring probe is connected to a bi-directional digital input/output and the terminal is set as output. Alarm value (r2124, decimal): 9: DI/DO 9 (X122.8) 10: DI/DO 10 (X122.10) 11: DI/DO 11 (X122.11) 13: DI/DO 13 (X132.8) 14: DI/DO 14 (X132.10) 15: DI/DO 15 (X132.11)
Remedy:	- set the terminal as input (p0728). - de-select the measuring probe (p0488, p0489, p0580).
Reaction upon F:	OFF1
Acknowl. upon F:	IMMEDIATELY

A07400 (N)	Drive: DC link voltage maximum controller active
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated because the upper switch-in threshold has been exceeded (r1242).
	The ramp-down times are automatically increased in order to maintain the DC link voltage (r0026) within the permis- sible limits. There is a system deviation between the setpoint and actual speeds. When the DC link voltage controller is switched out (disabled), this is the reason that the ramp-function generator output is set to the speed actual value. Semedy: If the controller is not to intervene: - increase the ramp-down times. - disable the Vdc max controller If the ramp-down times are not to be changed: - use a chopper or regenerative feedback unit

Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A07401 (N)	Drive: DC link voltage maximum controller de-activated
Message value:	-
Drive object:	VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Vdc_max controller can no longer maintain the DC link voltage (r0026) below the limit value (r1242) and was therefore switched out (disabled).
	- the line supply voltage is permanently higher than specified for the power unit. - the motor is permanently in the regenerative mode as a result of a load that is driving the motor.
Remedy:	- check whether the input voltage is within the permissible range. - check whether the load duty cycle and load limits are within the permissible limits.
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A07402 (N)	Drive: DC link voltage minimum controller active
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated as the lower switch-in threshold has been undershot (r1246).
	The kinetic energy of the motor is used in order to buffer the DC link. This brakes the drive.
	See also: p1240 (Vdc controller or Vdc monitoring configuration)
Remedy:	The alarm disappears when power supply returns.
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F07403 (N, A) Drive: Lower DC link voltage threshold reached
Message value: -
Drive object: SERVO
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: \quad The DC link voltage monitoring is active ($\mathrm{p} 1240=2,3$) and the lower DC link voltage threshold (p 1248) was reached
in the "Operation" state.
Remedy: - check the line supply voltage.
- check the infeed module
- reduce the lower DC link threshold (p1248).
- switch out (disable) the DC link voltage monitoring (p1240 = 0).
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F07403 (N, A) Drive: Lower DC link voltage threshold reached
Message value:
Drive object: VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: \quad The DC link voltage monitoring is active ($p 1240, p 1280=5,6$) and the lower DC link voltage threshold (r 1246, $r 1286$) was reached in the "Operation" state.

Remedy: - check the line supply voltage.

- check the infeed module
- adapt the device supply voltage (p0210) or the switch-on level (p1245, p1285).
- disable the DC link voltage monitoring (p1240, p1280 = 0).

Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $A:$	NONE
Acknowl. upon A:	NONE

F07404	Drive: Upper DC link voltage threshold reached
Message value:	-
Drive object:	SERVO
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The DC link voltage monitoring is active $(p 1240=1,3)$ and the upper DC link voltage threshold (p1244) was reached in the "Operation" state.
Remedy:	- check the line supply voltage. - check the infeed module or the Braking Module. - increase the upper DC link voltage threshold (p1244). - switch out (disable) the DC link voltage monitoring $(\mathrm{p} 1240=0)$.

F07404 Drive: Upper DC link voltage threshold reached

Message value:

Drive object:
Reaction:
Acknowledge:
VECTOR
OFF2 (NONE, OFF1, OFF3)

Cause: \quad The DC link voltage monitoring is active ($\mathrm{p} 1240, \mathrm{p} 1280=4,6$) and the upper DC link voltage threshold (r 1242 , $r 1282$) was reached in the "Operation" state.
Remedy: - check the line supply voltage.

- check the infeed module
- adapt the device supply voltage (p0210).
- disable the DC link voltage monitoring (p1240, p1280 = 0).

F07405 (N, A)	Drive: Kinetic buffering minimum speed not reached
Message value:	-
Drive object:	VECTOR
Reaction:	OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY Cause:
	During kinetic buffering the speed fell below minimum speed (p1257 or p1297 for vector drives with V/f control) and the line supply did not return.
Remedy:	Check the speed threshold for the Vdc_min controller (kinetic buffering) (p1257, p1297). Reaction upon N:
NONE	
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F07406 (N, A) Drive: Kinetic buffering maximum time exceeded
Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

Remedy: \quad Check the time threshold for Vdc-min controller (kinetic buffering) (p1255, p1295). See also: p1255 (Vdc_min controller time threshold)
OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)
IMMEDIATELY
The maximum buffer time (p 1255 and p1295 for vector drives with V/f control) has been exceeded without the line supply having returned.

A07409	Drive: V/f control, current limiting controller active
Message value:	\%1
Drive object:	VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The current limiting controller of the V/f control was activated because the current limit was exceeded.
Remedy:	The alarm is automatically withdrawn when increasing the current limit (p 0640), reducing the load or using a slower up ramp for the setpoint (reference) speed.
F07410	Drive: Current controller output limited
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The condition "I_act = 0 and Uq_set_1 longer than 16 ms at its limit" is present and can be caused by the following: - motor not connected or motor contactor open. - no DC link voltage present. - Motor Module defective. - the "flying restart" function is not activated.
Remedy:	- connect the motor or check the motor contactor. - check the DC link voltage (r0070). - check the Motor Module. - activate the "flying restart" function (p1200).
F07411	Drive: Flux controller output limited
Message value:	-
Drive object:	SERVO
Reaction:	SERVO: OFF2 (NONE, OFF1) VECTOR: OFF2
Acknowledge:	IMMEDIATELY
Cause:	The specified flux setpoint cannot be reached although 90% of the maximum current has been specified. - incorrect motor data. - motor data and motor configuration (star/delta) do not match. - the current limit has been set too low for the motor. - induction motor (encoderless, open-loop controlled) in I2t limiting. - the Motor Module is too small.
Remedy:	- correct the motor data. - check the motor configuration. - correct the current limits (p0640, p0323). - reduce the induction motor load. - if required, use a larger Motor Module.
F07411	Drive: Flux setpoint not reached when building up excitation
Message value:	-
Drive object:	VECTOR
Reaction:	SERVO: OFF2 (NONE, OFF1) VECTOR: OFF2
Acknowledge:	IMMEDIATELY
Cause:	When quick magnetizing is configured (p 1401 Bit6 = 1) the specified flux setpoint is not reached although 90% of the maximum current is specified. - incorrect motor data. - motor data and motor configuration (star/delta) do not match. - the current limit has been set too low for the motor. - induction motor (encoderless, open-loop controlled) in I2t limiting. - the Motor Module is too small.

Remedy:	- correct the motor data.
	- check the motor configuration.
	- correct the current limits (p0640).
	- reduce the induction motor load.
	- if required, use a larger Motor Module.
	- check motor supply cable.
	- check power unit.

F07414 (N, A)	Drive: Encoder serial number changed
Message value:	-
Drive object:	SERVO
Reaction:	ENCODER (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The serial number of the motor encoder of a synchronous motor has changed. The change was only checked for encoders with serial number (e.g. EnDat encoders) and build-in motors (e.g. p0300 $=401$) or third-party motors ($\mathrm{p} 0300=2$). Cause 1: The encoder was replaced. Cause 2: A third-party, build-in or linear motor was re-commissioned. Cause 3: The motor with integrated and adjusted encoder was replaced. Cause 4: The firmware was updated to a version that checks the encoder serial number.
Remedy:	Re causes 1, 2 : Carry out an automatic adjustment using the pole position identification routine. First, accept the serial number with p0440 $=1$. Acknowledge the fault. Initiate the pole position identification routine with p1990 $=1$. Then check that the pole position identification routine is correctly executed. SERVO: If a pole position identification technique is selected in p1980, and if p0301 does not contain a motor type with an encoder adjusted in the factory, then p1990 is automatically activated. or Set the adjustment via p0431. In this case, the new serial number is automatically accepted. or Mechanically adjust the encoder. Accept the new serial number with p0440 $=1$. Re causes 3, 4: Accept the new serial number with p0440 $=1$.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
N07415 (F)	Drive: Angular commutation offset transfer running
Message value:	- ${ }^{\text {d }}$
Drive object:	SERVO
Reaction:	OFF2
Acknowledge:	NONE
Cause:	The angular commutation offset was automatically determined using p1990 $=1$. This fault causes the pulses to be suppressed - this is necessary to transfer the angular commutation offset to p0431. See also: p1990 (Encoder adjustment, determine angular commutation offset)
Remedy:	The fault can be acknowledged without any additional measures.
Reaction upon F:	OFF2
Acknowl. upon F:	IMMEDIATELY

A07416	Drive: Flux controller configuration
Message value:	Parameter: \%1, Index: \%2, fault cause: \%3
Drive object:	VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration of the flux control (p 1401) is contradictory. Alarm value (r2124, interpret hexadecimal): ccbbaaaa hex aaaa $=$ parameter $\mathrm{bb}=$ index cc = fault cause $c c=01$ hex $=1$ dec: Quick magnetizing (p1401.6) for soft start (p1401.0). $\mathrm{cc}=02 \mathrm{hex}=2 \mathrm{dec}:$ Quick magnetizing (p1401.6) for flux build-up control (p1401.2). $\mathrm{cc}=03 \mathrm{hex}=3 \text { dec: }$ Quick magnetizing (p1401.6) for Rs identification after restart (p0621 = 2).
Remedy:	Re fault cause $=1$: - Shut down soft start (p1401.0 = 0). - Shut down quick magnetizing (p1401.6 = 0). Re fault cause $=2$: - De-energize flux build-up control $(p 1401.2=0)$. - Shut down quick magnetizing (p1401.6 = 0). Re fault cause $=3$: - Re-parameterize Rs identification (p0621 = 0, 1) - Shut down quick magnetizing (p1401.6 = 0).
F07420	Drive: Current setpoint filter natural frequency > Shannon frequency
Message value:	\%1
Drive object:	SERVO
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	One of the filter natural frequencies is greater than the Shannon frequency. The Shannon frequency is calculated according to the following formula: 0.5 / p0115[0] Fault value (r0949, interpret hexadecimal): Bit 0: Filter 1 ($\mathrm{p} 1658, \mathrm{p} 1660$) Bit 1: Filter 2 ($\mathrm{p} 1663, \mathrm{p} 1665$) Bit 2: Filter 3 ($\mathrm{p} 1668, \mathrm{p} 1670$) Bit 3: Filter 4 (p1673, p1675) Bit 8 ... 15: Data set number (starting from zero).
Remedy:	- reduce the numerator or denominator natural frequency of the current setpoint filter involved. - reduce the current controller sampling time ($\mathrm{p} 0115[0]$). - switch out the filter involved (p 1656).
F07421	Drive: Speed setpoint filter natural frequency > Shannon frequency
Message value:	\%1
Drive object:	SERVO
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	One of the filter natural frequencies is greater than the Shannon frequency. The Shannon frequency is calculated according to the following formula: 0.5 / p0115[1] Fault value (r0949, interpret hexadecimal): Bit 0: Filter 1 (p1417, p1419) Bit 1: Filter 2 ($\mathrm{p} 1423, \mathrm{p} 1425$) Bit 8 ... 15: Data set number (starting from zero).
Remedy:	- reduce the numerator or denominator natural frequency of the speed setpoint filter involved. - reduce the speed controller sampling time ($\mathrm{p} 0115[1]$). - switch out the filter involved (p1414).

F07422	Drive: Reference model natural frequency > Shannon frequency
Message value:	- ${ }^{\text {der }}$
Drive object:	SERVO, VECTOR
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The natural filter frequency of the PT2 element for the reference model (p 1433) is greater than the Shannon frequency. The Shannon frequency is calculated according to the following formula: 0.5 / $\mathrm{p} 0115[1]$
Remedy:	- reduce the natural frequency of PT2 element for reference model (p1433). - reduce the speed controller sampling time ($\mathrm{p} 0115[1]$).
F07423	Drive: APC filter natural frequency > Shannon frequency
Message value:	\%1
Drive object:	SERVO
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	One of the filter natural frequencies is greater than the Shannon frequency. The Shannon frequency is calculated according to the following formula: 0.5 / ($0115[1]$ * x) Fault value (r0949, interpret hexadecimal): Bit 0: Filter 1.1 (p3711, p3713), $x=1$ Bit 4: Filter 2.1 (p3721, p3723), $x=p 3706$ Bit 5: Filter 2.2 (p3726, p3728), $x=p 3706$ Bit 8: Filter 3.1 (p3731, p3733), $x=$ p3707 Bit 9: Filter 3.2 (p3736, p3738), $x=$ p3707 Bit 16 ... 32: Data set number (starting from zero)
Remedy:	- reduce the numerator or denominator natural frequency of the filter involved. - reduce the speed controller sampling time (p0115[1]) or the sub-sampling (p3706, p3707). - switch out the filter involved (p3704).
A07424	Drive: Operating condition for APC not valid
Message value:	Fault cause: \%1 bin
Drive object:	SERVO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The APC function (Advanced Positioning Control) has identified an invalid operating condition. Alarm value (r 2124 , interpret hexadecimal): Bit $0=1$: APC is operating without encoder Bit $1=1$: The load measuring system for APC, selected using p3701, has a fault. The APC function is disabled. Bit $2=1$: The load measuring system for APC, selected using p3701, has a fault. The pulse de-coupling is disabled, i.e. the speed of the motor measuring system is used as speed for the closed-loop motor speed control.
Remedy:	Re bit 0: Only use the APC function in operation with an encoder. Re Bit 1, 2: Check the load measuring system.
F07425	Drive: APC monitoring time for speed limit expired
Message value:	-
Drive object:	SERVO
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	The limit value (p 3778) for the speed/velocity was exceeded for a time longer than that set in the monitoring time (p3779). Note: APC: Advanced Positioning Control

Remedy:	- check the measured value. - check the limit value and monitoring time (p3778, p3779).
F07429	Drive: DSC without encoder not possible
Message value:	-
Drive object:	SERVO
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The function DSC (Dynamic Servo Control) was activated although there is no encoder. See also: p1191 (DSC position controller gain KPC)
Remedy:	If there is no encoder and Cl : p 1191 (DSC position controller gain) is interconnected, then connector input Cl : p1191 must have a 0 signal.
F07430	Drive: Changeover to open-loop torque controlled operation not possible
Message value:	-
Drive object:	SERVO
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For encoderless operation, the converter cannot change over to closed-loop torque-controlled operation (BI: p1501).
Remedy:	Do not attempt to cover over to closed-loop torque-controlled operation.
F07431	Drive: Changeover to encoderless operation not possible
Message value:	- ${ }^{\text {a }}$
Drive object:	SERVO
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	For closed-loop torque control, the converter cannot change over to encoderless operation (p1404).
Remedy:	Do not attempt to change over to encoderless operation.
F07432	Drive: Synchronous motor without overvoltage protection
Message value:	\%1
Drive object:	SERVO
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	Under voltage conditions, a synchronous motor can generate an overvoltage condition that can destroy the drive system. Fault value (r0949, interpret hexadecimal): Associated Drive Data Set (DDS).
Remedy:	Overvoltage protection can be implemented in the following ways: - limit the maximum speed (p1082) without any additional protection. The maximum speed without protection is calculated as follows: Rotary motors: p1082 [rpm] <= 11.695 * p0297/p0316 [Nm/A] Linear motors: p1082 [m/min] <= 73.484 * p0297/p0316 [N/A] - use a voltage protection module (VPM) in conjunction with the function "Safe Torque Off" (p9601, p9801). When a fault condition exists, the VPM short-circuits the motors. During the short-circuit, the pulses must be sup- pressed - this means that the terminals for the function "Safe Torque Off" must be connected to the VPM. When using a VPM, p0643 must be set to 1 . - activating the internal voltage protection (IVP) with p1231 $=3$. See also: p0643 (Overvoltage protection for synchronous motors), p1231 (Armature short-circuit / DC brake configuration)

F07433	Drive: Closed-loop control with encoder is not possible as the encoder has not been unparked
Message value:	\%1
Drive object:	SERVO
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The changeover to closed-loop control with encoder is not possible as the encoder has not been unparked.
Remedy:	- check whether the encoder firmware supports the "parking" function (r0481.6 = 1). - upgrade the firmware. Note: For long-stator motors (p3870.0 = 1), the following applies: The encoder must have completed the unparking procedure (r3875.0 = 1) before a changeover can be made to closed-loop control with encoder. The encoder is unparked with a $0 / 1$ edge at BI : p3876 and remains unparked until a 0 signal is again present.
F07434	Drive: It is not possible to change the direction of rotation with the pulses enabled
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A drive data set was selected - with the pulses enabled - which has a different parameterized direction of rotation (p1821). It is only possible to change the motor direction of rotation using p1821 when the pulses are inhibited.
Remedy:	- change over the drive data set with the pulses inhibited. - ensure that the changeover to a drive data set does not result in the motor direction of rotation being changed (i.e. for these drive data sets, the same value must be in p1821). See also: p1821
F07435 (N)	Drive: Setting the ramp-function generator for sensorless vector control
Message value:	Parameter: \%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	During operation with sensorless vector control (r1407.1) the ramp-function generator was stopped (p1141) or bypassed (p1122). An internal setting command of the ramp-function generator output caused the set setpoint speed to be frozen or was not able to be realized.
Remedy:	- de-activate the holding command for the ramp-function generator (p 1141). - do not bypass the ramp-function generator (p 1122). - suppress the fault ($\mathrm{p} 2101, \mathrm{p} 2119$). This is necessary if the ramp-function generator is held using jogging and the speed setpoint is simultaneously inhibited (r0898.6). Note: For sensorless vector control it is not practical to read-in the main setpoint of the speed control via p1155 or p1160 (p0922). In this case, the main setpoint should be injected before the ramp-function generator (p1070). The reason for this is that the ramp-function generator output is automatically set when transitioning from closed-loop speed controlled into open-loop speed controlled operation.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07440	EPOS: Jerk time is limited
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The calculation of the jerk time $\operatorname{Tr}=$ MAX(p2572, p2573) / p2574 resulted in an excessively high value so that the jerk time is internally limited to 1000 ms . Note: The alarm is also output if jerk limiting is not active.

```
Remedy: - increase the jerk limiting (p2574).
    - reduce maximum acceleration or maximum deceleration (p2572, p2573).
    See also: p2572 (EPOS maximum acceleration), p2573 (EPOS maximum deceleration), p2574 (EPOS jerk limiting)
```

A07441	LR: Save the position offset of the absolute encoder adjustment
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The status of the absolute encoder adjustment has changed. In order to permanently save the determined position offset (p2525) it must be saved in a non-volatile fashion (p p0977).
Remedy:	None necessary. This alarm automatically disappears after the offset has been saved. See also: p2507 (LR absolute encoder adjustment status), p2525 (LR encoder adjustment, offset)
F07442 (A)	LR: Multiturn does not match the modulo range
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The ratio between the multiturn resolution and the modular range (p 2576) is not an integer number. This results in the adjustment being set back, as the position actual value cannot be reproduced after power-off/power-on.
Remedy:	Make the ration between the multiturn resolution and the modulo range an integer number. The ratio v is calculated as follows: 1. Motor encoder without position tracking: $\mathrm{v}=(\mathrm{p} 0421$ * p2506 * p0433 * p2505) / (p0432 * p2504 * p2576) 2. Motor encoder with position tracking for the measuring gear: $\mathrm{v}=(\mathrm{p} 0412$ * p 2506 * p 2505$) /(\mathrm{p} 2504$ * p 2576) 3. Motor encoder with position tracking for the load gear: $\mathrm{v}=(\mathrm{p} 2721$ * p 2506 * p 0433) / (0432 * p2576) 4. Motor encoder with position tracking for the load and measuring gear: $v=(p 2721 * p 2506) / p 2576$ 5. Direct encoder without position tracking: $v=(p 0421 \text { * p2506 * p0433) / (p0432 * p2576) }$ 6 . Direct encoder with position tracking for the measuring gear: $v=(p 0412 * p 2506) / p 2576$ Note: With position tracking, it is recommended that p0412 and p2721 are changed See also: p0412, p0432, p0433, p2504, p2505, p2506, p2576, p2721
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F07443 (A)	LR: Reference point coordinate not in the permissible range
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The reference point coordinate received when adjusting the encoder via connector input p2599 lies outside the half of the encoder range and cannot be set as current axis position. Fault value (ro949, interpret decimal): Maximum permissible value for the reference point coordinate.
Remedy:	Set the reference point coordinate to a lower value than specified in the fault value. See also: p2598 (EPOS reference point coordinate, signal source), p2599 (EPOS reference point coordinate value)
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F07446 (A)	Load gear: Position tracking cannot be reset
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The position tracking cannot be reset.
Remedy:	Reset the position tracking as follows: - select encoder commissioning (p0010 = 4). - reset position tracking, position (p2720.2 = 1). - de-select encoder commissioning (p0010 = 0). The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07447	Load gear: Position tracking, maximum actual value exceeded
Message value:	Component number: \%1, encoder data set: \%2, drive data set: \%3
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When the position tracking of the load gear is configured, the drive/encoder (motor encoder) identifies a maximum possible absolute position actual value (r2723) that can no longer be represented within 32 bits. Maximum value: p0408 * p2721 * 2^{\wedge} p0419 Fault value (r0949, interpret hexadecimal): ccbbaa hex aa = encoder data set $\mathrm{bb}=$ component number $\mathrm{cc}=$ drive data set See also: p0408 (Rotary encoder pulse No.), p0419 (Fine resolution absolute value Gx_XIST2 (in bits)), p2721 (Load gear, rotary absolute gearbox, revolutions, virtual)
Remedy:	- reduce the fine resolution (p0419). - reduce the multiturn resolution (p2721). See also: p0419 (Fine resolution absolute value Gx_XIST2 (in bits)), p2721 (Load gear, rotary absolute gearbox, revolutions, virtual)
F07448 (A)	Load gear: Position tracking, linear axis has exceeded the maximum range
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For a configured linear axis/no modulo axis, the currently effective motor encoder (encoder 1) has exceeded the maximum possible traversing range. For the configured linear axis, the maximum traversing range is defined to be $64 x(+/-32 x)$ of p0421. It should be read in p2721 and interpreted as the number of load revolutions. Note: Here, only the motor encoder in the currently effective drive data set is monitored. The currently effective drive data set is displayed in $\mathrm{x}=\mathrm{r} 0051$ and the corresponding motor encoder is specified in $\mathrm{p} 0187[\mathrm{x}]$.
Remedy:	The fault should be resolved as follows: - select encoder commissioning (p0010 = 4). - reset position tracking, position (p2720.2 = 1). - de-select encoder commissioning (p0010 $=0$). The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F07449 (A)	Load gear: Position tracking, current position outside tolerance window
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When powered down, the currently effective motor encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder. Note: Here, only the motor encoder in the currently effective drive data set is monitored. The currently effective drive data set is displayed in $\mathrm{x}=\mathrm{r0051}$ and the corresponding motor encoder is specified in $\mathrm{p} 0187[\mathrm{x}]$. Fault value (r0949, interpret decimal): Deviation (difference) to the last encoder position in increments of the absolute value after the measuring gear - if one is being used. The sign designates the traversing direction. Note: The deviation (difference) found is also displayed in r2724. See also: p2722 (Load gear, position tracking tolerance window), r2724 (Load gear position difference)
Remedy:	Reset the position tracking as follows: - select encoder commissioning (p0010=4). - reset position tracking, position (p2720.2 = 1). - de-select encoder commissioning (p0010 = 0). The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507). See also: p0010, p2507
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07450 (A)	LR: Standstill monitoring has responded
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	After the standstill monitoring time (p 2543) expired, the drive left the standstill window (p 2542). - position actual value inversion incorrectly set (p0410). - standstill window set too small (p2542). - standstill monitoring time set too low (p2543). - position loop gain too low (p2538). - position loop gain too high (instability/oscillation, p2538). - mechanical overload. - check the connecting cable, motor/drive converter (phase missing, interchange). - when selecting motor identification, select tracking mode (BI: p2655[0] = 1 signal). - when selecting function generator, select tracking mode (BI: p2655[0] = 1 signal) and de-activate position control (BI:p2550 = 0 signal).
Remedy:	Check the causes and resolve.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07451 (A)	LR: Position monitoring has responded
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When the position monitoring time (p2545) expired, the drive had still not reached the positioning window (p 2544). - positioning window parameterized too small (p2544). - position monitoring time parameterized too short (p2545). - position loop gain too low (p2538). - position loop gain too high (instability/oscillation, p2538). - drive mechanically locked.
Remedy:	Check the causes and resolve.

Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07452 (A)	LR: Following error too high
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The difference between the position setpoint position actual value (following error dynamic model, r2563) is greater than the tolerance (p2546).
	- the drive torque or accelerating capacity exceeded.
	- position measuring system fault.

A07455
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The maximum velocity (p 2571) is too high to correctly calculate the modulo correction. Within the sampling time for positioning ($\mathrm{p} 0115[5]$), with the maximum velocity, a maximum of the half modulo length must be moved through. p2571 was limited to this value.
Remedy:

- reduce the maximum velocity (p2571).
- increase the sampling time for positioning (p0115[5]).

A07456	EPOS: Setpoint velocity limited
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The current setpoint velocity is greater than the parameterized maximum velocity (p2571) and is therefore limited.
Remedy:	- check the entered setpoint velocity. - reduce the velocity override (CI: p2646). - increase the maximum velocity (p2571). - check the signal source for the externally limited velocity (CI: p2594).

F07459	EPOS: No zero mark
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	After leaving the reference cam, the axis has traversed the maximum permissible distance between the reference cam and zero mark without finding the zero mark.
Remedy:	- check the encoder regarding the zero mark - check the maximum permissible distance between the reference cam and zero mark (p2609). - use an external encoder zero mark (equivalent zero mark) (p0495). See also: p0495 (Equivalent zero mark, input terminal), p2609 (EPOS search for reference, max. distance ref. cam and zero mark)

F07460	EPOS: End of reference cam not found
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	During the search for reference, when the axis reached the zero mark it also reached the end of the traversing range without detecting an edge at the binector input "reference cam" (BI: p2612). Maximum traversing range: -2147483648 [LU] ... -2147483647 [LU]
Remedy:	- check the "reference cam" binector input (BI: p2612). - repeat the search for reference. See also: p2612 (EPOS search for reference, reference cam)
A07461	EPOS: Reference point not set
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	When starting a traversing block/direct setpoint input, a reference point is not set (r2684.11 = 0).
Remedy:	Reference the system (search for reference, flying referencing, set reference point).
A07462	EPOS: Selected traversing block number does not exist
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	A traversing block selected via BI: p2625 to BI: p2630 was started via BI: p2631 = 0/1 edge "Activate traversing task". - the number of the started traversing block is not contained in p2616[0...n]. - the started traversing block is suppressed. Alarm value (r2124, interpret decimal): Number of the selected traversing block that is also not available.
Remedy:	- correct the traversing program. - select an available traversing block number.
A07463 (F)	EPOS: External block change not requested in the traversing block
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	For a traversing block with the block change enable CONTINUE_EXTERNAL_ALARM, the external block change was not requested. Alarm value (r 2124 , interpret decimal): Number of the traversing block.
Remedy:	Resolve the reason as to why the edge is missing at binector input (BI: p2632).
Reaction upon F:	OFF1
Acknowl. upon F:	IMMEDIATELY
F07464	EPOS: Traversing block is inconsistent
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The traversing block does not contain valid information. Alarm value (r2124, interpret decimal): Number of the traversing block with invalid information.
Remedy:	Check the traversing block and where relevant, take into consideration alarms that are present.

A07465	EPOS: Traversing block does not have a subsequent block
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is no subsequent block in the traversing block. Alarm value (r 2124 , interpret decimal): Number of the traversing block with the missing subsequent block.
Remedy:	- parameterize this traversing block with the block change enable END. - parameterize additional traversing blocks with a higher block number and for the last block, using the block change enable END.
A07466	EPOS: Traversing block number assigned a multiple number of times
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The same traversing block number was assigned a multiple number of times. Alarm value (r 2124 , interpret decimal): Number of the traversing block that was assigned a multiple number of times.
Remedy:	Correct the traversing blocks.
A07467	EPOS: Traversing block has illegal task parameters
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The task parameter in the traversing block contains an illegal value. Alarm value (r2124, interpret decimal): Number of the traversing block with an illegal task parameter.
Remedy:	Correct the task parameter in the traversing block.
A07468	EPOS: Traversing block jump destination does not exist
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	In a traversing block, a jump was programmed to a non-existent block. Alarm value (r2124, interpret decimal): Number of the traversing block with a jump destination that does not exist.
Remedy:	- correct the traversing block. - add the missing traversing block.
A07469	EPOS: Traversing block < target position < software limit switch minus
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the traversing block the specified absolute target position lies outside the range limited by the software limit switch minus. Alarm value (r 2124 , interpret decimal): Number of the traversing block with illegal target position.
Remedy:	- correct the traversing block. - change software limit switch minus (CI: p2578, p2580).

A07470	EPOS: Traversing block> target position > software limit switch plus
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the traversing block the specified absolute target position lies outside the range limited by the software limit switch plus. Alarm value (r2124, interpret decimal): Number of the traversing block with illegal target position.
Remedy:	- correct the traversing block. - change software limit switch plus (CI: p2579, p2581).
A07471	EPOS: Traversing block target position outside the modulo range
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the traversing block the target position lies outside the modulo range. Alarm value (r2124, interpret decimal): Number of the traversing block with illegal target position.
Remedy:	- in the traversing block, correct the target position. - change the modulo range (p2576).
A07472	EPOS: Traversing block ABS_POS/ABS_NEG not possible
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the traversing block the positioning mode ABS_POS or ABS_NEG were parameterized with the modulo correction not activated. Alarm value (r2124, interpret decimal): Number of the traversing block with the illegal positioning mode.
Remedy:	Correct the traversing block.
A07473 (F)	EPOS: Beginning of traversing range reached
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	When traversing, the axis has moved to the traversing range limit.
Remedy:	Move away in the positive direction.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A07474 (F)	EPOS: End of traversing range reached
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	When traversing, the axis has moved to the traversing range limit.
Remedy:	Move away in the negative direction.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY

F07475 (A)	EPOS: Target position < start of traversing range
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The target position for relative traversing lies outside the traversing range.
Remedy:	Correct the target position.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07476 (A)	EPOS: Target position > end of the traversing range
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The target position for relative traversing lies outside the traversing range.
Remedy:	Correct the target position.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A07477 (F)	EPOS: Target position < software limit switch minus
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the current traversing operation, the target position is less than the software limit switch minus.
Remedy:	- correct the target position. - change software limit switch minus (Cl: p2578, p2580). See also: p2578 (EPOS software limit switch minus signal source), p2580 (EPOS software limit switch minus), p2582 (EPOS software limit switch activation)
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A07478 (F)	EPOS: Target position > software limit switch plus
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the current traversing operation, the target position is greater than the software limit switch plus.
Remedy:	- correct the target position. - change software limit switch plus (CI: p2579, p2581). See also: p2579 (EPOS software limit switch plus signal source), p2581 (EPOS software limit switch plus), p2582 (EPOS software limit switch activation)
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A07479	EPOS: Software limit switch minus reached
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The axis is at the position of the software limit switch minus. An active traversing block was interrupted.

Remedy:	- correct the target position.
- change software limit switch minus (CI: p2578, p2580).	
See also: p2578 (EPOS software limit switch minus signal source), p2580 (EPOS software limit switch minus), p2582	
	(EPOS software limit switch activation)

A07480	EPOS: Software limit switch plus reached
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The axis is at the position of the software limit switch plus. An active traversing block was interrupted.
Remedy:	- correct the target position. See also: p2579 (EPOS software limit switch plus signal source), p2581 (EPOS software limit switch plus), p2582

F07481 (A) EPOS: Axis position < software limit switch minus
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The current position of the axis is less than the position of the software limit switch minus.

Remedy:	- correct the target position.
- change software limit switch minus (CI: p2578, p2580).	
See also: p2578 (EPOS software limit switch minus signal source), p2580 (EPOS software limit switch minus), p2582	
(EPOS software limit switch activation)	

F07482 (A) EPOS: Axis position > software limit switch plus
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The current position of the axis is greater than the position of the software limit switch plus.
Remedy: \quad - correct the target position.
See also: p2579 (EPOS software limit switch plus signal source), p2581 (EPOS software limit switch plus), p2582
(EPOS software limit switch activation)
Reaction upon A: NONE
Acknowl. upon A: NONE
A07483 EPOS: Travel to fixed stop clamping torque not reached

Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The fixed stop in the traversing block was reached without the clamping torque/clamping force having been achieved.

Remedy: - Check the maximum torque-generating current (r1533).

- check the torque limits (p1520, p1521)
- check the power limits (p1530, p1531).
- check the BICO interconnections of the torque limits (p1522, p1523, p1528, p1529).

F07484	EPOS: Fixed stop outside the monitoring window
Message value:	-
Drive object: Reaction:	SERVO, VECTOR
Acknowledge:	OFF3 (OFF1, OFF2)
Cause:	IMMEDIATELY
Remedy:	In the "fixed stop reached" state, the axis has moved outside the defined monitoring window (p2635).
	- check the monitoring window (p2635).
F07485 (A)	EPOS: Fixed stop not reached
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	In a traversing block with the task FIXED STOP, the end position was reached without detecting a fixed stop.
Remedy:	- check the traversing block and locate the target position further into the workpiece.

A07489	EPOS: Reference point correction outside the window
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the function "flying referencing" the difference between the measured position at the measuring probe and the reference point coordinate lies outside the parameterized window.
Remedy:	- check the mechanical system. - check the parameterization of the window (p2602).
F07490	EPOS: Enable signal withdrawn while traversing
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	- for a standard assignment, another fault may have occurred as a result of withdrawing the enable signals. - the drive is in the "switching on inhibited" state (for a standard assignment).
Remedy:	- set the enable signals or check the cause of the fault that first occurred and then result (for a standard assignment). - check the assignment to enable the basic positioning function.
F07491 (A)	EPOS: STOP cam minus reached
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF3
Acknowledge:	IMMEDIATELY
Cause:	A zero signal was detected at binector input BI: p2569, i.e. the STOP cam minus was reached. For a positive traversing direction, the STOP cam minus was reached - i.e. the wiring of the STOP cam is incorrect. See also: p2569 (EPOS STOP cam minus)
Remedy:	- leave the STOP cam minus in the positive traversing direction and return the axis to the valid traversing range. - check the wiring of the STOP cam.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07492 (A)	EPOS: STOP cam plus reached
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF3
Acknowledge:	IMMEDIATELY
Cause:	A zero signal was detected at binector input BI: p2570, i.e. the STOP cam plus was reached. For a negative traversing direction, the STOP cam plus was reached - i.e. the wiring of the STOP cam is incorrect. See also: p2570 (EPOS STOP cam plus)
Remedy:	- leave the STOP cam plus in the negative traversing direction and return the axis to the valid traversing range. - check the wiring of the STOP cam.
Reaction upon A:	NONE
Acknowl. upon A :	NONE
F07493	LR: Overflow of the value range for position actual value
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The value range ($-2147483648 \ldots 2147483647$) for the position actual value representation was exceeded. When the overflow occurs, the "referenced" or "adjustment absolute measuring system" status is reset.

	Fault value (r0949, interpret decimal):
	1: The position actual value (r2521) has exceeded the value range.
	2: The encoder position actual value Gn_XIST2 (r0483) or the absolute value after the load gear (r2723) has
exceeded the value range.	

	Alarm value (r2124, interpret decimal): 1: EPOS enable missing (BI: p2656). 2: Position actual value, valid feedback signal missing (BI: p2658). See also: p2656 (EPOS enable basic positioner), p2658 (EPOS pos. actual value valid, feedback signal)
Remedy:	Check the appropriate binector inputs and signals.
A07497	LR: Position setting value activated
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position actual value is set to the value received via CI: p2515while BI : $\mathrm{p} 2514=1$ signal. A possible system deviation cannot be corrected.
Remedy:	None necessary. The alarm automatically disappears with BI: p2514 = 0 signal.
A07498 (F)	LR: Measuring probe evaluation not possible
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the measuring probe, an error occurred. Alarm value (r2124, interpret decimal): 6: The input terminal for the measuring probe is not set. 4098: Error when initializing the measuring probe. 4100: The measuring pulse frequency is too high. >50000 : The measuring clock cycle is not a multiple integer of the position controller clock cycle.
Remedy:	De-activate the measuring probe evaluation (BI: p2509 $=0$ signal). Re alarm value $=6$: Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518). Re alarm value $=4098$: Check the Control Unit hardware. Re alarm value $=4100$: Reduce the frequency of the measuring pulses at the measuring probe. Re alarm value > 50000: Set the clock cycle ratio of the measuring clock cycle to the position controller clock cycle to an integer multiple. To do this, the currently effective measuring clock cycle can be determined from the alarm value as follows: Tmeas $[125 \mu \mathrm{~s}]=$ alarm value -50000 . With PROFIBUS, the measuring clock cycle corresponds to the PROFIBUS clock cycle r2064[1]. Without PROFIBUS, the measuring clock cycle is an internal cycle time that cannot be influenced.
Reaction upon F:	OFF1
Acknowl. upon F:	IMMEDIATELY
F07499 (A)	EPOS: Reversing cam approached with the incorrect traversing direction
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF3
Acknowledge:	IMMEDIATELY
Cause:	The reversing cam MINUS was approached in the positive traversing direction or the reversing cam PLUS was approached in the negative traversing direction. See also: p2613 (EPOS search for reference reversing cam minus), p2614 (EPOS search for reference reversing cam plus)
Remedy:	- check the wiring of the reversing cam (BI : p2613, BI : p2614). - check the traversing direction to approach the reversing cam.
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F07500	Drive: Power unit data set PDS not configured
Message value:	Drive data set: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Only for controlled line supply infeed/regenerative feedback units: The power unit data set was not configured - this means that a data set number was not entered into the drive data set. Fault value (r0949, interpret decimal): Drive data set number of p0185. The index of the power unit data set associated with the drive data set should be entered into p0185.

F07509	Drive: Component number missing
Message value:	\%1
Drive object:	SERVO, TM41, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A Drive Data Set (DDS) is assigned to a Motor Data Set (MDS) or Encoder Data Set (EDS) that does not have a component number. Alarm value (r2124, interpret decimal): nnmmmxxyyy nn: Number of the MDS/EDS. mmm : Parameter number of the missing component number. xx : Number of the DDS that is assigned to the MDS/EDS. yyy: Parameter number that references the MDS/EDS. Example: p0186[7] = 5: DDS 7 is assigned MDS 5. $\mathrm{p} 0131[5]=0$: There is no component number set in MDS 5. Alarm value $=0513107186$
Remedy:	In the drive data sets, no longer assign MDS/EDS using p0186, p0187, p0188, p0189 or set a valid component number. See also: p0131, p0141, p0142, p0186, p0187, p0188, p0189
F07510	Drive: Identical encoder in the drive data set
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	More than one encoder with identical component number is assigned to a single drive data set. In one drive data set, it is not permissible that identical encoders are operated together. Fault value (r0949, interpret decimal): 1000 * first identical encoder +100 * second identical encoder + drive data set. Example: Fault value $=1203$ means: In drive data set 3 , the first (p0187[3]) and second encoder (p0188[3]) are identical.
Remedy:	Assign the drive data set to different encoders. See also: p0141 (Encoder interface (Sensor Module) component number), p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number)
F07511	Drive: Encoder used a multiple number of times
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Each encoder may only be assigned to one drive and within a drive must - in each drive data set - either always be encoder 1, always encoder 2 or always encoder 3 . This unique assignment has been violated. Fault value (r0949, interpret decimal): The two parameters in coded form, that refer to the same component number. First parameter: Index: First and second decimal place (99 for EDS, not assigned DDS) Parameter number: Third decimal place (1 for p0187, 2 for p0188, 3 for p0189, 4 for EDS not assigned DDS) Drive number: Fourth and fifth decimal place Second parameter: Index: Sixth and seventh decimal place (99 for EDS, not assigned DDS) Parameter number: Eighth decimal place (1 for p0187, 2 for p0188, 3 for p0189, 4 for EDS, not assigned DDS) Drive number: Ninth and tenth decimal place See also: p0141 (Encoder interface (Sensor Module) component number)
Remedy:	Correct the double use of a component number using the two parameters coded in the fault value.

F07512	Drive: Encoder data set changeover cannot be parameterized
Message value:	\%1
Drive object:	SERVO, TM41, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Using p0141, a changeover of the encoder data set is prepared that is illegal. In this firmware release, an encoder data set changeover is only permitted for the components in the actual topology. Alarm value (r2124, interpret decimal): Incorrect EDS data set number. See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number)
Remedy:	Every encoder data set must be assigned its own dedicated DRIVE-CLiQ socket. The component numbers of the encoder interfaces (p0141) must have different values within a drive object. The following must apply: p0141[0] not equal to p 0141 [1] not equal to ... not equal to $\mathrm{p} 0141[\mathrm{n}$]
A07514 (N)	Drive: Data structure does not correspond to the interface module
Message value:	-
Drive object:	SERVO, TM41, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The interface mode "SIMODRIVE 611 universal" was set ($\mathrm{p} 2038=1$) and the data structure does not correspond to this mode.
	For the data structure, the following rule must be complied with.
	Within the group of 8 drive data sets, the assignment to the motor data set must be set the same: $\mathrm{p} 0186[0]=\mathrm{p} 0186[1]=\ldots=\mathrm{p} 0186[7]$
	$\mathrm{p} 0186[8]=\mathrm{p} 0186[9]=\ldots=\mathrm{p} 0186[15]$
	$\mathrm{p} 0186[16]=\mathrm{p} 0186[17]=\ldots=p 0186[23]$
	$\mathrm{p} 0186[24]=\mathrm{p} 0186[25]=\ldots=\mathrm{p} 0186[31]$
	See also: p0180 (Number of Drive Data Sets (DDS)), p0186 (Motor Data Sets (MDS) number), p2038 (PROFIdrive STWIZSW interface mode)
Remedy:	- structure the data according to the rules of the "SIMODRIVE 611 universal" interface mode. - check the interface mode (p2038).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F07515	Drive: Power unit and motor incorrectly connected
Message value:	\%1
Drive object:	SERVO, TM41, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A power unit (via PDS) was assigned to a motor (via MDS) in a drive data set that is not connected in the target topology. Alarm value (r2124, interpret decimal): Number of the incorrectly parameterized drive data set.
Remedy:	- assign the drive data set to a combination of motor and power unit permitted by the target topology. - adapt the target topology. See also: p0121 (Power unit component number), p0131 (Motor component number), p0186 (Motor Data Sets (MDS) number)

F07516	Drive: Re-commission the data set
Message value:	\%1
Drive object:	SERVO, TM41, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The assignment between the drive data set and motor data set (p 0186) or between the drive data set and the encoder data set was modified (p0187). This is the reason that the drive data set must re-commissioned. Fault value (r0949, interpret decimal): Drive data set to be re-commissioned.
Remedy:	Commission the drive data set specified in the fault value (r0949).
$\overline{\text { F07517 }}$	Drive: Encoder data set changeover incorrectly parameterized
Message value:	\%1
Drive object:	SERVO, TM41, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	An MDS cannot have different motor encoders in two different DDS. The following parameterization therefore results results in an error: $\begin{aligned} & \mathrm{p} 0186[0]=0, \mathrm{p} 0187[0]=0 \\ & \mathrm{p} 0186[0]=0, \mathrm{p} 0187[0]=1 \end{aligned}$ Alarm value (r2124, interpret decimal): The lower 16 bits indicate the first DDS and the upper 16 bits indicate the second DDS.
Remedy:	If you wish to operate a motor once with one motor encoder and then another time with the other motor encoder, then you must set up two different MDSs, in which the motor data are the same. Example: $\begin{aligned} & \mathrm{p} 0186[0]=0, \mathrm{p} 0187[0]=0 \\ & \mathrm{p} 0186[0]=1, \mathrm{p} 0187[0]=1 \end{aligned}$
F07518	Drive: Motor data set changeover incorrectly parameterized
Message value:	\%1
Drive object:	SERVO, TM41, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The system has identified that two motor data sets were incorrectly parameterized. Parameter r0313 (calculated from p0314, p0310, p0311), r0315 and p1982 may only have different values if the motor data sets are assigned different motors. p0827 is used to assign the motors and/contactors. It is not possible to toggle between motor data sets. Alarm value (r2124, interpret hexadecimal): xxxxyyyy: xxxx: First DDS with assigned MDS, yyyy: Second DDS with assigned MDS
Remedy:	Correct the parameterization of the motor data sets.
A07519	Drive: Motor changeover incorrectly parameterized
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	With the setting p0833.0 $=1$, a motor changeover via the application is selected. This is the reason that p0827 must have different values in the appropriate motor data set. Alarm value (r2124, interpret hexadecimal): xxxxyyyy: xxxx: First MDS, yyyy: Second MDS
Remedy:	- parameterize the appropriate motor data sets differently (p0827). - select the setting p0833.0 = 0 (motor changeover via the drive).

A07520	Drive: Motor cannot be changed over
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor cannot be changed over. Alarm value (r2124, interpret decimal): 1: The contactor for the motor that is presently active cannot be opened, because for a synchronous motor, the speed (r0063) is greater than the speed at the start of field weakening (p 3048). As long as r0063 > p0348, the current in the motor does not decay in spite of the pulses being suppressed. 2 : The "contactor opened" feedback signal was not detected within 1 s . 3: The "contactor closed" feedback signal was not detected within 1 s .
Remedy:	Re alarm value $=1$: Set the speed lower than the speed at the start of field weakening (r0063 < p0348). Re alarm value $=2,3$: Check the feedback signals of the contactor involved.
A07530	Drive: Drive Data Set DDS not present
Message value:	-
Drive object:	SERVO, TM41, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected drive data set is not available (p0837 > p0180). The drive data set was not changed over. See also: p0180, p0820, p0821, p0822, p0823, p0824, r0837
Remedy:	- select the existing drive data set. - set up additional drive data sets.
A07541	Drive: Data set changeover not possible
Message value:	-
Drive object:	SERVO, TM41, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected drive data set changeover and the assigned motor changeover are not possible and are not carried out. For synchronous motors, the motor contactor may only be switched for actual speeds less than the speed at the start of field weakening (r0063 < p0348). See also: r0063, p0348
Remedy:	Reduce the speed below the speed at the start of field weakening.

A07550 (F, N)	Drive: Not possible to reset encoder parameters
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	When carrying out a factory setting (e.g. using p0970 = 1), it was not possible to reset the encoder parameters. The encoder parameters are directly read out of the encoder via DRIVE-CLiQ. Alarm value (r2124, interpret decimal): Component number of the encoder involved.
- repeat the operation.	

F07551	Drive encoder: No commutation angle information
Message value:	Fault cause: \%1, drive data set: \%2
Drive object:	SERVO, VECTOR
Reaction:	OFF2 (IASC/DCBRAKE)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The commutation angle information is missing. This means that synchronous motors cannot be controlled (closedloop control)
	Fault value (r0949, interpret decimal):
	yyyyxxxx dec: yyyy = fault cause, $x x x x=$ drive data set yyyy $=1 \mathrm{dec}$:
	The motor encoder used does not supply an absolute commutation angle.
	yyyy $=2 \mathrm{dec}$:
	The selected ratio of the measuring gear does not match the motor pole pair number.
Remedy:	Re fault cause $=1$: - check the encoder parameterization (p0404).
	- use an encoder with track C/D, EnDat interface of Hall sensors.
	- use an encoder with sine-wave A / B track for which the motor pole pair number (r0313) is an integer multiple of the encoder pulse number (p0408).
	- activate the pole position identification routine (p1982 = 1).
	Re fault cause $=2$:
	- the quotient of the pole pair number divided by the ratio of the measuring gear must be an integer number: (p0314 * p0433) / p0432.
	Note:
	For operation with track C/D, this quotient must be less than 8 .
	See also: p0402, p0404, p0432, p0433
F07552 (A)	Drive encoder: Encoder configuration not supported
Message value:	Fault cause: \%1, component number: \%2, encoder data set: \%3
Drive object:	SERVO, VECTOR
Reaction:	OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The requested encoder configuration is not supported. Only bits may be requested in p0404 that are signaled as being supported by the encoder evaluation in r0456.
	Fault value (r0949, interpret decimal):
	Low word low byte: Encoder data set number
	Low word high byte: Component number
	High word:
	The encoder evaluation does not support a function selected in p0404.
	1: sin/cos encoder with absolute track (this is supported by SME25).
	3: Squarewave encoder (this is supported by SMC30).
	4: sin/cos encoder (this is supported by SMC20, SMI20, SME20, SME25).
	12: $\mathrm{sin} / \mathrm{cos}$ encoder with reference mark (this is supported by SME20).
	15: Commutation with zero mark for separately-excited synchronous motors with VECTORMV.
	23: Resolver (this is supported by SMC10, SMI10).
	65535: Other function (compare r0456 and p0404).
	See also: p0404 (Encoder configuration effective), r0456 (Encoder configuration supported)
Remedy:	- check the encoder parameterization ($\mathrm{p} 0400, \mathrm{p} 0404$). - use the matching encoder evaluation (r0456).
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F07553 (A)	Drive encoder: Sensor Module configuration not supported
Message value:	Encoder data set: \%1, first incorrect bit: \%2, incorrect parameter: \%3
Drive object:	SERVO, VECTOR
Reaction:	OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The Sensor Module does not support the requested configuration. If p0430 (cc = 0) incorrect, the following applies: - In p0430 (requested functions), at least 1 bit was set that is not set in r0458 (supported functions) (exception: bits 19, 28, 29, 30, 31). - p1982 > 0 (pole position identification requested), but r0458.16 $=0$ (pole position identification not supported). If p0437 (cc = 1) incorrect, the following applies: - In p0437 (requested functions), at least 1 bit was set that is not set in r0459 (supported functions). Fault value (r0949, interpret hexadecimal): ddccbbaa hex aa: encoder data set no. bb: first incorrect bit cc: incorrect parameter $\mathrm{cc}=0$: incorrect parameter is p0430 $c c=1$: incorrect parameter is p0437 dd: reserved (always 0)
Remedy:	- check the encoder parameterization (p0430, p0437). - check the pole position identification routine (p1982). - use the matching encoder evaluation (r0458, r0459). See also: p0430, p0437, r0458, r0459, p1982
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07555 (A)	Drive encoder: Configuration position tracking
Message value:	Component number: \%1, encoder data set: \%2, drive data set: \%3, fault cause: \%4
Drive object:	SERVO, VECTOR
Reaction:	OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The configuration of the position tracking is not supported. Position tracking can only be activated for absolute encoders. For linear axes, it is not possible to simultaneously activate the position tracking for load- and measuring gear. Fault value (r0949, interpret hexadecimal): ddccbbaa hex aa = encoder data set $\mathrm{bb}=$ component number $c c=$ drive data set dd = fault cause dd $=00$ hex $=0$ dez An absolute encoder is not being used. $\mathrm{dd}=01$ hex $=1 \mathrm{dez}$ Position tracking cannot be activated because the memory of the internal NVRAM is not sufficient or a Control Unit does not have an NVRAM. $d d=02 \text { hex }=2 \text { dez }$ For a linear axis, the position tracking was activated for the load and measuring gear. $d d=03 \text { hex = } 3 \text { dez }$ Position tracking cannot be activated because position tracking with another gear ratio, axis type or tolerance window has already been detected for this encoder data set. $d d=04 \text { hex }=4 \text { dez }$ A linear encoder is being used. See also: p0404 (Encoder configuration effective), p0411 (Measuring gear, configuration)
Remedy:	- use an absolute encoder. - if necessary, de-select the position tracking (p0411 for the measuring gear, p2720 for the load gear). - use a Control Unit with sufficient NVRAM. - Only activate position tracking of the load gear in the same encoder data set if the gear ratio (p2504, p2505), axis type (p 2720.1) and tolerance window (p2722) are also the same.

Reaction upon A : Acknowl. upon A:	NONE NONE
F07556	Measuring gear: Position tracking, maximum actual value exceeded
Message value:	Component number: \%1, encoder data set: \%2
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When the position tracking of the measuring gear is configured, the drive/encoder identifies a maximum possible absolute position actual value (r0483) that cannot be represented within 32 bits. Maximum value: p0408 * p0412 * 2^{\wedge} p0419 Fault value (r0949, interpret decimal): Low word low byte: Encoder data set number Low word high byte: Component number See also: p0408 (Rotary encoder pulse No.), p0412 (Measuring gear, rotary absolute gearbox, revolutions, virtual), p0419 (Fine resolution absolute value Gx_XIST2 (in bits))
Remedy:	- reduce the fine resolution (p 0419). - reduce the multiturn resolution (p0412). See also: p0412 (Measuring gear, rotary absolute gearbox, revolutions, virtual), p0419 (Fine resolution absolute value Gx_XIST2 (in bits))
A07557 (F)	Encoder 1: Reference point coordinate not in the permissible range
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The reference point coordinate received when adjusting the encoder via connector input $\mathrm{Cl}: \mathrm{p} 2599$ lies outside the half of the encoder range and cannot be set as current axis position. The maximum permissible value is displayed in the supplementary information.
Remedy:	Set the reference point coordinate less than the value from the supplementary information. See also: p2598 (EPOS reference point coordinate, signal source)
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A07558 (F)	Encoder 2: Reference point coordinate not in the permissible range
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The reference point coordinate received when adjusting the encoder via connector input $\mathrm{Cl}: \mathrm{p} 2599$ lies outside the half of the encoder range and cannot be set as current axis position. The maximum permissible value is displayed in the supplementary information.
Remedy:	Set the reference point coordinate less than the value from the supplementary information. See also: p2598 (EPOS reference point coordinate, signal source)
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY

A07559 (F)	Encoder 3: Reference point coordinate not in the permissible range
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The reference point coordinate received when adjusting the encoder via connector input CI:p2599 lies outside the half of the encoder range and cannot be set as current axis position. The maximum permissible value is displayed in the supplementary information.
	Set the reference point coordinate less than the value from the supplementary information. See also: p2598 (EPOS reference point coordinate, signal source)

Reaction upon F: OFF1 (OFF2, OFF3) Acknowl. upon F: IMMEDIATELY	
F07560	Drive encoder: Number of pulses is not to the power of two
Message value:	Encoder data set: \%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For rotary absolute encoders, the pulse number in p0408 must be to the power of two. Fault value (r0949, interpret decimal):
The fault value includes the encoder data set number involved.	

A07565 (F, N)	Drive: Encoder error in PROFIdrive encoder interface 1
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	An encoder error was signaled for encoder 1 via the PROFIdrive encoder interface (G1_ZSW.15).
	Alarm value (r2124, interpret decimal):
	Error code from G1_XIST2, refer to the description regarding r0483.
	Note:
	This alarm is only output if p0480[0] is not equal to zero.
Remedy:	Acknowledge the encoder error using the encoder control word (G1_STW.15 = 1).
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A07566 (F, N)	Drive: Encoder error in PROFIdrive encoder interface 2
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	An encoder error was signaled for encoder 2 via the PROFIdrive encoder interface (G2_ZSW.15).
	Alarm value (r2124, interpret decimal):
	Error code from G2_XIST2, refer to the description regarding r0483.
	Note:
	This alarm is only output if p0480[1] is not equal to zero.
Remedy:	Acknowledge the encoder error using the encoder control word (G2_STW. $15=1$).
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A07567 (F, N)	Drive: Encoder error in PROFIdrive encoder interface 3
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	An encoder error was signaled for encoder 3 via the PROFldrive encoder interface (G3_ZSW.15).
	Alarm value (r2124, interpret decimal):
	Error code from G3_XIST2, refer to the description regarding r0483.
	Note:
	This alarm is only output if p0480[2] is not equal to zero.
Remedy:	Acknowledge the encoder error using the encoder control word (G3_STW. 15 = 1).
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

Acknowl. upon N: NONE

A07569 (F)	Encoder could not be identified
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	During encoder identification (servicing) with p0400 = 10100, the encoder could not be identified.

	Either the wrong encoder has been installed or no encoder has been installed, the wrong encoder cable has been connected or no encoder cable has been connected, or the DRIVE-CLiQ component has not been connected to DRIVE-CLiQ. Note: Encoder identification must be supported by the encoder and is possible in the following cases: Encoder with EnDat interface, motor with DRIVE-CLiQ.
Remedy:	- Check and, if necessary, connect the encoder and/or encoder cable. - Check and, if necessary, establish the DRIVE-CLiQ connection. - In the case of encoders that cannot be identified (e.g. encoders without EnDat interface), the correct encoder type must be entered in p0400.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
F07575	Drive: Motor encoder not ready
Message value:	-
Drive object:	SERVO, TM41, VECTOR
Reaction:	OFF2 (ENCODER)
Acknowledge:	IMMEDIATELY
Cause:	The motor encoder signals that it is not ready. - initialization of encoder 1 (motor encoder) was unsuccessful. - the function "parking encoder" is active (encoder control word G1_STW. $14=1$). - the encoder interface (Sensor Module) is de-activated (p0145). - the Sensor Module is defective.
Remedy:	Evaluate other queued faults via encoder 1.
A07576	Drive: Encoderless operation due to a fault active
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	Encoderless operation is active due to a fault (r1407.13). The required response when an encoder fault occurs is parameterized in p0491. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	
A07577 (F)	Encoder 1: Measuring probe evaluation not possible
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the measuring probe, an error occurred. Alarm value (r2124, interpret decimal): 6: The input terminal for the measuring probe is not set. 4098: Error when initializing the measuring probe. 4100: The measuring pulse frequency is too high. 4200: The PROFIBUS clock cycle is not a multiple of integer of the position controller clock cycle.
Remedy:	De-activate the measuring probe evaluation (BI: p2509 $=0$ signal). Re alarm value $=6$: Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518). Re alarm value $=4098$: Check the Control Unit hardware. Re alarm value $=4100$: Reduce the frequency of the measuring pulses at the measuring probe. Re alarm value $=4200$: Set the clock cycle ratio between the PROFIBUS clock cycle and the position controller clock cycle to an integer multiple.
Reaction upon F:	OFF1
Acknowl. upon F:	IMMEDIATELY

A07578 (F)	Encoder 2: Measuring probe evaluation not possible
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the measuring probe, an error occurred. Alarm value (r 2124 , interpret decimal): 6: The input terminal for the measuring probe is not set. 4098: Error when initializing the measuring probe. 4100: The measuring pulse frequency is too high. 4200: The PROFIBUS clock cycle is not a multiple of integer of the position controller clock cycle.
Remedy:	De-activate the measuring probe evaluation (BI: p2509 $=0$ signal). Re alarm value $=6$: Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518). Re alarm value $=4098$: Check the Control Unit hardware. Re alarm value $=4100$: Reduce the frequency of the measuring pulses at the measuring probe. Re alarm value $=4200$: Set the clock cycle ratio between the PROFIBUS clock cycle and the position controller clock cycle to an integer multiple.
Reaction upon F:	OFF1
Acknowl. upon F:	IMMEDIATELY
A07579 (F)	Encoder 3: Measuring probe evaluation not possible
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the measuring probe, an error occurred. Alarm value (r2124, interpret decimal): 6: The input terminal for the measuring probe is not set. 4098: Error when initializing the measuring probe. 4100: The measuring pulse frequency is too high. 4200: The PROFIBUS clock cycle is not a multiple of integer of the position controller clock cycle.
Remedy:	De-activate the measuring probe evaluation (BI: p2509 $=0$ signal). Re alarm value $=6$: Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518). Re alarm value $=4098$: Check the Control Unit hardware. Re alarm value $=4100$: Reduce the frequency of the measuring pulses at the measuring probe. Re alarm value $=4200$: Set the clock cycle ratio between the PROFIBUS clock cycle and the position controller clock cycle to an integer multiple.
Reaction upon F:	OFF1
Acknowl. upon F:	IMMEDIATELY

A07580 (F, N)	Drive: No Sensor Module with matching component number
Message value:	Encoder data set: \%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Sensor Module with the component number specified in p0141 was not found.
	Alarm value (r2124, interpret decimal):
	Encoder data set involved (index of p0141).
Remedy:	Correct parameter p0141.

Reaction upon F:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A07581 (F)	Encoder 1: Position actual value preprocessing error
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred during the position actual value preprocessing.
Remedy:	Check the encoder for the position actual value preprocessing. Reaction upon F:
See also: p2502 (LR encoder assignment)	
Acknowl. upon F:	IMMEDIATELY

A07582 (F)	Encoder 2: Position actual value preprocessing error
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred during the position actual value preprocessing.
Remedy:	Check the encoder for the position actual value preprocessing. Reaction upon F:
See also: p2502 (LR encoder assignment)	
Acknowl. upon F:	IMMEDIATELY

A07583 (F)	Encoder 3: Position actual value preprocessing error
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred during the position actual value preprocessing.
Remedy:	Check the encoder for the position actual value preprocessing. Reaction upon F:
See also: p2502 (LR encoder assignment)	
Acknowl. upon F: OFF2, OFF3)	

A07584	Encoder 1: Position setting value activated
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position actual value is set to the value received via CI: p2515while BI: p2514 = 1 signal. A possible system deviation cannot be corrected. Remedy:
	None necessary.
	The alarm automatically disappears with $\mathrm{BI}: \mathrm{p} 2514=0$ signal.

A07585	Encoder 2: Position setting value activated
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position actual value is set to the value received via CI: p2515while BI: p2514 = 1 signal. A possible system deviation cannot be corrected.

Remedy:	None necessary.
	The alarm automatically disappears with $\mathrm{BI}: \mathrm{p} 2514=0$ signal.

A07586	Encoder 3: Position setting value activated
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position actual value is set to the value received via $\mathrm{CI}: \mathrm{p} 2515$ while $\mathrm{BI}: \mathrm{p} 2514=1$ signal. A possible system deviation cannot be corrected.
Remedy:	None necessary.
	The alarm automatically disappears with $\mathrm{BI}: \mathrm{p} 2514=0$ signal.

A07587	Encoder 1: Position actual value preprocessing does not have a valid encoder
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following problem has occurred during the position actual value preprocessing. - an encoder data set has been assigned, however, the encoder data set does not contain any encoder data (p0400 = 0) or invalid data (e.g. p0408 = 0).
Remedy:	Check the drive data sets, encoder data sets. See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number), p0400 (Encoder type selection), p2502 (LR encoder assignment)

A07588	Encoder 2: Position actual value preprocessing does not have a valid encoder
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following problem has occurred during the position actual value preprocessing.

Remedy: Check the drive data sets, encoder data sets

See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number), p0400 (Encoder type selection), p2502 (LR encoder assignment)

A07589	Encoder 3: Position actual value preprocessing does not have a valid encoder
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following problem has occurred during the position actual value preprocessing. - an encoder data set has been assigned, however, the encoder data set does not contain any encoder data (p0400 = 0) or invalid data (e.g. p0408 = 0).
Remedy:	Check the drive data sets, encoder data sets. See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number), p0400 (Encoder type selection), p2502 (LR encoder assignment)

A07590 (F)	Encoder 1: Drive Data Set changeover in operation
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Drive Data Set changeover (DDS) with a change of the mechanical relationships and the encoder assignment (p2502) was requested in operation.
Remedy:	To changeover the drive data set, initially, exit the "operation" mode.

```
Reaction upon F: OFF1 (OFF2, OFF3)
Acknowl. upon F: IMMEDIATELY
```

A07591 (F)	Encoder 2: Drive Data Set changeover in operation
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Drive Data Set changeover (DDS) with a change of the mechanical relationships and the encoder assignment (p2502) was requested in operation.
Remedy:	To changeover the drive data set, initially, exit the "operation" mode.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY

A07592 (F)	Encoder 3: Drive Data Set changeover in operation
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Drive Data Set changeover (DDS) with a change of the mechanical relationships and the encoder assignment
(p2502) was requested in operation.	

A07594 (F) Encoder 2: Value range for position actual value exceeded
Message value: \%1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The value range ($-2147483648 \ldots 2147483647$) for the position actual value representation was exceeded.
When the overflow occurs, the "referenced" or "adjustment absolute measuring system" status is reset.

A07597 (F)	Encoder 2: Reference function interrupted
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	An activated reference function (reference mark search or measuring probe evaluation) was interrupted. - an encoder fault has occurred (Gn_ZSW. $15=1$). - position actual value was set during an activated reference function. - simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 $=1$ signal). - activated reference function (reference mark search or measuring probe evaluation) was de-activated (BI: p2508 and BI: p2509 $=0$ signal).
Remedy:	- check the causes and resolve. - reset the control (BI: p2508 and BI: p2509 $=0$ signal) and activate the requested function.
Reaction upon F :	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A07598 (F)	Encoder 3: Reference function interrupted
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	An activated reference function (reference mark search or measuring probe evaluation) was interrupted. - an encoder fault has occurred (Gn_ZSW. $15=1$). - position actual value was set during an activated reference function. - simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 $=1$ signal). - activated reference function (reference mark search or measuring probe evaluation) was de-activated (BI: p2508 and BI : $\mathrm{p} 2509=0$ signal).
Remedy:	- check the causes and resolve. - reset the control (BI: p2508 and BI: p2509 $=0$ signal) and activate the requested function.
Reaction upon F :	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
F07599 (A)	Encoder 1: Adjustment not possible
Message value:	Drive data set: \%1
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeed the value range ($-2147483648 \ldots 2147483647$) for displaying the position actual value.
Remedy:	If the value for the maximum possible absolute position (LU) is greater than 4294967296, an adjustment cannot be made due to an overflow. For rotary encoders, the maximum possible absolute position (LU) is calculated as follows: 1. Motor encoder without position tracking: p2506 * p0433 * p2505 / (p0432 * p2504) p2506 * p0433 * p2505 * p0421 / (p0432 * p2504) for multiturn encoders 2. Motor encoder with position tracking for measuring gear p2506 * p0412 *p2505 / p2504 3. Motor encoder with position tracking for load gear: p2506 * p2721 * p0433 / p0432 4. Motor encoder with position tracking for load and measuring gear: p2506 * 2721

	5. Direct encoder without position tracking: $\begin{aligned} & \text { p2506 * p0433 / p0432 } \\ & \text { p2506 * p0433 * p0421 / p0432 for multiturn encoders } \end{aligned}$ 6. Direct encoder with position tracking for measuring gear: p2506 * p0412
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07600 (A)	Encoder 2: Adjustment not possible
Message value:	Drive data set: \%1
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeed the value range ($-2147483648 \ldots 2147483647$) for displaying the position actual value.
Remedy:	If the value for the maximum possible absolute position (LU) is greater than 4294967296 , an adjustment cannot be made due to an overflow. For rotary encoders, the maximum possible absolute position (LU) is calculated as follows: 1. Motor encoder without position tracking: p2506 * p0433 * p2505 / (p0432 * p2504) p2506 * p0433 * p2505 * p0421 / (p0432 * p2504) for multiturn encoders 2. Motor encoder with position tracking for measuring gear p2506 * p0412 * p2505 / p2504 3. Motor encoder with position tracking for load gear: p2506 * p2721 * p0433 / p0432 4. Motor encoder with position tracking for load and measuring gear: p2506 * p2721 5. Direct encoder without position tracking: p2506 * p0433 / p0432 p2506 * p0433 * p0421 / p0432 for multiturn encoders 6. Direct encoder with position tracking for measuring gear: p2506 * p0412
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07601 (A)	Encoder 3: Adjustment not possible
Message value:	Drive data set: \%1
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeed the value range ($-2147483648 \ldots 2147483647$) for displaying the position actual value.
Remedy:	If the value for the maximum possible absolute position (LU) is greater than 4294967296 , an adjustment cannot be made due to an overflow. For rotary encoders, the maximum possible absolute position (LU) is calculated as follows: 1. Motor encoder without position tracking: p2506 * p0433 * p2505 / (p0432 * p2504) p2506 * p0433 * p2505 * p0421 / (p0432 * p2504) for multiturn encoders 2. Motor encoder with position tracking for measuring gear p2506 * p0412 * p2505 / p2504 3. Motor encoder with position tracking for load gear: p2506 * p2721 * p0433 / p0432 4. Motor encoder with position tracking for load and measuring gear: p2506 * p2721 5. Direct encoder without position tracking: $\begin{aligned} & \text { p2506 * p0433 / p0432 } \\ & \text { p2506 * p0433 * p0421 / p0432 for multiturn encoders } \end{aligned}$

	6. Direct encoder with position tracking for measuring gear: p2506 * p0412
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07800	Drive: No power unit present
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The power unit parameters cannot be read or no parameters are stored in the power unit. Connection between the Control Unit and the Motor Module was interrupted or is defective. This fault also occurs if an incorrect topology was selected in the commissioning software and this parameterization is then downloaded to the Control Unit. See also: r0200 (Power unit current code number)
Remedy:	- connect the data line to power unit and restart the Control Unit (POWER ON). - check or replace the Control Unit. - check the cable between the Control Unit and Motor Module. - after correcting the topology, the parameters must be again downloaded using the commissioning software.
F07801	Drive: Motor overcurrent
Message value:	-
Drive object:	SERVO
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The permissible motor limit current was exceeded. - effective current limit set too low. - current controller not correctly set. - motor was braked with an excessively high stall torque correction factor. - V/f operation: Up ramp was set too short or the load is too high. - V/f operation: Short-circuit in the motor cable or ground fault. - V/f operation: Motor current does not match the current of Motor Module. Note: Synchronous motor: Limit current= 1.3 * p0323 Induction motor: Limit current= 1.3 * r0209
Remedy:	- check the current limits (p0323, p0640). - check the current controller (p1715, p1717). - reduce the stall torque correction factor (p0326). - increase the up ramp (p1318) or reduce the load. - check the motor and motor cables for short-circuit and ground fault. - check the Motor Module and motor combination.
F07801	Drive: Motor overcurrent
Message value:	-
Drive object:	VECTOR
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The permissible motor limit current was exceeded. - effective current limit set too low. - current controller not correctly set. - motor was braked with an excessively high stall torque correction factor. - V/f operation: Up ramp was set too short or the load is too high. - V/f operation: Short-circuit in the motor cable or ground fault. - V/f operation: Motor current does not match the current of Motor Module. Note: Limit current $=2$ * Minimum(p0640, 4 * p0305) >= 2 * p0305

Remedy:	- check the current limits (p0640). - vector control: Check the current controller (p1715, p1717). - V/f control: Check the current limiting controller (p1340 ... p1346). - increase the up ramp (p1120) or reduce the load. - check the motor and motor cables for short-circuit and ground fault. - check the Motor Module and motor combination.
F07802	Drive: Infeed or power unit not ready
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	After an internal power-on command, the infeed or drive does not signal ready. - monitoring time is too short. - DC link voltage is not present. - associated infeed or drive of the signaling component is defective. - supply voltage incorrectly set.
Remedy:	- increase the monitoring time (p0857). - ensure that there is a DC link voltage. Check the DC link busbar. Enable the infeed. - replace the associated infeed or drive of the signaling component. - check the line supply voltage setting (p0210). See also: p0857 (Power unit monitoring time)
A07805 (N)	Infeed: Power unit overload I2t
Message value:	-
Drive object:	A_INF, B_INF, S_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for I2t overload (p0294) of the power unit exceeded.
Remedy:	- reduce the continuous load. - adapt the load duty cycle.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07805 (N)	Drive: Power unit overload 12t
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for I2t overload (p0294) of the power unit exceeded. The response parameterized in p0290 becomes active. See also: p0290 (Power unit overload response)
Remedy:	- reduce the continuous load. - adapt the load duty cycle. - check the assignment of the rated currents of the motor and Motor Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F07810	Drive: Power unit EEPROM without rated data
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	No rated data are stored in the power unit EEPROM. See also: p0205 (Power unit application), r0206 (Rated power unit power), r0207 (Rated power unit current), r0208 (Rated power unit line supply voltage), r0209 (Power unit, maximum current)
Remedy:	Replace the power unit or inform Siemens Customer Service.

F07815	Drive: Power unit has been changed
Message value:	Parameter: \%1
Drive object:	A_INF, B_INF, S_INF
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The code number of the current power unit does not match the saved number. The fault only occurs if the comparator in p9906 or p9908 is not at f 2 (low) or 3 (minimum). Fault value (r0949, interpret decimal): Number of the incorrect parameter. See also: r0200 (Power unit current code number), p0201 (Power unit code number)
Remedy:	Connect the original power unit and power up the Control Unit again (POWER ON) or set p0201 to r0200 and exit commissioning with p0010 $=0$. For infeeds, the following applies: Commutating reactors or line filters must be used that are specified for the new power unit. A line supply and DC link identification routine (p3410 $=5$) must then be carried out. It is not possible to change the power unit without re-commissioning the system if the type of infeed (A_Infeed, B_Infeed, S_Infeed), the type of construction/design (booksize, chassis) or the voltage class differ between the old and new power units. For inverters, the following applies: If the new power unit is accepted, then if required, the current limit p0640 can be reduced by a lower maximum current of the power unit (r0209) (torque limits stay the same). If not only the power unit is changed, but also the motor, then the motor must be re-commissioning (e.g. using p0010 $=1$). This is also necessary if motor data is still to be downloaded via DRIVE-CLiQ. See also: r0200 (Power unit current code number)
F07815	Drive: Power unit has been changed
Message value:	Parameter: \%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The code number of the current power unit does not match the saved number. The fault only occurs if the comparator in p9906 or p9908 is not at f 2 (low) or 3 (minimum). Fault value (r0949, interpret decimal): Number of the incorrect parameter. See also: r0200 (Power unit current code number), p0201 (Power unit code number)
Remedy:	Connect the original power unit and power up the Control Unit again (POWER ON) or set p0201 to r0200 and exit commissioning with p0010 $=0$. For infeeds, the following applies: Commutating reactors or line filters must be used that are specified for the new power unit. A line supply and DC link identification routine (p3410 $=5$) must then be carried out. It is not possible to change the power unit without re-commissioning the system if the type of infeed (A_Infeed, B_Infeed, S_Infeed), the type of construction/design (booksize, chassis) or the voltage class differ between the old and new power units. For inverters, the following applies: If the new power unit is accepted, then if required, the current limit p0640 can be reduced by a lower maximum current of the power unit (r0209) (torque limits stay the same). If not only the power unit is changed, but also the motor, then the motor must be re-commissioning (e.g. using p0010 $=1$). This is also necessary if motor data is still to be downloaded via DRIVE-CLiQ. If the comparison stage in p9906 is set to 2,3 , then commissioning can be exited ($\mathrm{p} 0010=0$) and the fault acknowledged. See also: r0200 (Power unit current code number)
A07820	Drive: Temperature sensor not connected
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature sensor for motor temperature monitoring, specified in p0600, is not available. - parameter download with "incorrect" setting. - module with sensor evaluation has been, in the meantime, been removed. - temperature sensor via Motor Module, not for CU310.

Remedy:	- connect the module with temperature sensor. -set the available temperature sensor (p0600, p0601). See also: p0600 (Motor temperature sensor for monitoring), p0601
A07825 (N)	Drive: Simulation mode activated
Message value:	-
Drive object:	VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The simulation mode is activated. The drive can only be powered up if the DC link voltage is less than 40 V. Remedy:
The alarm automatically disappears if simulation mode is de-activated with p1272 = 0	
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

F07826 Drive: Simulation mode with DC link voltage too high

Message value:
Drive object: VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: \quad The simulation mode is activated and the DC link voltage is greater than the permissible value of 40 V .
Remedy: - switch out (disable) simulation mode (p1272 = 0) and acknowledge the fault. - reduce the input voltage in order to reach a DC link voltage below 40 V .

F07840	Drive: Infeed operation missing
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The signal "infeed operation" is not present although the enable signals for the drive have been present for longer than the parameterized monitoring time (p0857). - infeed not operational. - interconnection of the binector input for the ready signal is either incorrect or missing (p0864). - infeed is presently carrying out a line supply identification routine.
	- bring the infeed into an operational state.

A07850 (F)	External alarm 1
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The BICO signal for "external alarm 1" was triggered. The condition for this external alarm is fulfilled. See also: p2112 (External alarm 1)
Remedy:	Eliminate the causes of this alarm.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A07851 (F)	External alarm 2
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The BICO signal for "external alarm 2" was triggered. The condition for this external alarm is fulfilled. See also: p2116 (External alarm 2)
Remedy:	Eliminate the causes of this alarm.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A07852 (F)	External alarm 3
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The BICO signal for "external alarm 3 " was triggered. The condition for this external alarm is fulfilled. See also: p2117 (External alarm 3)
Remedy:	Eliminate the causes of this alarm.
Reaction upon F:	A INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
F07860 (A)	External fault 1
Message value:	-
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The BICO signal "external fault 1 " was triggered. See also: p2106 (External fault 1)
Remedy:	Eliminate the causes of this fault.
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F07861 (A)	External fault 2
Message value:	-
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The BICO signal "external fault 2" was triggered. See also: p2107 (External fault 2)
Remedy:	Eliminate the causes of this fault.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07862 (A)	External fault 3
Message value:	-
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The BICO signal "external fault 3 " was triggered. See also: p2108, p3111, p3112
Remedy:	Eliminate the causes of this fault.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07890	Internal voltage protection/internal armature short-circuit with Safe Torque Off active
Message value:	- ${ }^{\text {a }}$
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The internal armature short-circuit ($\mathrm{p} 1231=4$) is not possible as Safe Torque Off (STO) is enabled. The pulses cannot be enabled.
Remedy:	Switch out the internal armature short-circuit ($\mathrm{p} 1231=0$) or de-activate Safe Torque Off ($\mathrm{p} 9501=\mathrm{p} 9561=0$). Note: STO: Safe Torque Off / SH: Safe standstill
F07900 (N, A)	Drive: Motor locked/speed controller at its limit
Message value:	-
Drive object:	SERVO
Reaction:	OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Motor has been operating at the torque limit longer than the time specified in p2177 and below the speed threshold set in p2175. This signal can also be initiated if the speed actual value is oscillating and the speed controller output repeatedly goes to its limit. See also: p2175, p2177 (Motor locked delay time)
Remedy:	- check that the motor can freely rotate. - check the torque limit: For a positive direction of rotation r1538, for a negative direction of rotation r1539. - check the parameter, message "Motor locked" and if required, correct (p2175, p2177). - check the inversion of the actual value (p 0410). - check the motor encoder connection. - check the encoder pulse number (p0408). - for SERVO with encoderless operation and motors with low power ratings ($<300 \mathrm{~W}$), increase the pulse frequency (p1800). - after de-selecting basic positioning, check the torque limits when motoring (p1528) and when regenerating (p1529).

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07900 (N, A)	Drive: Motor locked/speed controller at its limit
Message value:	- ${ }^{\text {der }}$
Drive object:	VECTOR
Reaction:	OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Motor has been operating at the torque limit longer than the time specified in p2177 and below the speed threshold set in p2175. This signal can also be initiated if the speed actual value is oscillating and the speed controller output repeatedly goes to its limit. If the simulation mode is enabled $(\mathrm{p} 1272=1)$ and the closed-loop control with speed encoder activated (p1300 = 21), then the inhibit signal is generated if the encoder signal is not received from a motor that is driven with the torque setpoint of the closed-loop control. See also: p2175, p2177 (Motor locked delay time)
Remedy:	- check that the motor can freely rotate. - check the torque limit: For a positive direction of rotation r1538, for a negative direction of rotation r1539. - check the parameter, message "Motor locked" and if required, correct (p2175, p2177). - check the inversion of the actual value (p0410). - check the motor encoder connection. - check the encoder pulse number (p 0408). - for SERVO with encoderless operation and motors with low power ratings (<300 W), increase the pulse frequency (p1800). - after de-selecting basic positioning, check the torque limits when motoring (p 1528) and when regenerating (p 1529). - in the simulation mode and operation with speed encoder, the power unit to which the motor is connected must be powered up and must be supplied with the torque setpoint of the simulated closed-loop control. Otherwise, change over to encoderless control (refer to p1300).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F07901 Drive: Motor overspeed

Message value:
Drive object: SERVO, VECTOR
Reaction:
OFF2
Acknowledge: IMMEDIATELY
Cause: The maximum permissible speed was either positively or negatively exceeded.
The maximum permissible positive speed is formed as follows: Minimum (p1082, CI: p1085) + p2162
The maximum permissible negative speed is formed as follows: Maximum (-p1082, CI: 1088) - p2162
Remedy:
The following applies for a positive direction of rotation:

- check r1084 and if required, correct p1082, CI:p1085 and p2162.

The following applies for a negative direction of rotation:

- check r1087 and if required, correct p1082, CI:p1088 and p2162.

F07902 (N, A)	Drive: Motor stalled
Message value:	\%1
Drive object:	SERVO
Reaction:	OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	For a vector drive the system has identified that the motor has stall for a time longer than is set in p2178. Fault value (r0949, interpret decimal): 1: Stall detection using r1408.11 (p1744 or p0492). 2: Stall detection using r1408.12 (p1745). 3: Stall detection using r0056.11 (only for separately excited synchronous motors). See also: p1744 (Motor model speed threshold stall detection), p2178 (Motor stalled delay time)
Remedy:	For closed-loop speed and torque control with speed encoder, the following applies: - check the speed signal (interrupted cable, polarity, pulse number, broken encoder shaft). - check the speed encoder, if another speed encoder was selected using the data set changeover. This must be connected to the same motor that is controlled for the data set changeover. If there is no fault, then the fault tolerance (p 1744 and p0492) can be increased. For closed-loop speed and torque control without speed encoder, the following applies: - check whether the drive in the open-loop controlled mode (r1750.0) stalls under load. If yes, then increase the current setpoint using p1610. - check whether the drive stalls due to the load if the speed setpoint is still zero. If yes, then increase the current setpoint using p1610. - if the motor excitation (magnetizing) time (r0346) was significantly reduced, then it should be increased again. - check the current limits (p0640, r0067). If the current limits are too low, then the drive cannot be magnetized. - check the current controller ($\mathrm{p} 1715, \mathrm{p} 1717$) and the speed adaptation controller ($\mathrm{p} 1764, \mathrm{p} 1767$). If the dynamic response was significantly reduced, then this should be increased again. - check the speed encoder, if another speed encoder was selected using the data set changeover. This must be connected to the motor that is controlled for the data set changeover. If there is no fault, then the fault tolerance (p 1745) or the delay time (p 2178) can be increased. For separately-excited synchronous motors (closed-loop control with speed encoder), the following applies: - check the speed signal (interrupted cable, polarity, pulse number). - ensure the correct motor parameterization (rating plate and equivalent circuit diagram parameters). - check the excitation equipment and the interface to the closed-loop control. - encoder the highest possible dynamic response of the closed-loop excitation current control. - check the speed control for any tendency to oscillate and if resonance effects occur, use a bandstop filter. - do not exceed the maximum speed (p2162). If there is no fault, then the delay time can be increased (p2178).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F07902 (N, A) Drive: Motor stalled
Message value: \%1
Drive object: VECTOR
Reaction: OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: \quad For a vector drive the system has identified that the motor has stall for a time longer than is set in p2178.
Fault value (r0949, interpret decimal):
1: Stall detection using r1408.11 (p1744 or p0492).
2: Stall detection using r1408.12 (p1745).
3: Stall detection using r0056.11 (only for separately excited synchronous motors).
See also: p1744 (Motor model speed threshold stall detection), p2178 (Motor stalled delay time)
Remedy: It should always be carefully ensured that the motor data identification (p1910) as well as the rotating measurement (p1960) were carried out (also refer to p3925). For synchronous motors with encoder, the encoder must have been adjusted (p1990).
For closed-loop speed and torque control with speed encoder, the following applies:

- check the speed signal (interrupted cable, polarity, pulse number, broken encoder shaft).
- check the speed encoder, if another speed encoder was selected using the data set changeover. This must be connected to the same motor that is controlled for the data set changeover.

Reaction upon N
If there is no fault, then the fault tolerance (p 1744 and p0492) can be increased.
If the stalled motor should take place in the range of the monitor model and for speeds of less than 30% of the rated motor speed, then a change can be made directly from the current model into the flux impression (p1401.5 = 1). We therefore recommend that the time-controlled model change is switched in (p1750.4 =1) or the model changeover limits are significantly increased ($\mathrm{p} 1752>0.35$ * p0311; p1753 $=5 \%$).
For closed-loop speed and torque control without speed encoder, the following applies:

- Check whether the drive stalls solely due to the load in controlled mode (r1750.0) or when the speed setpoint is still zero. If so, increase the current setpoint via p1610 or set p1750 bit $2=1$ (sensorless vector control to standstill for passive loads).
- If the motor excitation time (p0346) was reduced significantly and the drive stalls when it is switched on and run immediately, p0346 should be increased again or quick magnetization (p1401) selected.
- Check the current limits (p 0640 , $\mathrm{r} 0067, \mathrm{r} 0289$). If the current limits are too low, then the drive cannot be magnetized. - check the current controller ($\mathrm{p} 1715, \mathrm{p} 1717$) and the speed adaptation controller ($\mathrm{p} 1764, \mathrm{p} 1767$). If the dynamic response was significantly reduced, then this should be increased again.
- check the speed encoder, if another speed encoder was selected using the data set changeover. This must be connected to the motor that is controlled for the data set changeover.
If there is no fault, then the fault tolerance (p 1745) or the delay time (p 2178) can be increased.
The following generally apply for closed-loop and torque control:
- Check whether the motor cables are disconnected.
- if the fault occurs with fault value 2 when the motor accelerates very quickly in the field weakening range, the deviation between the flux setpoint and actual value can be reduced by increasing p1596; as a consequence, the fault is not signaled.
For separately-excited synchronous motors (closed-loop control with speed encoder), the following applies:
- check the speed signal (interrupted cable, polarity, pulse number).
- ensure the correct motor parameterization (rating plate and equivalent circuit diagram parameters).
- check the excitation equipment and the interface to the closed-loop control.
- encoder the highest possible dynamic response of the closed-loop excitation current control.
- check the speed control for any tendency to oscillate and if resonance effects occur, use a bandstop filter.
- do not exceed the maximum speed (p2162).

If there is no fault, then the delay time can be increased (p2178).

Reaction upon A :
Acknowl. upon A: NONE

A07903	Drive: Motor speed deviation
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute value of the speed difference from the two setpoints ($\mathrm{p} 2151, \mathrm{p} 2154$) and the speed actual value (r 2169) exceeds the tolerance threshold (p2163) longer than tolerated (p2164, p2166). The alarm is only enabled for p2149.0 = 1 . Possible causes could be: - the load torque is greater than the torque setpoint. - when accelerating, the torque/current/power limit is reached. If the limits are not sufficient, then it is possible that the drive has been dimensioned too small. - the speed controller is inhibited (refer to p0856; refer to $\mathrm{Kp} / \mathrm{Tn}$ adaptation of the speed controller). - for closed-loop torque control, the speed setpoint does not track the speed actual value. - for active Vdc controller. - the encoder pulse number was incorrectly parameterized (p0408). The signal is not generated if the ramp-function generator tracking prevents the setpoint and actual speed from drifting (moving) apart. Only for vector drives: For V/f control, the overload condition is detected as the Imax controller is active. See also: p2149 (Monitoring configuration)
Remedy:	- increase p2163 and/or p2166. - increase the torque/current/power limits. - enable the speed controller. - for closed-loop torque control: The speed setpoint should track the speed actual value. - correct the encoder pulse number in p0408 or mount the correct tachometer.

A07904 (N)	External armature short-circuit: Contactor feedback signal "Closed" missing
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	When closing, the contactor feedback signal (p1235) did not issue the signal "Closed" (r1239.1 = 1) within the monitoring time (p 1236).
Remedy:	- check that the contactor feedback signal is correctly connected (p1235). - check the logic of the contactor feedback signal (r1239.1 = 1: "Closed", r1239.1 = 0: "Open"). - increase the monitoring time (p1236). - if required, set the external armature short-circuit without contactor feedback signal ($\mathrm{p} 1231=2$).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F07905 (N, A)	External armature short-circuit: Contactor feedback signal "Open" missing
Message value:	
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	When opening, the contactor feedback signal (p 1235) did not issue the signal "Open" $(\mathrm{r} 1239.1=0)$ within the monitoring time (p 1236).
Remedy:	- check that the contactor feedback signal is correctly connected (p1235). - check the logic of the contactor feedback signal (r1239.1 = 1: "Closed", r1239.1 = 0: "Open"). - increase the monitoring time (p1236). - if required, set the external armature short-circuit without contactor feedback signal ($\mathrm{p} 1231=2$).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07906	Armature short-circuit / internal voltage protection: Parameterization error
Message value:	Fault cause: \%1, motor data set: \%2
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The armature short-circuit is incorrectly parameterized. Fault value (r0949, interpret decimal): Low word: Motor data set number High word: Cause: 1: A permanent-magnet synchronous motor has not been selected. 101: External armature short-circuit: Output (r1239.0) not connected up. 102: External armature short-circuit with contactor feedback signal: No feedback signal connected (BI:p1235). 103: External armature short-circuit without contactor feedback signal: Delay time when opening (p1237) is 0 . 201: Internal voltage protection: The maximum output current of the Motor Module (r0289) is less than 1.8 * motor short-circuit current (r0331). 202: Internal voltage protection: A Motor Module in booksize format is not being used. 203: Internal voltage protection: The motor short-circuit current (p 0320) is greater than the maximum motor current (p0323). 204: Internal voltage protection: The activation (p1231 = 4) is not given for all motor data sets with synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}, 4 \mathrm{xx}$).
Remedy:	Re cause 1: - an armature short-circuit / voltage protection is only permissible for permanent-magnetic synchronous motors. The highest position of the motor type in p0300 must either be 2 or 4 . Re cause 101: - the contactor for the external armature short-circuit configuration should be controlled using output signal r1239.0. The signal can, e.g. be connected to an output terminal BI: p0738. Before this fault can be acknowledged, p1231 must be set again. Re cause 102:

- if the external armature short-circuit with contactor feedback signal ($p 1231=1$) is selected, this feedback signal must be connected to an input terminal (e.g. r722.x) and then connected to BI: p1235.
- alternatively, the external armature short-circuit without contactor feedback signal (p1231=2) can be selected.

Re cause 103:

- if the external armature short-circuit without contactor feedback signal (p1231 = 2) is selected, then a delay time must be parameterized in p1237. This time must always be greater than the actual contactor opening time, as otherwise the Motor Module would be short-circuited!
Re cause 201:
- a Motor Module with a higher maximum current or a motor with a lower short-circuit current must be used. The maximum Motor Module current must be higher than 1.8 * short-circuit current of the motor.
Re cause 202:
- for internal voltage protection, use a Motor Module in booksize format.

Re cause 203:

- for internal voltage protection, only use short-circuit proof motors.

Re cause 204:

- The internal voltage protection must either be activated for all motor data sets with synchronous motors (p0300 = $2 x x, 4 x x)(p 1231=3)$ or it must be de-activated for all motor data sets (p 1231 not equal to 3). This therefore ensures that the protection cannot be accidentally withdrawn as a result of a data set changeover. The fault can only be acknowledged if this condition is fulfilled.

F07907	Internal armature short-circuit: Motor terminals are not at zero potential after pulse suppression
Message value:	- ${ }^{\text {c }}$
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The function "Internal voltage protection" (p1231 = 3) was activated. The following must be observed: - when the internal voltage protection is active, after pulse suppression, all of the motor terminals are at half of the DC link voltage (without an internal voltage protection, the motor terminals are at zero potential)! - it is only permissible to use motors that are short-circuit proof (00320 < p0323). - the Motor Module must be able to continually conduct 180% short-circuit current (r0331) of the motor (r0289). - the internal voltage protection cannot be interrupted due to a fault response. If an overcurrent condition occurs during the active, internal voltage protection, then this can destroy the Motor Module and/or the motor. - if the Motor Module does not support the autonomous, internal voltage protection (r0192.10 $=0$), in order to ensure safe, reliable functioning when the line supply fails, an external 24 V power supply (UPS) must be used for the components. - if the Motor Module does support the autonomous, internal voltage protection (r0192.10 = 1), in order to ensure safe, reliable functioning when the line supply fails, the 24 V power supply for the components must be provided through a Control Supply Module. - if the internal voltage protection is active, it is not permissible that the motor is driven by the load for a longer period of time (e.g. as a result of loads that move the motor or another coupled motor).
Remedy:	None necessary. This a note for the user.

A07908

Message value:
Drive object:
Reaction:
Acknowledge:
Cause:
Remedy: For synchronous motors, the armature short-circuit braking is activated if a 1 signal is present via binector input p1230.
See also: p1230 (Armature short-circuit / DC brake activation), p1231 (Armature short-circuit / DC brake configuration)

F07909	Internal voltage protection: De-activation only effective after POWER ON
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	The de-activation of the internal voltage protection (p1231 not equal to 3) only becomes effective after POWER ON The status signal r1239.6 = 1 indicates that the internal voltage protection is ready.
Remedy:	None necessary. This a note for the user.
A07910 (N)	Drive: Motor overtemperature
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	KTY: The motor temperature has exceeded the fault threshold (p0604 or p0616). VECTOR: The response parameterized in p0610 becomes active. PTC: The response threshold of 1650 Ohm was exceeded. Alarm value (r2124, interpret decimal): SME not selected in p0601: 1: No output current reduction. 2: Output current reduction active. SME selected in p0601 (p0601 = 10): The number specifies the sensor channel that resulted in the alarm being output. See also: p0604 (Motor overtemperature alarm threshold), p0610 (Motor overtemperature response)
Remedy:	- check the motor load. - check the motor ambient temperature. - check KTY84.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F07913	Excitation current outside the tolerance range
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The difference between the excitation current actual value and setpoint has exceeded the tolerance: abs $(\mathrm{r} 1641-\mathrm{r} 1626)>\mathrm{p} 3201+\mathrm{p} 3202$ The cause of this fault is again reset for abs(r1641-r1626) < p3201.
Remedy:	- check the parameterization (p1640, p3201, p3202). - check the interfaces to the excitation equipment (r1626, p1640). - check the excitation equipment.
F07914	Flux out of tolerance
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The difference between the flux actual value and setpoint has exceeded the tolerance: abs (r0084-r1598) > p3204 + p3205 The cause of this fault is again reset for abs(r0084-r1598) < p3204. The fault is only issued after the delay time in p3206 has expired.

```
Remedy: - check the parameterization (p3204, p3205).
    - check the interfaces to the excitation equipment (r1626, p1640).
    - check the excitation equipment
    - check the flux control (p1592, p1592, p1597).
    - check the control for oscillation and take the appropriate counter measures (e.g. optimize the speed control loop,
    parameterize a bandstop filter).
```

A07918 (N)	Three-phase setpoint generator operation selected/active
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	Only for separately excited synchronous motors ($p 0300=5$): The current open-loop/closed-loop control mode is I/f control (open-loop) with a fixed current (p1300 = 18). The speed is entered via the setpoint channel and the current setpoint is given by the minimum current (p 1620). It must be ensured that in this mode, the control dynamic performance is very limited. This is the reason that longer ramp-up times should be set for the setpoint speed than for normal operation. See also: p1620 (Stator current, minimum)
Remedy:	Select another open-loop/closed-loop control mode See also: p1300 (Open-loop/closed-loop control operating mode)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07920	Drive: Torque too low
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The torque deviates from the torque/speed envelope characteristic in the negative direction (too low). See also: p2181 (Load monitoring response)
Remedy:	Adapt the load.

A07921 Drive: Torque too high
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The torque deviates from the torque/speed envelope characteristic in the positive direction (too high).
Remedy: Adapt the load.

A07922	Drive: Torque outside the tolerance
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The torque deviates from the torque/speed envelope characteristic.
Remedy:	Adapt the load.
F07923	Drive: Torque too low
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The torque deviates from the torque/speed envelope characteristic in the negative direction (too low).
Remedy:	Adapt the load.

F07924	Drive: Torque too high
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The torque deviates from the torque/speed envelope characteristic in the positive direction (too high).
Remedy:	Adapt the load.

F07925 Drive: Torque outside the tolerance

Message value:
Drive object: SERVO, VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY
Cause: The torque deviates from the torque/speed envelope characteristic.
Remedy: Adapt the load.

A07926	Drive: Envelope curve, parameter invalid
Message value:	Parameter: \%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	Invalid parameter values were entered for the envelope characteristic of the load monitoring.
	The following rules apply for the speed thresholds:
	p2182 < p2183 < p2184
	The following rules apply for the torque thresholds:
	p2185 > p2286
	p2187 > p2188
	p2189 > p2190
	Alarm value (r2124, interpret decimal):
	Number of the parameter with the invalid value.
	Set the parameters for the load monitoring according to the applicable rules.

A07927	DC brake active
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor is braked using DC current - the DC current brake is active.
Remedy:	1) An alarm with alarm response DC brake is active.
	The motor is braked with the DC braking current p1232 for the duration in p1233. If the standstill threshold p1226 is undershot, then braking is prematurely canceled. 2) The DC braking function was activated at Bico input p1230 for a set DC brake p1230 $=4$. Braking current p1232 should be impressed until the Bico activation is canceled again.

F07928 Internal voltage protection initiated

Message value:

Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: \quad The Motor Module signals that the motor is short-circuited through the power semiconductors (r1239.5 = 1). The pulses cannot be enabled. The internal voltage protection is selected ($\mathrm{p} 1231=3$).

Remedy:	If the Motor Module supports the autonomous internal voltage protection (r0192.10 = 1), then the Motor Module automatically decides - using the DC link voltage - as to whether the armature short-circuit should be activated. The armature short-circuit is activated and response OFF2 is initiated if the DC link voltage exceeds 800 V . If the DC link voltage falls below 450 V , then the armature short-circuit is withdrawn. If the motor is still in a critical speed range, the armature short-circuit is re-activated once the DC link voltage exceeds the threshold of 800 V . If the autonomous (independent) internal voltage protection is active (r1239.5 = 1) and the line supply returns (450 $\mathrm{V}<\mathrm{DC}$ link voltage $<800 \mathrm{~V}$), the armature short-circuit is withdrawn after 1 minute.
F07930	Drive: Brake control error
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The Control Unit has detected a brake control error. Fault value (r0949, interpret decimal): 10, 11: Fault in "open holding brake" operation. - No brake connected or wire breakage (check whether brake releases for p1278 = 1). - Ground fault in brake cable. 20: Fault in "brake open" state. - Short-circuit in brake winding. 30, 31: Fault in "close holding brake" operation. - No brake connected or wire breakage (check whether brake releases for p1278 = 1). - Short-circuit in brake winding. 40: Fault in "brake closed" state. 50: Fault in the brake control circuit of the Control Unit or communication fault between the Control Unit and Motor Module (brake control). Note: The following causes may apply to fault values: - motor cable is not shielded correctly. - defect in control circuit of the Motor Module. See also: p1278 (Brake control, diagnostics evaluation)
Remedy:	- check the motor holding brake connection. - check the function of the motor holding brake. - check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified. - check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are tightly screwed to the housing). - replace the Motor Module involved. Operation with Safe Brake Module: - check the Safe Brake Modules connection. - replace the Safe Brake Module. See also: p1215 (Motor holding brake configuration), p1278 (Brake control, diagnostics evaluation)

A07931 (F, N) Brake does not open
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: \quad This alarm is output for r1229.4 $=1$.
See also: p1216 (Motor holding brake, opening time), r1229 (Motor holding brake status word)
Remedy: - check the functionality of the motor holding brake.
- check the feedback signal (p1223).

Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	
Reaction upon N:	NONEDIATELY
Acknowl. upon N:	NONE
A07932	Brake does not close
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	This alarm is output for r1229.5 = 1.
	For r1229.5 = 1, OFF/OFF3 are suppressed to prevent the drive accelerating by a load that drives the motor - whereby OFF2 remains effective. See also: p1217 (Motor holding brake closing time), r1229 (Motor holding brake status word)
Remedy:	- check the functionality of the motor holding brake. - check the feedback signal (p1222).

F07935 (N)	Drv: Motor holding brake detected
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A motor with integrated motor holding brake was detected where the brake control has not been configured (p1215 $=0)$. The brake control configuration was then set to "motor holding brake the same as sequence control" (p1215 = 1).
Remedy:	None necessary. See also: p1215 (Motor holding brake configuration)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F07940	Sync-line-drive: Synchronization error
Message value:	-
Drive object:	VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	After synchronization has been completed, the phase difference (r3808) is greater than the threshold value, phase synchronism (p3813). OFF1 or OFF3 response, while the closed-loop phase control is active (r3819.6 = 1) or synchronism reached (r3819.2 = 1). Enable signal withdrawn (p3802 = 0), while the closed-loop phase control was active (r3819.6 = 1).
Remedy:	If required increase the threshold value phase synchronism (p3813) for synchronizing the line supply to the drive. Before OFF1 or OFF3, complete synchronizing (r03819.0 = 0). Before withdrawing the enable signal ($\mathrm{p} 3802=0$), reach synchronism (r3819.2 = 1). See also: p3813 (Sync-line-drive phase synchronism threshold value)

A07941	Sync-line-drive: Target frequency not permissible
Message value:	Parameter: \%1
Drive object:	VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The target frequency is outside the permissible value range. Alarm value (r2124, interpret decimal): 1084: Target frequency greater than the positive speed limit, f_sync > f_max (r1084). 1087: Target frequency less than the negative speed limit, f_sync < f_min (r1087).
Remedy:	Fulfill the conditions for the target frequency for line-drive synchronization. See also: r1084, r1087

A07942	Sync-line-drive: Setpoint frequency is completely different than the target frequency
Message value:	-
Drive object:	VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is a considerable difference between the setpoint frequency and the target frequency (f_set <> f_target). The
	deviation that can be tolerated is set in p3806.
Remedy:	The alarm automatically disappears after the difference that can be tolerated between the setpoint and target fre-
	quencies (p3806) is reached.
	See also: p3806 (Sync-line-drive frequency difference threshold value)

Remedy: Fulfill the conditions for the friction characteristic.

Re alarm value = 1538:
Check the upper effective torque limit (e.g. in the field weakening range).
Re alarm value = 1539:
Check the lower effective torque limit (e.g. in the field weakening range).
Re alarm value $=3820 \ldots 3839$:
Fulfill the conditions to set the parameters of the friction characteristic.
If the motor data (e.g. the maximum speed p0322) are changed during commissioning ($\mathrm{p} 0010=1,3$), then the technological limits and threshold values, dependent on this, must be re-calculated by selecting p0340=5).

A07961	Drive: Friction characteristic record activated
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic friction characteristic record is activated. The friction characteristic is recorded at the next power-on command.
Remedy:	None necessary. The alarm disappears automatically after the friction characteristic record has been successfully completed or the record is de-activated (p3845 = 0).
F07963	Drive: Friction characteristic record interrupted
Message value:	Parameter: \%1
Drive object:	SERVO, VECTOR
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	The conditions to record the friction characteristic are not fulfilled. Fault value (r0949, interpret decimal): 0046: Missing enable signals (r0046). 1082: The highest speed value to be approached (p3829) is greater than the maximum speed (p 1082). 1084: The highest speed value to be approached (p 3829) is greater than the maximum speed ($\mathrm{r} 1084, \mathrm{p} 1083, \mathrm{p} 1085$) 1087: The highest speed value to be approached (p 3829) is greater than the maximum speed ($\mathrm{r} 1087, \mathrm{p} 1086, \mathrm{p} 1088$) 1110: Friction characteristic record, negative direction selected (p 3845) and negative direction inhibited (p 1110). 1111: Friction characteristic record, positive direction selected (p 3845) and positive direction inhibited (p1111). 1198: Friction characteristic record selected ($\mathrm{p} 3845>0$) and negative (p 1110) and positive directions (p 1111) inhibited (r1198). 1300: The control mode (p 1300) has not been set to closed-loop speed control. 1755: For encoderless closed-loop control ($p 1300=20$), the lowest speed value to be approached ($p 3820$) is less than or equal to the changeover speed, open-loop controlled operation (p1755). 1910: Motor data identification activated. 1960: Speed controller optimization activated. 3820 ... 3829: Speed (p 382 x) cannot be approached. 3840: Friction characteristic incorrect. 3845: Friction characteristic record de-selected.
Remedy:	Fulfill the conditions to record the friction characteristic. Re fault value $=0046$: Establish missing enable signals. Re fault value $=0840$: Select OFF1 (p0840) only after the friction characteristic record has been completed. Re fault value = 1082, 1084, 1087: Select the highest speed value to be approached (p3829) less than or equal to the maximum speed (p1082, r1084, r1087). Re-calculate the speed points along the friction characteristic (p0340 = 5). Re fault value = 1110: Select the friction characteristic record, positive direction (p3845). Re fault value = 1111: Select the friction characteristic record, negative direction (p3845). Re fault value = 1198: Enable the permitted direction (p1110, p1111, r1198). Re fault value = 1300: Set the control mode (p 1300) on the closed-loop speed control $(\mathrm{p} 1300=20,21)$.

Re fault value $=1755$:
For encoderless closed-loop speed control (p1300 = 20) select the lowest speed value to be approached (p3820) greater than the changeover speed of open-loop controlled operation (p1755).
Re-calculate the speed points along the friction characteristic ($\mathrm{p} 0340=5$).
Re fault value = 1910:
Exit the motor data identification routine (p1910).
Re fault value $=1960$:
Exist the speed controller optimization routine (p 1960).
Re fault value 3820 ... 3829:

- check the load at speed p382x.
- check the speed signal (r0063) for oscillation at speed p 382 x . If required, check the speed controller settings.

Re fault value $=3840$:
Make the friction characteristic error-free (p3820-p3829, p3830-p3839, p3840).
Re fault value $=3845$:
Activate the friction characteristic record (p3845).

A07965 (N)	Drive: Save required
Message value:	-
Drive object:	SERVO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The angular commutation offset (p0431) was re-defined and has still not been saved. In order to permanently accept the new value, it must be saved in a non-volatile fashion (p0971, p0977). See also: p0431 (Angular commutation offset), p1990 (Encoder adjustment, determine angular commutation offset)
Remedy:	None necessary. This alarm automatically disappears after the data has been saved.
See also: p0971 (Save drive object parameters), p0977 (Save all parameters)	
Reaction upon N:	NONE
NONE	

F07968	Drive: Lq-Ld measurement incorrect
Message value:	\%1
Drive object:	VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the Lq-Ld measurement. Fault value (r0949, interpret decimal): 10: Stage 1: The ratio between the measured current and zero current is too low. 12: Stage 1: The maximum current was exceeded. 15: Second harmonic too low. 16: Drive converter too small for the measuring technique. 17: Abort due to pulse inhibit.
Remedy:	Re fault value $=10$: Check whether the motor is correctly connected. Replace the Motor Module involved. De-activate traversing (p1909). Re fault value $=12$: Check whether motor data have been correctly entered. De-activate traversing (p1909). Re fault value $=16$: De-activate traversing (p1909). Re fault value = 17: Repeat traversing.
F07969	Drive: Incorrect pole position identification
Message value:	\%1
Drive object:	VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the pole position identification routine. Fault value (r0949, interpret decimal): 1: Current controller limited 2: Motor shaft locked. 4: Encoder speed signal not plausible. 10: Stage 1: The ratio between the measured current and zero current is too low. 11: Stage 2: The ratio between the measured current and zero current is too low. 12: Stage 1: The maximum current was exceeded. 13: Stage 2: The maximum current was exceeded. 14: Current difference to determine the $+d$ axis too low. 15: Second harmonic too low. 16: Drive converter too small for the measuring technique. 17: Abort due to pulse inhibit. 18: First harmonic too low. 20: Pole position identification requested with the motor shaft rotating and activated flying restart function.
Remedy:	Re fault value =1: Check whether the motor is correctly connected. Check whether motor data have been correctly entered. Replace the Motor Module involved. Re fault value $=2$: Open the motor holding brake (p 1215) and bring the motor into a no-load condition. Re fault value $=4$: Check whether the encoder pulse number (p0408) and gearbox factor (p0432, p0433) are correct. Check whether the motor pole pair number is correct (p 0314). Re fault value $=10$: When selecting p1980 $=4$: Increase the value for p0325. When selecting p1980 = 1: Increase the value for p0329. Check whether the motor is correctly connected. Replace the Motor Module involved.

Re fault value = 11:
Increase the value for p0329.
Check whether the motor is correctly connected.
Replace the Motor Module involved.
Re fault value $=12$
When selecting p1980 $=4$: Reduce the value for p 0325 .
When selecting p1980 = 1: Reduce the value for p0329.
Check whether motor data have been correctly entered.
Re fault value = 13:
Reduce the value for p 0329 .
Check whether motor data have been correctly entered.
Re fault value = 14:
Increase the value for p0329.
Re fault value = 15 :
Increase the value for p0325
Motor not sufficiently anisotropic, change the technique (p1980==1 or 10)
Re fault value = 16:
De-activate traversing/moving (p1982).
Re fault value = 17:
Repeat traversing.
Re fault value = 18:
Increase the value for 00329 .
Saturation not sufficient, change the technique (p1980==10).
Re fault value = 20:
Before carrying out a pole position identification routine ensure that the motor shaft is absolutely stationary (zero speed).

F07970

Message value:

Drive object:
Drive: Automatic encoder adjustment incorrect

Reaction:
VECTOR

Acknowledge:
Cause: A fault has occurred during the automatic encoder adjustment.
Fault value (r0949, decimal):
1: Current controller limited
2: Motor shaft locked.
4: Encoder speed signal not plausible.
10: Stage 1: The ratio between the measured current and zero current is too low.
11: Stage 2: The ratio between the measured current and zero current is too low.
12: Stage 1: The maximum current was exceeded.
13: Stage 2: The maximum current was exceeded.
14: Current difference to determine the +d axis too low
15: Second harmonic too low.
16: Drive converter too small for the measuring technique.
17: Abort due to pulse inhibit.
Remedy:
Re fault value $=1$:
Check whether the motor is correctly connected.
Check whether motor data have been correctly entered.
Replace the Motor Module involved.
Re fault value $=2$:
Open the motor holding brake (p 1215) and bring the motor into a no-load condition.
Re fault value = 4:
Check whether the speed actual value inversion is correct (p0410.0).
Check whether the motor is correctly connected.
Check whether the encoder pulse number (p 0408) and gearbox factor ($\mathrm{p} 0432, \mathrm{p} 0433$) are correct.
Check whether the motor pole pair number is correct (p 0314).
Re fault value = 10 :
Increase the value for 00325 .
Check whether the motor is correctly connected.
Replace the Motor Module involved.
Re fault value = 11:
Increase the value for p 0329.

Check whether the motor is correctly connected.

Replace the Motor Module involved.
Re fault value = 12:
Reduce the value for p0325.
Check whether motor data have been correctly entered.
Re fault value = 13:
Reduce the value for p 0329 .
Check whether motor data have been correctly entered.
Re fault value = 14:
Increase the value for 00329 .
Re fault value $=15$:
Increase the value for p0325.
Re fault value = 16:
De-activate traversing/moving (p1982).
Re fault value = 17:
Repeat traversing.

A07971 (N)	Drive: Angular commutation offset determination activated
Message value:	- ${ }^{\text {- }}$
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic determination of the angular commutation offset (encoder adjustment) is activated (p1990 = 1). The automatic determination is carried out with the next power-on command. For SERVO and fault F07414 present, the following applies: The determination of the angular commutation offset is automatically activated (p1990 = 1), if a pole position identification technique is set in p1980. See also: p1990 (Encoder adjustment, determine angular commutation offset)
Remedy:	None necessary. The alarm automatically disappears after determination or for the setting p1990 $=0$.
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A07980 Drive: Rotating measurement activated
Message value: -
Drive object: SERVO
Reaction: NONE

Acknowledge: NONE
Cause: The rotating measurement is activated. For the rotating measurement, the motor can accelerate up to the maximum speed and with maximum torque. Only the parameterized current limit (p0640) and the maximum speed (p1082) are effective. The behavior of the motor can be influenced using the direction inhibit (p1959.14, p1959.15) and the ramp-up/ramp-down time (p1958).
The rotating measurement is carried out at the next power-on command.
See also: p1960
Remedy: None necessary.
The alarm automatically disappears after the rotating measurement has been successfully completed or for the setting p1960 $=0$.

A07980	Drive: Rotating measurement activated
Message value:	-
Drive object:	VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement (automatic speed controller optimization) is activated. The rotating measurement is carried out at the next power-on command. See also: p1960
Remedy:	None necessary. The alarm disappears automatically after the speed controller optimization has been successfully completed or for the setting p1900 $=0$.

F07983	Drive: Rotating measurement saturation characteristic
Message value:	\%1
Drive object:	VECTOR
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred while determining the saturation characteristic. Fault value (r0949, interpret decimal): 1: The speed did not reach a steady-state condition. 2: The rotor flux did not reach a steady-state condition. 3: The adaptation circuit did not reach a steady-state condition. 4: The adaptation circuit was not enabled. 5: Field weakening active. 6: The speed setpoint was not able to be approached as the minimum limiting is active. 7: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active. 8: The speed setpoint was not able to be approached as the maximum limiting is active. 9: Several values of the determined saturation characteristic are not plausible. 10: Saturation characteristic could not be sensibly determined because load torque too high.
Remedy:	Re fault value $=1$: - the total drive moment of inertia is far higher than that of the motor (p0341, p0342). De-select rotating measurement (p 1960), enter the moment of inertia p0342, re-calculate the speed controller p0340 $=4$ and repeat the measurement. Re fault value = $1 \ldots 2$: - increase the measuring speed (p1961) and repeat the measurement. Re fault value = 1 ... 4: - check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$. - check the moment of inertia (p0341, p0342). After the change: Calculate p0340=3. - carry out a motor data identification routine (p1910). - if required, reduce the dynamic factor (p1967<25\%). Re fault value $=5$: - the speed setpoint (p1961) is too high. Reduce the speed. Re fault value $=6$: - adapt the speed setpoint (p1961) or minimum limiting (p1080). Re fault value $=7$: - adapt the speed setpoint (p1961) or suppression (skip) bandwidths (p1091 ... p1094, p1101). Re fault value $=8$: - adapt the speed setpoint (p1961) or maximum limit (p1082, p1083 and p1086). Re fault value $=9,10$: - the measurement was carried out at an operating point where the load torque is too high. Select a more suitable operating point, either by changing the speed setpoint (p1961) or by reducing the load torque. The load torque may not be varied while making measurements. Note: The saturation characteristic identification routine can be disabled using p1959.1. See also: p1959
F07984	Drive: Speed controller optimization, moment of inertia
Message value:	\%1
Drive object:	VECTOR
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred while identifying the moment of inertia. Fault value (r0949, interpret decimal): 1: The speed did not reach a steady-state condition. 2: The speed setpoint was not able to be approached as the minimum limiting is active. 3. The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active. 4. The speed setpoint was not able to be approached as the maximum limiting is active.

	5: It is not possible to increase the speed by 10% as the minimum limiting is active. 6: It is not possible to increase the speed by 10% as the suppression (skip) bandwidth is active. 7: It is not possible to increase the speed by 10% as the maximum limiting is active. 8: The torque difference after the speed setpoint step is too low in order to be able to still reliably identify of inertia. 9: Too few data to be able to reliably identify the moment of inertia. 10: After the setpoint step, the speed either changed too little or in the incorrect direction. 11: The identified moment of inertia is not plausible.
Remedy:	Re fault value $=1$: - check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$. - check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$. - carry out a motor data identification routine (p1910). - if required, reduce the dynamic factor (p1967<25\%). Re fault value $=2,5$: - adapt the speed setpoint (p 1965) or adapt the minimum limit (p 1080). Re fault value $=3,6$: - adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101). Re fault value $=4,7$: - adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086). Re fault value $=8$: - the total drive moment of inertia is far higher than that of the motor (refer to p0341, p0342). De-select surement (p 1960), enter the moment of inertia p342, re-calculate the speed controller p0340 $=4$ and re surement. Re fault value $=9$: - check the moment of inertia (p0341, p0342). After the change, re-calculate (p0340=3 or 4) Re fault value $=10$: - check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$. Note: The moment of inertia identification routine can be disabled using p1959.2. See also: p1959
F07985	Drive: Speed controller optimization (oscillation test)
Message value:	\%1
Drive object:	VECTOR
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the vibration test. Fault value (r0949, interpret decimal): 1: The speed did not reach a steady-state condition. 2: The speed setpoint was not able to be approached as the minimum limiting is active. 3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active. 4: The speed setpoint was not able to be approached as the maximum limiting is active. 5: Torque limits too low for a torque step. 6: No suitable speed controller setting was found.
Remedy:	Re fault value $=1$: - check the motor parameters (rating plate data). After the change: Calculate p0340=3. - check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$. - carry out a motor data identification routine (p1910). - if required, reduce the dynamic factor (p1967 < 25%). Re fault value $=2$: - adapt the speed setpoint (p 1965) or adapt the minimum limit (p 1080). Re fault value $=3$: - adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101). Re fault value $=4$: - adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086). Re fault value $=5$: - increase the torque limits (e.g. p1520, p1521). Re fault value $=6$: - reduce the dynamic factor (p 1967). - disable the vibration test $(p 1959.4=0)$ and repeat the rotating measurement. See also: p1959

F07986	Drive: Rotating measurement ramp-function generator
Message value:	\%1
Drive object:	VECTOR
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	During the rotating measurements, problems with the ramp-function generator occurred. Fault value (r0949, interpret decimal): 1: The positive and negative directions are inhibited.
Remedy:	Re fault value $=1$: Enable the direction (p1110 or p1111).
A07987	Drive: Rotating measurement, no encoder available
Message value:	\%1
Drive object:	VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	No encoder available. The rotating measurement was carried out without encoder.
Remedy:	Connect encoder or select p1960 $=1,3$.
F07988	Drive: Rotating measurement, no configuration selected
Message value:	-
Drive object:	VECTOR
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	When configuring the rotating measurement (p1959), no function was selected.
Remedy:	Select at least one function for automatic optimization of the speed controller (p1959). See also: p1959
F07989	Drive: Rotating measurement leakage inductance (q-axis)
Message value:	\%1
Drive object:	VECTOR
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred while measuring the dynamic leakage inductance. Fault value (r0949, interpret decimal): 1: The speed did not reach a steady-state condition. 2: The speed setpoint was not able to be approached as the minimum limiting is active. 3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active. 4: The speed setpoint was not able to be approached as the maximum limiting is active. 5: The 100% flux setpoint was not reached. 6: No Lq measurement possible because field weakening is active. 7: Speed actual value exceeds the maximum speed p1082 or 75% of the rated motor speed. 8: Speed actual value is below 2% of the rated motor speed.
Remedy:	Re fault value $=1$: - check the motor parameters. - carry out a motor data identification routine (p1910). - if required, reduce the dynamic factor (p1967 < 25%). Re fault value $=2$: - adapt the speed setpoint (p 1965) or adapt the minimum limit (p 1080). Re fault value = 3: - adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101). Re fault value $=4$: - adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086). Re fault value $=5$: - flux setpoint p1570 $=100 \%$ and current setpoint p1610 $=0 \%$ kept during the Lq measurement.

Re fault value $=6$:

- reduce the regenerative load so that the drive does not reach field weakening when accelerating.
- reduce p1965 so that the q leakage inductance is recorded at lower speeds.

Re fault value $=7$:

- increase p1082 if this is technically permissible.
- reduce p1965 so that the q leakage inductance is recorded at lower speeds.

Re fault value $=8$:

- reduce the load when motoring so that the drive is not braked.
- increase p1965 so that the measurement is possibly done at higher speeds.

Note:
The measurement of the q leakage inductance can be disabled using p1959.5. If only p1959.5 is set, then only this measurement is carried out if p1960 is set to 1,2 and the drive is powered up.
See also: p1959

F07990
 Drive: Incorrect motor data identification

Message value:
Message value. \%1

A fault has occurred during the identification routine.
Fault value (r0949, interpret decimal):
1: Current limit value reached.
2: Identified stator resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn .
3: Identified rotor resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn .
4: Identified stator reactance lies outside the expected range $50 \ldots 500 \%$ of Zn .
5: Identified magnetizing reactance lies outside the expected range $50 \ldots 500 \%$ of Zn .
6: Identified rotor time constant lies outside the expected range $10 \mathrm{~ms} . .5 \mathrm{~s}$.
7: Identified total leakage reactance lies outside the expected range $4 \ldots 50 \%$ of Zn .
8: Identified stator leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn .
9: Identified rotor leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn .
10: Motor has been incorrectly connected
11: Motor shaft rotates.
20: Identified threshold voltage of the semiconductor devices lies outside the expected range $0 \ldots 10 \mathrm{~V}$.
30: Current controller in voltage limiting.
40: At least one identification contains errors. The identified parameters are not saved to prevent inconsistencies.
50: With the selected current controller sampling rate, the pulse frequency cannot be implemented.
Note:
Percentage values are referred to the rated motor impedance:
Zn = Vmot.nom / sqrt(3) / Imot,nom
101: Voltage amplitude even at 30% maximum current amplitude is too low to measure the inductance.
102, 104: Voltage limiting while measuring the inductance.
103: Maximum frequency exceeded during the rotating inductance measurement.
110: Motor not finely synchronized before the rotating measurement.
111: The zero mark is not received within 2 revolutions.
112: Fine synchronization is not realized within 8 seconds after the zero mark has been passed.
113: The power, torque or current limit is zero.
120: Error when evaluating the magnetizing inductance.
125: Cable resistance greater than the total resistance.
126: Series inductance greater than the total leakage inductance.
127: Identified leakage inductance negative.
128: Identified stator resistance negative.
129: Identified rotor resistance negative.
130: Drive data set changeover during the motor data identification routine.
140: The setpoint channel inhibits both directions.
160: Accelerating when determining kT, moment of inertia or reluctance torque too short or the accelerating time is too long.

173: Internal problem.
180: Identification speed (maximum speed, rated speed, 0.9 * p0348) less than p1755.
190: Speed setpoint not equal to zero.
191: An actual speed of zero is not reached.
192: Speed setpoint not reached.
193: Inadmissible motion of the motor when identifying the voltage emulation error.
194: Supplementary torque (r1515) not equal to zero.
195: Closed-loop torque control active.
200, 201: Not possible to identify the voltage emulation error characteristic of the drive converter ($\mathrm{p} 1952, \mathrm{p} 1953$).
Remedy:
Re fault value $=0$:

- check whether the motor is correctly connected. Observe configuration (star/delta).

Re fault value $=1 \ldots 40$:

- check whether motor data have been correctly entered in p0300, p0304 ... p0311.
- is there an appropriate relationship between the motor power rating and that of the Motor Module? The ratio of the Motor Module to the rated motor current should not be less than 0.5 and not be greater than 4 .
- check configuration (star/delta).

Re fault value $=2$:

- for parallel circuits, check the motor winding system in p7003. If, for power units connected in parallel, a motor is specified with a single-winding system (p7003 $=0$), although a multi-winding system is being used, then a large proportion of the stator resistance is interpreted as feeder cable resistance and entered in p0352.
Re fault value $=4,7$:
- check whether inductances are correctly entered in p0233 and p0353.
- check whether motor was correctly connected (star/delta).

Re fault value $=50$:

- reduce the current controller sampling rate.

Re fault value = 101:

- increase current limit (p0640) or torque limit (p1520, p1521).
- check current controller gain (p1715).
- reduce current controller sampling time (p0115).
- it may be impossible to completely identify the L characteristic, as required current amplitude is too high.
- suppress meas. (p1909, p1959).

Re fault value = 102, 104:

- reduce current limit (p0640).
- check current controller P gain.
- suppress meas. (p1909, p1959).

Re fault value $=103$:

- increase external moment of inertia (if possible).
- reduce current controller sampling time (p0115).
- suppress meas. (p1909, p1959).

Re fault value $=110$:

- before rotating measurement, traverse motor over zero mark.
Re fault value $=111$:
- it is possible that encoder does not have zero mark. Correct setting in p0404.15.
- encoder pulse number was incorrectly entered. Correct setting in p0408.
- if zero mark signal is defective, replace encoder.

Re fault value $=112$:

- upgrade encoder software.

Re fault value =113:

- check the limits (p0640, p1520, p1521, p1530, p1531), correct the zero values.

Re fault value $=120$:

- check current controller P gain ($p 1715$) and if required, reduce.
- increase the pulse frequency (p1800).

Re fault value $=125$:

- reduce cable resistance (p0352).

Re fault value = 126:

- reduce series inductance (p0353).

Re fault value $=127,128,129$:

- it is possible that current controller is oscillating. Reduce p 1715 before next measurement.

Re fault value = 130:

- do not initiate a drive data set changeover during motor ident. routine.

Re fault value = 140:

- before the measurement, enable at least one direction ($p 1110=0$ or p1111 $=0$ or p1959.14 $=1$ or p1959.15 $=1$).

Re fault value $=160$:

- extend accelerating time when determining kT , moment of inertia and reluctance torque, e.g. by increasing max. speed (p 1082), increasing moment of inertia or reducing max. current (p0640).
- in encoderless operation with load moment of inertia, parameterize the load moment of inertia (p1498).
- reduce the ramp-up time (p1958).
- increase speed controller P-gain (p1460).
- suppress meas. (p1959).

Re fault value $=173$:

Re fault value = 180:

- increase max. speed (p1082).
- reduce p1755.
- suppress meas. (p1909, p1959).

Re fault value $=190$:

- set speed setpoint to zero.

Re fault value $=191$:

- do not start motor data ident. routine while motor is still rotating.

Re fault value = 192:

- check closed-loop speed control (motor rotor may be locked or closed-loop speed control is not functioning).
- for p1215 = 1, 3 (brake the same as the sequence control) check the control sense (p 0410.0).
- ensure that enable signals are present during measurement.
- remove any pulling loads from motor.
- increase max. current (p0640).
- reduce max. speed (p1082).
- suppress meas. (p1959).

Re fault value $=193$:

- the motor has moved through more than 5° electrical (r0093). Lock motor rotor at one of these pole position angles (r0093): $90^{\circ}, 210^{\circ}$ or $330^{\circ}\left(+/-5^{\circ}\right)$ and then start identification.
Re fault value $=194$:
- switch out all supplementary torques (e.g. CI: p1511).
- for hanging/suspended axes: Lock motor rotor at one of these pole position angles (r0093): $90^{\circ}, 210^{\circ}$ or $330^{\circ}(+/-$
1°) and then start identification.
Re fault value $=195$:
- de-select closed-loop torque control ($\mathrm{p} 1300=21$ or 20 , or set the signal source in p1501 to a 0 signal).

Re fault value $=200$, 201:

- set pulse frequency to 0.5^{*} current controller frequency (e.g. 4 kHz for a current controller clock cycle of 125 us).
- reduce cable length between Motor Module and motor.
- read-out measured values (r1950, r1951) and therefore determine suitable values for p1952, p1953 according to your own estimation.

A07991 (N)	Drive: Motor data identification activated
Message value:	-
Drive object:	SERVO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor data ident. routine is activated.
	The motor data identification routine is carried out at the next power-on command. See also: p1910, p1960
Remedy:	None necessary. The alarm automatically disappears after the motor data identification routine has been successfully completed or for the setting p1910 = 0 or p1960 = 0.
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A07991 (N)	Drive: Motor data identification activated
Message value:	-
Drive object:	VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor data ident. routine is activated. The motor data identification routine is carried out at the next power-on command. See also: p1910
Remedy:	None necessary. The alarm automatically disappears after the motor data identification routine has been successfully completed or for the setting p1900 $=0$.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F07993	Drive: Incorrect direction of rotation of the field or encoder actual value inversion
Message value:	-
Drive object:	SERVO
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	Either the direction of the rotating field or the encoder actual value has an incorrect sign. The motor data identification automatically changed the actual value inversion (p 0410) in order to correct the control sense. This can result in a direction of rotation change. To acknowledge this fault, the correctness of the direction of rotation must first be acknowledged with $\mathrm{p} 1910=-2$.
Remedy:	Check the direction of rotation, also for the position controller, if one is being used. If the direction of rotation is correct, the following applies: No additional measures are required (except p1910 $=-2$ and acknowledge fault). If the direction of rotation is incorrect, the following applies: To change the direction of rotation, two phases must be interchanged and the motor identification routine must be repeated.
F07995	Drive: Pole position identification not successful
Message value:	\%1
Drive object:	SERVO
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The pole position identification routine was unsuccessful.
	Fault value (r0949, interpret decimal):
	1: No current is established.
	2: The starting current is not zero.
	3: The selected max. distance was exceeded (p1981).
	4x: The measuring signal does not permit a clear evaluation.
	5: The max. current was exceeded during the measurement.
	6: The current measurement must be re-calibrated.
	7x: The Sensor Module does not support the pole position identification routine.
	70 ... 79: Only for internal Siemens troubleshooting.
	8: The pole position identification routine current required is greater than the max. current.
	9: The set pole position identification routine current is zero.
	10: Data set changeover during the pole position identification.
	11: The encoder adjustment to determine the commutation angle ($\mathrm{p} 1990=1$) and the encoder without zero mark is not finely synchronized or does not have any valid data.
	100: Motion-based pole position identification, 1st and 2nd measurement different. Motor locked or current (p1993) too low.
	101: Motion-based position position identification, insufficient motion, motor locked or current (p1993) too low. 102: Motion-based pole position identification, brake is being used and is closed. The motion-based position position identification in conjunction with the brake is not permitted.
	103: Motion-based pole position identification without encoder.
	104: Motion-based pole position identification, speed actual value not zero after stabilizing time.

Re fault value $=1$:
Check the motor connection and DC link voltage.
For the following parameters, set practical values that are not zero (p0325, p0329).
Re fault value = 3:
Increase the max. distance (p1981).
Reduce the currents for the pole position identification routine ($\mathrm{p} 0325, \mathrm{p} 0329$).
Stop the motor in order to carry out the pole position identification routine.
Re fault value $=40$... 49:
Increase the currents for the pole position identification routine (p0325, p0329).
Stop the motor in order to carry out the pole position identification routine.
Select another technique for pole position identification routine (p1980).
Use another motor, absolute encoder or Hall sensors.
Re fault value $=5$:
Reduce the currents for the pole position identification routine ($\mathrm{p} 0325, \mathrm{p} 0329$).
Re fault value $=6$:
Re-calibrate the Motor Module.
Re fault value $=7 x$:
Upgrade the software in the Sensor Module.
Re fault value $=8$:
Reduce the currents for the pole position identification routine (p0329, p0325, p1993).
The power unit cannot provide the necessary pole position identification routine current (p0209 < p0329, p0325,
p1993), replace the power unit by a power unit with a higher max. current.
Re fault value = 9:
Enter a value not equal to zero in the pole position identification routine current ($p 0329, p 0325, p 1993$).
Re fault value = 10:
Do not initiate a data set changeover during the pole position identification.
Re fault value = 11:

- for incremental encoders without commutation with zero mark ($\mathrm{p} 0404.15=0$), it does not make sense to adjust the encoder to determine the commutation angle (p1990 = 1). In this case, the function should be de-selected (p1990 =
0) or, for an encoder with suitable zero mark, commutation with zero mark should be selected ($p 0404.15=1$).
- for absolute encoders, only adjust the encoder to determine the commutation angle (p1990 = 1) if the encoder supplies commutation information and is finely synchronized ($p 1992.8=1$ and $p 1992.10=1$). The encoder is possibly parked, de-activated (p 0145), not ready to operate or signals a fault condition.
- deselect the encoder adjustment to determine the commutation angle (set p1990 to 0).

Re fault value $=100$, 101:
Check and ensure that the motor is free to move.
Increase the current for motion-based pole position identification (p1993).
Re fault value $=102$:
If the motor is to be operated with a brake: Select a different technique to identify the pole position (p1980).
If the motor can be operated without a brake: Open the brake (p1215 = 2).
Re fault value = 103:
The motion-based pole position identification can only be carried out using an encoder. Connect an encoder or select another technique for pole position identification routine (p1980).
Re fault value = 104:
Pole position identification, increase the smoothing time, motion-based (p1997).
Pole position identification, increase the rise time, motion-based (p1994).
Pole position identification, check the gain, motion-based (p1995).
Pole position identification, check the integral time, motion-based (p1996).

F07996

Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

Drive: Pole position identification routine not carried out

SERVO
ENCODER (OFF2)
IMMEDIATELY
In operation, the operating mode that requires a pole position identification was changed over, which is not possible in this state:

- the drive was changed over, flying, from encoderless operation to operation with encoder without having previously carried out a pole position identification for the encoder. p1404 is then at a value between zero and the max. speed and the pulses in the speed range above p1404 were enabled without a pole position ident. routine having been previously carried out in operation with encoder.
- in operation, an EDS changeover was made to an encoder where it is necessary to carry out a pole position identification. However, this has still not been carried out ($\mathrm{p} 1982=1$ or 2 and p1992.7 = 0).

Remedy: - for a flying changeover between operation with and without encoder with pole position identification after POWER ON or commissioning (p0010 not equal to zero) enable the pulses once at zero speed. This means that the pole position identification routine is carried out and the result is available for operation.

- carry out the EDS changeover with the pulses inhibited, or, before the changeover, carry out a pole position identification using this data set.

A07998	Drive: Motor data identification active on another drive
Message value:	\%1
Drive object:	SERVO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor data identification is activated on the drive object specified in the fault value and interlocks the other drive objects so they cannot be powered up. Fault value (r0949, interpret decimal): Drive object with the active motor data identification. See also: p1910, p1960
Remedy:	- wait for the complete execution of the motor data identification of the drive object designated in the fault value. - de-select the motor data identification for the drive object designated in the fault value ($\mathrm{p} 1910=0$ or $\mathrm{p} 1960=0$).

A07999	Drive: Motor data identification cannot be activated
Message value:	\%1
Drive object:	SERVO
Reaction:	NONE
Acknowledge:	NONE
Cause:	Closed-loop control is enabled on a SERVO drive object type. To select motor data identification, pulses must be suppressed for all SERVO drive objects. Fault value (r0949, interpret decimal): Drive object with enabled closed-loop control.
Remedy:	Withdraw the pulse enable on all drives and re-activate the motor data identification.

F08000 (N, A)	TB: +/-15 V power supply faulted
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2)
	SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Terminal Board 30 detects an incorrect internal power supply voltage. Fault value (r0949, interpret decimal): 0: Error when testing the monitoring circuit.
	1: Fault in normal operation.
Remedy:	- replace Terminal Board 30.
	- replace Control Unit.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F08010 (N, A) TB: Analog-digital converter
Message value:
Drive object: All objects
Reaction: A INFEED: NONE (OFF1, OFF2)
SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The analog/digital converter on Terminal Board 30 has not supplied any converted data.

Remedy:	- check the power supply. - replace Terminal Board 30.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F08500 (A)	COMM BOARD: Monitoring time configuration expired
Message value:	\%1
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41,
	TM54F_MA, TM54F_SL, VECTOR
Reaction:	A_INFEED: OFF1 (OFF2)
	SERVO: OFF1 (OFF2, OFF3)
	VECTOR: OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring time for the configuration has expired.
	Fault value (ro949, interpret decimal): 0: The transfer time of the send configuration data has been exceeded. 1: The transfer time of the receive configuration data has been exceeded.
Remedy:	Check communication line.
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F08501 (N, A) COMM BOARD: Monitoring time process data expired
Message value: -

Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2) VECTOR: OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The set monitoring time expired while transferring process data via COMM BOARD. See also: p8840 (COMM BOARD monitoring time)
Remedy:	- check communications link. - check the set monitoring time if the error persists. See also: p8840 (COMM BOARD monitoring time)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F08502 (A) COMM BOARD: Monitoring time sign-of-life expired
Message value: -

Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41,
	TM54F_MA, TM54F_SL, VECTOR
Reaction:	A_INFEED: OFF1 (OFF2)
	SERVO: OFF1 (OFF2, OFF3)
	VECTOR: OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring time for the sign-of-life counter has expired. The connection to the COMM BOARD was interrupted.
Remedy:	- check communications link. - check COMM BOARD.
Reaction upon A:	NONE
Acknowl. upon A:	NONE

A08504 (F)	COMM BOARD: Internal cyclic data transfer error
Message value:	\%1
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic actual and/or setpoint values were not transferred within the specified times. Alarm value (r2124, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	Check the parameterizing telegram ($\mathrm{Ti}, \mathrm{To}, \mathrm{Tdp}$, etc.).
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (OFF1, OFF2, OFF3) VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
F08510 (A)	COMM BOARD: Send configuration data invalid
Message value:	\%1
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	A INFEED: OFF1 (OFF2) SERVO: OFF1 (OFF2, OFF3) VECTOR: OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	COMM BOARD did not accept the send-configuration data. Fault value (r0949, interpret decimal): Return value of the send-configuration data check.
Remedy:	Check the send configuration data.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A08511 (F)	COMM BOARD: Receive configuration data invalid
Message value:	\%1
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive unit did not accept the receive configuration data. Alarm value (r2124, interpret decimal): Return value of the receive configuration data check. 0 : Configuration accepted. 1: Connection established to more drive objects than configured in the device. The drive objects for process data exchange and their sequence were defined using p0978. 2: Too many data words for input or output to a drive object. A max. of 16 words is permitted for SERVO and VECTOR; a max. of 5 words for A_INF, TB30, TM31 and CU320. 3: Uneven number of bytes for input or output. 4: Setting data for synchronization not accepted. 5: Drive still not in cyclic operation. 6: Buffer system not accepted. 7: Cyclic channel length too short for this setting. 8: Cyclic channel address not initialized. 9: 3-buffer system not permitted. 10: DRIVE-CLiQ fault. 11: CU-Link fault. 12: CX32 not in cyclic operation.
Remedy:	Check the receive configuration data. Re alarm value $=1$: Check the list of the drive objects with process data exchange ($p 0978$). With $\mathrm{p} 0978[\mathrm{x}]=0$, all of the following drive objects in the list are excluded from the process data exchange.

Reaction upon F:	A_INFEED: NONE (OFF1, OFF2)
	SERVO: NONE (OFF1, OFF2, OFF3)
	VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY

A08520 (F)	COMM BOARD: Non-Cyclic channel error
Message value:	\%1
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41,
	TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory or the buffer status of the non-cyclic channel has an error.
	Alarm value (r2124, interpret decimal): 0: Error in the buffer status. 1: Error in the memory. Remedy: Reaction upon F: Check communication line. A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (OFF1, OFF2, OFF3) Acknowl. upon F:
	VECTOR: NONE (OFF1, OFF2, OFF3)
IMMEDIATELY	

A08526 (F)	COMM BOARD: No cyclic connection
Message value:	-
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41,
	TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is no cyclic connection to the control.
Remedy:	Establish the cyclic connection and activate the control with cyclic operation.
	For PROFINET, check the parameters "Name of Station" and "IP of Station" (r61000, r61001).
Reaction upon F:	NONE (OFF1)
Acknowl. upon F:	IMMEDIATELY

A08530 (F)	COMM BOARD: Message channel error
Message value:	\%1
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory or the buffer status of the message channel has an error. Alarm value (r2124, interpret decimal): 0 : Error in the buffer status. 1: Error in the memory.
Remedy:	Check communication line.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (OFF1, OFF2, OFF3) VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY

Message value:	\%1
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41,
Reaction:	TM54F_MA, TM54F_SL, VECTOR
Acknowledge:	NONE
Cause:	NONE
	The assignment of the hardware to the PZD interface has been incorrectly parameterized.
	Alarm value (r2124, interpret decimal):
	1: Only one of the two indices is not equal to 99 (automatic).
	2: Both PZD interfaces are assigned to the same hardware.
	3: Assigned COMM BOARD missing.

F08700 (A)	CBC: Communications error
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF
Reaction:	A_INFEED: NONE SERVO: OFF3 (NONE, OFF1, OFF2) VECTOR: OFF3 (NONE, OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A CAN communications error has occurred. Fault value (r0949, interpret decimal): 1: The error counter for the send telegrams has exceeded the BUS OFF value 255 . The bus disables the CAN controller. - bus cable interrupted. - bus cable not connected. - incorrect baud rate. - incorrect bit timing. 2: The master no longer interrogated the CAN node status longer than for its "life time". The "life time" is obtained from the "guard time" (p8604[0]) multiplied by the "life time factor" (p8604[1]). - bus cable interrupted. - bus cable not connected. - incorrect baud rate. - incorrect bit timing. - master fault. See also: p8604 (CBC node guarding), p8641 (CBC abort connection option code)
Remedy:	- check the bus cable - check the baud rate (p8622). - check the bit timing (p8623). - check the master. See also: p8622 (CBC baud rate), p8623 (CBC bit timing selection)
Reaction upon A :	NONE
Acknowl. upon A :	NONE
F08701	CBC: NMT state change
Message value:	\%1
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	A_INFEED: OFF2 SERVO: OFF3 VECTOR: OFF3
Acknowledge:	IMMEDIATELY
Cause:	A CANopen NMT state transition from "operational" to "pre-operational" or after "stopped". Fault value (r0949, interpret decimal): 1: CANopen NMT state transition from "operational" to "pre-operational". 2: CANopen NMT state transition from "operational" to "stopped". Note: In the NMT state "pre-operational", process data cannot be transferred and in the NMT state "stopped", no process data and no service data can be transferred.
Remedy:	None necessary. Acknowledge the fault and continue operation.
A08751	CBC: Telegram loss
Message value:	-
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The CAN controller has lost a receive message (telegram).
Remedy:	Reduce the cycle times of the receive messages.

A08752	CBC: Error counter for error passive exceeded
Message value:	-
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The error counter for the send or receive telegrams has exceeded the value 127.
Remedy:	- check the bus cable - set a higher baud rate (p8622). - check the bit timing and if required optimize (p8623). See also: p8622 (CBC baud rate), p8623 (CBC bit timing selection)
A08753	CBC: Message buffer overflow
Message value:	\%1
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	A message buffer overflow. Alarm value (r2124, interpret decimal): 1: Non-cyclic send buffer (SDO response buffer) overflow. 2: Non-cyclic receive buffer (SDO receive buffer) overflow. 3: Cyclic send buffer (PDO send buffer) overflow.
Remedy:	Check the bus cable. Set a higher baud rate (p8622). Check the bit timing and if required optimize (p8623). Re alarm value $=2$: - reduce the cycle times of the SDO receive messages. See also: p8622 (CBC baud rate), p8623 (CBC bit timing selection)

A08754	CBC: Incorrect communications mode
Message value:	-
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41,
Reaction:	TM54F_MA, TM54F_SL, VECTOR
Acknowledge:	NONE
Cause:	In the "operational" mode, an attempt was made to change parameters p8700 ... p8737.
Remedy:	Change to the "pre-operational" or "stopped" mode.

A08755 CBC: Obj cannot be mapped

Message value:
Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The CANopen object is not provided for the Process Data Object (PDO) Mapping.
Remedy: Use a CANopen object intended for the PDO mapping or enter 0.
The following objects can be mapped in the Receive Process Data Object (RPDO) or Transmit Process Data Object (TPDO):

- RPDO: 6040 hex, 6060 hex, 60FF hex, 6071 hex; 5800 hex - 580F hex; 5820 hex - 5827 hex
- TPDO: 6041 hex, 6061 hex, 6063 hex, 6069 hex, 606B hex, 606C hex, 6074 hex; 5810 hex - 581F hex; 5830 hex - 5837 hex

Only sub-index 0 of the specified objects can be mapped.
Note:
As long as A08755 is present, the COB-ID cannot be set to valid.

A08756	CBC: Number of mapped bytes exceeded
Message value:	-
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
	The number of bytes of the mapped objects exceeds the telegram size for net data. A max. of 8 bytes is permissible.
Remedy:	Map fewer objects or objects with a smaller data type. See also: p8710, p8711, p8712, p8713, p8714, p8715, p8716, p8717, p8730, p8731, p8732, p8733, p8734, p8735, p8736, p8737
A08757	CBC: Set COB-ID invalid
Message value:	-
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	For online operation, the appropriate COB-ID must be set invalid before mapping. Example: Mapping for RPDO 1 should be changed (p8710[0]). --> set p8700[0] = C00006E0 hex (invalid COB-ID) --> set p8710[0] as required. --> p8700[0] enter a valid COB-ID
Remedy:	Set the COB-ID to invalid.
A08758	CBC: Number of PDO channels too low
Message value:	-
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The number of PDO channels in p8740 has either been set to 0 or too low. See also: p8740 (CBC channel assignment)
Remedy:	The number of channels set in p8740 must be greater than or equal to the number of PDOs. There are 2 possibilities: Increase the number of channels in p8740 and confirm the selection using p8741. Reduce the number of PDOs by setting the COB-ID to invalid. See also: p8740 (CBC channel assignment), p8741 (CBC PDO configuration acknowledgement)
A08759	CBC: PDO COB-ID already available
Message value:	-
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	An existing PDO COB-ID was allocated.
Remedy:	Select another PDO COB-ID.

A13000	License not adequate
Message value:	\%1
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM $\overline{5} 4 \mathrm{~F}$ _MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	- for the drive unit, the options that require a license are being used but the licenses are not sufficient. - an error occurred when checking the existing licenses. Alarm value (r2124, interpret decimal): 0 : The existing license is not sufficient. 1 : An adequate license was not able to be determined as the memory card with the required licensing data was withdrawn in operation. 2: An adequate license was not able to be determined, as an error occurred when reading-out the required licensing data from the memory card. 3: An adequate license was not able to be determined as there is a checksum error in the license key. 4: An internal error occurred when checking the license.
Remedy:	Re alarm value $=0$: Additional licenses are required and these must be activated (p9920, p9921). Re alarm value $=1$: With the system powered down, re-insert the memory card that matches the system. $R e$ alarm value $=2$: Enter and activate the license key (p9920, p9921). Re alarm value $=3$: Compare the license key (p9920) entered with the license key on the certificate of license. Re-enter the license key and activate (p9920, p9921). Re alarm value $=4$: - carry out a POWER ON. - upgrade firmware to later version. - contact the Hotline.
A13001	Error in license checksum
Message value:	-
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	When checking the checksum of the license key, an error was detected.
Remedy:	Compare the license key (p9920) entered with the license key on the certificate of license. Re-enter the license key and activate (p9920, p9921).

F30001	Power unit: Overcurrent
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overcurrent condition. - closed-loop control is incorrectly parameterized. - motor has a short-circuit or fault to ground (frame). - V/f operation: Up ramp set too low. - V/f operation: Rated motor current is significantly greater than that of the Motor Module. - infeed: High discharge and post-charging current for line supply voltage interruptions. - infeed: High post-charging currents for overload when motoring and DC link voltage dip. - infeed: Short-circuit currents at power-on due to the missing commutating reactor. - power cables are not correctly connected. - power cables exceed the maximum permissible length. - power unit defective. Additional causes for a parallel switching device (r0108.15 = 1): - a power unit has tripped (powered down) due to a ground fault. - the closed-loop circulating current control is either too slow or has been set too fast. Fault value (r0949, interpret bitwise binary): Bit 0: Phase U. Bit 1: Phase V. Bit 2: Phase W. Note: Fault $=0$ means that the phase with overcurrent is not recognized (e.g. for Blocksize device).
Remedy:	- check the motor data - if required, carry out commissioning. - check the motor circuit configuration (star-delta). - V/f operation: Increase up ramp. - V/f operation: Check the assignment of the rated currents of the motor and Motor Module. - infeed: Check the line supply quality. - infeed: Reduce the load when motoring. - infeed: Correct connection of the line commutating reactor. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables. - replace power unit. For a parallel switching device (r0108.15 = 1) the following additionally applies: - check the ground fault monitoring thresholds (p0287). - check the setting of the closed-loop circulating current control (p7036, p7037).
F30002	Power unit: DC link voltage, overvoltage
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overvoltage condition in the DC link. - motor regenerates too much energy. - device supply voltage too high. - when operating with a VSM, the phase assignment L1, L2, L3 at the VSM differs from the phase assignment at the power unit. Fault value (r0949, interpret decimal): DC link voltage [1 bit $=100 \mathrm{mV}$]. For SINAMICS GM/SM, the following applies: Fault value (r0949, interpret decimal): 32: Overvoltage in the negative partial DC link (VdcP) 64: Overvoltage in the positive partial DC link (VdcN) 96: Overvoltage in both partial DC links

Remedy:	- increase the ramp-down time. - activate the DC link voltage controller. - use a brake resistor or Active Line Module. - increase the current limit of the infeed or use a larger module (for the Active Line Module). - check the device supply voltage. - check and correct the phase assignment at the VSM and at the power unit. See also: p0210 (Drive unit line supply voltage), p1240 (Vdc controller or Vdc monitoring configuration)
F30003	Power unit: DC link voltage, undervoltage
Message value:	-
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an undervoltage condition in the DC link. - line supply failure - line supply voltage below the permissible value. - line supply infeed failed or interrupted. Note: The monitoring threshold for the DC link undervoltage is the minimum of the following values: - for a calculation, refer to p0210.
Remedy:	- check the line supply voltage - check the line supply infeed and if necessary observe the fault messages of the line supply infeed. Note: The "ready for operation" signal of the infeed r0863 must be connected to the associated inputs p0864 of the drives. See also: p0210 (Drive unit line supply voltage)
F30004	Power unit: Overtemperature heat sink AC inverter
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature of the power unit heat sink has exceeded the permissible limit value. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high. Fault value (r0949): Temperature [$1 \mathrm{bit}=0.01^{\circ} \mathrm{C}$].
Remedy:	- check whether the fan is running. - check the fan elements - check whether the ambient temperature is in the permissible range. - check the motor load. - reduce the pulse frequency if this is higher than the rated pulse frequency. Notice: This fault can only be acknowledged after this alarm threshold for alarm A05000 has been undershot. See also: p1800 (Pulse frequency)
F30005	Power unit: Overload 12t
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit was overloaded (r0036 = 100%). - the permissible rated power unit current was exceeded for an inadmissibly long time. - the permissible load duty cycle was not maintained. Fault value (r0949, interpret decimal): I2t [100 \% = 16384].

Remedy:	- reduce the continuous load.
- adapt the load duty cycle.	
- check the motor and power unit rated currents.	
See also: r0036 (Power unit overload I2t), r0206 (Rated power unit power), p0307 (Rated motor power)	

F30006	Power unit: Thyristor Control Board
Message value:	-
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The Thyristor Control Board (TCB) of the Basic Line Module signals a fault.
	- there is no line supply voltage.
	- the line contactor is not closed.
	- the line supply voltage is too low.
	- line supply frequency outside the permissible range (45 ... 66 Hz).
	- there is a DC link short-circuit.
	- there is a DC link short-circuit (during the pre-charging phase).
	- voltage supply for the Thyristor Control Board outside the nominal range (5 ... 18 V) and line voltage >30 V.
- there is an internal fault in the Thyristor Control Board.	

A30010 (F)	Power unit: Sign-of-life error cyclic data
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A DRIVE-CLiQ communication error has occurred between the Control Unit and the power unit involved.
	The cyclic setpoint telegrams of the Control Unit were not received on time by the power unit for at least one clock cycle.
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2)
	SERVO: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	VECTOR: NONE (OFF1, OFF2, OFF3)
	IMMEDIATELY (POWER ON)

F30011	Power unit: Line phase failure in main circuit
Message value:	-
Drive object:	All objects
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A line phase failure was detected at the power unit. - the fuse of a phase of a main circuit has ruptured. - the DC link voltage ripple has exceeded the permissible limit value.
Remedy:	Check the fuses in the main circuit.
F30012	Power unit: Temperature sensor heat sink wire breakage
Message value:	\%1
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The connection to one of the heat sink temperature sensors in the power unit is interrupted. Fault value (r0949, interpret hexadecimal): Bit 0 : Module slot (electronics slot) Bit 1: Air intake Bit 2: Inverter 1 Bit 3: Inverter 2 Bit 4: Inverter 3 Bit 5: Inverter 4 Bit 6: Inverter 5 Bit 7: Inverter 6 Bit 8: Rectifier 1 Bit 9: Rectifier 2
Remedy:	Contact the manufacturer.
F30013	Power unit: Temperature sensor heat sink short-circuit
Message value:	\%1
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The heat sink temperature sensor in the Motor Module is short-circuited. Fault value (r0949, interpret hexadecimal): Bit 0: Module slot (electronics slot) Bit 1: Air intake Bit 2: Inverter 1 Bit 3: Inverter 2 Bit 4: Inverter 3 Bit 5: Inverter 4 Bit 6: Inverter 5 Bit 7: Inverter 6 Bit 8: Rectifier 1 Bit 9: Rectifier 2
Remedy:	Contact the manufacturer.
A30016 (N)	Power unit: Load supply switched out
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following applies for CU31x and CUA31: The DC link voltage is too low. Fault value (r0949, interpret decimal): DC link voltage in [V].

Remedy:	The following applies for CU31x and CUA31: Under certain circumstances, the AC line supply is not switched in.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F30017	Power unit: Hardware current limit has responded too often
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The hardware current limitation in the relevant phase (see A30031, A30032, A30033) has responded too often. The number of times the limit has been exceeded depends on the design and type of power unit. For infeed units, the following applies: - closed-loop control is incorrectly parameterized. - load on the infeed is too high. - Voltage Sensing Module incorrectly connected. - commutating reactor missing or the incorrect type. - power unit defective. The following applies to Motor Modules: - closed-loop control is incorrectly parameterized. - fault in the motor or in the power cables. - the power cables exceed the maximum permissible length. - motor load too high - power unit defective. Fault value (r0949, interpret binary): Bit 0: Phase U Bit 1: Phase V Bit 2: Phase W
Remedy:	For infeed units, the following applies: - check the controller settings, if required, reset and identify the controller (p0340 = 2, p3410 = 5). - reduce the load, if required, increase the DC link capacitance or use a higher-rating infeed. - check the connection of the optional Voltage Sensing Module. - check the connection and technical data of the commutating reactor. - check the power cables for short-circuit or ground fault. - replace power unit. The following applies to Motor Modules: - check the motor data. - check the motor circuit configuration (star-delta). - check the motor load. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables. - replace power unit.
F30020	Power unit: Configuration not supported
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A configuration is requested that is not supported by the power unit. Fault value (r0949, interpret hexadecimal): 0: Autonomous operation is requested but is not supported.
Remedy:	Re fault value $=0$: If internal voltage protection is active ($\mathrm{p} 1231=3$), de-activate it if necessary. See also: p1231 (Armature short-circuit / DC brake configuration)

F30021	Power unit: Ground fault
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Power unit has detected a ground fault.
	- ground fault in the power cables
	- winding fault or ground fault at the motor.
	- CT defective.
	Additional cause for CU310/CUA31:
	- when the brake is applied, this causes the hardware DC current monitoring to respond.
	Additional cause for parallel switching devices (r0108.15 = 1):
	- the closed-loop circulating current control is either too slow or has been set too fast.
	Fault value (r0949, interpret decimal):
	Absolute value, summation current [32767 = 271 \% rated current].
	- check the power cable connections.
	- check the motor.
	- check the CT.
	The following applies additionally for CU310 and CUA31:
	- check the cables and contacts of the brake connection (a wire is possibly broken).
	For parallel switching devices (r0108.15 = 1) the following additionally applies:
	- check the ground fault monitoring thresholds (p0287).
	- check the setting of the closed-loop circulating current control (p7036, p7037).
	See also: p0287 (Ground fault monitoring thresholds)

A30023	Power unit: Overtemperature thermal model alarm
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature difference between the heat sink and chip has exceeded the permissible limit value. - the permissible load duty cycle was not maintained. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high. See also: r0037
Remedy:	- adapt the load duty cycle. - check whether the fan is running. - check the fan elements - check whether the ambient temperature is in the permissible range. - check the motor load. - reduce the pulse frequency if this is higher than the rated pulse frequency.
F30024	Power unit: Overtemperature thermal model
Message value:	-
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature difference between the heat sink and chip has exceeded the permissible limit value. - the permissible load duty cycle was not maintained. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high. See also: r0037
Remedy:	- adapt the load duty cycle. - check whether the fan is running. - check the fan elements - check whether the ambient temperature is in the permissible range. - check the motor load. - reduce the pulse frequency if this is higher than the rated pulse frequency.
F30025	Power unit: Chip overtemperature
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Chip temperature of the semiconductor has exceeded the permissible limit value. - the permissible load duty cycle was not maintained. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high. Fault value (r0949): Temperature difference between the heat sink and chip [1 Bit $=0.01^{\circ} \mathrm{C}$].

Remedy: - adapt the load duty cycle.

- check whether the fan is running.
- check the fan elements
- check whether the ambient temperature is in the permissible range.
- check the motor load.
- reduce the pulse frequency if this is higher than the rated pulse frequency.

Notice:
This fault can only be acknowledged after this alarm threshold for alarm A05001 has been undershot. See also: r0037

F30027
Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

Power unit: Precharging DC link time monitoring

Enable signals: \%1, Status: \%2
All objects
OFF2
IMMEDIATELY
The power unit DC link was not able to be pre-charged within the expected time.

1) There is no line supply voltage connected.
2) The line contactor/line side switch has not been closed.
3) The line supply voltage is too low.
4) Line supply voltage incorrectly set (p0210).
5) The pre-charging resistors are overheated as there were too many pre-charging operations per time unit.
6) The pre-charging resistors are overheated as the DC link capacitance is too high.
7) The pre-charging resistors are overheated because when there is no "ready for operation" (r0863.0) of the infeed unit, power is taken from the DC link.
8) The pre-charging resistors are overheated as the line contactor was closed during the DC link fast discharge through the Braking Module.
9) The DC link has either a ground fault or a short-circuit.
10) The pre-charging circuit is possibly defective (only for chassis units).

Fault value (r0949, interpret binary):
Missing internal enable signals, power unit (lower 16 bit):
(Inverted bit-coded representation FFFF hex -> all internal enable signals available)
Bit 0 : Power supply of the IGBT gating shut down
Bit 1: Reserved
Bit 2: Reserved
Bit 3: Ground fault detected
Bit 4: Peak current intervention
Bit 5: I2t exceeded
Bit 6. Thermal model overtemperature calculated
Bit 7: (heat sink, gating module, power unit) overtemperature measured
Bit 8: Reserved
Bit 9: Overvoltage detected
Bit 10: Power unit has completed pre-charging, ready for pulse enable
Bit 11: STO terminal missing
Bit 12: Overcurrent detected
Bit 13: Armature short-circuit active
Bit 14: DRIVE-CLiQ fault active
Bit 15: Uce fault detected, transistor de-saturated due to overcurrent/short-circuit
Status, power unit (upper 16 bit, hexadecimal number):
0: Fault status (wait for OFF and fault acknowledgement)
1: Restart inhibit (wait for OFF)
2: Overvoltage condition detected -> change into the fault state
3: Undervoltage condition detected -> change into the fault state
4: Wait for bypass contactor to open -> change into the fault state
5: Wait for bypass contactor to open -> change into restart inhibit
6: Commissioning
7: Ready for pre-charging
8: Pre-charging started, DC link voltage lower than the minimum switch-on voltage
9: Pre-charging, DC link voltage end of pre-charging still not detected
10: Wait for the end of the de-bounce time of the main contactor after pre-charging has been completed
11: Pre-charging completed, ready for pulse enable
12: It was detected that the STO terminal was energized at the power unit
See also: p0210 (Drive unit line supply voltage)

Remedy:

In general:

- check the line supply voltage at the input terminals.
- check the line supply voltage setting (p0210).
- the following applies to booksize units: Wait (approx. 8 min .) until the pre-charging resistors have cooled down. For this purpose, preferably disconnect the infeed unit from the line supply.
Re 5):
- carefully observe the permissible pre-charging frequency (refer to the appropriate Equipment Manual).

Re 6):

- check the total capacitance of the DC link and if required, correspondingly reduce the maximum permissible DC link capacitance (refer to the appropriate Equipment Manual).
Re 7):
- interconnect the ready for operation signal of the infeed unit (r0863.0) in the enable logic of the drives connected to this DC link
Re 8):
- check the connections of the external line contactor. The line contactor must be open during the DC link fast discharge.
Re 9):
- check the DC link regarding ground fault or short-circuit.

See also: p0210 (Drive unit line supply voltage)

A30031	Power unit: Hardware current limiting, phase U
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase U responded. The pulsing in this phase is inhibited for one pulse period. - closed-loop control is incorrectly parameterized. - fault in the motor or in the power cables. - the power cables exceed the maximum permissible length. - motor load too high - power unit defective. Note: Alarm A30031 is always output if the hardware current limit for phase U, V or W on a Power Module responds.
Remedy:	- check the motor data. - check the motor circuit configuration (star-delta). - check the motor load. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables.
A30032	Power unit: Hardware current limiting, phase V
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase V responded. The pulsing in this phase is inhibited for one pulse period. - closed-loop control is incorrectly parameterized. - fault in the motor or in the power cables. - the power cables exceed the maximum permissible length. - motor load too high - power unit defective. Note: Alarm A30031 is always output if the hardware current limit for phase U, V or W on a Power Module responds.
Remedy:	- check the motor data. - check the motor circuit configuration (star-delta). - check the motor load. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables.

A30033	Power unit: Hardware current limiting, phase W
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase W responded. The pulsing in this phase is inhibited for one pulse period. - closed-loop control is incorrectly parameterized. - fault in the motor or in the power cables. - the power cables exceed the maximum permissible length. - motor load too high - power unit defective. Note: Alarm A30031 is always output if the hardware current limit for phase U, V or W on a Power Module responds.
Remedy:	- check the motor data. - check the motor circuit configuration (star-delta). - check the motor load. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables.
F30035	Power unit: Air intake overtemperature
Message value:	\%1
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The air intake in the power unit has exceeded the permissible temperature limit. For air-cooled power units, the temperature limit is at $55^{\circ} \mathrm{C}$. - ambient temperature too high. - insufficient cooling, fan failure. Fault value (r0949, interpret decimal): Temperature [1 bit $=0.01^{\circ} \mathrm{C}$].
Remedy:	- check whether the fan is running. - check the fan elements - check whether the ambient temperature is in the permissible range. Notice: This fault can only be acknowledged after this alarm threshold for alarm A05002 has been undershot.
F30036	Power unit: Electronics board overtemperature
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature in the module slot of the drive converter has exceeded the permissible temperature limit. - insufficient cooling, fan failure. - overload. - ambient temperature too high. Fault value (r0949, interpret decimal): Temperature [1 bit $=0.1^{\circ} \mathrm{C}$].
Remedy:	- check whether the fan is running. - check the fan elements - check whether the ambient temperature is in the permissible range. Notice: This fault can only be acknowledged after this alarm threshold for alarm A05003 has been undershot.

F30037	Power unit: Rectifier overtemperature
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature in the rectifier of the power unit has exceeded the permissible temperature limit. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - line supply phase failure. Fault value (r0949, interpret decimal): Temperature [$1 \mathrm{bit}=0.01^{\circ} \mathrm{C}$].
Remedy:	- check whether the fan is running. - check the fan elements - check whether the ambient temperature is in the permissible range. - check the motor load. - check the line supply phases. Notice: This fault can only be acknowledged after this alarm threshold for alarm A05004 has been undershot.
A30038	Power unit: Capacitor fan monitoring
Message value:	\%1
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	The capacitor fan signals a fault.
Remedy:	Replace the capacitor fan in the power unit.
F30039	Power unit: Failure capacitor fan
Message value:	\%1
Drive object:	B_INF
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	The capacitor fan has failed.
Remedy:	Replace the capacitor fan in the power unit.
F30040	Power unit: Undervolt 24 V
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Failure of the 24 V power supply for the power unit. - the 16 V threshold was undershot for longer than 3 ms . Fault value (r0949, interpret decimal): 24 V voltage [1 bit $=0.1 \mathrm{~V}$].
Remedy:	Check the 24 V DC voltage supply to power unit.

A30041 (F)	Power unit: Undervoltage 24 V alarm
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	24 V power supply fault for the power unit.
	- the 16 V threshold was undershot..
	Fault value (r0949, interpret decimal):
	24 V voltage [1 bit = 0.1 V$].$

Remedy:	Check the 24 V DC voltage supply to power unit.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2)
	SERVO: NONE (OFF1, OFF2, OFF3)
	VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

A30042	Power unit: Fan operating time reached or exceeded
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum operating time of the fan in the power unit is set in p0252. This message indicates the following: Fault value (r0949, interpret decimal): 0 : The maximum fan operating time is 500 hours. 1: The maximum fan operating time has been exceeded.
Remedy:	Replace the fan in the power unit and reset the operating hours counter to 0 ($\mathrm{p} 0251=0$). See also: p0251 (Operating hours counter power unit fan), p0252 (Maximum operating time power unit fan)

F30043	Power unit: Overvolt 24 V
Message value:	-
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The following applies for CU31x: Overvoltage of the 24 V power supply for the power unit. - the 31.5 V threshold was exceeded for more than 3 ms . Fault value (r0949): 24 V voltage [1 bit $=0.1 \mathrm{~V}$].
Remedy:	Check the 24 V DC voltage supply to power unit.

A30044 (F)	Power unit: Overvoltage 24 V alarm
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following applies for CU31x: 24 V power supply fault for the power unit. - the 32.0 V threshold was exceeded. Fault value (r0949): 24 V voltage [1 bit $=0.1 \mathrm{~V}$].
Remedy:	Check the 24 V DC voltage supply to power unit.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (OFF1, OFF2, OFF3) VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

F30045 Power unit: Supply undervoltage
Message value: \%1
Drive object: All objects
Reaction: OFF2

Acknowledge: IMMEDIATELY (POWER ON)
Cause: The following applies for CU31x: Power supply fault in the power unit. - the voltage monitoring on the DAC board signals an undervoltage fault on the module.

Remedy: \quad Check the 24 V DC power supply for the power unit and if required replace the module.

A30046 (F)	Power unit: Undervoltage, alarm
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Before the last new start, a problem occurred at the power unit power supply. - the voltage monitoring in the internal FPGA of the PSA signals an undervoltage fault on the module. Fault value (r0949): Register value of the voltage fault register.
Remedy:	Check the 24 V DC power supply for the power unit and if required replace the module.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (OFF1, OFF2, OFF3) VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

F30047 Cooling system: Cooling medium flow rate too low
Message value: \%1
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Cooling system: Fault - flow rate has fallen below the fault value
Remedy:
F30050 Power unit: Supply overvoltage
Message value: $\quad-$
Drive object: \quad All objects
Reaction: OFF2

Acknowledge: POWER ON
Cause: The following applies for CU31x and CUA31:

- the voltage monitoring on the DAC board signals an overvoltage fault on the module.

Remedy: - check the voltage supply for the Control Unit (24 V).

- if required, replace the module.

F30052	EEPROM data error
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	EEPROM data error of the power unit module. Fault value (r0949, interpret hexadecimal): 0 : The EEPROM data read in from the power unit module is inconsistent. 1: EEPROM data is not compatible to the firmware of the power unit application.
Remedy:	Re fault value $=0$: Replace the power unit module or update the EEPROM data. Re fault value =1: The following applies for CU31x and CUA31: Update the firmware ISIEMENSISINAMICSICODE\SACIcu31xi.ufw (cua31.ufw)

F30062 (N, A)	The bypass contactor was opened under current
Message value:	-
Drive object:	All objects
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON) Cause:
	The bypass contactor of the infeed unit was damaged by being opened (multiple number of times) while it was con- ducting current.

	Possible causes: - scheduled opening under load can be necessary, for example, to protect the drive converter group in the event of a ground fault in high frequency spindles. - incorrect operator control of the infeed can cause the contactor to switch under load. If, in spite of a missing oper- ating enable, the infeed unit draws active motoring power from the DC link. In order to avoid critically damaging the complete drive converter group, it is urgently recommended to replace the damaged infeed unit.
Remedy:	
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	
Acknowl. upon A:	NONE
	NONE

A30073 (N)	Actual value/setpoint preprocessing no longer synchronous to DRIVE-CLiQ
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following applies for CU31x and CUA31: Communications to the power unit module are no longer in synchronism with DRIVE-CLiQ.
Remedy:	The following applies for CU31x and CUA31: Wait until synchronization is re-established.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F30074	Communications error to the power unit module
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Communication is not possible with the power unit via the plug contact.
Remedy:	The following applies for CU31x and CUA31: Either replace the CU board or the power unit. You must check which of the two components must be replaced by replacing one and then the other component; if neither are available then both components must be returned.
F30105	PU: Actual value sensing fault
Message value:	-
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	At least one incorrect actual value channel was detected on the Power Stack Adapter (PSA). The incorrect actual value channels are displayed in the following diagnostic parameters.
Remedy:	Evaluate the diagnostic parameters. If the actual value channel is incorrect, check the components and if required, replace.
F30502	Power unit: DC link voltage, overvoltage
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected overvoltage in the DC link with a pulse inhibit. - device supply voltage too high. - line reactor incorrectly dimensioned. Fault value (r0949, interpret decimal): DC link voltage [1 bit $=100 \mathrm{mV}$]. See also: r0070 (Actual DC link voltage)
Remedy:	- check the device supply voltage (p 0210). - check the dimensioning of the line reactor. See also: p0210 (Drive unit line supply voltage)
F30600	SI MM: STOP A initiated
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-based "Safety Integrated" function in the Motor Module (MM) has detected a fault and initiated STOP A (pulse suppression via the safety shutdown path of the Motor Module). - forced checking procedure of the safety shutdown path of the Motor Module unsuccessful. - subsequent response to fault F30611 (defect in a monitoring channel).

	Fault value (r0949, interpret decimal): 0 : Stop request from the Control Unit. 1005: Pulses suppressed although STO not selected and there is no internal STOP A present. 1010: Pulses enabled although STO is selected or an internal STOP A is present. 1020: Internal software error in the "Internal voltage protection" function. The "Internal voltage protection" function is withdrawn. A STOP A that cannot be acknowledged is initiated. 9999: Subsequent response to fault F30611.
Remedy:	- select Safe Torque Off and de-select again. - replace the Motor Module involved. Re fault value $=1020$: - carry out a POWER ON (power off/on) for all components. - upgrade the Motor Module software. - replace the Motor Module. Re fault value $=9999$: - carry out diagnostics for fault F30611. Note: CU: Control Unit MM: Motor Module SI: Safety Integrated STO: Safe Torque Off / SH: Safe standstill
F30611	SI MM: Defect in a monitoring channel
Message value	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (OFF1, OFF2, OFF3) VECTOR: NONE (OFF1, OFF2, OFF3)
Ack	IMMEDIATELY (POWER ON)
Cause:	The drive-based "Safety Integrated" function in the Motor Module (MM) has detected a fault in the data cross-check between the Control Unit (CU) and MM and initiated a STOP F. As a result of this fault, after the parameterized transition has expired (p9858), fault F30600 is output (SI MM: STOP A initiated). Fault value (r0949, interpret decimal): 0 : Stop request from the Control Unit. 1 to 999: Number of the cross-checked data that resulted in this fault. This number is also displayed in r9895. 1: SI monitoring clock cycle (r9780, r9880). 2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits. 3: SI SGE changeover tolerance time (p9650, p9850). 4: SI transition period STOP F to STOP A (p9658, p9858). 5: SI enable Safe Brake Control (p9602, p9802). 6: SI Motion enable, safety-relevant functions (p9501, internal value). 7: SI pulse suppression delay time for Safe Stop 1 (p9652, p9852). 8: SI PROFIsafe address (p9610, p9810). 1000: Watchdog timer has expired. Within a period corresponding to approximately 5 * p9850, too many switching operations have occurred at the safety-relevant inputs of the Control Unit, or STO (including subsequent responses) has been triggered too frequently via PROFIsafe/TM54F. 1001, 1002: Initialization error, change timer / check timer. 2000: Status of the STO selection on the Control Unit and Motor Module are different. 2001: Feedback signal for safe pulse suppression on the Control Unit and Motor Module are different. 2002: Status of the delay timer SS1 on the Control Unit and Motor Module are different.
Remedy:	Re fault value $=1$ to 5 and 7 to 999 : - check the cross-checked data that resulted in a STOP F. - carry out a POWER ON (power off/on) for all components. - upgrade the Motor Module software. - upgrade the Control Unit software. Re fault value $=6$: - carry out a POWER ON (power off/on) for all components. - upgrade the Motor Module software. - upgrade the Control Unit software.

Re fault value $=1000$:

- check the wiring of the safety-relevant inputs (SGE) on the Control Unit (contact problems).
- PROFIsafe: rectify contact problems/faults on the PROFIBUS master/PROFINET controller. - check the wiring of the fail-safe inputs on TM54F (contact problems).
Re fault value $=1001$, 1002:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Re fault value = 2000, 2001, 2002:

- check the tolerance time SGE changeover and if required, increase the value (p9650/p9850, p9652/p9852).
- check the wiring of the safety-relevant inputs (SGE) (contact problems).
- check the cause of STO selection in r9772. Active SMM functions (p9501=1) can also cause STO to be selected.
- replace the Motor Module involved.

Note:
CU: Control Unit
MM: Motor Module
SGE: Safety-relevant input
SI: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill
SMM: see r9772

N30620 (F, A)	SI MM: Safe Torque Off active
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Torque Off" function was selected on the Motor Module (MM) via the input terminal and is active.
	Note:
	This message does not result in a safety stop response.
Remedy:	None necessary.
	Note: MM: Motor Module SI: Safety Integrated STO: Safe Torque Off / SH: Safe standstill Reaction upon F: Acknowl. upon F: OFF2 Reaction upon A:
IMMEDIATELY (POWER ON)	
Acknowl. upon A:	NONE

N30621 (F, A)	SI MM: Safe Stop 1 active
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Stop 1" function (SS1) was selected on the Motor Module (MM) and is active.
	Note:
	This message does not result in a safety stop response.
Remedy:	None necessary.
	Note:
	MM: Motor Module
	SI: Safety Integrated
Reaction upon F:	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
	SERVO: OFF3
	VECTOR: OFF3
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F30625	SI MM: Sign-of-life error in safety data
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-based "Safety Integrated" function on the Motor Module (MM) has detected an error in the sign-of-life of the safety data between the Control Unit (CU) and MM and initiated a STOP A. - there is either a DRIVE-CLiQ communication error or communication has failed. - a time slice overflow of the safety software has occurred. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- select Safe Torque Off and de-select again. - carry out a POWER ON (power off/on) for all components. - check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified. - de-select all drive functions that are not absolutely necessary. - reduce the number of drives. - check the electrical cabinet design and cable routing for EMC compliance Note: CU: Control Unit MM: Motor Module SI: Safety Integrated
F30630	SI MM: Brake control error
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-based "Safety Integrated" function on the Motor Module (MM) has detected a brake control error and initiated a STOP A. Fault value (r0949, interpret decimal): 10: Fault in "open holding brake" operation. - Parameter p1278 incorrectly set. - No brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 = 0 (SBC deactivated)). - Ground fault in brake cable. 30: Fault in "close holding brake" operation. - No brake connected or wire breakage (check whether brake releases for p1278=1 and p9602/p9802 = 0 (SBC deactivated)). - Short-circuit in brake winding. 40: Fault in "brake closed" state. 60, 70: Fault in the brake control circuit of the Control Unit or communication fault between the Control Unit and Motor Module (brake control). Note: The following causes may apply to fault values: - motor cable is not shielded correctly. - defect in control circuit of the Motor Module.

Remedy:	- check parameter p 1278 (for SBC, only p1278 $=0$ is permissible). - select Safe Torque Off and de-select again. - check the motor holding brake connection. - check the function of the motor holding brake. - check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified. - check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are tightly screwed to the housing). - replace the Motor Module involved. Operation with Safe Brake Module: - check the Safe Brake Modules connection. - replace the Safe Brake Module. Note: MM: Motor Module SBC: Safe Brake Control SI: Safety Integrated
F30640	SI MM: Fault in the shutdown path of the second channel
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The Motor Module has detected a communications error with the higher-level control or the TM54F to transfer the safety-relevant information. Note: This fault results in a STOP A that can be acknowledged. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	For the higher-level control, the following applies: - check the PROFIsafe address in the higher-level control and Motor Modules and if required, align. - save all parameters (p0977 = 1). - carry out a POWER ON (power off/on) for all components. For TM54F, carry out the following steps: - start the copy function for the node identifier (p9700 = 1D hex). - acknowledge hardware CRC (p9701 = EC hex). - save all parameters (p0977 = 1). - carry out a POWER ON (power off/on) for all components. The following generally applies: - upgrade the Motor Module software. Note: MM: Motor Module SI: Safety Integrated See also: p9810 (SI PROFIsafe address (Motor Module))
F30649	SI MM: Internal software error
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal error in the Safety Integrated software on the Motor Module has occurred. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.

Remedy:	- carry out a POWER ON (power off/on) for all components. - re-commission the Safety Integrated function and carry out a POWER ON. - upgrade the Motor Module software. - contact the Hotline. - replace the Motor Module. Note: MM: Motor Module SI: Safety Integrated
F30650	SI MM: Acceptance test required
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The "Safety Integrated" function on the Motor Module requires an acceptance test. Note: This fault results in a STOP A that can be acknowledged. Fault value (r0949, interpret decimal): 130: Safety parameters for the Motor Module not available. 1000: Reference and actual checksum in the Motor Module are not identical (booting). - at least one checksum-checked piece of data is defective. 2000: Reference and actual checksum on the Motor Module are not identical (commissioning mode). - reference checksum incorrectly entered into the Motor Module (p9899 not equal to r9898). 2003: Acceptance test is required as a safety parameter has been changed. 2005: The safety logbook has identified that the safety checksums have changed. An acceptance test is required. 3003: Acceptance test is required as a hardware-related safety parameter has been changed. 9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.
Remedy:	Re fault value $=130$: - carry out safety commissioning routine. Re fault value $=1000$: - again carry out safety commissioning routine. - replace the CompactFlash card. Re fault value = 2000: - check the safety parameters in the Motor Module and adapt the reference checksum (p9899). Re fault value $=2003$, 2005: - Carry out an acceptance test and generate an acceptance report. The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature: SINAMICS S120 Function Manual Safety Integrated Re fault value = 3003: - carry out the function checks for the modified hardware and generate an acceptance report. The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature: SINAMICS S120 Function Manual Safety Integrated Re fault value = 9999: - carry out diagnostics for the other safety-related fault that is present. Note: MM: Motor Module SI: Safety Integrated See also: p9799 (SI reference checksum SI parameters (Control Unit)), p9899 (SI reference checksum SI parameters (Motor Module))
F30651	SI MM: Synchronization with Control Unit unsuccessful
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-based "Safety Integrated" function is requesting synchronization of the safety time slices on the Control Unit and Motor Module. This synchronization routine was unsuccessful.

F30656	SI MM: Motor Module parameter error
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When accessing the Safety Integrated parameters for the Motor Module (MM) on the CompactFlash card, an error has occurred. Note: This fault results in a STOP A that can be acknowledged. Fault value (r0949, interpret decimal): 129: Safety parameters for the Motor Module corrupted. 131: Internal software error on the Control Unit. 255: Internal Motor Module software error.
Remedy:	- re-commission the safety functions. - upgrade the Control Unit software. - upgrade the Motor Module software. - replace the CompactFlash card. Note: MM: Motor Module SI: Safety Integrated
F30659	SI MM: Write request for parameter rejected
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The write request for one or several Safety Integrated parameters on the Motor Module (MM) was rejected. Note: This fault does not result in a safety stop response. Fault value (r0949, interpret decimal): 10: An attempt was made to enable the STO function although this cannot be supported. 11: An attempt was made to enable the SBC function although this cannot be supported. 13: An attempt was made to enable the SS1 function although this cannot be supported. 14: An attempt was made to enable the safe motion monitoring function with the higher-level control, although this cannot be supported. 15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported. 16: An attempt was made to enable the PROFIsafe communication - although this cannot be supported or the version of the PROFIsafe driver used on the CU and MM is different. See also: r9771 (SI common functions (Control Unit)), r9871 (SI common functions (Motor Module)
Remedy:	Re fault value $=10,11,13,14,15,16$: - check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry out diagnostics for the faults involved. - use a Motor Module that supports the required function ("Safe Torque Off", "Safe Brake Control", "PROFIsafe/PROFIsafe V2", "motion monitoring functions integrated in the drive"). - upgrade the Motor Module software. - upgrade the Control Unit software. Note: CU: Control Unit MM: Motor Module SBC: Safe Brake Control SI: Safety Integrated SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204) STO: Safe Torque Off / SH: Safe standstill

F30672	SI Motion: Control Unit software incompatible
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The existing Control Unit software does not support the safe drive-based motion monitoring function. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry out diagnostics for the faults involved. - use a Control Unit that supports the safe motion monitoring function. - upgrade the Control Unit software. Note: SI: Safety Integrated
F30680	SI Motion MM: Checksum error safety monitoring functions
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The actual checksum calculated by the Motor Module and entered in r9398 over the safety-relevant parameters does not match the reference checksum saved in p9399 at the last machine acceptance. Safety-relevant parameters have been changed or a fault is present. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, interpret decimal): 0 : Checksum error for SI parameters for motion monitoring. 1: Checksum error for SI parameters for component assignment.
Remedy:	- Check the safety-relevant parameters and if required, correct. - set the reference checksum to the actual checksum. - carry out a POWER ON. - carry out an acceptance test. Note: SI: Safety Integrated
C30681	SI Motion MM: Incorrect parameter value
Message value:	Parameter: \%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameter value cannot be parameterized with this value. Note: This message does not result in a safety stop response. Fault value (r0949, interpret decimal): Parameter number with the incorrect value.
Remedy:	Correct the parameter value.

F30682	SI Motion MM: Monitoring function not supported
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The monitoring function enabled in p9301, p9501, p9601 or p9801 is not supported in this firmware version. Note: This message does not result in a safety stop response. Fault value (r0949, interpret decimal): 30: The firmware version of the Motor Module is older than the version of the Control Unit.
Remedy:	- De-select the monitoring function involved (p9301, p9301, p9303, p9601, p9801). - Upgrade the Motor Module firmware. See also: p9301 (SI Motion enable safety functions (Motor Module)), p9501 (SI Motion enable safety functions (Control Unit)), p9503 (SI Motion SCA (SN) enable (Control Unit)), p9601 (SI enable, functions integrated in the drive (Control Unit)), p9801 (SI enable, functions integrated in the drive (Motor Module))
F30683	SI Motion MM: SOS/SLS enable missing
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The safety-relevant basic function "SOS/SLS" is not enabled in p9301 although other safety-relevant monitoring functions are enabled. Note: This message does not result in a safety stop response.
Remedy:	Enable the function "SOS/SLS" (p9301.0). Note: SI: Safety Integrated SLS: Safely-Limited Speed / SG: Safely reduced speed SOS: Safe Operating Stop / SBH: Safe operating stop See also: p9301 (SI Motion enable safety functions (Motor Module))
F30685	SI Motion MM: Safely-Limited Speed limit value too high
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The limit value for the function "Safely-Limited Speed" (SLS) is greater than the speed that corresponds to an encoder limit frequency of 500 kHz . Note: This message does not result in a safety stop response. Fault value (r0949, interpret decimal): Maximum permissible speed.
Remedy:	Correct the limit values for SLS and carry out a POWER ON. Note: SI: Safety Integrated SLS: Safely-Limited Speed / SG: Safely reduced speed See also: p9331 (SI Motion SLS limit values (Motor Module))
F30688	SI Motion MM: Actual value synchronization not permissible
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	It is not permissible to simultaneously enable the actual value synchronization and a monitoring function with absolute reference (SCA/SLP). Note: This fault results in a STOP A that cannot be acknowledged.

Remedy: | Either de-select the function "actual value synchronization" or the monitoring functions with absolute reference |
| :--- |
| (SCA/SLP) and carry out a POWER ON. |
| Note: |
| SCA: Safe Cam / SN: Safe software cam |
| SI: Safety Integrated |
| SLP: Safely-Limited Position / SE: Safe software limit switches |
| See also: p9501 (SI Motion enable safety functions (Control Unit)) |

C30700	SI Motion MM: STOP A initiated
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP A (pulses are suppressed via the safety shutdown path of the Control Unit). Possible causes: - stop request from the Control Unit. - pulses not suppressed after a parameterized time (p9357) after test stop selection. - subsequent response to the message C30706 "SI Motion MM: Safe Acceleration Monitoring, limit exceeded". - subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded". - subsequent response to the message C30701 "SI Motion MM: STOP B initiated".
Remedy:	- remove the cause to the fault on the Control Unit. - check the value in p9357, if required, increase the value. - check the shutdown path of the Control Unit (check DRIVE-CLiQ communication). - carry out a diagnostics routine for message C30706. - carry out a diagnostics routine for message C30714. - carry out a diagnostics routine for message C30701. - replace Motor Module. - replace Control Unit. This message can only be acknowledged in the acceptance test mode without POWER ON via the Terminal Module 54F (TM54F) or PROFIsafe. Note: SI: Safety Integrated

C30701	SI Motion MM: STOP B initiated
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF3
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP B (braking along the OFF3 ramp). As a result of this fault, after the time parameterized in p9356 has expired, or the speed threshold parameterized in p9360 has been undershot, message C30700 "SI Motion MM: STOP A initiated" is output. Possible causes: - stop request from the Control Unit. - subsequent response to the message C30714 "SI Motion MM: Safely limited speed exceeded". - subsequent response to the message C30711 "SI Motion MM: Defect in a monitoring channel".
Remedy:	- remove the fault cause in the control and carry out a POWER ON. - carry out a diagnostics routine for message C01714. - carry out a diagnostics routine for message C01711. This message can only be acknowledged in the acceptance test mode without POWER ON via the Terminal Module 54F (TM54F) or PROFIsafe. Note: SI: Safety Integrated

C30706

Message value:
Drive object:
Reaction:
Acknowledge:
Cause:

SI Motion MM: Safe Acceleration Monitor limit exceeded

SERVO, VECTOR
NONE
IMMEDIATELY (POWER ON)
After initiating STOP B or STOP C, the velocity has exceeded the selected tolerance
The drive is shut down by the message C30700 "SI Motion MM: STOP A initiated".

Remedy:	Check the braking behavior, if required, adapt the tolerance for "Safe Acceleration Monitor".
	This message can only be acknowledged in the acceptance test mode without POWER ON via the Terminal Module
	54F (TM54F) or PROFIsafe.
	Note:
	SBR: Safe Acceleration Monitor
	SI: Safety Integrated
	See also: p9548 (SI Motion SBR actual velocity tolerance (Control Unit))

Remedy:	- remove the cause of the fault at the control. - carry out a diagnostics routine for message C30714. This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe. Note: SI: Safety Integrated SOS: Safe Operating Stop / SBH: Safe operating stop
C30711	SI MM MM: Defect in a monitoring channel
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When cross-checking and comparing the two monitoring channels, the drive detected a difference between the input data or results of the monitoring functions and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible. If at least one monitoring function is active, then after the parameterized timer has expired, the message C30701 "SI Motion: STOP B initiated" is output. The message is output with message value 1031 when the Sensor Module hardware is replaced. Message value (r9749, interpret decimal): 0 ... 999: Number of the cross-checked data that resulted in this message. Refer to safety message C01711for a description of the individual data. The significance of the individual message values is described in safety message C01711 of the Control Unit. 1000: Watchdog timer has expired. Too many signal changes have occurred at safety-relevant inputs. 1001: Initialization error of watchdog timer. 1005: Pulses already suppressed for test stop selection. 1011: Acceptance test status between the monitoring channels differ. 1012: Plausibility violation of the actual value from the encoder. 1020: Cyc. communication failure between the monit. cycles. 1021: Cyc. communication failure between the monit. channel and Sensor Module. 1023: Error during the effectivity test in the Sensor Module. 1030: Encoder fault detected from another monitoring channel. 1031: Data transfer error between the monitoring channel and the Sensor Module. 5000 ... 5140: PROFIsafe message values. The significance of the individual message values is described in safety message C01711 of the Control Unit. 6000 ... 6166: PROFIsafe message values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFINET). The significance of the individual message values is described in safety message C01711 of the Control Unit. See also: p9555 (SI Motion transition time STOP F to STOP B (Control Unit)), r9725 (SI Motion, diagnostics STOP F)
Remedy:	Re message value $=1030$: - check the encoder connection. - if required, replace the encoder. Re message value $=1031$: When replacing a Sensor Module, carry out the following steps: - start the copy function for the node identifier on the drive (p9700 = 1D hex). - acknowledge the hardware CRC on the drive (p9701 = EC hex). - save all parameters (p0977 = 1). - carry out a POWER ON (power off/on) for all components. The following always applies: - check the encoder connection. - if required, replace the encoder. Re other message values: - The significance of the individual message values is described in safety message C01711 of the Control Unit. Note: This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe. See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))

C30714	SI Motion MM: Safely-Limited Speed exceeded
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive had moved faster than that specified by the velocity limit value (p 9331). The drive is stopped as a result of the configured stop response (p9363). Message value (r9749, interpret decimal): 100: SLS1 exceeded. 200: SLS2 exceeded. 300: SLS3 exceeded. 400: SLS4 exceeded. 1000: Encoder limit frequency exceeded.
Remedy:	- check the traversing/motion program in the control. - check the limits for "Safely-Limited Speed" (SLS) and if required, adapt (p9331). This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe. Note: SI: Safety Integrated SLS: Safely-Limited Speed / SG: Safely reduced speed See also: p9331 (SI Motion SLS limit values (Motor Module)), p9363 (SI Motion SLS stop response (Motor Module))
C30798	SI Motion MM: Test stop running
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The test stop is active.
Remedy:	None necessary. The message is withdrawn when the test stop is finished. Note: SI: Safety Integrated
C30799	SI Motion MM: Acceptance test mode active
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The acceptance test mode is active. The POWER ON signals of the safety-relevant motion monitoring functions can be acknowledged during the acceptance test using the acknowledgement functions of the higher-level control.
Remedy:	None necessary. The message is withdrawn when exiting the acceptance test mode. Note: SI: Safety Integrated
N30800 (F)	Power unit: Group signal
Message value:	-
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	NONE
Cause:	The power unit has detected at least one fault.
Remedy:	Evaluates other current messages.
Reaction upon F:	OFF2
Acknowl. upon F:	IMMEDIATELY

F30801	Power unit DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred form the Control Unit to the power unit involved. The computing time load might be too high. Fault value (r0949, interpret hexadecimal): yyxx hex: $y=$ component number, $x x=$ fault cause $\mathrm{xx}=0 \mathrm{~A}$ hex: The sign-of-life bit in the receive telegram is not set.
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance - remove DRIVE-CLiQ components that are not required. - de-select functions that are not required. - if required, increase the sampling times (p0112, p0115). - replace the component involved.
F30802	Power unit: Time slice overflow
Message value:	-
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Time slide overflow.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.
A30804 (F)	Power unit: CRC
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	CRC error actuator
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.
Reaction upon F:	A_INFEED: OFF2 (OFF1) SERVO: OFF2 (OFF1, OFF3) VECTOR: OFF2 (OFF1, OFF3)
Acknowl. upon F:	IMMEDIATELY
F30805	Power unit: EPROM checksum error
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Internal parameter data is corrupted. Fault value (r0949, interpret hexadecimal): 01: EEPROM access error. 02: Too many blocks in the EEPROM.
Remedy:	Replace the module.

F30809	Power unit: Switching information not valid
Message value:	-
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	For 3P gating unit:
	The last switching status word in the setpoint telegram is identified by the end ID. Such an end ID was not found.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.

F30835	Power unit DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred form the Control Unit to the power unit involved. The nodes do not send and receive in synchronism. Fault value (r0949, interpret hexadecimal): yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ fault cause $x x=21$ hex: The cyclic telegram has not been received. $x x=22 \text { hex: }$ Timeout in the telegram receive list. xx $=40$ hex: Timeout in the telegram send list.
Remedy:	- carry out a POWER ON. - replace the component involved. See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F30836	Power unit DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred form the Control Unit to the power unit involved. Data were not able to be sent. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=41$ hex: Telegram type does not match send list.
Remedy:	Carry out a POWER ON.
F30837	Power unit DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component involved. Faulty hardware cannot be excluded. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=20 \text { hex: }$ Error in the telegram header. $\text { xx = } 23 \text { hex: }$ Receive error: The telegram buffer memory contains an error. $x x=42 \text { hex: }$ Send error: The telegram buffer memory contains an error. $\text { xx = } 43 \text { hex: }$ Send error: The telegram buffer memory contains an error.
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). - check the electrical cabinet design and cable routing for EMC compliance - if required, use another DRIVE-CLiQ socket (p9904). - replace the component involved.

F30845	Power unit DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred form the Control Unit to the power unit involved. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $x x=0 B$ hex: Synchronization error during alternating cyclic data transfer.
Remedy:	Carry out a POWER ON. See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F30850	Power unit: Internal software error
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: OFF1 (NONE, OFF2) SERVO: OFF1 (NONE, OFF2, OFF3) VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error in the power unit has occurred. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- replace power unit. - if required, upgrade the firmware in the power unit. - contact the Hotline.
F30851	Power unit DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (NONE, OFF1, OFF3) VECTOR: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $x x=0 A$ hex $=10 \mathrm{dec}$: The sign-of-life bit in the receive telegram is not set.
Remedy:	Upgrade the firmware of the component involved.
F30860	Power unit DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $x x=11$ hex $=17$ dec: CRC error and the receive telegram is too early. $x x=01$ hex $=01 \mathrm{dec}$: Checksum error (CRC error). $x x=12$ hex $=18 \mathrm{dec}$: The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early. $x x=02$ hex $=02 \mathrm{dec}$: Telegram is shorter than specified in the length byte or in the receive list.

	$x \mathrm{x}=13 \mathrm{hex}=19 \mathrm{dec}$:
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early. $x x=03$ hex $=03 \mathrm{dec}$:
	Telegram is longer than specified in the length byte or in the receive list.
	The length of the receive telegram does not match the receive list and the receive telegram is too early. $x x=04$ hex $=04$ dec:
	The length of the receive telegram does not match the receive list.
	$x \mathrm{x}=15 \mathrm{hex}=21 \mathrm{dec}$:
	The type of the receive telegram does not match the receive list and the receive telegram is too early. $x x=05$ hex $=05$ dec:
	The type of the receive telegram does not match the receive list.
	$x x=16$ hex = 22 dec :
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	$x \mathrm{x}=06$ hex $=06$ dec:
	The address of the power unit in the telegram and in the receive list do not match.
	$x \mathrm{x}=19$ hex = 25 dec :
	The error bit in the receive telegram is set and the receive telegram is too early.
	$\mathrm{xx}=09$ hex = 09 dec :
	The error bit in the receive telegram is set.
	$x \mathrm{x}=10$ hex = 16 dec :
	The receive telegram is too early.
Remedy:	- carry out a POWER ON.
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
F30885	CU DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
	The nodes do not send and receive in synchronism.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: $\mathrm{y} y=$ component number, $x x=$ fault cause
	$x x=1 \mathrm{~A}$ hex $=26 \mathrm{dec}$:
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	$x \mathrm{x}=21$ hex $=33 \mathrm{dec}$:
	The cyclic telegram has not been received.
	$x x=22$ hex 34 dec:
	Timeout in the telegram receive list.
	$x \mathrm{x}=40$ hex $=64 \mathrm{dec}$:
	Timeout in the telegram send list.
	xx $=62$ hex $=98$ dec:
	Error at the transition to cyclic operation.
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

F30886	PU DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved. Data were not able to be sent. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $x x=41$ hex: Telegram type does not match send list.
Remedy:	Carry out a POWER ON.
F30887	Power unit DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (power unit) involved. Faulty hardware cannot be excluded. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=20 \text { hex: }$ Error in the telegram header. $\text { xx = } 23 \text { hex: }$ Receive error: The telegram buffer memory contains an error. $\text { xx = } 42 \text { hex: }$ Send error: The telegram buffer memory contains an error. $\text { xx = } 43 \text { hex: }$ Send error: The telegram buffer memory contains an error. $\text { xx = } 60 \text { hex: }$ Response received too late during runtime measurement. $\mathrm{xx}=61 \text { hex: }$ Time taken to exchange characteristic data too long.
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). - check the electrical cabinet design and cable routing for EMC compliance - if required, use another DRIVE-CLiQ socket (p9904). - replace the component involved.
F30895	PU DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $x x=0 B$ hex: Synchronization error during alternating cyclic data transfer.
Remedy:	Carry out a POWER ON. See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

F30896	Power unit DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (power unit), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced. Fault value (r0949, interpret decimal): Component number.
Remedy:	- when replacing cables, only use cables with the same length as the original cables. - when replacing components, use the same components and firmware releases. - carry out a POWER ON.

F30899 (N, A) Power unit: Unknown fault

Message value: New message: \%1
Drive object:
Reaction:
All objects

Reaction:	A_INFEED: NONE (OFF1, OFF2)
	SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
	VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)

Cause: A fault occurred on the power unit that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Fault value (r0949, interpret decimal): Fault number. Note: If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy: - replace the firmware on the power unit by an older firmware version (r0128).

- upgrade the firmware on the Control Unit (r0018).

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F30903	Power unit: I2C bus error occurred
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Communications error with an EEPROM or A/D converter. Fault value (r0949, interpret hexadecimal): 80000000 hex: - internal software error. 00000001 hex ... 0000FFFF hex: - module fault.
Remedy:	Re fault value $=80000000$ hex: - upgrade firmware to later version. Re fault value $=00000001$ hex. $.0000 F F F F$ hex: - replace the module.

F30907	Power unit: FPGA configuration unsuccessful
Message value:	-
Drive object:	A_INF, B_INF, CU_CX32, CU_I, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	For the initialization within the power unit, an internal software error has occurred.
Remedy:	- if required, upgrade the firmware in the power unit. - replace power unit. - contact the Hotline.
A30920 (F)	Power unit: Temperature sensor fault
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred. Alarm value (r2124, interpret decimal): 1: Wire breakage or sensor not connected (KTY: $R>1630$ Ohm, PT100: $R>375$ Ohm). 2: Measured resistance too low (PTC: $R<20$ Ohm, KTY: $R<50$ Ohm, PT100: $R<30$ Ohm).
Remedy:	- check that the sensor is connected correctly. - replace sensor.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
A30999 (F, N)	Power unit: Unknown alarm
Message value:	New message: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm occurred on the power unit that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Alarm value (r2124, interpret decimal): Alarm number. Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the power unit by an older firmware version (r0128). - upgrade the firmware on the Control Unit (r0018).
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F31100 (N, A)	Encoder 1: Zero mark distance error
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: ENCODER (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: ENCODER (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.

	For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Fault value (r0949, interpret decimal): Last measured zero mark distance in increments (4 increments = 1 encoder pulse). The sign designates the direction of motion when detecting the zero mark distance. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. . check the encoder type (encoder with equidistant zero marks). - adapt the parameter for the distance between zero marks (p0424, p0425). - if message output above speed threshold, reduce filter time if necessary (p0438). - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31101 (N, A)	Encoder 1: Zero marked failed
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The $1.5 \times$ parameterized zero mark distance was exceeded. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Fault value (r0949, interpret decimal): Number of increments after POWER ON or since the last zero mark that was detected (4 increments $=1$ encoder pulse). See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. . check the encoder type (encoder with equidistant zero marks). - adapt the parameter for the distance between zero marks (p0425). - if message output above speed threshold, reduce filter time if necessary (p0438). - when p0437.1 is active, check p4686. - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\text { F31103 (N, A) }}$	Encoder 1: Amplitude error, track R
Message value:	R track: \%1
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The amplitude of the reference track signal (track R) does not lie within the tolerance bandwidth for encoder 1. The fault can be initiated when the unipolar voltage range is exceeded or the differential amplitude is initiated. Fault value (r0949, interpret hexadecimal): xxxx hex: $x x x x=$ Signal level, track R (16 bits with sign).

	The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$. The response threshold is $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$. The nominal differential signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$). The response threshold is $>750 \mathrm{mV}$. A signal level of 500 mV peak value corresponds to the numerical value of $5333 \mathrm{hex}=21299 \mathrm{dec}$. Note: The analog value of the amplitude error is not measured at the same time with the hardware fault output by the sensor module. The signal level is not evaluated unless the following conditions are satisfied: - Sensor Module properties available (r0459.30 = 1, r0459.31 = 1). - monitoring active ($\mathrm{p} 0437.30=1, \mathrm{p} 0437.31=1$). See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment may not be sufficient for the speed range. - check that the encoder cables and shielding are routed in compliance with EMC. - check the plug connections and contacts. - check whether the zero mark is connected and the signal cables RP and RN connected correctly. - replace the encoder cable. - if the coding disk is soiled or the lighting worn, replace the encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31110 (N, A)	Encoder 1: Serial communications error
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	Serial communication protocol transfer error between the encoder and evaluation module. Fault value (r0949, interpret binary): Bit 0: Alarm bit in the position protocol. Bit 1: Incorrect quiescent level on the data line. Bit 2: Encoder does not respond (does not supply a start bit within 50 ms). Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data. Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it. Bit 5: Internal error in the serial driver: An illegal mode command was requested. Bit 6 : Timeout when cyclically reading. Bit 8: Protocol is too long (e.g. > 64 bits). Bit 9: Receive buffer overflow. Bit 10: Frame error when reading twice. Bit 11: Parity error. Bit 12: Data line signal level error during the monoflop time. Bit 13: Data line incorrect.
Remedy:	Re fault value, bit $0=1$: - encoder defective. F31111 may provide additional details. Re fault value, bit $1=1$: - Incorrect encoder type / replace the encoder or encoder cable. Re fault value, bit $2=1$: - Incorrect encoder type / replace the encoder or encoder cable. Re fault value, bit $3=1$: - EMC / connect the cable shield, replace the encoder or encoder cable. Re fault value, bit $4=1$: - EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. Re fault value, bit $5=1$: - EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. Re fault value, bit $6=1$: - Update the firmware for the Sensor Module. Re fault value, bit $8=1$:

	- Check the parameterization (p0429.2). Re fault value, bit $9=1$: - EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. Re fault value, bit $10=1$: - Check the parameterization (p0429.2, p0449). Re fault value, bit $11=1$: - Check the parameterization (p0436). Re fault value, bit $12=1$: - Check the parameterization (p0429.6). Re fault value, bit $13=1$: - Check the data line.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31111 (N, A)	Encoder 1: Absolute encoder EnDat, internal fault/error
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The EnDat encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): Bit 0: Lighting system failed. Bit 1: Signal amplitude too low. Bit 2: Position value incorrect. Bit 3: Encoder power supply overvoltage condition. Bit 4: Encoder power supply undervoltage condition. Bit 5: Encoder power supply overcurrent condition. Bit 6: The battery must be changed. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Re fault value, bit $0=1$: Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. Re fault value, bit $1=1$: Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. Re fault value, bit $2=1$: Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. Re fault value, bit $3=1$: 5 V power supply voltage fault. When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC. When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor. Re fault value, bit $4=1$: 5 V power supply voltage fault. When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC. When using a motor with DRIVE-CLiQ: Replace the motor. Re fault value, bit $5=1$: Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. Re fault value, bit $6=1$: The battery must be changed (only for encoders with battery back-up).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31112 (N, A)	Encoder 1: Error bit set in the serial protocol
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder sends a set error bit via the serial protocol. Fault value (r0949, interpret binary): Bit 0 : Fault bit in the position protocol.
Remedy:	For fault value, bit $0=1$: In the case of an EnDat encoder, F31111 may provide further details.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31115 (N, A)	Encoder 1: Amplitude error track A/B fault ($\mathbf{A}^{\wedge} \mathbf{2}+\mathbf{B}^{\wedge} \mathbf{2}$)
Message value:	A track: \%1, B-track: \%2
Drive object:	All objects
Reaction:	A INFEED: NONE SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The amplitude (root of $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$) for encoder 1 exceeds the permissible tolerance. Fault value (r0949, interpret hexadecimal): yyyyxxxx hex: yyyy $=$ Signal level, track B (16 bits with sign). xxxx = Signal level, track A (16 bits with sign). The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$). The response thresholds are $<230 \mathrm{mV}$ (observe the frequency response of the encoder) and $>750 \mathrm{mV}$. A signal level of 500 mV peak value corresponds to the numerical value of $5333 \mathrm{hex}=21299 \mathrm{dec}$. Note for sensors modules for resolvers (e. g. SMC10): The nominal signal level is at $2900 \mathrm{mV}(2.0 \mathrm{Vrms})$. The response thresholds are $<1070 \mathrm{mV}$ and $>3582 \mathrm{mV}$. A signal level of 2900 mV peak value corresponds to the numerical value of $6666 \mathrm{hex}=26214 \mathrm{dec}$. Note: The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC. - check the plug connections. - replace the encoder or encoder cable. - check the Sensor Module (e.g. contacts). - with measuring systems without their own bearing system: Adjust the scanning head and check the bearing system of the measuring wheel. - for measuring systems with their own bearing system: Ensure that the encoder housing is not subject to any axial force.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F31116 (N, A)	Encoder 1: Amplitude error track A + B
Message value:	A track: \%1, B-track: \%2
Drive object:	All objects
Reaction:	A INFEED: NONE SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	IMMEDIATELY
Cause:	The amplitude of the rectified encoder signals A and B and the amplitude from the roots of $A^{\wedge} 2+B^{\wedge} 2$ for encoder 1 are not within the tolerance bandwidth. Fault value (r0949, interpret hexadecimal): yyyyxxxx hex: yyyy $=$ Signal level, track B (16 bits with sign). xxxx = Signal level, track A (16 bits with sign). The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$). The response thresholds are $<176 \mathrm{mV}$ (observe the frequency response of the encoder) and $>955 \mathrm{mV}$. A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$. Note: The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC. - check the plug connections. - replace the encoder or encoder cable. - check the Sensor Module (e.g. contacts).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31117 (N, A)	Encoder 1: Inversion error signals A and B and R
Message value:	-
Drive object:	All objects
Reaction:	A INFEED: NONE SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	IMMEDIATELY
Cause:	For a square-wave signal encoder (TTL. bipolar. double ended) the A^{*} and B^{*} and R^{*} signals are not inverted with respect to signals A and B and R. Note: For CU310, CUA32, D410, SMC30 (only Order No. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1), the following applies: A squarewave encoder without track R is used and the track monitoring (p0405.2 $=1$) is activated. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check the setting of p0405: p0405.2 $=1$ is only possible if the encoder is connected at X520. - check the encoder/cable: Does the encoder supply TTL signals and the associated inverted signals? Note: For a squarewave encoder without track R, the following jumpers must be set at the encoder connection: - pin 10 (reference signal R) <--> pin 7 (encoder power supply, ground) - pin 11 (reference signal R inverted) <--> pin 4 (encoder power supply)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F31118 (N, A)	Encoder 1: Speed difference outside the tolerance range
Message value:	\%1
Drive object:	All objects
Reaction:	A INFEED: NONE SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	For an HTL/TTL encoder, the speed difference has exceeded the value in p0492 over several sampling cycles. The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time. Encoder 1 is used as motor encoder and can be effective has fault response to change over to encoderless operation. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting. See also: p0491 (Motor encoder fault response ENCODER), p0492
Remedy:	- check the tachometer feeder cable for interruptions. - check the grounding of the tachometer shielding. - if required, increase the maximum speed difference per sampling cycle (p 0492).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31120 (N, A)	Encoder 1: Power supply voltage fault
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	Encoder 1 power supply voltage fault. Note: If the encoder cables 6FX2002-2EQ00-.... and 6FX2002-2CH00-.... are interchanged, this can result in the encoder being destroyed because the pins of the operating voltage are reversed. Fault value (r0949, interpret binary): Bit 0: Undervoltage condition on the sense line. Bit 1: Overcurrent condition for the encoder power supply. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	For fault value, bit $0=1$: - correct encoder cable connected? - check the plug connections of the encoder cable. - SMC30: Check the parameterization (p0404.22). For fault value, bit $1=1$: - correct encoder cable connected? - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F31121 (N, A)	Encoder 1: Coarse position error
Message value:	-
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: ENCODER (NONE) VECTOR: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	For the actual value sensing, an error was detected on the module. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31122	Encoder 1: Internal power supply voltage fault
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE (ENCODER, IASC/DCBRAKE)
Acknowledge:	IMMEDIATELY
Cause:	Fault in internal reference voltage of ASICs for encoder 1. Fault value (r0949, interpret decimal): 1: Reference voltage error. 2: Internal undervoltage. 3: Internal overvoltage.
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
F31123 (N, A)	Encoder 1: Signal level A/B unipolar outside tolerance
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The unipolar level (AP/AN or BP/BN) for encoder 1 is outside the permissible tolerance. Fault value (r0949, interpret binary): Bit $0=1$: Either AP or AN outside the tolerance. Bit 16 = 1: Either BP or BN outside the tolerance. The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$. The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$. Note: The signal level is not evaluated unless the following conditions are satisfied: - Sensor Module properties available (r0459.31 = 1). - Monitoring active (p0437.31 = 1). See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- make sure that the encoder cables and shielding are installed in an EMC-compliant manner. - check the plug connections and contacts. - check the short-circuit of a signal cable with mass or the operating voltage. - replace the encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31125 (N, A)	Encoder 1: Amplitude error track A/B overcontrolled
Message value:	A track: \%1, B-track: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE
	SERVO: ENCODER (IASC/DCBRAKE, NONE)
	VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The amplitude of track A or B for encoder 1 exceeds the permissble tolerance band.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy $=$ Signal level, track B (16 bits with sign).
	xxxx $=$ Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold is $>750 \mathrm{mV}$. This fault also occurs if the A/D converter is overcontrolled.
	A signal level of 500 mV peak value corresponds to the numerical value of $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note for sensors modules for resolvers (e. g. SMC10):
	The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is $>3582 \mathrm{mV}$.
	A signal level of 2900 mV peak value corresponds to the numerical value of 6666 hex $=26214 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC. - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31126 (N, A)	Encoder 1: Amplitude AB too high
Message value:	Amplitude: \%1, Angle: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE
	SERVO: ENCODER (IASC/DCBRAKE, NONE)
	VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ or $\|A\|+\|B\|$) for encoder 1 exceeds the permissible tolerance.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy $=$ Angle
	$\mathrm{xxxx}=$ Amplitude, i.e. root from $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2(16$ bits without sign)
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold for ($\|A\|+\|B\|$) is > 1120 mV or the root of ($\left.A^{\wedge} 2+B^{\wedge} 2\right)>955 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value of 299A hex $=10650 \mathrm{dec}$.
	The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is at the negative zero crossover of track B.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC. - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F31129 (N, A)	Encoder 1: Position difference, hall sensor/track C/D and A/B too large
Message value:	\%1
Drive object:	All objects
Reaction:	A INFEED: NONE SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The error for track C / D is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical. One period of track C/D corresponds to 360° mechanical. One period of the Hall signal corresponds to 360° electrical. The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough. After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A31429. Fault value (r0949, interpret decimal): For track C/D, the following applies: Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1°). For Hall signals, the following applies: Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1°). See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- track C or D not connected. - correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C / D. - check that the encoder cables are routed in compliance with EMC. - check the adjustment of the Hall sensor.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31130 (N, A)	Encoder 1: Zero mark and position error from the coarse synchronization
Message value:	Angular deviation, electrical: \%1, angle, mechanical: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out. When initializing via track C / D (p 0404) then it is checked whether the zero mark occurs in an angular range of $+/-18$ ${ }^{\circ}$ mechanical. When initializing via Hall sensors (p 0404) or pole position identification (p 1982) it is checked whether the zero mark occurs in an angular range of $+/-60^{\circ}$ electrical. Fault value (r0949, interpret hexadecimal): yyyyxxxx hex yyyy: Determined mechanical zero mark position (can only be used for track C/D). xxxx: Deviation of the zero mark from the expected position as electrical angle. Normalization: $32768 \mathrm{dec}=180^{\circ}$ See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- Check and, if necessary, correct p0431 (trigger via p1990 $=1$ if necessary). - check that the encoder cables are routed in compliance with EMC. - check the plug connections. - if the Hall sensor is used as an equivalent for track C/D, check the connection. - Check connection of track C or D. - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE

Reaction upon A: NONE Acknowl. upon A: NONE	
F31131 (N, A)	Encoder 1: Deviation, position incremental/absolute too large
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE
	SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
	VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)

	Bit 19: Overvoltage (--> F3x135, $x=1,2,3$)
	Bit 20: Undervoltage (--> F3x135, $x=1,2,3$)
	Bit 21: Overcurrent (--> F3x135, x = 1, 2, 3)
	Bit 22: Temperature exceeded (--> F3x405, $x=1,2,3$)
	Bit 23: Singleturn position 2 (safety status display)
	Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3)
	Bit 25: Singleturm power down (--> F3x135, $x=1,2,3$)
	Bit 26: Multiturn position 1 (--> F3x136, $x=1,2,3$)
	Bit 27: Multiturn position 2 (--> F3x136, $x=1,2,3$)
	Bit 28: Multiturn system (--> F3x136, $x=1,2,3$)
	Bit 29: Multiturn power down (--> F3x136, x = 1, 2, 3)
	Bit 30: Multiturn overflow/underflow (--> F3x136, $x=1,2,3$)
	Bit 31: Multiturn battery (reserved)
Remedy:	Replace DRIVE-CLiQ encoder.
F31136	Encoder 1: Error when determining multiturn information
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word.
	Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
	Fault value (r0949, interpret binary):
	Bit 0: F1 (safety status display)
	Bit 1: F2 (safety status display)
	Bit 2: Lighting (reserved)
	Bit 3: Signal amplitude (reserved)
	Bit 4: Position value (reserved)
	Bit 5: Overvoltage (reserved)
	Bit 6: Undervoltage (reserved)
	Bit 7: Overcurrent (reserved)
	Bit 8: Battery (reserved)
	Bit 16: Lighting (--> F3x135, $x=1,2,3$)
	Bit 17: Signal amplitude (--> F3x135, $x=1,2,3$)
	Bit 18: Singleturn position 1 (--> F3x135, x = 1, 2, 3)
	Bit 19: Overvoltage (--> F3x135, $x=1,2,3$)
	Bit 20: Undervoltage (--> F3x135, $x=1,2,3$)
	Bit 21: Overcurrent (--> F3x135, $x=1,2,3$)
	Bit 22: Temperature exceeded (--> F3x405, $x=1,2,3$)
	Bit 23: Singleturn position 2 (safety status display)
	Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3)
	Bit 25: Singleturm power down (--> F3x135, $x=1,2,3$)
	Bit 26: Multiturn position 1 (--> F3x136, $\mathrm{x}=1,2,3$)
	Bit 27: Multiturn position $2(-->F 3 x 136, x=1,2,3)$
	Bit 28: Multiturn system (--> F3x136, $x=1,2,3$)
	Bit 29: Multiturn power down (--> F3x136, x = 1, 2, 3)
	Bit 30: Multiturn overflow/underflow (--> F3x136, x = 1, 2, 3)
	Bit 31: Multiturn battery (reserved)
Remedy:	Replace DRIVE-CLiQ encoder.
F31137	Encoder 1: Internal error when determining the position
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
	Fault value (r0949, interpret binary):
	Only for internal SIEMENS use.
Remedy:	Replace encoder

F31138	Encoder 1: Internal error when determining multiturn information
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): Only for internal SIEMENS use.
Remedy:	Replace encoder
F31150 (N, A)	Encoder 1: Initialization error
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	Encoder functionality selected in p0404 is not operating correctly. Fault value (r0949, interpret hexadecimal): The fault value is a bit field. Every set bit indicates functionality that is faulted. The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D). See also: p0404 (Encoder configuration effective), p0491 (Motor encoder fault response ENCODER)
Remedy:	- Check that p0404 is correctly set. - check the encoder type used (incremental/absolute value) and for SMCxx, the encoder cable. - if relevant, note additional fault/error messages that describe the fault in detail.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31151 (N, A) Encoder 1: Encoder speed for initialization AB too high

Message value: \%1
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The encoder speed is too high during while initializing the sensor.
Remedy: Reduce the speed of the encoder accordingly during initialization.
If necessary, deactivate monitoring (p0437.29).
See also: p0437 (Sensor Module configuration extended)
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

A31400 (F, N)	Encoder 1: Alarm threshold zero mark distance error
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance. For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).

	Alarm value (r2124, interpret decimal):
	Last measured zero mark distance in increments (4 increments $=1$ encoder pulse). The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. . check the encoder type (encoder with equidistant zero marks). - adapt the parameter for the distance between zero marks (p0424, p0425). - replace the encoder or encoder cable.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	ONE

A31401 (F, N)	Encoder 1: Alarm threshold zero marked failed
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The $1.5 \times$ parameterized zero mark distance was exceeded. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Alarm value (r2124, interpret decimal): Number of increments after POWER ON or since the last zero mark that was detected (4 increments $=1$ encoder pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. . check the encoder type (encoder with equidistant zero marks). - adapt the parameter for the distance between zero marks (p0425). - replace the encoder or encoder cable.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F31405 (N, A) Encoder 1: Temperature in the encoder evaluation inadmissible

Message value: \%1

Drive object: All objects

Reaction:	A INFEED: NONE (OFF1, OFF2)
	SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
	VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The encoder evaluation for a motor with DRIVE-CLiQ has detected an inadmissible temperature.
	The fault threshold is $125^{\circ} \mathrm{C}$.
	Alarm value (r2124, interpret decimal):
	Measured board/module temperature in $0.1^{\circ} \mathrm{C}$.
Remedy:	Reduce the ambient temperature for the DRIVE-CLiQ connection of the motor.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

A31410 (F, N)	Encoder 1: Serial communications
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Serial communication protocol transfer error between the encoder and evaluation module. Alarm value (r2124, interpret binary): Bit 0: Alarm bit in the position protocol. Bit 1: Incorrect quiescent level on the data line. Bit 2: Encoder does not respond (does not supply a start bit within 50 ms). Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data. Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it. Bit 5: Internal error in the serial driver: An illegal mode command was requested. Bit 6: Timeout when cyclically reading. Bit 8: Protocol is too long (e.g. > 64 bits). Bit 9: Receive buffer overflow. Bit 10: Frame error when reading twice. Bit 11: Parity error. Bit 12: Data line signal level error during the monoflop time.
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. - replace the encoder.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31411 (F, N)	Encoder 1: EnDat encoder signals alarms
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The error word of the EnDat encoder has alarm bits that have been set. Alarm value (r2124, interpret binary): Bit 0: Frequency exceeded (speed too high). Bit 1: Temperature exceeded. Bit 2: Control reserve, lighting system exceeded. Bit 3: Battery discharged. Bit 4: Reference point passed. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Replace encoder.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A31412 (F, N)	Encoder 1: Error bit set in the serial protocol
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder sends a set error bit via the serial protocol. Alarm value (r2124, interpret binary): Bit 0: Fault bit in the position protocol. Bit 1: Alarm bit in the position protocol.
Remedy:	- carry out a POWER ON (power off/on) for all components. - check that the encoder cables are routed in compliance with EMC. - check the plug connections. - replace the encoder.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A31414 (F, N)	Encoder 1: Amplitude error track Cor D (C^2 + D^2)
Message value:	C track: \%1, D track: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The amplitude ($C^{\wedge} 2+D^{\wedge} 2$) of track C or D of the encoder or from the Hall signals, is not within the tolerance bandwidth. Alarm value (r2124, interpret hexadecimal): yyyyxxxx hex: yyyy = Signal level, track D (16 bits with sign). xxxx = Signal level, track C (16 bits with sign). The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$). The response thresholds are $<230 \mathrm{mV}$ (observe the frequency response of the encoder) and $>750 \mathrm{mV}$. A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$. Note: If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. - replace the encoder or encoder cable. - check the Sensor Module (e.g. contacts). - check the Hall sensor box
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

N31415 (F, A) Encoder 1: Amplitude error track A/B alarm (A^2 + B^2)
Message value: Amplitude: \%1, Angle: \%2
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$) for encoder 1 exceeds the permissible tolerance.
Alarm value (r2124, interpret hexadecimal):
yyyyxxxx hex:
yyyy = Angle
$x x x x=$ Amplitude, i.e. root from $A^{\wedge} 2+B^{\wedge} 2(16$ bits without sign $)$

	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold is $<300 \mathrm{mV}$ (observe the frequency response of the encoder).
	A signal level of 500 mV peak value corresponds to the numerical value 299A hex $=10650 \mathrm{dec}$.
	The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is at the negative zero crossover of track B.
	Note for sensors modules for resolvers (e. g. SMC10):
	The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is < 1414 mV (1.0 Vrms).
	A signal level of 2900 mV peak value corresponds to the numerical value of $3333 \mathrm{hex}=13107 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not sufficient for the speed range.
	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	- if the coding disk is soiled or the lighting worn, replace the encoder.
Reaction upon F:	A INFEED: NONE (OFF1, OFF2)
	SERVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
	VECTOR: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A31418 (F, N)	Encoder 1: Speed difference per sampling rate exceeded
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	For an HTL/TTL encoder, the speed difference between two sampling cycles has exceeded the value in p0492.
	The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0492
Remedy:	- check the tachometer feeder cable for interruptions.
	- check the grounding of the tachometer shielding.
	- if required, increase the setting of p0492.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2)
	SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
	VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31419 (F, N)	Encoder 1: Track A or B outside the tolerance range
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The amplitude, phase or offset correction for track A or B is at the limit.
	Amplitude error correction: Amplitude B / Amplitude A = 0.78 ... 1.27
	Phase: <84 degrees or >96 degrees
	SMC20: Offset correction: $+/-140 \mathrm{mV}$
	SMC10: Offset correction: + /-650 mV
	Alarm value (r2124, interpret hexadecimal):
	xxxx1: Minimum of the offset correction, track B
	xxxx2: Maximum of the offset correction, track B

$\left.\begin{array}{ll} & \text { xxx1x: Minimum of the offset correction, track A } \\ & \text { xxx2x: Maximum of the offset correction, track A } \\ \text { xx1xx: Minimum of the amplitude correction, track B/A } \\ \text { xx2xx: Maximum of the amplitude correction, track B/A } \\ & \text { x1xxx: Minimum of the phase error correction } \\ \text { x2xxx: Maximum of the phase error correction } \\ \text { 1xxxx: Minimum of the cubic correction } \\ \text { 2xxxx: Maximum of the cubic correction }\end{array}\right]$

	For Hall signals, the following applies: Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1°). See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- track C or D not connected. - correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D. - check that the encoder cables are routed in compliance with EMC. - check the adjustment of the Hall sensor.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31431 (F, N)	Encoder 1: Deviation, position incremental/absolute too large
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the zero pulse is passed, a deviation in the incremental position was detected. For equidistant zero marks, the following applies: - The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark. For distance-coded zero marks, the following applies: - the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair. Alarm value (r2124, interpret decimal): Deviation in quadrants (1 pulse $=4$ quadrants). See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. - replace the encoder or encoder cable. - remove any dirt from the coding disk or strong magnetic fields.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SĒRVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31432 (F, N)	Encoder 1: Rotor position adaptation corrects deviation
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	For track A/B, pulses have been lost or too many have been counted. These pulses are presently being corrected Alarm value (r2124, interpret decimal): Last measured deviation of the zero mark distance in increments (4 increments = 1 encoder pulse). The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. - replace the encoder or encoder cable. - check encoder limit frequency. - adapt the parameter for the distance between zero marks (p0424, p0425).
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY

Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A31443 (F, N)	Encoder 1: Signal level C/D unipolar outside tolerance
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The unipolar level (CP/CN or DP/DN) for encoder 1 is outside the permissible tolerance. Alarm value (r2124, interpret binary): Bit $0=1$: Either $C P$ or $C N$ outside the tolerance. Bit 16 = 1: Either DP or DN outside the tolerance. The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$. The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$. Note: The signal level is not evaluated unless the following conditions are satisfied: - Sensor Module properties available (r0459.31 = 1). - Monitoring active (p0437.31 = 1). See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC. - check the plug connections and contacts. - are the C/D tracks connected correctly (have the signal lines CP and CN or DP and DN been interchanged)? - replace the encoder cable.
Reaction upon F:	A_INFEED: NONE SERRVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F31500 (N, A) Encoder 1: Position tracking traversing range exceeded

Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause: For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p 0412 and interpreted as the number of motor revolutions.
When $\mathrm{p} 0411.0=1$, the maximum traversing range for a configured linear axis is defined to be $64 \mathrm{x}(+/-32 \mathrm{x})$ the setting in p0421.
When p0411.3 = 1 , the maximum traversing range for a configured linear axis is preset to the highest possible value and equals $+/-p 0412 / 2$ (rounded to whole rotations). The highest possible value depends on the pulse number (p0408) and fine resolution (p0419).
Remedy: The fault should be resolved as follows:

- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning ($\mathrm{p} 0010=0$).

The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :
NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F31501 (N, A)	Encoder 1: Position tracking encoder position outside tolerance window
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When powered down, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder. Fault value (r0949, decimal): Deviation (difference) to the last encoder position in increments of the absolute value. The sign designates the traversing direction. Note: The deviation (difference) found is also displayed in r0477. See also: p0413 (Measuring gear, position tracking tolerance window), r0477 (Measuring gear, position difference)
Remedy:	Reset the position tracking as follows: - select encoder commissioning (p0010 = 4). - reset the position tracking as follows (p0411.2 = 1). - de-select encoder commissioning (p0010 = 0). The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507). See also: p0010, p2507
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31502 (N, A)	Encoder 1: Encoder with measuring gear, without valid signals
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The encoder with measuring gear no longer provides any valid signals.
Remedy:	It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31503 (N, A)	Encoder 1: Position tracking cannot be reset
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The position tracking for the measuring gear cannot be reset.
Remedy:	The fault should be resolved as follows: - select encoder commissioning (p0010 = 4). - reset the position tracking as follows (p0411.2 = 1). - de-select encoder commissioning (p0010 = 0). The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

N31800 (F)	Encoder 1: Group signal
Message value:	-
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE) SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	NONE
Cause:	The motor encoder has detected at least one fault. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Evaluates other current messages.
Reaction upon F:	A_INFEED: OFF2 (NONE) SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowl. upon F:	IMMEDIATELY
F31801 (N, A)	Encoder 1 DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE) SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $\mathrm{xx}=0 \mathrm{~A}$ hex: The sign-of-life bit in the receive telegram is not set. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance - replace the component involved. See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31802 (N, A) Encoder 1: Time slice overflow
Message value: \%1
Drive object: All objects

Reaction:	A_INFEED: OFF2 (NONE)
	SERVO: ENCODER (IASC/DCBRAKE, NONE)
	VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	IMMEDIATELY
Cause:	Time slice overflow, encoder 1.
	Fault value (r0949, interpret decimal):
	9: Time slice overflow of the fast (current controller clock cycle) time slice.
	10: Time slice overflow of the average time slice.
	12: Time slice overflow of the slow time slice.
	999: Timeout when waiting for SYNO, e.g. unexpected return to non-cyclic operation.
	See also: p0491 (Motor encoder fault response ENCODER)

F31804 (N, A)	Encoder 1: Checksum error
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE) SERVO: ENCODER (IASC/DCBRAKE, NONE)
	VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	IMMEDIATELY
Cause:	A checksum error has occurred when reading-out the program memory on the Sensor Module. Fault value (r0949, interpret hexadecimal): yyyyxxx hex yyyy: Memory area involved. xxxx: Difference between the checksum at POWER ON and the current checksum.
	See also: p0491 (Motor encoder fault response ENCODER)
- check whether the permissible ambient temperature for the component is maintained.	

F31805 (N, A)	Encoder 1: EPROM checksum error
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE)
	SERVO: ENCODER (IASC/DCBRAKE, NONE)
	VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	IMMEDIATELY
Cause:	Internal parameter data is corrupted.
	Fault value (r0949, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Replace the module.
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F31806 (N, A)	Encoder 1: Initialization error
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE)
	SERVO: ENCODER (IASC/DCBRAKE, NONE)
	VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder was not successfully initialized.
	Fault value (r0949, interpret hexadecimal):
	1, 2, 3: Encoder initialization with the motor rotating.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Acknowledge the fault.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

A31811 (F, N)	Encoder 1: Encoder serial number changed
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The serial number of the motor encoder of a synchronous motor has changed. The change was only checked for encoders with serial number (e.g. EnDat encoders) and build-in motors (e.g. p0300 $=401$) or third-party motors (p0300 = 2). Cause 1: The encoder was replaced. Cause 2: A third-party, build-in or linear motor was re-commissioned. Cause 3: The motor with integrated and adjusted encoder was replaced. Cause 4: The firmware was updated to a version that checks the encoder serial number. Note: With closed-loop position control, the serial number is accepted when starting the adjustment (p2507=2). When the encoder is adjusted ($\mathrm{p} 2507=3$), the serial number is checked for changes and if required, the adjustment is reset ($\mathrm{p} 2507=1$). See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Re causes 1, 2: Carry out an automatic adjustment using the pole position identification routine. First, accept the serial number with $\mathrm{p} 0440=1$. Acknowledge the fault. Initiate the pole position identification routine with p1990 $=1$. Then check that the pole position identification routine is correctly executed. SERVO: If a pole position identification technique is selected in p 1980 , and if p0301 does not contain a motor type with an encoder adjusted in the factory, then p1990 is automatically activated. or Set the adjustment via p0431. In this case, the new serial number is automatically accepted. or Mechanically adjust the encoder. Accept the new serial number with p0440 $=1$. Re causes 3, 4: Accept the new serial number with p0440 $=1$.
Reaction upon F:	A_INFEED: OFF2 (NONE) SERVO: NONE (ENCODER, OFF2) VECTOR: NONE (ENCODER, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
$\overline{\mathrm{F} 31812 \text { (N, A) }}$	Encoder 1: Requested cycle or RX-/TX timing not supported
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A cycle requested from the Control Unit or RX/TX timing is not supported. Alarm value (r2124, interpret decimal): 0 : Application cycle is not supported. 1: DQ cycle is not supported. 2: Distance between RX and TX instants in time too low. 3: TX instant in time too early.
Remedy:	
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31813	Encoder 1: Hardware logic unit failed
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): Bit 0: ALU watchdog has responded. Bit 1: ALU has detected a sign-of-life error.
Remedy:	Replace encoder
F31820 (N, A)	Encoder 1 DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A INFEED: OFF2 SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=01$ hex: CRC error. $x x=02$ hex: Telegram is shorter than specified in the length byte or in the receive list. $x x=03$ hex: Telegram is longer than specified in the length byte or in the receive list. xx = 04 hex: The length of the receive telegram does not match the receive list. $x x=05$ hex: The type of the receive telegram does not match the receive list. $\mathrm{xx}=06$ hex: The address of the component in the telegram and in the receive list do not match. xx = 07 hex: A SYNC telegram is expected - but the receive telegram is not a SYNC telegram. xx = 08 hex: No SYNC telegram is expected - but the receive telegram is one. xx = 09 hex: The error bit in the receive telegram is set. $x x=10$ hex: The receive telegram is too early. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- carry out a POWER ON. - check the electrical cabinet design and cable routing for EMC compliance - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F31835 (N, A)	Encoder 1 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. The nodes do not send and receive in synchronism. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=21$ hex: The cyclic telegram has not been received. $x x=22 \text { hex: }$ Timeout in the telegram receive list. $x x=40 \text { hex: }$ Timeout in the telegram send list. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- carry out a POWER ON. - replace the component involved. See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 31836 \text { (N, A) }}$	Encoder 1 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=41$ hex: Telegram type does not match send list. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31837 (N, A)	Encoder 1 DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2
	SERVO: ENCODER (IASC/DCBRAKE, NONE)
	VECTOR: ENCODER (IASC/DCBRAKE, NONE)

F31850 (N, A)	Encoder 1: Encoder evaluation, internal software error
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE) SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	POWER ON
Cause:	Internal software error in the Sensor Module of encoder 1. Fault value (r0949, interpret decimal): 1: Background time slice is blocked. 2: Checksum over the code memory is not OK. 10000: OEM memory of the EnDat encoder contains data that cannot be interpreted. 11000-11499: Descriptive data from EEPROM incorrect. 11500-11899: Calibration data from EEPROM incorrect. 11900-11999: Configuration data from EEPROM incorrect. 16000: DRIVE-CLiQ encoder initialization application error. 16001: DRIVE-CLiQ encoder initialization ALU error. 16002: DRIVE-CLiQ encoder HISI / SISI initialization error. 16003: DRIVE-CLiQ encoder safety initialization error. 16004: DRIVE-CLiQ encoder internal system error. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- replace the Sensor Module. - if required, upgrade the firmware in the Sensor Module. - contact the Hotline.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31851 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $\mathrm{xx}=0 \mathrm{~A}$ hex $=10 \mathrm{dec}$: The sign-of-life bit in the receive telegram is not set.
Remedy:	Upgrade the firmware of the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31860 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.

	Fault value (r0949, interpret hexadecimal):
	yyxx hex: yy = component number, xx = fault cause
	xx = 11 hex 17 dec:
	CRC error and the receive telegram is too early.
xx $=01$ hex = 01 dec:	

Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). - check the electrical cabinet design and cable routing for EMC compliance - if required, use another DRIVE-CLiQ socket (p9904). - replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31895 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: ENCODER (IASC/DCBRAKE, NONE) VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $x x=0 B$ hex: Synchronization error during alternating cyclic data transfer.
Remedy:	Carry out a POWER ON. See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31896 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: OFF2 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) VECTOR: OFF2 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (Sensor Module for encoder 1), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced. Fault value (r0949, interpret decimal): Component number.
Remedy:	- when replacing cables, only use cables with the same length as the original cables. - when replacing components, use the same components and firmware releases. - carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31899 (N, A)	Encoder 1: Unknown fault
Message value:	New message: \%1
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the Sensor Module for encoder 1 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit.

	Fault value (r0949, interpret decimal): Fault number. Note: If required, the significance of this new fault can be read about in a more recent description of the Control Unit. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148). - upgrade the firmware on the Control Unit (r0018).
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

A31902 (F, N)	Encoder 1: SPI-BUS error occurred
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal SPI bus.
	Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- replace the Sensor Module. - if required, upgrade the firmware in the Sensor Module.
	- contact the Hotline.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
	VECTOR: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A31903 (F, N)	Encoder 1: I2C-BUS error occurred
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal I2C bus.
	Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting. - replace the Sensor Module. - if required, upgrade the firmware in the Sensor Module.
Remedy:	- contact the Hotline.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2)
	SERVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
	VECTOR: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F31905 (N, A) Encoder 1: Parameterization error
Message value: Parameter: \%1, supplementary information: \%2
Drive object: All objects

Reaction:	A_INFEED: OFF2 (NONE, OFF1)
	SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
	VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	A parameter of encoder 1 was detected as being incorrect.
	It is possible that the parameterized encoder type does not match the connected encoder.

A31915 (F, N)	Encoder 1: Configuration error
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration for encoder 1 is incorrect.
	Fault value (r0949, interpret decimal):
	1: Re-parameterization between fault/alarm is not permissible.
Remedy:	No re-parameterization between fault/alarm.
Reaction upon F:	NONE (ENCODER, IASC/DCBRAKE)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F31916 (N, A) Encoder 1: Parameterization error

Message value: Parameter: \%1, supplementary information: \%2
Drive object: SERVO, VECTOR
Reaction: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: A parameter of encoder 1 was detected as being incorrect.
It is possible that the parameterized encoder type does not match the connected encoder.
The parameter involved can be determined as follows:

- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).

	Fault value (r0949, interpret decimal):
	Parameter number
The fault is only output for encoders with r404[0].10 = 1. This corresponds to A31905 for encoders with r404[0].10 =	
0.	
	See also: p0491 (Motor encoder fault response ENCODER)
- check whether the connected encoder type matches the encoder that has been parameterized.	
- correct the parameter specified by the fault value (r0949) and p0187.	

F32100 (N, A)	Encoder 2: Zero mark distance error
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance. For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Fault value (r0949, interpret decimal): Last measured zero mark distance in increments (4 increments $=1$ encoder pulse). The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. . check the encoder type (encoder with equidistant zero marks). - adapt the parameter for the distance between zero marks (p0424, p0425). - if message output above speed threshold, reduce filter time if necessary (p0438). - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32101 (N, A)	Encoder 2: Zero marked failed
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SĒRVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The $1.5 \times$ parameterized zero mark distance was exceeded. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Fault value (r0949, interpret decimal): Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. . check the encoder type (encoder with equidistant zero marks). - adapt the parameter for the distance between zero marks (p0425). - if message output above speed threshold, reduce filter time if necessary (p0438). - when p0437.1 is active, check p4686. - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F32103 (N, A)	Encoder 2: Amplitude error, track R
Message value:	R track: \%1
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The amplitude of the reference track signal (track R) does not lie within the tolerance bandwidth for encoder 2. The fault can be initiated when the unipolar voltage range is exceeded or the differential amplitude is initiated. Fault value (r0949, interpret hexadecimal): xxxx hex: xxxx = Signal level, track R (16 bits with sign). The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$. The response threshold is $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$. The nominal differential signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$). The response threshold is $>750 \mathrm{mV}$. A signal level of 500 mV peak value corresponds to the numerical value of $5333 \mathrm{hex}=21299 \mathrm{dec}$. Note: The analog value of the amplitude error is not measured at the same time with the hardware fault output by the sensor module. The signal level is not evaluated unless the following conditions are satisfied: - Sensor Module properties available (r0459.30 = 1, r0459.31 = 1). - monitoring active ($\mathrm{p} 0437.30=1, \mathrm{p} 0437.31=1$).
Remedy:	- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment may not be sufficient for the speed range. - check that the encoder cables and shielding are routed in compliance with EMC. - check the plug connections and contacts. - check whether the zero mark is connected and the signal cables RP and RN connected correctly. - replace the encoder cable. - if the coding disk is soiled or the lighting worn, replace the encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32110 (N, A)	Encoder 2: Serial communications error
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	Serial communication protocol transfer error between the encoder and evaluation module. Fault value (r0949, interpret binary): Bit 0: Alarm bit in the position protocol. Bit 1: Incorrect quiescent level on the data line. Bit 2: Encoder does not respond (does not supply a start bit within 50 ms). Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data. Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it. Bit 5: Internal error in the serial driver: An illegal mode command was requested. Bit 6: Timeout when cyclically reading. Bit 8: Protocol is too long (e.g. > 64 bits). Bit 9: Receive buffer overflow. Bit 10: Frame error when reading twice. Bit 11: Parity error. Bit 12: Data line signal level error during the monoflop time. Bit 13: Data line incorrect.

Remedy:	Re fault value, bit $0=1$: - encoder defective. F31111 may provide additional details. Re fault value, bit $1=1$: - Incorrect encoder type / replace the encoder or encoder cable. Re fault value, bit $2=1$: - Incorrect encoder type / replace the encoder or encoder cable. Re fault value, bit $3=1$: - EMC / connect the cable shield, replace the encoder or encoder cable. Re fault value, bit $4=1$: - EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. Re fault value, bit $5=1$: - EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. Re fault value, bit $6=1$: - Update the firmware for the Sensor Module. Re fault value, bit $8=1$: - Check the parameterization (p0429.2). Re fault value, bit $9=1$: - EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. Re fault value, bit $10=1$: - Check the parameterization (p0429.2, p0449). Re fault value, bit $11=1$: - Check the parameterization (p0436). Re fault value, bit $12=1$: - Check the parameterization (p0429.6). Re fault value, bit $13=1$: - Check the data line.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32111 (N, A)	Encoder 2: Absolute encoder EnDat, internal fault/error
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The EnDat encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): Bit 0: Lighting system failed. Bit 1: Signal amplitude too low. Bit 2: Position value incorrect. Bit 3: Encoder power supply overvoltage condition. Bit 4: Encoder power supply undervoltage condition. Bit 5: Encoder power supply overcurrent condition. Bit 6: The battery must be changed.
Remedy:	Re fault value, bit $0=1$: Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. Re fault value, bit $1=1$: Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. Re fault value, bit $2=1$: Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. Re fault value, bit $3=1$: 5 V power supply voltage fault. When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC. When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.

	Re fault value, bit $4=1$:
	5V power supply voltage fault.
	When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
	When using a motor with DRIVE-CLiQ: Replace the motor.
	Re fault value, bit 5 = 1:

Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections.	
- replace the encoder or encoder cable.	
- check the Sensor Module (e.g. contacts).	
- with measuring systems without their own bearing system: Adjust the scanning head and check the bearing system	
of the measuring wheel.	
- for measuring systems with their own bearing system: Ensure that the encoder housing is not subject to any axial	
force.	

Remedy:	- check the setting of p0405: p0405.2 = 1 is only possible if the encoder is connected at X520.
	- check the encoder/cable: Does the encoder supply TTL signals and the associated inverted signals?
	Note:
For a squarewave encoder without track R, the following jumpers must be set at the encoder connection:	
- pin 10 (reference signal R) <--> pin 7 (encoder power supply, ground)	
- pin 11 (reference signal R inverted) <--> pin 4 (encoder power supply)	

F32118 (N, A) Encoder 2: Speed difference outside the tolerance range
Message value: $\% 1$
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT

Cause:	For an HTL/TTL encoder, the speed difference has exceeded the value in p0492 over several sampling cycles. The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting. See also: p0492
Remedy:	- check the tachometer feeder cable for interruptions. - check the grounding of the tachometer shielding.
- if required, increase the maximum speed difference per sampling cycle (p0492).	
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}: ~$	NONE

F32120 (N, A) Encoder 2: Power supply voltage fault

Message value:	Fault cause: \%1 bin
Drive object:	All objects

Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	Encoder 2 power supply voltage fault. Note: If the encoder cables 6FX2002-2EQ00-.... and 6FX2002-2CH00-.... are interchanged, this can result in the encoder being destroyed because the pins of the operating voltage are reversed. Fault value (r0949, interpret binary): Bit 0: Undervoltage condition on the sense line. Bit 1: Overcurrent condition for the encoder power supply.
Remedy:	For fault value, bit $0=1$: - correct encoder cable connected? - check the plug connections of the encoder cable. - SMC30: Check the parameterization (p0404.22). For fault value, bit $1=1$: - correct encoder cable connected? - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F32121 (N, A)	Encoder 2: Coarse position error
Message value:	- All
Drive object:	All objects
Reaction:	A INFEED: NONE SERVO: OFF1 (NONE, OFF2, OFF3) VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	For the actual value sensing, an error was detected on the module. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position.
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A :	NONE
F32122	Encoder 2: Internal power supply voltage fault
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE (ENCODER, IASC/DCBRAKE)
Acknowledge:	IMMEDIATELY
Cause:	Fault in internal reference voltage of ASICs for encoder 2. Fault value (r0949, interpret decimal): 1: Reference voltage error. 2: Internal undervoltage. 3: Internal overvoltage.
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
F32123 (N, A)	Encoder 2: Signal level A/B unipolar outside tolerance
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The unipolar level (AP/AN or BP/BN) for encoder 2 is outside the permissible tolerance. Fault value (r0949, interpret binary): Bit $0=1$: Either AP or AN outside the tolerance. Bit $16=1$: Either BP or BN outside the tolerance. The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$. The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$. Note: The signal level is not evaluated unless the following conditions are satisfied: - Sensor Module properties available (r0459.31 = 1). - Monitoring active (p0437.31 = 1).
Remedy:	- make sure that the encoder cables and shielding are installed in an EMC-compliant manner. - check the plug connections and contacts. - check the short-circuit of a signal cable with mass or the operating voltage. - replace the encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F32125 (N, A)	Encoder 2: Amplitude error track A/B overcontrolled
Message value:	A track: \%1, B-track: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The amplitude of track A or B for encoder 2 exceeds the permissble tolerance band. Fault value (r0949, interpret hexadecimal): yyyyxxxx hex: yyyy = Signal level, track B (16 bits with sign). xxxx = Signal level, track A (16 bits with sign). The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$). The response threshold is $>750 \mathrm{mV}$. This fault also occurs if the A/D converter is overcontrolled. A signal level of 500 mV peak value corresponds to the numerical value of $5333 \mathrm{hex}=21299 \mathrm{dec}$. Note for sensors modules for resolvers (e. g. SMC10): The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is $>3582 \mathrm{mV}$. A signal level of 2900 mV peak value corresponds to the numerical value of $6666 \mathrm{hex}=26214 \mathrm{dec}$. Note: The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC. - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32126 (N, A)	Encoder 2: Amplitude AB too high
Message value:	Amplitude: \%1, Angle: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ or $\|A\|+\|B\|$) for encoder 2 exceeds the permissible tolerance. Fault value (r0949, interpret hexadecimal): yyyyxxxx hex: yyyy $=$ Angle $\mathrm{xxxx}=$ Amplitude, i.e. root from $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$ (16 bits without sign) The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$). The response threshold for $(\|A\|+\|B\|)$ is $>1120 \mathrm{mV}$ or the root of $\left(A^{\wedge} 2+B^{\wedge} 2\right)>955 \mathrm{mV}$. A signal level of 500 mV peak value corresponds to the numerical value of 299 A hex $=10650 \mathrm{dec}$. The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is at the negative zero crossover of track B. Note: The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC. - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F32129 (N, A)	Encoder 2: Position difference, hall sensor/track C/D and A/B too large
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The error for track C/D is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical. One period of track C/D corresponds to 360° mechanical. One period of the Hall signal corresponds to 360° electrical. The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough. After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A32429. Fault value (r0949, interpret decimal): For track C/D, the following applies: Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1°). For Hall signals, the following applies: Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1°).
Remedy:	- track C or D not connected. - correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D. - check that the encoder cables are routed in compliance with EMC. - check the adjustment of the Hall sensor.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32130 (N, A)	Encoder 2: Zero mark and position error from the coarse synchronization
Message value:	Angular deviation, electrical: \%1, angle, mechanical: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out. When initializing via track C/D (p0404) then it is checked whether the zero mark occurs in an angular range of $+/-18$ ${ }^{\circ}$ mechanical. When initializing via Hall sensors (p0404) or pole position identification (p1982) it is checked whether the zero mark occurs in an angular range of $+/-60^{\circ}$ electrical. Fault value (r0949, interpret hexadecimal): yyyyxxxx hex yyyy: Determined mechanical zero mark position (can only be used for track C/D). xxxx: Deviation of the zero mark from the expected position as electrical angle. Normalization: $32768 \mathrm{dec}=180^{\circ}$
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. - if the Hall sensor is used as an equivalent for track C/D, check the connection. - check the connection of track C or D. - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

	Bit 19: Overvoltage (--> F3x135, $x=1,2,3$)
	Bit 20: Undervoltage ($-->\mathrm{F} 3 \times 135, \mathrm{x}=1,2,3$)
	Bit 21: Overcurrent (--> F3x135, x = 1, 2, 3)
	Bit 22: Temperature exceeded (--> F3x405, $x=1,2,3$)
	Bit 23: Singleturn position 2 (safety status display)
	Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3)
	Bit 25: Singleturm power down (--> F3x135, $x=1,2,3$)
	Bit 26: Multiturn position 1 (--> F3x136, $x=1,2,3$)
	Bit 27: Multiturn position 2 (--> F3x136, $x=1,2,3$)
	Bit 28: Multiturn system (--> F3x136, $x=1,2,3$)
	Bit 29: Multiturn power down (--> F3x136, x = 1, 2, 3)
	Bit 30: Multiturn overflow/underflow (--> F3x136, x = 1, 2, 3)
	Bit 31: Multiturn battery (reserved)
Remedy:	Replace DRIVE-CLiQ encoder.
F32136	Encoder 2: Error when determining multiturn information
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word.
	Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
	Fault value (r0949, interpret binary):
	Bit 0: F1 (safety status display)
	Bit 1: F2 (safety status display)
	Bit 2: Lighting (reserved)
	Bit 3: Signal amplitude (reserved)
	Bit 4: Position value (reserved)
	Bit 5: Overvoltage (reserved)
	Bit 6: Undervoltage (reserved)
	Bit 7: Overcurrent (reserved)
	Bit 8: Battery (reserved)
	Bit 16: Lighting (--> F3x135, $x=1,2,3$)
	Bit 17: Signal amplitude (--> F3x135, x = 1, 2, 3)
	Bit 18: Singleturn position 1 (--> F3x135, x = 1, 2, 3)
	Bit 19: Overvoltage (--> F3x135, $x=1,2,3$)
	Bit 20: Undervoltage (--> F3x135, $x=1,2,3$)
	Bit 21: Overcurrent (--> F3x135, $x=1,2,3$)
	Bit 22: Temperature exceeded (--> F3x405, $x=1,2,3$)
	Bit 23: Singleturn position 2 (safety status display)
	Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3)
	Bit 25: Singleturm power down (--> F3x135, $x=1,2,3$)
	Bit 26: Multiturn position 1 (--> F3x136, $x=1,2,3$)
	Bit 27: Multiturn position 2 (--> F3x136, x=1, 2, 3)
	Bit 28: Multiturn system (--> F3x136, $x=1,2,3$)
	Bit 29: Multiturn power down (--> F3x136, x = 1, 2, 3)
	Bit 30: Multiturn overflow/underflow (--> F3x136, x=1, 2, 3)
	Bit 31: Multiturn battery (reserved)
Remedy:	Replace DRIVE-CLiQ encoder.
F32137	Encoder 2: Internal error when determining the position
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
	Fault value (r0949, interpret binary):
	Only for internal SIEMENS use.
Remedy:	Replace encoder

F32138	Encoder 2: Internal error when determining multiturn information
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): Only for internal SIEMENS use.
Remedy:	Replace encoder

F32150 (N, A) Encoder 2: Initialization error
Message value: $\%$

Drive object:	All objects
Reaction:	A_INFEED: NONE

	SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
	VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)

F32151 (N, A) Encoder 2: Encoder speed for initialization AB too high
Message value: \%1
Drive object: All objects

Reaction:	A_INFEED: NONE SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder speed is too high during while initializing the sensor.
Remedy:	Reduce the speed of the encoder accordingly during initialization. If necessary, deactivate monitoring (p0437.29).
See also: p0437 (Sensor Module configuration extended)	
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

A32400 (F, N)	Encoder 2: Alarm threshold zero mark distance error
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the
	system.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).

	Alarm value (r2124, interpret decimal): Last measured zero mark distance in increments (4 increments = 1 encoder pulse)
The sign designates the direction of motion when detecting the zero mark distance.	

A32401 (F, N)	Encoder 2: Alarm threshold zero marked failed
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The $1.5 \times$ parameterized zero mark distance was exceeded. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Alarm value (r2124, interpret decimal): Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. . check the encoder type (encoder with equidistant zero marks). - adapt the parameter for the distance between zero marks (p 0425). - replace the encoder or encoder cable.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F32405 (N, A) Encoder 2: Temperature in the encoder evaluation inadmissible

Message value: \%1

Drive object: All objects

Reaction:	A_INFEED: NONE (OFF1, OFF2)
	SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
	VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)

A32411 (F, N) Encoder 2: EnDat encoder signals alarms
Message value: Fault cause: \%1 bin
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: \quad The error word of the EnDat encoder has alarm bits that have been set. Alarm value (r2124, interpret binary): Bit 0: Frequency exceeded (speed too high). Bit 1: Temperature exceeded. Bit 2: Control reserve, lighting system exceeded. Bit 3: Battery discharged. Bit 4: Reference point passed.
Remedy: Replace encoder.
Reaction upon F: A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F: IMMEDIATELY
Reaction upon N: NONE
Acknowl. upon N: NONE

A32412 (F, N)	Encoder 2: Error bit set in the serial protocol
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder sends a set error bit via the serial protocol. Alarm value (r2124, interpret binary): Bit $1:$ Alault bit it the position protocol. Bit in the position protocol.

Remedy:	- carry out a POWER ON (power off/on) for all components. - check that the encoder cables are routed in compliance with EMC. - check the plug connections. - replace the encoder.
Reaction upon F:	
A_INFEED: NONE (OFF1, OFF2)	
SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)	
VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)	

\(\left.$$
\begin{array}{ll} & \begin{array}{l}\text { Note: } \\
\text { The analog values of the amplitude error are not measured at the same time with the hardware fault output by the } \\
\text { sensor module. }\end{array}
$$

Remedy:

- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not suf-

ficient for the speed range.

- check that the encoder cables and shielding are routed in compliance with EMC.

- check the plug connections.

- replace the encoder or encoder cable.

- check the Sensor Module (e.g. contacts).\end{array}\right\}\)| - if the coding disk is soiled or the lighting worn, replace the encoder. |
| :--- |

Remedy:	- check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders). - check the plug connections (also the transition resistance). - check the encoder signals. - replace the encoder or encoder cable.
Reaction upon F:	
A_INFEED: NONE (OFF1, OFF2)	
SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)	
SECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)	

Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A32431 (F, N)	Encoder 2: Deviation, position incremental/absolute too large
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have
n times the distance referred to the first zero mark.	
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have
the expected distance to the first zero mark pair.	

A32432 (F, N)	Encoder 2: Rotor position adaptation corrects deviation
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	For track A/B, pulses have been lost or too many have been counted. These pulses are presently being corrected. Alarm value (r2124, interpret decimal): Last measured deviation of the zero mark distance in increments (4 incre- ments = 1 encoder pulse). The sign designates the direction of motion when detecting the zero mark distance. - check that the encoder cables are routed in compliance with EMC.
- check the plug connections.	

A32443 (F, N)	Encoder 2: Signal level C/D unipolar outside tolerance
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The unipolar level (CP/CN or DP/DN) for encoder 2 is outside the permissible tolerance. Alarm value (r2124, interpret binary): Bit $0=1$: Either CP or CN outside the tolerance. Bit 16 = 1: Either DP or DN outside the tolerance. The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$. The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$. Note: The signal level is not evaluated unless the following conditions are satisfied: - Sensor Module properties available (r0459.31 = 1). - Monitoring active (p 0437.31 = 1).
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC. - check the plug connections and contacts. - are the C/D tracks connected correctly (have the signal lines CP and CN or DP and DN been interchanged)? - replace the encoder cable.
Reaction upon F:	A_INFEED: NONE SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
$\overline{\mathrm{F} 32500 \text { (N, A) }}$	Encoder 2: Position tracking traversing range exceeded
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p 0412 and interpreted as the number of motor revolutions. When $\mathrm{p} 0411.0=1$, the maximum traversing range for a configured linear axis is defined to be $64 \mathrm{x}(+/-32 \mathrm{x})$ the setting in p 0421 . When p0411.3 = 1 , the maximum traversing range for a configured linear axis is preset to the highest possible value and equals $+/-\mathrm{p} 0412 / 2$ (rounded to whole rotations). The highest possible value depends on the pulse number (p 0408) and fine resolution (p 0419).
Remedy:	The fault should be resolved as follows: - select encoder commissioning (p0010 = 4). - reset the position tracking as follows (p0411.2 = 1). - de-select encoder commissioning ($p 0010=0$). The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 32501 \text { (N, A) }}$	Encoder 2: Position tracking encoder position outside tolerance window
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When powered down, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.

	Fault value (r0949, decimal): Deviation (difference) to the last encoder position in increments of the absolute value. The sign designates the traversing direction. Note: The deviation (difference) found is also displayed in r0477. See also: p0413 (Measuring gear, position tracking tolerance window), r0477 (Measuring gear, position difference)
Remedy:	Reset the position tracking as follows: - select encoder commissioning (p0010 = 4). - reset the position tracking as follows (p0411.2 = 1). - de-select encoder commissioning (p0010 = 0). The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507). See also: p0010, p2507
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 32502 \text { (N, A) }}$	Encoder 2: Encoder with measuring gear, without valid signals
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The encoder with measuring gear no longer provides any valid signals.
Remedy:	It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32503 (N, A)	Encoder 2: Position tracking cannot be reset
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The position tracking for the measuring gear cannot be reset.
Remedy:	The fault should be resolved as follows: - select encoder commissioning (p0010 = 4). - reset the position tracking as follows (p0411.2 = 1). - de-select encoder commissioning (p0010 = 0). The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A32700	Encoder 2: Effectivity test does not supply the expected value
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): Bit $x=1$: Effectivity test x unsuccessful.
Remedy:	

N32800 (F)	Encoder 2: Group signal
Message value:	-
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	NONE
Cause:	The motor encoder has detected at least one fault.
Remedy:	Evaluates other current messages.
Reaction upon F:	A_INFEED: OFF2 (NONE) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
F32801 (N, A)	Encoder 2 DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Fault value (r0949, interpret hexadecimal): yyxx hex: $y=$ component number, $x x=$ fault cause $x x=0 A$ hex: The sign-of-life bit in the receive telegram is not set.
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance - replace the component involved. See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F32802 (N, A) Encoder 2: Time slice overflow

Message value: \%1
Drive object: All objects

Reaction:	A_INFEED: OFF2 (NONE)
	SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
	VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: Time slice overflow, encoder 2.
Fault value (r0949, interpret decimal):
9: Time slice overflow of the fast (current controller clock cycle) time slice.
10: Time slice overflow of the average time slice.
12: Time slice overflow of the slow time slice.
999: Timeout when waiting for SYNO, e.g. unexpected return to non-cyclic operation.
Remedy: Reduce the current controller frequency.
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F32804 (N, A)	Encoder 2: Checksum error
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A checksum error has occurred when reading-out the program memory on the Sensor Module. Fault value (r0949, interpret hexadecimal): yyyyxxxx hex yyyy: Memory area involved. xxxx: Difference between the checksum at POWER ON and the current checksum.
Remedy:	- check whether the permissible ambient temperature for the component is maintained. -replace the Sensor Module.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F32805 (N, A) Encoder 2: EPROM checksum error
Message value: \%1
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: Internal parameter data is corrupted. Fault value (r0949, interpret hexadecimal): 01: EEPROM access error. 02: Too many blocks in the EEPROM.
Remedy: Replace the module.

Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F32806 (N, A) Encoder 2: Initialization error
Message value: \%1
Drive object: All objects

Reaction:	A_INFEED: OFF2 (NONE)
	SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
	VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder was not successfully initialized.
	Fault value (r0949, interpret hexadecimal):
	1, 2, 3: Encoder initialization with the motor rotating.
Remedy:	Acknowledge the fault.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F32811 (N, A)	Encoder 2: Encoder serial number changed
Message value:	-
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE) SERVO: OFF1 (NONE, OFF2, OFF3) VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The encoder serial number has changed. The change is only checked for encoder encoders). Cause: The encoder was replaced. Note: With closed-loop position control, the serial number is accepted when starting the When the encoder is adjusted ($\mathrm{p} 2507=3$), the serial number is checked for change is reset ($\mathrm{p} 2507=1$).
Remedy:	Mechanically adjust the encoder. Accept the new serial number with p0440 $=1$.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32812 (N, A)	Encoder 2: Requested cycle or RX-/TX timing not supported
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A cycle requested from the Control Unit or RX/TX timing is not supported. Alarm value (r 2124 , interpret decimal): 0 : Application cycle is not supported. 1: DQ cycle is not supported. 2: Distance between RX and TX instants in time too low. 3: TX instant in time too early.
Remedy:	
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32813	Encoder 2: Hardware logic unit failed
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): Bit 0: ALU watchdog has responded. Bit 1: ALU has detected a sign-of-life error.
Remedy:	Replace encoder

F32820 (N, A)	Encoder 2 DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Fault value (r0949, interpret hexadecimal): yyxx hex: $y \mathrm{y}=$ component number, $\mathrm{xx}=$ fault cause $x x=01$ hex: CRC error. $x x=02$ hex: Telegram is shorter than specified in the length byte or in the receive list. xx = 03 hex: Telegram is longer than specified in the length byte or in the receive list. xx = 04 hex: The length of the receive telegram does not match the receive list. $\text { xx = } 05 \text { hex: }$ The type of the receive telegram does not match the receive list. $x x=06 \text { hex: }$ The address of the component in the telegram and in the receive list do not match. xx = 07 hex: A SYNC telegram is expected - but the receive telegram is not a SYNC telegram. xx = 08 hex: No SYNC telegram is expected - but the receive telegram is one. $\text { xx = } 09 \text { hex: }$ The error bit in the receive telegram is set. $\text { xx = } 10 \text { hex: }$ The receive telegram is too early.
Remedy:	- carry out a POWER ON. - check the electrical cabinet design and cable routing for EMC compliance - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N:	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32835 (N, A)	Encoder 2 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. The nodes do not send and receive in synchronism. Fault value (r0949, interpret hexadecimal): yyxx hex: y = component number, $x x=$ fault cause $x x=21$ hex: The cyclic telegram has not been received. $x x=22 \text { hex: }$ Timeout in the telegram receive list. $\text { xx = } 40 \text { hex: }$ Timeout in the telegram send list.
Remedy:	- carry out a POWER ON. - replace the component involved. See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32836 (N, A)	Encoder 2 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=41$ hex: Telegram type does not match send list.
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32837 (N, A)	Encoder 2 DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component involved. Faulty hardware cannot be excluded. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=20$ hex: Error in the telegram header. $x x=23$ hex: Receive error: The telegram buffer memory contains an error. xx = 42 hex: Send error: The telegram buffer memory contains an error. $x x=43$ hex: Send error: The telegram buffer memory contains an error.
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). - check the electrical cabinet design and cable routing for EMC compliance - if required, use another DRIVE-CLiQ socket (p9904). - replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F32845 (N, A)	Encoder 2 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
	VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY

	Fault value (r0949, interpret hexadecimal): yyxx hex: yy = component number, $x \mathrm{x}=$ fault cause xx = 0A hex = 10 dec:
	The sign-of-life bit in the receive telegram is not set.
Upgrade the firmware of the component involved.	

F32885 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2)
	SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
	VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

	Fault value (r0949, interpret hexadecimal):
	yyxx hex: y y = component number, $\mathrm{xx}=$ fault cause
	xx $=20$ hex:
	Error in the telegram header.
	xx = 23 hex:
	Receive error: The telegram buffer memory contains an error.
	$x x=42$ hex:
	Send error: The telegram buffer memory contains an error.
	xx $=43$ hex:
	Send error: The telegram buffer memory contains an error.
	$x x=60$ hex:
	Response received too late during runtime measurement.
	$x x=61$ hex:
	Time taken to exchange characteristic data too long.
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32895 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2)
	SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
	VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: y = component number, $x x=$ fault cause
	$x x=0 B$ hex:
	Synchronization error during alternating cyclic data transfer.
Remedy:	Carry out a POWER ON.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32896 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	A INFEED: NONE (OFF1, OFF2)
	SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
	VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (Sensor Module for encoder 2), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced. Fault value (r0949, interpret decimal): Component number.
Remedy:	- when replacing cables, only use cables with the same length as the original cables. - when replacing components, use the same components and firmware releases. - carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE

Reaction upon A: Acknowl. upon A:	NONE NONE
F32899 (N, A)	Encoder 2: Unknown fault
Message value:	New message: \%1
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the Sensor Module for encoder 2 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Fault value (r0949, interpret decimal): Fault number. Note: If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148). - upgrade the firmware on the Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

A32902 (F, N)	Encoder 2: SPI-BUS error occurred
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal SPI bus. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
- replace the Sensor Module.	
Remedy:	- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.	

A32903 (F, N)	Encoder 2: I2C-BUS error occurred
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal I2C bus.
	Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting. - replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
	- contact the Hotline.

Reaction upon N : Acknowl. upon N :	NONE NONE
F32905 (N, A)	Encoder 2: Parameterization error
Message value:	Parameter: \%1, supplementary information: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	A parameter of encoder 2 was detected as being incorrect. It is possible that the parameterized encoder type does not match the connected encoder. The parameter involved can be determined as follows: - determine the parameter number using the fault value (r0949). - determine the parameter index (p0187). Fault value (r0949, interpret decimal): yyyyxxxx dec: yyyy = supplementary information, $x x x x=$ parameter Supplementary information $=0$: No information available. Supplementary information = 1: The component does not support HTL level $(p 0405.1=0)$ combined with track monitoring $A / B<>-A / B(p 0405.2=1)$. Supplementary information $=2$: A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please start a new encoder identification. Supplementary information = 3: A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please select a listed encoder in p0400 with a code number < 10000. Supplementary information $=4$: This component does not support SSI encoders (p0404.9 = 1) without track A/B. Supplementary information = 5: For the SQW encoder, the value in p4686 is greater than that in p0425. Supplementary information = 6: The DRIVE-CLiQ encoder cannot be used with this firmware version.
Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized. - correct the parameter specified by the fault value (r0949) and p0187. - re parameter number 314: Check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

A32915 (F, N)	Encoder 2: Configuration error
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration for encoder 2 is incorrect.
	Fault value (r0949, interpret decimal):
	1: Re-parameterization between fault/alarm is not permissible.
Remedy:	No re-parameterization between fault/alarm.
Reaction upon F:	NONE (IASC/DCBRAKE)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F32916 (N, A)	Encoder 2: Parameterization error
Message value:	Parameter: \%1, supplementary information: \%2
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	A parameter of encoder 2 was detected as being incorrect. It is possible that the parameterized encoder type does not match the connected encoder. The parameter involved can be determined as follows: - determine the parameter number using the fault value (r0949). - determine the parameter index (p0187). Fault value (r0949, interpret decimal): Parameter number The fault is only output for encoders with $\mathrm{r} 404[0] \cdot 10=1$. This corresponds to A32905 for encoders with $\mathrm{r} 404[0] \cdot 10=$ 0.
Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized. - correct the parameter specified by the fault value (r0949) and p0187.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

A32920 (F, N)	Encoder 2: Temperature sensor fault
Message value:	Fault cause: \%1, channel number: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred. Alarm value (r2124, interpret decimal): Low word low byte: Cause: 1: Wire breakage or sensor not connected (KTY: $R>1630$ Ohm). 2: Measured resistance too low (PTC: $R<20$ Ohm, KTY: $\mathrm{R}<50 \mathrm{Ohm}$). Additional values: Only for internal Siemens troubleshooting. Low word high byte: Channel number.
Remedy:	- check that the encoder cable is the correct type and is correctly connected. - check the temperature sensor selection in p0600 to p0603. - replace the Sensor Module (hardware defect or incorrect calibration data).
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A32999 (F, N)	Encoder 2: Unknown alarm
Message value:	New message: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A alarm has occurred on the Sensor Module for encoder 2 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Alarm value (r2124, interpret decimal): Alarm number. Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148). - upgrade the firmware on the Control Unit (r0018).

Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F33100 (N, A)	Encoder 3: Zero mark distance error
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance. For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Fault value (r0949, interpret decimal): Last measured zero mark distance in increments (4 increments = 1 encoder pulse). The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. . check the encoder type (encoder with equidistant zero marks). - adapt the parameter for the distance between zero marks (p0424, p0425). - if message output above speed threshold, reduce filter time if necessary (p0438). - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\text { F33101 (N, A) }}$	Encoder 3: Zero marked failed
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The $1.5 \times$ parameterized zero mark distance was exceeded. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Fault value (r0949, interpret decimal): Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. . check the encoder type (encoder with equidistant zero marks). - adapt the parameter for the distance between zero marks (p0425). - if message output above speed threshold, reduce filter time if necessary (p0438). - when p0437.1 is active, check p4686. - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F33103 (N, A)	Encoder 3: Amplitude error, track R
Message value:	R track: \%1
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The amplitude of the reference track signal (track R) does not lie within the tolerance bandwidth for encoder 3. The fault can be initiated when the unipolar voltage range is exceeded or the differential amplitude is initiated. Fault value (r0949, interpret hexadecimal): xxxx hex: xxxx = Signal level, track R (16 bits with sign). The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$. The response threshold is < 1700 mV and $>3300 \mathrm{mV}$. The nominal differential signal level of the encoder must lie in the range 375 mV to $600 \mathrm{mV}(500 \mathrm{mV}-25 /+20 \%)$. The response threshold is $>750 \mathrm{mV}$. A signal level of 500 mV peak value corresponds to the numerical value of $5333 \mathrm{hex}=21299 \mathrm{dec}$. Note: The analog value of the amplitude error is not measured at the same time with the hardware fault output by the sensor module. The signal level is not evaluated unless the following conditions are satisfied: - Sensor Module properties available (r0459.30 = 1, r0459.31 = 1). - monitoring active ($\mathrm{p} 0437.30=1, \mathrm{p} 0437.31=1$).
Remedy:	- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment may not be sufficient for the speed range. - check that the encoder cables and shielding are routed in compliance with EMC. - check the plug connections and contacts. - check whether the zero mark is connected and the signal cables RP and RN connected correctly. - replace the encoder cable. - if the coding disk is soiled or the lighting worn, replace the encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33110 (N, A)	Encoder 3: Serial communications error
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	Serial communication protocol transfer error between the encoder and evaluation module. Fault value (r0949, interpret binary): Bit 0: Alarm bit in the position protocol. Bit 1: Incorrect quiescent level on the data line. Bit 2: Encoder does not respond (does not supply a start bit within 50 ms). Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data. Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it. Bit 5: Internal error in the serial driver: An illegal mode command was requested. Bit 6: Timeout when cyclically reading. Bit 8: Protocol is too long (e.g. > 64 bits). Bit 9: Receive buffer overflow. Bit 10: Frame error when reading twice. Bit 11: Parity error. Bit 12: Data line signal level error during the monoflop time. Bit 13: Data line incorrect.

Remedy:	Re fault value, bit $0=1$: - encoder defective. F31111 may provide additional details. Re fault value, bit $1=1$: - Incorrect encoder type / replace the encoder or encoder cable. Re fault value, bit $2=1$: - Incorrect encoder type / replace the encoder or encoder cable. Re fault value, bit $3=1$: - EMC / connect the cable shield, replace the encoder or encoder cable. Re fault value, bit $4=1$: - EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. Re fault value, bit $5=1$: - EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. Re fault value, bit $6=1$: - Update the firmware for the Sensor Module. Re fault value, bit $8=1$: - Check the parameterization (p0429.2). Re fault value, bit $9=1$: - EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. Re fault value, bit $10=1$: - Check the parameterization (p0429.2, p0449). Re fault value, bit $11=1$: - Check the parameterization (p0436). Re fault value, bit $12=1$: - Check the parameterization (p0429.6). Re fault value, bit $13=1$: - Check the data line.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A :	NONE

F33111 (N, A) Encoder 3: Absolute encoder EnDat, internal fault/error

Message value: Fault cause: \%1 bin
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT

Cause: The EnDat encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary):
Bit 0: Lighting system failed.
Bit 1: Signal amplitude too low.
Bit 2: Position value incorrect.
Bit 3: Encoder power supply overvoltage condition.
Bit 4: Encoder power supply undervoltage condition.
Bit 5: Encoder power supply overcurrent condition.
Bit 6: The battery must be changed.
Remedy: \quad Re fault value, bit $0=1$:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit $1=1$.
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit $2=1$:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.

	Re fault value, bit $3=1$: 5 V power supply voltage fault. When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC. When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor. Re fault value, bit $4=1$: 5 V power supply voltage fault. When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC. When using a motor with DRIVE-CLiQ: Replace the motor. Re fault value, bit $5=1$: Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor. Re fault value, bit $6=1$: The battery must be changed (only for encoders with battery back-up).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33112 (N, A)	Encoder 3: Error bit set in the serial protocol
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder sends a set error bit via the serial protocol. Fault value (r0949, interpret binary): Bit 0: Fault bit in the position protocol.
Remedy:	For fault value, bit $0=1$: In the case of an EnDat encoder, F31111 may provide further details.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 33115 \text { (N, A) }}$	Encoder 3: Amplitude error track A/B fault (A^2 + $\mathbf{B}^{\wedge} \mathbf{2}$)
Message value:	A track: \%1, B-track: \%2
Drive object:	All objects
Reaction:	A INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$) for encoder 3 exceeds the permissible tolerance. Fault value (r0949, interpret hexadecimal): yyyyxxxx hex: yyyy = Signal level, track B (16 bits with sign). xxxx = Signal level, track A (16 bits with sign). The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$). The response thresholds are $<230 \mathrm{mV}$ (observe the frequency response of the encoder) and $>750 \mathrm{mV}$. A signal level of 500 mV peak value corresponds to the numerical value of $5333 \mathrm{hex}=21299 \mathrm{dec}$. Note for sensors modules for resolvers (e. g. SMC10): The nominal signal level is at $2900 \mathrm{mV}(2.0 \mathrm{Vrms})$. The response thresholds are $<1070 \mathrm{mV}$ and $>3582 \mathrm{mV}$. A signal level of 2900 mV peak value corresponds to the numerical value of 6666 hex $=26214 \mathrm{dec}$. Note: The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.

Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections.	
- replace the encoder or encoder cable.	
- check the Sensor Module (e.g. contacts).	
- with measuring systems without their own bearing system: Adjust the scanning head and check the bearing system	
of the measuring wheel.	
- for measuring systems with their own bearing system: Ensure that the encoder housing is not subject to any axial	
force.	

Remedy:	- check the setting of p0405: p0405.2 = 1 is only possible if the encoder is connected at X520.
	- check the encoder/cable: Does the encoder supply TTL signals and the associated inverted signals?
	Note:
For a squarewave encoder without track R, the following jumpers must be set at the encoder connection:	
- pin 10 (reference signal R) <--> pin 7 (encoder power supply, ground)	
- pin 11 (reference signal R inverted) <--> pin 4 (encoder power supply)	

F33118 (N, A) Encoder 3: Speed difference outside the tolerance range
Message value: \%1
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT

Cause:	For an HTL/TTL encoder, the speed difference has exceeded the value in p0492 over several sampling cycles. The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting. See also: p0492
Remedy:	- check the tachometer feeder cable for interruptions. - check the grounding of the tachometer shielding.
- if required, increase the maximum speed difference per sampling cycle (p0492).	
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE

F33120 (N, A) Encoder 3: Power supply voltage fault

Message value:	Fault cause: \%1 bin
Drive object:	All objects

Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	Encoder 3 power supply voltage fault. Note: If the encoder cables 6FX2002-2EQ00-.... and 6FX2002-2CH00-.... are interchanged, this can result in the encoder being destroyed because the pins of the operating voltage are reversed. Fault value (r0949, interpret binary): Bit 0: Undervoltage condition on the sense line. Bit 1: Overcurrent condition for the encoder power supply.
Remedy:	For fault value, bit $0=1$: - correct encoder cable connected? - check the plug connections of the encoder cable. - SMC30: Check the parameterization (p0404.22). For fault value, bit $1=1$: - correct encoder cable connected? - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F33121 (N, A)	Encoder 3: Coarse position error
Message value:	-
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: OFF1 (NONE, OFF2, OFF3) VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	For the actual value sensing, an error was detected on the module. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position.
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33122	Encoder 3: Internal power supply voltage fault
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	NONE (ENCODER, IASC/DCBRAKE)
Acknowledge:	IMMEDIATELY
Cause:	Fault in internal reference voltage of ASICs for encoder 3. Fault value (r0949, interpret decimal): 1: Reference voltage error. 2: Internal undervoltage. 3: Internal overvoltage.
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
$\overline{\mathrm{F} 33123 \text { (N, A) }}$	Encoder 3: Signal level A/B unipolar outside tolerance
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The unipolar level (AP/AN or BP/BN) for encoder 3 is outside the permissible tolerance. Fault value (r0949, interpret binary): Bit $0=1$: Either AP or AN outside the tolerance. Bit 16 = 1: Either BP or BN outside the tolerance. The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$. The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$. Note: The signal level is not evaluated unless the following conditions are satisfied: - Sensor Module properties available (r0459.31 = 1). - Monitoring active (p0437.31 = 1).
Remedy:	- make sure that the encoder cables and shielding are installed in an EMC-compliant manner. - check the plug connections and contacts. - check the short-circuit of a signal cable with mass or the operating voltage. - replace the encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F33125 (N, A)	Encoder 3: Amplitude error track A/B overcontrolled
Message value:	A track: \%1, B-track: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE
	SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
	VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The amplitude of track A or B for encoder 3 exceeds the permissble tolerance band.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy $=$ Signal level, track B (16 bits with sign).
	xxxx $=$ Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold is $>750 \mathrm{mV}$. This fault also occurs if the A/D converter is overcontrolled.
	A signal level of 500 mV peak value corresponds to the numerical value of $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note for sensors modules for resolvers (e. g. SMC10):
	The nominal signal level is at $2900 \mathrm{mV}(2.0 \mathrm{Vrms})$. The response threshold is $>3582 \mathrm{mV}$.
	A signal level of 2900 mV peak value corresponds to the numerical value of $6666 \mathrm{hex}=26214 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC. - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33126 (N, A)	Encoder 3: Amplitude AB too high
Message value:	Amplitude: \%1, Angle: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE
	SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
	VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The amplitude (root of $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$ or $\|\mathrm{A}\|+\|\mathrm{B}\|$) for encoder 3 exceeds the permissible tolerance. Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyy $=$ Angle
	$x \mathrm{xxx}=$ Amplitude, i.e. root from $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$ (16 bits without sign)
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold for ($\|\mathrm{A}\|+\|\mathrm{B}\|)$ is > 1120 mV or the root of $\left(\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2\right)>955 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value of 299A hex $=10650 \mathrm{dec}$.
	The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is at the negative zero crossover of track B.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC. - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F33129 (N, A)	Encoder 3: Position difference, hall sensor/track C/D and A/B too large
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
	VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT

F33131 (N, A)	Encoder 3: Deviation, position incremental/absolute too large
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: NONE SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	Absolute encoder: When cyclically reading the absolute position, an excessively high difference to the incremental position was detected. The absolute position that was read is rejected. Limit value for the deviation: - EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQI $1325>2$ quadrants, EQN $1325>50$ quadrants). - other encoders: 15 pulses = 60 quadrants. Incremental encoder: When the zero pulse is passed, a deviation in the incremental position was detected. For equidistant zero marks, the following applies: - The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark. For distance-coded zero marks, the following applies: - the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair. Fault value (r0949, interpret decimal): Deviation in quadrants (1 pulse $=4$ quadrants).
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. - replace the encoder or encoder cable. - check whether the coding disk is dirty or there are strong ambient magnetic fields. - adapt the parameter for the distance between zero marks (p0425). - if message output above speed threshold, reduce filter time if necessary (p0438).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33135	Encoder 3: Fault when determining the position
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word. Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value. Fault value (r0949, interpret binary): Bit 0: F1 (safety status display) Bit 1: F2 (safety status display) Bit 2: Lighting (reserved) Bit 3: Signal amplitude (reserved) Bit 4: Position value (reserved) Bit 5: Overvoltage (reserved) Bit 6: Undervoltage (reserved) Bit 7: Overcurrent (reserved) Bit 8: Battery (reserved) Bit 16: Lighting (--> F3x135, $x=1,2,3$) Bit 17: Signal amplitude (--> F3x135, $x=1,2,3$) Bit 18: Singleturn position 1 (--> F3x135, x=1,2,3) Bit 19: Overvoltage (--> F3x135, x = 1, 2, 3) Bit 20: Undervoltage (--> F3x135, $x=1,2,3$) Bit 21: Overcurrent (--> F3x135, $x=1,2,3$)

	Bit 22: Temperature exceeded (--> F3x405, x=1,2,3) Bit 23: Singleturn position 2 (safety status display) Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3) Bit 25: Singleturm power down (--> F3x135, x=1,2,3) Bit 26: Multiturn position 1 (--> F3x136, x=1, 2, 3) Bit 27: Multiturn position 2 (--> F3x136, $x=1,2,3$) Bit 28: Multiturn system (--> F3x136, $x=1,2,3$) Bit 29: Multiturn power down (--> F3x136, x $=1,2,3$) Bit 30: Multiturn overflow/underflow (--> F3x136, $x=1,2,3$) Bit 31: Multiturn battery (reserved) Replace DRIVE-CLiQ encoder.
F33136	Encoder 3: Error when determining multiturn information
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word. Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value. Fault value (r0949, interpret binary): Bit 0: F1 (safety status display) Bit 1: F2 (safety status display) Bit 2: Lighting (reserved) Bit 3: Signal amplitude (reserved) Bit 4: Position value (reserved) Bit 5: Overvoltage (reserved) Bit 6: Undervoltage (reserved) Bit 7: Overcurrent (reserved) Bit 8: Battery (reserved) Bit 16: Lighting (--> F3x135, x = 1, 2, 3) Bit 17: Signal amplitude (--> F3x135, x $=1,2,3$) Bit 18: Singleturn position 1 (--> F3x135, x = 1, 2, 3) Bit 19: Overvoltage (--> F3x135, x=1, 2, 3) Bit 20: Undervoltage (--> F3x135, x = 1, 2, 3) Bit 21: Overcurrent (--> F3x135, x=1,2,3) Bit 22: Temperature exceeded (--> F3x405, x = 1, 2, 3) Bit 23: Singleturn position 2 (safety status display) Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3) Bit 25: Singleturm power down (--> F3x135, x=1,2,3) Bit 26: Multiturn position 1 (--> F3x136, x $=1,2,3$) Bit 27: Multiturn position 2 (--> F3x136, x = 1, 2, 3) Bit 28: Multiturn system (--> F3x136, x $=1,2,3$) Bit 29: Multiturn power down (--> F3x136, x = 1, 2, 3) Bit 30: Multiturn overflow/underflow (--> F3x136, x=1, 2, 3) Bit 31: Multiturn battery (reserved)
Remedy:	Replace DRIVE-CLiQ encoder.
F33137	Encoder 3: Internal error when determining the position
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): Only for internal SIEMENS use.
Remedy:	Replace encoder

F33138	Encoder 3: Internal error when determining multiturn information
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (ro949, interpret binary): Only for internal SIEMENS use.
Remedy:	Replace encoder

F33150 (N, A) Encoder 3: Initialization error
Message value: \%1

Drive object:	All objects
Reaction:	A_INFEED: NONE

Reaction:	SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	Encoder functionality selected in p0404 is not operating correctly. Fault value (r0949, interpret hexadecimal): The fault value is a bit field. Every set bit indicates functionality that is faulted. The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D).
Remedy:	- Check that p0404 is correctly set. - check the encoder type used (incremental/absolute value) and for SMCxx, the encoder cable. - if relevant, note additional fault/error messages that describe the fault in detail.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F33151 (N, A) Encoder 3: Encoder speed for initialization AB too high
Message value: \%1
Drive object: All objects
\(\left.$$
\begin{array}{ll}\text { Reaction: } & \text { A_INFEED: NONE } \\
& \begin{array}{l}\text { SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) } \\
\text { VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2) }\end{array} \\
\text { Acknowledge: } & \begin{array}{l}\text { PULSE INHIBIT }\end{array} \\
\text { Cause: } & \begin{array}{l}\text { The encoder speed is too high during while initializing the sensor. } \\
\text { Remedy: }\end{array} \\
& \begin{array}{l}\text { Reduce the speed of the encoder accordingly during initialization. } \\
\text { If necessary, deactivate monitoring (p0437.29). }\end{array}
$$

See also: p0437 (Sensor Module configuration extended)\end{array}\right]\)| Reaction upon N: | NONE |
| :--- | :--- |
| Acknowl. upon N: | NONE |
| Reaction upon A: | NONE |
| Acknowl. upon A: | NONE |

A33400 (F, N)	Encoder 3: Alarm threshold zero mark distance error
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the
	system.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).

	Alarm value (r2124, interpret decimal): Last measured zero mark distance in increments (4 increments = 1 encoder pulse)
The sign designates the direction of motion when detecting the zero mark distance.	

A33401 (F, N)	Encoder 3: Alarm threshold zero marked failed
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The $1.5 \times$ parameterized zero mark distance was exceeded. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Alarm value (r 2124 , interpret decimal): Number of increments after POWER ON or since the last zero mark that was detected (4increments = 1 encoder pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. . check the encoder type (encoder with equidistant zero marks). - adapt the parameter for the distance between zero marks (p0425). - replace the encoder or encoder cable.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F33405 (N, A) Encoder 3: Temperature in the encoder evaluation inadmissible

Message value: \%1

Drive object: All objects

Reaction:	A_INFEED: NONE (OFF1, OFF2)
	SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
	VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)

A33410 (F, N)	Encoder 3: Serial communications
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Serial communication protocol transfer error between the encoder and evaluation module. Alarm value (r2124, interpret binary):
	Bit 0 : Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
	Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
	Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 8: Protocol is too long (e.g. >64 bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.
	Bit 11: Parity error.
	Bit 12: Data line signal level error during the monoflop time.
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. - replace the encoder.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2)
	SERRVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
	VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A33411 (F, N)	Encoder 3: EnDat encoder signals alarms
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The error word of the EnDat encoder has alarm bits that have been set. Alarm value (r 2124 , interpret binary): Bit 0: Frequency exceeded (speed too high). Bit 1: Temperature exceeded. Bit 2: Control reserve, lighting system exceeded. Bit 3: Battery discharged. Bit 4: Reference point passed.
Remedy:	Replace encoder.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A33412 (F, N)	Encoder 3: Error bit set in the serial protocol
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder sends a set error bit via the serial protocol. BitBit value (r2124, interpret binary): Bit 1: Alarm bit in the position protocol. lition protocol.

\(\left.\begin{array}{ll}Remedy: \& - carry out a POWER ON (power off/on) for all components.

\& - check that the encoder cables are routed in compliance with EMC.

- check the plug connections.

- replace the encoder.\end{array}\right]\)| | A INFEED: NONE (OFF1, OFF2) |
| :--- | :--- |
| SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) | |
| Reaction upon F: | |

	Note for sensors modules for resolvers (e. g. SMC10):
	The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is < 1414 mV (1.0 Vrms).
	A signal level of 2900 mV peak value corresponds to the numerical value of $3333 \mathrm{hex}=13107 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.
Remedy:	- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not sufficient for the speed range. - check that the encoder cables and shielding are routed in compliance with EMC. - check the plug connections. - replace the encoder or encoder cable. - check the Sensor Module (e.g. contacts). - if the coding disk is soiled or the lighting worn, replace the encoder.
Reaction upon F:	A INFEED: NONE (OFF1, OFF2)
	SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
	VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A33418 (F, N)	Encoder 3: Speed difference per sampling rate exceeded
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	For an HTL/TTL encoder, the speed difference between two sampling cycles has exceeded the value in p0492. The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time. Alarm value (r2124, interpret decimal): Only for internal Siemens troubleshooting. See also: p0492
Remedy:	- check the tachometer feeder cable for interruptions. - check the grounding of the tachometer shielding. - if required, increase the setting of p0492.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A33419 (F, N) Encoder 3: Track A or B outside the tolerance range
Message value: \%1
Drive object: All objects
Reaction: NONE

Acknowledge: NONE
Cause: The amplitude, phase or offset correction for track A or B is at the limit.
Amplitude error correction: Amplitude B / Amplitude A = 0.78 ... 1.27
Phase: <84 degrees or >96 degrees
SMC20: Offset correction: $+/-140 \mathrm{mV}$
SMC10: Offset correction: $+/-650 \mathrm{mV}$
Alarm value (r2124, interpret hexadecimal):
xxxx1: Minimum of the offset correction, track B
xxxx2: Maximum of the offset correction, track B
$x x x 1 x$: Minimum of the offset correction, track A
$\left.\begin{array}{ll} & \begin{array}{l}\text { xxx2x: Maximum of the offset correction, track A } \\ \\ \text { xx1xx: Minimum of the amplitude correction, track B/A } \\ \text { xx2xx: Maximum of the amplitude correction, track B/A } \\ \text { x1xxx: Minimum of the phase error correction }\end{array} \\ \text { x2xxx: Maximum of the phase error correction } \\ \text { 1xxxx: Minimum of the cubic correction } \\ \text { 2xxxx: Maximum of the cubic correction }\end{array}\right]$

Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
- check the adjustment of the Hall sensor.	

A33431 (F, N)	Encoder 3: Deviation, position incremental/absolute too large
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have
	n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have
the expected distance to the first zero mark pair.	

A33432 (F, N)	Encoder 3: Rotor position adaptation corrects deviation
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	For track A/B, pulses have been lost or too many have been counted. These pulses are presently being corrected. Alarm value (r2124, interpret decimal): Last measured deviation of the zero mark distance in increments (4 incre- ments = 1 encoder pulse). The sign designates the direction of motion when detecting the zero mark distance. - check that the encoder cables are routed in compliance with EMC. - check the plug connections.
- replace the encoder or encoder cable.	

A33443 (F, N)	Encoder 3: Signal level C/D unipolar outside tolerance
Message value:	Fault cause: \%1 bin
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The unipolar level (CP/CN or DP/DN) for encoder 3 is outside the permissible tolerance. Alarm value (r2124, interpret binary): Bit $0=1$: Either CP or CN outside the tolerance. Bit 16 = 1: Either DP or DN outside the tolerance. The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$. The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$. Note: The signal level is not evaluated unless the following conditions are satisfied: - Sensor Module properties available (r0459.31 = 1). - Monitoring active (p 0437.31 = 1).
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC. - check the plug connections and contacts. - are the C/D tracks connected correctly (have the signal lines CP and CN or DP and DN been interchanged)? - replace the encoder cable.
Reaction upon F:	A_INFEED: NONE SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
$\overline{\text { F33500 (N, A) }}$	Encoder 3: Position tracking traversing range exceeded
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p0412 and interpreted as the number of motor revolutions. When p0411.0 = 1, the maximum traversing range for a configured linear axis is defined to be $64 x(+/-32 x)$ the setting in p0421. When p0411.3 = 1 , the maximum traversing range for a configured linear axis is preset to the highest possible value and equals $+/-p 0412 / 2$ (rounded to whole rotations). The highest possible value depends on the pulse number (p0408) and fine resolution (p0419).
Remedy:	The fault should be resolved as follows: - select encoder commissioning (p0010 = 4). - reset the position tracking as follows (p0411.2 = 1). - de-select encoder commissioning ($\mathrm{p} 0010=0$). The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N:	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\text { F33501 (N, A) }}$	Encoder 3: Position tracking encoder position outside tolerance window
Message value:	\%1
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When powered down, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.

	Fault value (r0949, decimal): Deviation (difference) to the last encoder position in increments of the absolute value. The sign designates the traversing direction. Note: The deviation (difference) found is also displayed in r0477. See also: p0413 (Measuring gear, position tracking tolerance window), r0477 (Measuring gear, position difference)
Remedy:	Reset the position tracking as follows: - select encoder commissioning (p0010 = 4). - reset the position tracking as follows (p0411.2 = 1). - de-select encoder commissioning (p0010 = 0). The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507). See also: p0010, p2507
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33502 (N, A)	Encoder 3: Encoder with measuring gear, without valid signals
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The encoder with measuring gear no longer provides any valid signals.
Remedy:	It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33503 (N, A)	Encoder 3: Position tracking cannot be reset
Message value:	-
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The position tracking for the measuring gear cannot be reset.
Remedy:	The fault should be resolved as follows: - select encoder commissioning (p0010 = 4). - reset the position tracking as follows (p0411.2 = 1). - de-select encoder commissioning (p0010 = 0). The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A33700	Encoder 3: Effectivity test does not supply the expected value
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): Bit $x=1$: Effectivity test x unsuccessful.
Remedy:	

N33800 (F)	Encoder 3: Group signal
Message value:	-
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	NONE
Cause:	The motor encoder has detected at least one fault.
Remedy:	Evaluates other current messages.
Reaction upon F:	A_INFEED: OFF2 (NONE) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
F33801 (N, A)	Encoder 3 DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Fault value (r0949, interpret hexadecimal): yyxx hex: $y=$ component number, $x x=$ fault cause $x x=0 A$ hex: The sign-of-life bit in the receive telegram is not set.
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance - replace the component involved. See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F33802 (N, A) Encoder 3: Time slice overflow

Message value: \%1
Drive object: All objects

Reaction:	A_INFEED: OFF2 (NONE)
	SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
	VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: Time slice overflow, encoder 3.
Fault value (r0949, interpret decimal):
9: Time slice overflow of the fast (current controller clock cycle) time slice.
10: Time slice overflow of the average time slice.
12: Time slice overflow of the slow time slice.
999: Timeout when waiting for SYNO, e.g. unexpected return to non-cyclic operation.
Remedy: Reduce the current controller frequency.
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F33804 (N, A)	Encoder 3: Checksum error
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A checksum error has occurred when reading-out the program memory on the Sensor Module. Fault value (r0949, interpret hexadecimal): yyyyxxxx hex yyyy: Memory area involved. xxxx: Difference between the checksum at POWER ON and the current checksum.
Remedy:	- check whether the permissible ambient temperature for the component is maintained. -replace the Sensor Module.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F33805 (N, A) Encoder 3: EPROM checksum error
Message value: \%1
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: Internal parameter data is corrupted. Fault value (r0949, interpret hexadecimal): 01: EEPROM access error. 02: Too many blocks in the EEPROM.
Remedy: Replace the module.

Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F33806 (N, A) Encoder 3: Initialization error
Message value: \%1
Drive object: All objects

Reaction:	A_INFEED: OFF2 (NONE) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder was not successfully initialized. Fault value (r0949, interpret hexadecimal):
	1, 2, 3: Encoder initialization with the motor rotating.
Remedy:	Acknowledge the fault.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F33811 (N, A)	Encoder 3: Encoder serial number changed
Message value:	-
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE) SERVO: OFF1 (NONE, OFF2, OFF3) VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The encoder serial number has changed. The change is only checked for encoders with serial number (e.g. EnDat encoders). Cause: The encoder was replaced. Note: With closed-loop position control, the serial number is accepted when starting the adjustment (p2507=2). When the encoder is adjusted ($\mathrm{p} 2507=3$), the serial number is checked for changes and if required, the adjustment is reset $(p 2507=1)$.
Remedy:	Mechanically adjust the encoder. Accept the new serial number with p0440 $=1$.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33812 (N, A)	Encoder 3: Requested cycle or RX-/TX timing not supported
Message value:	\%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A cycle requested from the Control Unit or RX/TX timing is not supported. Alarm value (r2124, interpret decimal): 0 : Application cycle is not supported. 1: DQ cycle is not supported. 2: Distance between RX and TX instants in time too low. 3: TX instant in time too early.
Remedy:	
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33813	Encoder 3: Hardware logic unit failed
Message value:	Fault cause: \%1 bin
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): Bit 0: ALU watchdog has responded. Bit 1: ALU has detected a sign-of-life error.
Remedy:	Replace encoder
F33820 (N, A)	Encoder 3 DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A INFEED: OFF2 SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY

Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=01$ hex: CRC error. $\text { xx = } 02 \text { hex: }$ Telegram is shorter than specified in the length byte or in the receive list. $\text { xx = } 03 \text { hex: }$ Telegram is longer than specified in the length byte or in the receive list. $\text { xx = } 04 \text { hex: }$ The length of the receive telegram does not match the receive list. $x x=05 \text { hex: }$ The type of the receive telegram does not match the receive list. $\text { xx = } 06 \text { hex: }$ The address of the component in the telegram and in the receive list do not match. $\text { xx = } 07 \text { hex: }$ A SYNC telegram is expected - but the receive telegram is not a SYNC telegram. $\text { xx = } 08 \text { hex: }$ No SYNC telegram is expected - but the receive telegram is one. $\text { xx = } 09 \text { hex: }$ The error bit in the receive telegram is set. $\text { xx = } 10 \text { hex: }$ The receive telegram is too early.
Remedy:	- carry out a POWER ON. - check the electrical cabinet design and cable routing for EMC compliance - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 33835 \text { (} \mathbf{N , ~ A) ~}}$	Encoder 3 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. The nodes do not send and receive in synchronism. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=21$ hex: The cyclic telegram has not been received. $\text { xx = } 22 \text { hex: }$ Timeout in the telegram receive list. $x x=40 \text { hex: }$ Timeout in the telegram send list.
Remedy:	- carry out a POWER ON. - replace the component involved. See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F33836 (N, A)	Encoder 3 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2
	SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
	VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	
	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent.
	Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause	

Remedy:	Carry out a POWER ON. See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33850 (N, A)	Encoder 3: Encoder evaluation, internal software error
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	Internal software error in the Sensor Module of encoder 3. Fault value (r0949, interpret decimal): 1: Background time slice is blocked. 2: Checksum over the code memory is not OK. 10000: OEM memory of the EnDat encoder contains data that cannot be interpreted. 11000-11499: Descriptive data from EEPROM incorrect. 11500-11899: Calibration data from EEPROM incorrect. 11900-11999: Configuration data from EEPROM incorrect. 16000: DRIVE-CLiQ encoder initialization application error. 16001: DRIVE-CLiQ encoder initialization ALU error. 16002: DRIVE-CLiQ encoder HISI / SISI initialization error. 16003: DRIVE-CLiQ encoder safety initialization error. 16004: DRIVE-CLiQ encoder internal system error.
Remedy:	- replace the Sensor Module. - if required, upgrade the firmware in the Sensor Module. - contact the Hotline.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F33851 (N, A) Encoder 3 DRIVE-CLiQ (CU): Sign-of-life missing

Message value: Component number: \%1, fault cause: \%2
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=0 \mathrm{~A}$ hex $=10 \mathrm{dec}$: The sign-of-life bit in the receive telegram is not set.
Remedy:
Reaction upon N Upgrade the firmware of the component involved. NONE

Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F33860 (N, A)	Encoder 3 DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2)
	SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
	VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit. The nodes do not send and receive in synchronism. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=1 \mathrm{~A}$ hex $=26 \mathrm{dec}$: Sign-of-life bit in the receive telegram not set and the receive telegram is too early. $x x=21$ hex $=33$ dec: The cyclic telegram has not been received. $x x=22 \text { hex }=34 \text { dec: }$ Timeout in the telegram receive list. $x x=40 \text { hex }=64 \mathrm{dec}:$ Timeout in the telegram send list. $x x=62 \text { hex }=98 \text { dec: }$ Error at the transition to cyclic operation.
Remedy:	- check the power supply voltage of the component involved. - carry out a POWER ON. - replace the component involved. See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\text { F33886 (N, A) }}$	Encoder 3 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit. Data were not able to be sent. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=41$ hex: Telegram type does not match send list.
Remedy:	Carry out a POWER ON.
Reaction upon N:	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\text { F33887 (N, A) }}$	Encoder 3 DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 3). Faulty hardware cannot be excluded. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=20 \text { hex: }$ Error in the telegram header. $\text { xx = } 23 \text { hex: }$ Receive error: The telegram buffer memory contains an error. $\text { xx = } 42 \text { hex: }$ Send error: The telegram buffer memory contains an error.

	$x x=43$ hex:
	Send error: The telegram buffer memory contains an error. xx = 60 hex:
	Response received too late during runtime measurement.
	xx = 61 hex:
	Time taken to exchange characteristic data too long.
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33895 (N, A)	Encoder 3 DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A INFEED: NONE (OFF1, OFF2)
	SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
	VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit. Fault value (r0949, interpret hexadecimal):
	yyxx hex: y = component number, $x \mathrm{x}=$ fault cause
	$x \mathrm{x}=0 \mathrm{~B}$ hex:
	Synchronization error during alternating cyclic data transfer.
Remedy:	Carry out a POWER ON.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33896 (N, A)	Encoder 3 DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Drive object:	A_INF, B_INF, CU_LINK, S_INF, SERVO, TM15, TM15DI_DO, TM17, TM31, TM41, VECTOR
Reaction:	A_INFEED: NONE (OFF1, OFF2)
	SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
	VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (Sensor Module for encoder 3), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced. Fault value (r0949, interpret decimal): Component number.
Remedy:	- when replacing cables, only use cables with the same length as the original cables. - when replacing components, use the same components and firmware releases. - carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F33899 (N, A)	Encoder 3: Unknown fault
Message value:	New message: \%1
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2) VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the Sensor Module for encoder 3 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Fault value (r0949, interpret decimal): Fault number. Note: If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r 0148). - upgrade the firmware on the Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

A33902 (F, N)	Encoder 3: SPI-BUS error occurred
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal SPI bus. Fault value (ro949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- replace the Sensor Module. - if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.	

A33903 (F, N)	Encoder 3: I2C-BUS error occurred
Message value:	$\%$ \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal I2C bus. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
- replace the Sensor Module.	
- if required, upgrade the firmware in the Sensor Module.	

F33905 (N, A)	Encoder 3: Parameterization error
Message value:	Parameter: \%1, supplementary information: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1)
	SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
	VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)

$\overline{\mathrm{F} 33916 \text { (}}$, A)	Encoder 3: Parameterization error
Message value:	Parameter: \%1, supplementary information: \%2
Drive object:	SERVO, VECTOR
Reaction:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	A parameter of encoder 3 was detected as being incorrect.
	It is possible that the parameterized encoder type does not match the connected encoder.
	The parameter involved can be determined as follows:
	- determine the parameter number using the fault value (r0949).
	- determine the parameter index (p0187).
	Fault value (r0949, interpret decimal):
	Parameter number
	The fault is only output for encoders with $\mathrm{r} 404[0] \cdot 10=1$. This corresponds to A 33905 for encoders with $\mathrm{r} 404[0] \cdot 10=$ 0.
Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized. - correct the parameter specified by the fault value (r0949) and p0187.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A :	NONE

A33920 (F, N)	Encoder 3: Temperature sensor fault
Message value:	Fault cause: \%1, channel number: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred. Alarm value (r2124, interpret decimal): Low word low byte: Cause: 1: Wire breakage or sensor not connected (KTY: $R>1630$ Ohm). 2: Measured resistance too low (PTC: $R<20$ Ohm, KTY: $R<50$ Ohm). Additional values: Only for internal Siemens troubleshooting. Low word high byte: Channel number.
Remedy:	- check that the encoder cable is the correct type and is correctly connected - check the temperature sensor selection in p0600 to p0603. - replace the Sensor Module (hardware defect or incorrect calibration data).
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A33999 (F, N)	Encoder 3: Unknown alarm
Message value:	New message: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A alarm has occurred on the Sensor Module for encoder 3 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Alarm value (r2124, interpret decimal): Alarm number. Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148). - upgrade the firmware on the Control Unit (r0018).

\(\left.\begin{array}{ll}Reaction upon F: \& A_INFEED: NONE (OFF1, OFF2)

\& SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)

\& VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)\end{array}\right]\)| Acknowl. upon F: | IMMEDIATELY (POWER ON) |
| :--- | :--- |
| Reaction upon N: | NONE |
| Acknowl. upon N: | NONE |

\(\left.\begin{array}{ll}Reaction upon F: \& A_INFEED: OFF2 (NONE, OFF1)

\& SERVO: NONE (OFF1, OFF2, OFF3)

\& VECTOR: NONE (OFF1, OFF2, OFF3)

Acknowl. upon F: \& IMMEDIATELY\end{array}\right]\)| | |
| :--- | :--- |
| F34801 | VSM DRIVE-CLiQ: Sign-of-life missing |
| Message value: | Component number: \%1, fault cause: \%2 |
| Drive object: | CU_CX32, CU_I, CU_LINK, CU_S, HUB, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, |
| | TM54F_SL, VECTOR |

F34804	VSM: CRC
Message value:	-
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1)
	SERVO: NONE (OFF1, OFF2, OFF3)
	VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A checksum error has occurred when reading-out the program memory on the Voltage Sensing Module (VSM).
Remedy:	- check whether the permissible ambient temperature for the component is maintained.
	- replace the Voltage Sensing Module.

F34820	VSM DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: NONE (OFF1, OFF2) VECTOR: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=01$ hex: CRC error. xx = 02 hex: Telegram is shorter than specified in the length byte or in the receive list. $x x=03$ hex: Telegram is longer than specified in the length byte or in the receive list. xx $=04$ hex: The length of the receive telegram does not match the receive list. $x x=05$ hex: The type of the receive telegram does not match the receive list. $x x=06$ hex: The address of the component in the telegram and in the receive list do not match. xx $=07$ hex: A SYNC telegram is expected - but the receive telegram is not a SYNC telegram. xx = 08 hex: No SYNC telegram is expected - but the receive telegram is one. xx $=09$ hex: The error bit in the receive telegram is set. $x x=10$ hex: The receive telegram is too early.
Remedy:	- carry out a POWER ON. - check the electrical cabinet design and cable routing for EMC compliance - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F34835	VSM DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: NONE (OFF1, OFF2) VECTOR: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module. The nodes do not send and receive in synchronism. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $x x=21$ hex: The cyclic telegram has not been received. $x x=22$ hex: Timeout in the telegram receive list. $x x=40$ hex: Timeout in the telegram send list.
Remedy:	- carry out a POWER ON. - replace the component involved.

F34836	VSM DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A INFEED: OFF2 (NONE, OFF1) SERVO: NONE (OFF1, OFF2) VECTOR: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module. Data were not able to be sent. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $x x=41$ hex: Telegram type does not match send list.
Remedy:	Carry out a POWER ON.
F34837	VSM DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: NONE (OFF1, OFF2) VECTOR: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component involved. Faulty hardware cannot be excluded. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $x x=20 \text { hex: }$ Error in the telegram header. $x x=23 \text { hex: }$ Receive error: The telegram buffer memory contains an error. $x x=42 \text { hex: }$ Send error: The telegram buffer memory contains an error. $x x=43 \text { hex: }$ Send error: The telegram buffer memory contains an error.
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). - check the electrical cabinet design and cable routing for EMC compliance - if required, use another DRIVE-CLiQ socket (p9904). - replace the component involved.
F34845	VSM DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: NONE (OFF1, OFF2) VECTOR: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module (VSM). Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $x x=0 B$ hex: Synchronization error during alternating cyclic data transfer.
Remedy:	Carry out a POWER ON. See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

F34850	VSM: Internal software error
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: OFF1 (NONE, OFF2) SERVO: OFF1 (NONE, OFF2, OFF3) VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error in the Voltage Sensing Module (VSM) has occurred. Fault value (r0949, interpret decimal): 1: Background time slice is blocked. 2: Checksum over the code memory is not OK.
Remedy:	- replace the Voltage Sensing Module (VSM). - if required, upgrade the firmware in the Voltage Sensing Module. - contact the Hotline.
F34851	VSM DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: NONE (OFF1, OFF2) VECTOR: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module (VSM) to the Control Unit. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=0 \mathrm{~A}$ hex $=10 \mathrm{dec}$: The sign-of-life bit in the receive telegram is not set.
Remedy:	Upgrade the firmware of the component involved.
F34860	VSM DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A INFEED: OFF2 (NONE, OFF1) SERVO: NONE (OFF1, OFF2) VECTOR: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module (VSM) to the Control Unit. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=11$ hex = 17 dec : CRC error and the receive telegram is too early. $x x=01$ hex $=01 \mathrm{dec}$: Checksum error (CRC error). $x x=12$ hex $=18 \mathrm{dec}$: The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early. $x x=02$ hex $=02 \mathrm{dec}$: Telegram is shorter than specified in the length byte or in the receive list. $x x=13$ hex = 19 dec : The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early. $x x=03$ hex $=03$ dec: Telegram is longer than specified in the length byte or in the receive list. $x x=14 \text { hex }=20 \mathrm{dec}:$ The length of the receive telegram does not match the receive list and the receive telegram is too early. $x x=04 \text { hex }=04 \text { dec: }$ The length of the receive telegram does not match the receive list.

	$x \mathrm{x}=15$ hex = 21 dec :
	The type of the receive telegram does not match the receive list and the receive telegram is too early. $\mathrm{xx}=05 \mathrm{hex}=05 \mathrm{dec}$:
	The type of the receive telegram does not match the receive list.
	xx = 16 hex = 22 dec: The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	xx = 06 hex = 06 dec:
	The address of the power unit in the telegram and in the receive list do not match.
	rly.
	$x x=09$ hex $=09 \mathrm{dec}$:
	The error bit in the receive telegram is set.
	$x \mathrm{x}=10 \mathrm{hex}=16 \mathrm{dec}$:
	The receive telegram is too early.
Remedy:	- carry out a POWER ON.
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
F34885	VSM DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1)
	SERVO: NONE (OFF1, OFF2)
	VECTOR: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module (VSM) to the Control Unit. The nodes do not send and receive in synchronism.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: y = component number, $\mathrm{xx}=$ fault cause
	$x x=1 \mathrm{~A}$ hex $=26 \mathrm{dec}$:
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	$x x=21$ hex $=33 \mathrm{dec}$:
	The cyclic telegram has not been received.
	$x x=22$ hex $=34$ dec:
	Timeout in the telegram receive list.
	$x \mathrm{xx}=40 \mathrm{hex}=64 \mathrm{dec}$:
	Timeout in the telegram send list. $x x=62$ hex $=98$ dec.
	Error at the transition to cyclic operation.
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
F34886	VSM DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A INFEED: OFF2 (NONE, OFF1)
	SERVO: NONE (OFF1, OFF2)
	VECTOR: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module (VSM) to the Control Unit. Data were not able to be sent.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: y = component number, $\mathrm{xx}=$ fault cause
	$x x=41$ hex:
	Telegram type does not match send list.
Remedy:	Carry out a POWER ON.

F34887	VSM DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A INFEED: OFF2 (NONE, OFF1) SERVO: NONE (OFF1, OFF2) VECTOR: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (Voltage Sensing Module) involved. Faulty hardware cannot be excluded. Fault value (r0949, interpret hexadecimal): yyxx hex: $y \mathrm{y}=$ component number, $\mathrm{xx}=$ fault cause xx $=20$ hex: Error in the telegram header. xx = 23 hex: Receive error: The telegram buffer memory contains an error. xx = 42 hex: Send error: The telegram buffer memory contains an error. xx $=43$ hex: Send error: The telegram buffer memory contains an error. xx $=60$ hex: Response received too late during runtime measurement. xx = 61 hex: Time taken to exchange characteristic data too long.
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). - check the electrical cabinet design and cable routing for EMC compliance - if required, use another DRIVE-CLiQ socket (p9904). - replace the component involved.
F34895	VSM DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	A INFEED: OFF2 (NONE, OFF1) SERVO: NONE (OFF1, OFF2) VECTOR: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module (VSM) to the Control Unit. Fault value (r0949, interpret hexadecimal): yyxx hex: $y \mathrm{y}=$ component number, $\mathrm{xx}=$ fault cause $\mathrm{xx}=0 \mathrm{~B}$ hex: Synchronization error during alternating cyclic data transfer.
Remedy:	Carry out a POWER ON. See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
F34896	VSM DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	A INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (Voltage Sensing Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced. Fault value (r0949, interpret decimal): Component number.
Remedy:	- when replacing cables, only use cables with the same length as the original cables. - when replacing components, use the same components and firmware releases. - carry out a POWER ON.

F34899 (N, A)	VSM: Unknown fault
Message value:	New message: \%1
Drive object:	All objects
Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (OFF1, OFF2, OFF3) VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the Voltage Sensing Module that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Fault value (r0949, interpret decimal): Fault number. Note: If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Voltage Sensing Module by an older firmware version (r0158). - upgrade the firmware on the Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A34903 (F, N)	VSM: I2C bus error occurred
Message value:	-
Drive object:	CU_CX32, CU_I, CU_LINK, CU_S, HUB, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred in while accessing via the internal TM I2C bus.
Remedy:	Replace the Terminal Module.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE VECTOR: NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A34903 (F, N)	VSM: I2C bus error occurred
Message value:	-
Drive object:	A_INF, B_INF, S_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred in while accessing via the internal TM I2C bus.
Remedy:	Replace Voltage Sensing Module (VSM).
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2)
	SERVO: NONE
	VECTOR: NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A34904 (F, N)	VSM: EEPROM
Message value:	- ${ }^{\text {c }}$
Drive object:	CU_CX32, CU_I, CU_LINK, CU_S, HUB, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred accessing the non-volatile memory on the Terminal Module.
Remedy:	Replace the Terminal Module.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE VECTOR: NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A34904 (F, N)	VSM: EEPROM
Message value:	-
Drive object:	A_INF, B_INF, S_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred accessing the non-volatile memory on the Terminal Module.
Remedy:	Replace Voltage Sensing Module (VSM).
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE VECTOR: NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A34905 (F, N)	VSM: Parameter access
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Control Unit attempted to write an illegal parameter value to the Voltage Sensing Module (VSM).
Remedy:	- check whether the firmware version of the VSM (r0158) matches the firmware version of Control Unit (r0018). - if required, replace the Voltage Sensing Module. Note: The firmware versions that match each other are in the readme.txt file on the memory card.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE VECTOR: NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A34920 (F, N)	VSM: Temperature sensor fault
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
	2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).

Remedy:	- check that the sensor is connected correctly. - replace sensor.
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE VECTOR: NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A34999 (F, N)	VSM: Unknown alarm
Message value:	New message: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A fault occurred on the Voltage Sensing Module (VSM) an alarm has occurred that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Alarm value (r2124, interpret decimal): Alarm number. Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Voltage Sensing Module by an older firmware version (r0148). - upgrade the firmware on the Control Unit (r0018).
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (OFF1, OFF2, OFF3) VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F35000	TM54F: Sampling time invalid
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	The set sampling time is invalid. - not a multiple integer of the DP clock cycle. Fault value (r0949, floating point): Recommended valid sampling time.
Remedy:	Adapt the sampling time (e.g. set the recommended valid sampling time). See also: p10000 (SI sampling time)
F35001	TM54F: Parameter value invalid
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The entered value is invalid. Fault value (r0949, interpret decimal): Parameter number with the invalid value.
Remedy:	Correct the parameter value.

0x00: Action: L1+ switched out, L2+ switched in - error: Master not in initial state 0×00 and $0 \times 0 \mathrm{~A}$.
0×0 A: Action: L1+ switched out, L2+ switched in - error: Master not in state 0×15.
0×15 : Action: L1+ switched out, L2+ switched out - error: F-DIs $0 \ldots 4$ of the master do not correspond to those of the slave (expected: level 0) or master not in state 0x20.
0×20 : Action: L1+ switched out, L2+ switched out - error: Master not in state $0 \times 2 \mathrm{~B}$.
0x2B: Action: L1+ switched in, L2+ switched in - error: F-Dls $5 . . .9$ of the master do not correspond to those of the slave (expected: level 0) or master not in state 0×36.
0x36: Action: All slave DOs at OFF - error: Master not in state 0×41.
0×41 : Action: All slave DOs at OFF - error: Master not in state $0 \times 4 \mathrm{C}$.
$0 \times 4 \mathrm{C}$: Action: All slave-DOs at ON - error: State of $\mathrm{DI} 20 \ldots 23$ does not correspond to the expected state $(24 \mathrm{~V})$ or the master not in state 0×57.
0×57 : Action: All slave DOs at ON - error: Master not in state 0×62.
0×62 : Action: All slave-DOs at OFF - error: State of DI $20 \ldots 23$ does not correspond to the expected state (0 V) or the master not in state $0 \times 6 \mathrm{D}$.
$0 \times 6 \mathrm{D}$: Action: All slave DOs at OFF - error: Master not in state 0×78.
$0 x 78$: Action: All slave-DOs at ON - error: State of DI $20 \ldots 23$ does not correspond to the expected state (0V) or the master not in state 0×83.
0x83: Action: All slave DOs at ON - error: Master not in state $0 \times 8 \mathrm{E}$.
$0 x 8 \mathrm{E}$: Action: All slave-DOs at OFF - error: State of DI $20 \ldots 23$ does not correspond to the expected state (0 V) or the master not in state 0x99.
0x99: Action: All slave DOs at OFF - error: Master not in state 0xA4.
0xA4: Action: All slave-DOs at OFF - error: State of DI $20 \ldots 23$ do not correspond to the expected state 24 V) or the master not in state 0xAF.
0xAF: Action: All slave DOs at the original state - error: Master not in state 0xBA.
$0 \times B A$: Action: All slave DOs at the original state - error: Master not in state $0 \times C 5$.
$0 \times C 5$: Action: Return to start state, test stop completed on the slave side. Error: Master not in state 0xD0.
Test stop step cc for master (hexadecimal):
$0 \times 0 \mathrm{~A}$: No actions - error: Slave not in initial state 0×00.
0×15 : No actions - error: Slave not in initial state $0 \times 0 \mathrm{~A}$.
0×20 : No actions - error: F-DIs $0 \ldots 4$ of the slave do not correspond with those of the master (expected: level 0) or slave not in state 0×15.
$0 \times 2 \mathrm{~B}$: No actions - error: Slave not in initial state 0×20.
0×36 : No actions - error: F-DIs $0 \ldots 5$ of the slave do not correspond with those of the master (expected: level 0) or slave not in state $0 \times 2 B$.
0x41: Action: All master DOs at OFF - error: Slave not in state 0×36.
0×4 C: Action: All master DOs at OFF - error: Slave not in state 0×41.
0×57 : Action: All master-DOs at ON - error: State of DI $20 \ldots 23$ of the slave does not correspond to the expected state $(24 \mathrm{~V})$ or the slave not in state $0 \times 4 \mathrm{C}$.
0x62: Action: All master DOs at ON - error: Slave not in initial state 0x57.
$0 \times 6 \mathrm{D}$: Action: All master-DOs at ON - error: State of DI $20 \ldots 23$ of the slave does not correspond to the expected state $(0 \mathrm{~V})$ or the slave not in state 0×62.
0x78: Action: All master DOs at ON - error: Slave not in state 0x6D.
0x83: Action: All master-DOs at OFF - error: State of DI $20 \ldots 23$ of the slave does not correspond to the expected state $(0 \mathrm{~V})$ or the slave not in state 0×78.
0x8E: Action: All master DOs at OFF - error: Slave not in state 0x83.
0x99: Action: All master-DOs at OFF - error: State of DI $20 \ldots 23$ of the slave does not correspond to the expected state $(0 \mathrm{~V})$ or the slave not in state $0 \times 8 \mathrm{E}$.
0xA4: Action: All master DOs at OFF - error: Slave not in state 0x99.
0xAF: Action: All master-DOs at OFF - error: Status of DI $20 \ldots 23$ of the slave does not correspond to the expected state $(24 \mathrm{~V})$ or the slave not in state $0 x A 4$.
0xBA: Action: All master DOs at the original state - error: Slave not in state $0 \times A F$.
$0 \times C 5$: Action: All master DOs at the original state - error: Slave not in state 0xBA.
$0 \times D 0$: Wait for the end of the test stop and return to the start state
Note: A check of the switching state of the F-DIs and Dls always refers to the switching operation of the previous state. The actions in one state are always only carried out after the actual state has been checked.
Remedy: Check the wiring of the F-DIs and F-DOs and restart the test stop. The fault is withdrawn if the test stop is successfully completed.

A35014	TM54F: Test stop required
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	- after powering up the drive, a test stop has still not been carried out. - a new test stop is required after commissioning. - the time to carry out the forced checking procedure (test stop) has expired (p 10003).
Remedy:	Initiate test stop (BI: p10007).
A35015	TM54F: Communication with drive not established
Message value:	Fault cause: \%1 bin
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	Cyclic communication of one or several drives with the Terminal Module 54F (TM54F) is not active. Fault value (r0949, interpret binary): Bit $0=1$: No communication with drive 1. Bit $5=1$: No communication with drive 6. For fault value $=0$, the following applies: The number of drive objects specified in p10010 is not equal to the number of drives that have drive-based motion monitoring functions that have been enabled. The drive object number for drive n is set in $\mathrm{p} 10010[\mathrm{n}-1$]. When this fault is present, none of the drives that have drive-based motion monitoring functions operating with TM54F, are enabled.
Remedy:	For all drive objects specified in p10010, check whether the drive-based motion monitoring functions with TM54F are enabled (p9601).
A35016	TM54F: Net data communication with drive not established
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic net data communication within the Terminal Module 54F (TM54F) is still not active. This message is output after the TM54F master and TM54F slave have booted and is automatically withdrawn as soon as communications have been established. If a drive does not communicate with the TM54F, then none of the drives parameterized in p10010 are enabled.
Remedy:	When replacing a Motor Module, carry out the following steps: - start the copy function for the node identifier on the TM54F (p9700 = 1D hex). - acknowledge the hardware CRC on the TM54F (p9701 = EC hex). - save all parameters (p0977 = 1). - carry out a POWER ON (power off/on) for all components. The following always applies: - for all drive objects specified in p10010, check whether the drive-based motion monitoring functions with TM54F are enabled (p9601). - check whether fault F35150 is present and if required, remove the cause of the fault. See also: r10055 (SI TM54F communication status drive-specific)
F35040	TM54F: 24 V undervoltage
Message value:	Fault cause: \%1 bin
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	For the 24 V power supply for the Terminal Module 54F (TM54F) an undervoltage condition was detected. As fault response fail-safe input terminal signals are transferred to the motion monitoring functions.

Remedy:	Fault value (r0949, interpret binary): Bit $0=1$: Power supply undervoltage at connection X524. Bit 1 = 1: Power supply undervoltage at connection X514. - check the 24 V DC power supply for the TM54F. - carry out safe acknowledgement (p10006).
F35043	TM54F: 24 V overvoltage
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	For the 24 V power supply for the Terminal Module 54F (TM54F) an overvoltage condition was detected. As fault response fail-safe input terminal signals are transferred to the motion monitoring functions.
Remedy:	- check the 24 V DC power supply for the TM54F. - carry out safe acknowledgement (p10006).
F35051	TM54F: Defect in a monitoring channel
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The Terminal Module 54F (TM54F) has identified an error in the data cross check between the two control channels As fault response fail-safe input terminal signals are transferred to the motion monitoring functions. Fault value (r0949, interpret hexadecimal): aaaabbcc hex aaaa: A value greater than zero indicates an internal software error. bb: Data to be cross-checked that resulted in the error. bb $=00$ hex: p10000 bb = 01 hex: p10001 bb $=02$ hex: p10002 $b b=03$ hex: 10006 bb $=04$ hex: $p 10008$ bb $=05$ hex: $p 10010$ bb $=06$ hex: p10011 bb $=07$ hex: p10020 bb $=08$ hex: $p 10021$ bb $=09$ hex: p10022 bb $=0 \mathrm{~A}$ hex: p 10023 bb = 0B hex: p10024 bb = 0C hex: p10025 bb = 0D hex: p10026 bb $=0 \mathrm{E}$ hex: p 10027 bb $=0$ F hex: p 10028 bb = 10 hex: p10036 bb $=11$ hex: p10037 bb $=12$ hex: p10038 bb $=13$ hex: $p 10039$ bb $=14$ hex: p10040 bb $=15$ hex: p10041 bb $=16$ hex: p10042 bb $=17$ hex: p10043 bb $=18$ hex: p10044 bb $=19$ hex: p10045 bb = 1A hex: p10046 cc: Index of the data to be cross-checked that resulted in the error.

Remedy:	Carry out the following steps on the TM54F: - activate the safety commissioning mode ($\mathrm{p} 0010=95$). - start the copy function for SI parameters ($\mathrm{p} 9700=57$ hex). - acknowledge complete data change ($\mathrm{p} 9701=\mathrm{AC}$ hex). - exit the safety commissioning mode ($\mathrm{p} 0010=0$). - save all parameters ($\mathrm{p} 0977=1$). - carry out safe acknowledgement (p10006). For an internal software error (aaaa greater than zero): - upgrade the software on the TM54F. - contact the Hotline. - replace the TM54F.

F35052 (A)	TM54F: Internal hardware fault
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON) Cause:
An internal software/hardware fault on the TM54F was identified. Fault value (ro949, interpret decimal): Only for internal Siemens troubleshooting.	
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance - upgrade the software on the TM54F. - contact the Hotline.
- replace the TM54F.	

F35053 TM54F: Temperature fault threshold exceeded
Message value: \%1
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY

Cause: The temperature measured using the temperature sensing on the TM54F has exceeded the threshold value to initiate this fault. As fault response fail-safe input terminal signals are transferred to the motion monitoring functions. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy: - allow the TM54F to cool down.

- carry out safe acknowledgement (p10006).
\(\left.\begin{array}{ll}\hline A35054 \& TM54F: Temperature alarm threshold exceeded

Message value: \& \%1\end{array}\right]\)	D_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR

A35075 (F)	TM54F: Internal communications
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	An internal communications error has occurred in the Terminal Module 54F (TM54F). This alarm can also occur if the TM54F exists and no safety function has yet been parameterized. Alarm value (r2124, interpret decimal): Only for internal Siemens diagnostics.
Remedy:	For internal communication errors: - check the electrical cabinet design and cable routing for EMC compliance - upgrade the software on the TM54F. - contact the Hotline. - replace the TM54F. If TM54F exists and no safety function has yet been parameterized: - None necessary. The alarm disappears automatically after a safety function has been parameterized.
Reaction upon F :	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A35080 (F)	TM54F: Checksum error safety parameters
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The calculated checksum entered in r10004 over the safety-relevant parameters does not match the reference checksum saved in p10005 at the last machine acceptance. Fault value (r0949, interpret decimal): 1: Checksum error for functional SI parameters. 2: Checksum error for SI parameters for component assignment.
Remedy:	- Check the safety-relevant parameters and if required, correct. - set the reference checksum to the actual checksum. - acknowledge that hardware was replaced - carry out a POWER ON. - carry out an acceptance test.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A35081 (F)	TM54F: Static 1 signal at F-DI for safe acknowledgement
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	A logical " 1 " signal is present at the F-DI configured in p10006 for more than 10 seconds. A logical " 0 " signal must be statically applied at the F-DI. This prevents the output of an unintended safe acknowledgement signal (or the "Internal Event Acknowledge" signal) if a wire break occurs or one of the two digital inputs bounces.
Remedy:	Set F-DI (see p10006) to logical "0" signal.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
F35150	TM54F: Communication error
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)

Cause:	A communication error between the TM54F master and Control Unit or between the TM54F slave and the Motor Module was detected. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	When replacing a Motor Module, carry out the following steps: - start the copy function for the node identifier on the TM54F (p9700 = 1D hex). - acknowledge the hardware CRC on the TM54F (p9701 = EC hex). - save all parameters (p0977 = 1). - carry out a POWER ON (power off/on) for all components. The following always applies: - check the electrical cabinet design and cable routing for EMC compliance - upgrade the software on the TM54F. - contact the Hotline. - replace the TM54F.
F35151	TM54F: Discrepancy error
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The safety input terminals or output terminals show a different state longer than that parameterized in p10002. Fault value (r0949, interpret hexadecimal): yyyyxxxx hex xxxx: The safety-relevant input terminals F-DI indicate a discrepancy. Bit 0: Discrepancy for F-DI 0 Bit 9: Discrepancy for F-DI 9 yyyy: The safety-relevant output terminals F-DO indicate a discrepancy. Bit 0: Discrepancy for F-DO 0 ... Bit 3: Discrepancy for F-DO 3 Note: If several discrepancy errors occur consecutively, then this fault is only signaled for the first error that occurs. The following possibilities exist of diagnosing all of the discrepancy errors: - in the commissioning software, evaluate the input states and output states of the TM54F. All discrepancy errors are displayed here. - compare parameters p10051 and p10052 from the TM54F master and TM54F slave for discrepancy.
Remedy:	Check the wiring of the F-DI and F-DO (contact problems). Note: A discrepancy of the F-DO also occurs (in this special case, in conjunction with fault F35150 for the TM54F slave), if, after replacing a Motor Module, it was forgotten to acknowledge this. When replacing a Motor Module, carry out the following steps: - start the copy function for the node identifier on the TM54F (p9700 = 1D hex). - acknowledge the hardware CRC on the TM54F (p9701 = EC hex). - save all parameters (p0977 = 1). - carry out a POWER ON (power off/on) for all components. F-DI: Failsafe Digital Input F-DO: Failsafe Digital Output Discrepancy errors of the F-Dls can only be completely acknowledged if, after the cause of the error has been resolved, safe acknowledgement was carried out (refer to p10006). As long as safety acknowledgement was not car ried out, the corresponding F-DI stays in the safe state.

A35200 (F, N)	TM: Calibration data
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected in the calibration data of the Terminal Module. Alarm value (r2124, interpret decimal): The hundred thousands and ten thousands location specifies the component Id of the Terminal Module where the fault occurred. The thousands location specifies whether the analog input $0(=0)$ or analog output $1(=1)$ is involved. The hundreds location specifies the fault type: 0: No calibration data available. 1: Offset too high (> 100 mV). The tens and ones location specifies the number of the input involved.
Remedy:	Power down the unit and power up again. If the fault is still present, replace the module/board.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F35207 (N, A)	TM: Temperature fault/alarm threshold exceeded
Message value:	\%1
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (NONE, OFF1, OFF3) VECTOR: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105) has exceeded the threshold value to initiate this fault (p4102[1]) - or the temperature exceeded the alarm threshold (p4102[0]) for longer than the dead time in parameter p4103. Please note that this fault can only be initiated if the temperature evaluation was activated (p4100 $=2$ for KTY sensor or p4100 = 1 for PTC sensor). Fault value (r0949, interpret decimal): The hundred thousands and ten thousands location specifies the component number of the TMxx where the fault occurred. Alarm: Please note that Fault F35207 only causes the drive to be shut down if there is at least one BICO interconnection between the drive and TM31.
Remedy:	- allow the temperature sensor to cool down. - if required, set the fault response to NONE (p2100, p2101).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

A35211 (F, N)	TM: Temperature alarm threshold exceeded
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105) has exceeded the
	threshold value to initiate this alarm (p4102[0]). Alarm value (r2124, interpret decimal): The hundred thousands and ten thousands location specifies the component number of the TMxx where the fault occurred.
Remedy:	Allow the temperature sensor to cool down.

Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon N:	NONE

F35220 (N, A) TM: Frequency limit reached for signal output
Message value:

Drive object:	All objects
Reaction:	A_INFEED: OFF1 (NONE, OFF2)
	SERVO: OFF1 (NONE, OFF2, OFF3)
	VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)

Cause:	The signals output from the Terminal Module 41 (TM41) for tracks A/B have reached the limit frequency. The output signals are no longer in synchronism with the specified setpoint.
Remedy:	SIMOTION (p4400 = 0) operating mode: - enter a lower speed setpoint (p1155). - reduce the encoder pulse number (p0408). - if the TM41 is configured as technology object in SIMOTION, then this fault is generated if the A/B signals in connector X520 are short-circuited SINAMICS (p4400 = 1) operating mode: - the fine resolution of TM41 in p0418 does not match that of the connector input that was interconnected at P4420 - the encoder position actual value r0479 interconnected at connector input p4420 has an excessively high actual speed
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F35221 (N, A) TM: Setpoint - actual value deviation, outside the tolerance range
Message value: -
Drive object: All objects
Reaction: A_INFEED: OFF1 (NONE, OFF2)
SERVO: OFF1 (NONE, OFF2, OFF3)
VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge:
IMMEDIATELY (POWER ON)
Cause: The deviation between the setpoint and the output signals (track A / B) exceeds the tolerance of $+/-3 \%$. Difference between internal and external measured values is too high.
Remedy: - reduce the basic clock cycle (p0110, p0111).

- replace the module.

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

A35222 (F, N)	TM: Encoder pulse number not permissible
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder pulse number entered does not match the permissible pulse number from a hardware perspective.
	Fault value (r0949, interpret decimal):
	1: Encoder pulse number is too high.
	2: Encoder pulse number is too low.
	4: Encoder pulse number is less than the zero mark offset (p4426).
Remedy:	Enter the encoder pulse number in the permissible range (p0408).

Reaction upon F:	A_INFEED: OFF1 (NONE, OFF2) SERVO: OFF1 (NONE, OFF2, OFF3) VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A35223 (F, N)	TM: Zero mark offset not permissible
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The entered zero mark offset is not permissible. Fault value (r0949, interpret decimal): 1: Zero mark offset is too high. See also: p4426 (Incremental encoder emulation, pulses for zero mark) Remedy: Enter the zero mark offset in the permissible range (p4426). Reaction upon F: A_INFEED: OFF1 (NONE, OFF2) SERVO: OFF1 (NONE, OFF2, OFF3) Acknowl. upon F: VECTOR: OFF1 (NONE, OFF2, OFF3) IMMEDIATELY (POWER ON) Reaction upon N: Acknowl. upon N: NONE

A35224 (N)	TM: Zero mark synchronization interrupted
Message value:	\%1
Drive object:	TM41
Reaction:	NONE
Acknowledge:	NONE
Cause:	The zero mark synchronization with the encoder to be emulated was interrupted. Alarm value (r2124, interpret decimal): 0 : The encoder is not in the ready state (e.g. encoder parked) 1: An absolute encoder was connected. 2: The encoder r0479[0...2] interconnected with $\mathrm{Cl}: \mathrm{p} 4420$ is already communicating with another TM41 (precisely one TM41 can be interconnected with a specific r0479[0...2]). 3: The BICO interconnection to Terminal Module 41 (TM41) was removed (CI: p4420 $=0$ signal). 4: The encoder connected with Cl : p 4420 has carried out an EDS changeover (this operation is not supported, set p4420 to 0 and interconnect again). 5: The maximum number of revolutions of the encoder was exceeded. 6: Encoder in an invalid state. 7: Encoder in an invalid state. 8: Encoder in an invalid state (the encoder is not parameterized or the interconnected signal source is not in the cyclic state).
Remedy:	None necessary. - if the encoder changes into the ready state, then a synchronization operation that was previously interrupted is carried out again. - if the synchronization was interrupted due to the maximum permissible synchronization duration, then a new synchronization is not carried out. - for an absolute encoder, no synchronization is carried out, the zero mark is always output at the zero revolution of the TM41.
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35225	TM: Zero mark synchronization held - encoder not in the ready state
Message value:	-
Drive object:	TM41
Reaction:	NONE
Acknowledge:	NONE
Cause:	The zero mark synchronization with the encoder to be emulated was held. The encoder is not in the "ready" state.
Remedy:	Bring the encoder into the "ready" state.

A35226	TM: Tracks A/B are de-activated
Message value:	-
Drive object:	TM41
Reaction:	NONE
Acknowledge:	NONE
Cause:	The output of tracks A/B of the Terminal Module 41 (TM41) has been held (frozen). The encoder emulation of the TM41 hardware is enabled (this is necessary so that no TRI state of the A/B tracks occurs). The hardware receives a setpoint of zero so that no motion occurs at the A/B tracks. Reasons for this alarm: - CI: p4420 was not interconnected (in this case, the encoder emulation of the hardware is de-activated) - the encoder is not in the "ready" state (parking encoder or non-parameterized encoder data set). - for TM41 there is an additional fault. - establish an interconnection from CI: p4420. - bring the encoder into the "ready" state. - remove any TM41 faults.
Remedy:	

A35227	EDS changeover not supported
Message value:	-
Drive object:	TM41
Reaction:	NONE
Acknowledge:	NONE
Cause:	The interconnected encoder has carried out an EDS changeover.
	Terminal Module 41 (TM41) does not support this particular application case.
Remedy:	CI: Set p4420 $=0$ and re-wire.

F35228 TM: Sampling time p4099[3] invalid
Message value: -
Drive object: TM41
Reaction: NONE nents.

- the sampling time of a TM41 in SINAMICS mode (p4400) must correspond to that of the emulated encoder. The encoder sampling time is normally the same as the parameter value p0115[0] of the drive object used to interconnect the TM41 via connector input p4420
- it is not possible to operate two TM41s on one line if they emulate encoders with different cycles.

Remedy: None necessary.

F35229	TM time slice de-activated
Message value:	\%1
Drive object:	TM41
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The required value of a cycle time in p4099[0...2] is invalid. The corresponding time slice was not activated. Alarm value (r2124, interpret decimal): 0: Digital input/outputs (p4099[0]) 1: Analog inputs (p4099[1]) 3: Encoder emulation (p4099[3]). 4: Encoder emulation speed setpoint (p4099[3]). 5: Encoder emulation speed setpoint (p4099[3]). 6 Internal sequence control of the TM41 (internal error)
Remedy:	The sampling time p4099[0] may not be zero. Change the sampling time corresponding to the error code.
F35230	HW problem with the TM module
Message value:	\%1
Drive object:	A_INF, B_INF, S_INF, SERVO, TM15DI_DO, TM31, TM41, VECTOR
Reaction:	A_INFEED: OFF1 (NONE, OFF2) SERVO: NONE VECTOR: NONE
Acknowledge:	POWER ON
Cause:	The terminal module used has signaled an internal error. Signals of this module may not be evaluated and are potentially incorrect.
Remedy:	The module must be replaced if no other alarms that refer to a communications error are present in the system.
A35231	TM: Master control by PLC missing
Message value:	-
Drive object:	TM41
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "master control by PLC" signal was missing in operation. - interconnection of the binector input for "master control by PLC" is incorrect (p0854). - the higher-level control has withdrawn the "master control by PLC" signal. - data transfer via the fieldbus (master/drive) was interrupted. Note: This alarm is only decisive in the "SIMOTION" operating mode (p4400 $=0$). In the "SINAMICS" operating mode, the setpoints at P4420 are evaluated independent of binector input p0854.
Remedy:	- check the interconnection of the binector input for "master control by PLC" (p0854). - check the "master control by PLC" signal and, if required, switch in. - check the data transfer via the fieldbus (master/drive). - check the setting of parameter p2037.
A35232	TM41: Zero mark no longer synchronous and POWER ON required
Message value:	-
Drive object:	TM41
Reaction:	NONE
Acknowledge:	NONE
Cause:	SINAMICS ($\mathrm{p} 4400=1$) operating mode: When parameterizing a Terminal Module 41 (TM41) or when operating a TM41 module, an operating state was reached which required a POWER ON. These include: - changing the encoder pulse number (p0408). - changing the fine resolution (p 0418). - withdrawing the DRIVE-CLiQ cable without first deactivating TM41 via p0105.

	If this alarm was output, then the zero mark of the TM41 can no longer be output in synchronism to that of the encoder interconnected at p4420. SIMOTION (p4400 = 0) operating mode: A previously set zero mark position (p4426) no longer matches encoder position r0479 due to the change in the pulse number (p0408).
The incremental position at output X520 of TM41 can still be evaluated independent of the zero mark.	
A POWER ON must be carried out if the TM41 zero mark is evaluated.	

N35800 (F)	TM: Group signal
Message value:	-
Drive object:	All objects
Reaction:	A_INFEED: OFF2 (NONE, OFF1)
	SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
	VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	NONE
Cause:	The Terminal Module has detected at least one fault.
Remedy:	Evaluates other current messages.
Reaction upon F:	A_INFEED: OFF2 (NONE, OFF1)
	SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
	VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY

A35801 (F, N)	TM DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module to the encoder involved.
	Alarm value (r2124, interpret hexadecimal): yyxx hex: yy = component number, xx = fault cause xx = 0A hex:
	The sign-of-life bit in the receive telegram is not set.
- check the DRIVE-CLiQ connection.	

A35802 (F, N)	TM: Time slice overflow
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Time slice overflow on Terminal Module.
Remedy:	Replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE
A35803 (F, N)	TM: Memory test
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred during the memory test on the Terminal Module.
Remedy:	- check whether the permissible ambient temperature for the Terminal Module is being maintained.
	-replace the Terminal Module.
Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A35804 (F, N)	TM: CRC
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A checksum error has occurred when reading-out the program memory on the Terminal Module. Fault value (ro949, interpret hexadecimal): Difference between the checksum at POWER ON and the current checksum.
Remedy:	- check whether the permissible ambient temperature for the component is maintained. - replace the Terminal Module.
Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A35805 (F, N)	TM: EPROM checksum error
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Internal parameter data is corrupted. Alarm value (r2124, interpret hexadecimal): 01: EEPROM access error. 02: Too many blocks in the EEPROM.
Remedy:	- check whether the permissible ambient temperature for the component is maintained - replace the Terminal Module 31 (TM31).
Reaction upon F :	NONE
Acknowl upon F:	IMMEDIATELY (POWER ON)

Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A35807 (F, N)	TM: Sequence control time monitoring
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error, timeout, sequence control on the Terminal Module.
Remedy:	Replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F35820	TM DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module to the encoder involved. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=01$ hex: CRC error. $\text { xx = } 02 \text { hex: }$ Telegram is shorter than specified in the length byte or in the receive list. $\text { xx = } 03 \text { hex: }$ Telegram is longer than specified in the length byte or in the receive list. $\text { xx = } 04 \text { hex: }$ The length of the receive telegram does not match the receive list. $\text { xx = } 05 \text { hex: }$ The type of the receive telegram does not match the receive list. $\text { xx = } 06 \text { hex: }$ The address of the component in the telegram and in the receive list do not match. $\text { xx = } 07 \text { hex: }$ A SYNC telegram is expected - but the receive telegram is not a SYNC telegram. $\text { xx = } 08 \text { hex: }$ No SYNC telegram is expected - but the receive telegram is one. $\text { xx = } 09 \text { hex: }$ The error bit in the receive telegram is set. $\text { xx = } 10 \text { hex: }$ The receive telegram is too early.
Remedy:	- carry out a POWER ON. - check the electrical cabinet design and cable routing for EMC compliance - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

F35835	TM DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module to the encoder involved. The nodes do not send and receive in synchronism. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=21$ hex: The cyclic telegram has not been received. $\text { xx = } 22 \text { hex: }$ Timeout in the telegram receive list. $x x=40$ hex: Timeout in the telegram send list.
Remedy:	- carry out a POWER ON. - replace the component involved. See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F35836	TM DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module to the encoder involved. Data were not able to be sent. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $x x=41$ hex: Telegram type does not match send list.
Remedy:	Carry out a POWER ON.
F35837	PTM DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component involved. Faulty hardware cannot be excluded. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=20 \text { hex: }$ Error in the telegram header. $\text { xx = } 23 \text { hex: }$ Receive error: The telegram buffer memory contains an error. $x x=42 \text { hex: }$ Send error: The telegram buffer memory contains an error. $\text { xx = } 43 \text { hex: }$ Send error: The telegram buffer memory contains an error.
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). - check the electrical cabinet design and cable routing for EMC compliance - if required, use another DRIVE-CLiQ socket (p9904). - replace the component involved.

F35845	TM DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the encoder involved. Fault value (r0949, interpret hexadecimal): yyxx hex: $y=$ component number, $x x=$ fault cause $x x=0 B$ hex: Synchronization error during alternating cyclic data transfer.
Remedy:	Carry out a POWER ON. See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F35850	TM: Internal software error
Message value:	\%1
Drive object:	All objects
Reaction:	A INFEED: OFF1 (NONE, OFF2) SERVO: OFF1 (NONE, OFF2, OFF3) VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error in the Terminal Module (TM) has occurred. Fault value (r0949, interpret decimal): 1: Background time slice is blocked. 2: Checksum over the code memory is not OK.
Remedy:	- replace the Terminal Module (TM). - if required, upgrade the firmware in the Terminal Module. - contact the Hotline.
F35851	TM DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the Control Unit involved. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit. Fault value (r0949, interpret hexadecimal): yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ fault cause $x x=0 A$ hex $=10 \mathrm{dec}$: The sign-of-life bit in the receive telegram is not set.
Remedy:	Upgrade the firmware of the component involved.
F35860	TM DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the Control Unit involved. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y=$ component number, $x x=$ fault cause $x x=11$ hex $=17 \mathrm{dec}$: CRC error and the receive telegram is too early. $\mathrm{xx}=01$ hex $=01 \mathrm{dec}$: Checksum error (CRC error). $\mathrm{xx}=12 \mathrm{hex}=18 \mathrm{dec}:$ The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early. $\mathrm{xx}=02 \mathrm{hex}=02 \mathrm{dec}$: Telegram is shorter than specified in the length byte or in the receive list.

	$x x=13$ hex = 19 dec:
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early. $x x=03$ hex $=03$ dec:
	Telegram is longer than specified in the length byte or in the receive list.
	$x \mathrm{x}=14 \mathrm{hex}=20 \mathrm{dec}$:
	The length of the receive telegram does not match the receive list and the receive telegram is too early. $x x=04$ hex $=04 \mathrm{dec}$:
	The length of the receive telegram does not match the receive list.
	xx = 15 hex = 21 dec:
	The type of the receive telegram does not match the receive list and the receive telegram is too early. $x x=05$ hex $=05$ dec:
	The type of the receive telegram does not match the receive list.
	$x \mathrm{x}=16$ hex $=22 \mathrm{dec}$:
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	$\mathrm{xx}=06$ hex $=06 \mathrm{dec}$:
	The address of the power unit in the telegram and in the receive list do not match.
	$\mathrm{xx}=19$ hex = 25 dec :
	The error bit in the receive telegram is set and the receive telegram is too early.
	$x x=09$ hex = 09 dec:
	The error bit in the receive telegram is set.
	$x \mathrm{x}=10$ hex = 16 dec :
	The receive telegram is too early.
Remedy:	- carry out a POWER ON.
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
F35885	TM DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the Control Unit involved. The nodes do not send and receive in synchronism.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: y y = component number, $\mathrm{xx}=$ fault cause
	$x x=1 \mathrm{~A}$ hex $=26 \mathrm{dec}$:
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	xx = 21 hex = 33 dec:
	The cyclic telegram has not been received.
	$x x=22$ hex $=34$ dec:
	Timeout in the telegram receive list.
	$x \mathrm{x}=40 \mathrm{hex}=64 \mathrm{dec}$:
	Timeout in the telegram send list.
	$\mathrm{xx}=62 \mathrm{hex}=98 \mathrm{dec}$: Error at the transition to cyclic operation.
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

F35886	TM DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the Control Unit involved. Data were not able to be sent. Fault value (r0949, interpret hexadecimal): yyxx hex: yy = component number, xx = fault cause xx = 41 hex: Telegram type does not match send list.
	Carry out a POWER ON.

F35896	TM DRIVE-CLiQ (CU): Inconsistent component properties		
Message value:	Component number: \%1		
Drive object:	All objects		
Reaction:	A_INFEED: OFF2 (NONE, OFF1)		
	SERVO: OFF2 (IASC/DCCRRAKE, NONE, OFF1, OFF3, STOP1, STOP2)		
Acknowledge:	VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)		
IMMEDIATELY		\quad	The properties of the DRIVE-CLiQ component (Terminal Module), specified by the fault value, have changed in an
:---			
incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable			

F35899 (N, A) TM: Unknown fault

Message value: New message: \%1
Drive object: All objects

Reaction:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault has occurred on the Terminal Module that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Fault value (r0949, interpret decimal): Fault number. Note: If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Terminal Module by an older firmware version (r0158). - upgrade the firmware on the Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

A35903 (F, N)	TM: I2C bus error occurred
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred while accessing the internal I2C bus of the Terminal Module.
Remedy:	Replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A35904 (F, N)	TM: EEPROM
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred accessing the non-volatile memory on the Terminal Module.
Remedy:	Replace the Terminal Module.

Reaction upon $F:$	NONE
Acknowl. upon $F:$	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A35905 (F, N)	TM: Parameter access
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Control Unit attempted to write an illegal parameter value to the Terminal Module.
Remedy:	- check whether the firmware version of the Terminal Module (r0158) matches the firmware version of Control Unit (r0018).
	- if required, replace the Terminal Module.
	Note: The firmware versions that match each other are in the readme.txt file on the memory card.
Reaction upon F:	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A35906 (F, N)	TM: 24 V power supply missing
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The 24 V power supply for the digital outputs is missing.
	Alarm value (r2124, interpret hexadecimal):
	01: TM17 24 V power supply for DI/DO $0 \ldots 7$ missing.
	02: TM17 24 V power supply for DI/DO $8 \ldots 15$ missing.
	04: TM15 24 V power supply for DI/DO $0 \ldots 7$ (X520) missing.
	08: TM15 24 V power supply for DI/DO $8 \ldots 15$ (X521) missing.
	10: TM15 24 V power supply for DI/DO $16 \ldots 23$ (X522) missing.
	20: TM41 24 V power supply for DI/DO $0 \ldots 3$ missing.
Remedy:	Check the terminals for the power supply voltage (L1+, L2+, L3+, M).
Reaction upon F:	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A35907 (F, N)	TM: Hardware initialization error
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Terminal Module was not successfully initialized.
	Alarm value (r2124, interpret hexadecimal):
	01: TM17 or TM41 - incorrect configuration request. 02: TM17 or TM41 - programming not successful. 04: TM17 or TM41 - invalid time stamp
Remedy:	Carry out a POWER ON.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A35910 (F, N)	TM: Module overtemperature
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature in the module has exceeded the highest permissible limit.
Remedy:	- reduce the ambient temperature. - replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35911 (F, N)	TM: Clock synchronous operation sign-of-life missing
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum permissible number of errors in the master sign-of-life (clock synchronous operation) has been exceeded in cyclic operation. When the alarm is output, the module outputs are reset up to the next synchronization.
Remedy:	- check the physical bus configuration (terminating resistor, shielding, etc.). - check the interconnection of the master sign-of-life (r4201 via p0915). - check whether the master correctly sends the sign-of-life (e.g. set up a trace with r4201.12 ... r4201.15 and trigger signal r4301.9). - check the bus and master for utilization level (e.g. bus cycle time Tdp was set too short).
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35920 (F, N)	TM: Temperature sensor fault
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred. Alarm value (r2124, interpret decimal): 1: Wire breakage or sensor not connected (KTY: $R>1630$ Ohm). 2: Measured resistance too low (PTC: $R<20$ Ohm, KTY: $R<50$ Ohm).
Remedy:	- check that the sensor is connected correctly. - replace sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35999 (F, N)	TM: Unknown alarm
Message value:	New message: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred on the Terminal Module that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Alarm value (r2124, interpret decimal):
	Alarm number. Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Terminal Module by an older firmware version (r0158).
- upgrade the firmware on the Control Unit (r0018).	

F36207 (N, A) Hub: Overtemperature component
Message value: \%1
Drive object: A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: Temperature on DRIVE-CLiQ Hub Module has exceeded fault threshold. Fault value (r0949, interpret decimal): Current temperature in $0.1^{\circ} \mathrm{C}$ resolution.
Remedy: - Check ambient temperature at component installation location. - replace the component involved.

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

A36211 (F, N)	Hub: Overtemperature alarm component
Message value:	\%1
Drive object:	A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	Temperature on DRIVE-CLiQ Hub Module has exceeded alarm threshold. Alarm value (r2124, interpret decimal): Current temperature in $0.1^{\circ} \mathrm{C}$ resolution. - Check ambient temperature at component installation location. Remedy: - replace the component involved.
Acknowl. upon $\mathrm{F}:$	NONE
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F36214 (N, A)	Hub: overvoltage fault 24 V supply
Message value:	\%1
Drive object:	A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	$24 \vee$ power supply on DRIVE-CLiQ Hub Module has exceeded fault threshold. Fault value (r0949, interpret decimal): Current operating voltage in $0.1^{\circ} \mathrm{C}$ resolution.
Remedy:	- check the supply voltage of the component involved.
- replace the component involved.	

F36216 (N, A)	Hub: undervoltage fault 24 V supply Message value:
\%1	

A36217 (N)	Hub: undervoltage alarm 24 V supply
Message value:	\%1
Drive object:	A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	24 V power supply on DRIVE-CLiQ Hub Module has undershot alarm threshold. Alarm value (r2124, interpret decimal): Current operating voltage in $0.1^{\circ} \mathrm{C}$ resolution. Remedy: - check the supply voltage of the component involved. - replace the component involved.
Acknowl. upon N:	NONE

N36800 (F)	Hub: group signal
Message value:	-
Drive object:	A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DRIVE-CLiQ Hub Module has detected at least one fault.
Remedy:	Evaluates other current messages.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY

A36801 (F, N)	Hub DRIVE-CLiQ: sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	DRIVE-CLiQ communication error from Control Unit to DRIVE-CLiQ Hub Module in question. Alarm value (r2124, interpret hexadecimal): yyxx hex: yy = component number, $\mathrm{xx}=\mathrm{fault}$ cause xx = OA hex $=10$ dec: The sign-of-life bit in the receive telegram is not set.
- check the DRIVE-CLiQ connection.	
- replace the component involved.	

F36802 (N, A) Hub: Time slice overflow
Message value: \%1

Drive object:	A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction:	A_INFEED: OFF2 (NONE)
	SERVO: NONE
	VECTOR: NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A time slice overflow has occurred on the DRIVE-CLiQ Hub Module Fault value (r0949, interpret decimal): xx: Time slice number xx - reduce the current controller frequency. - carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

A36804 (F, N)	Hub: Checksum error
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A checksum error (CRC) occurred when the program memory on the DRIVE-CLiQ Hub Module was read out. Alarm value (r2124, interpret hexadecimal): Difference between the checksum at POWER ON and the current checksum. - check whether the permissible ambient temperature for the component is maintained.
Remedy:	- Replace DRIVE-CLiQ Hub Module.
Reaction upon F:	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A36805 (F, N)	Hub: EEPROM checksum incorrect
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The internal parameter data on the DRIVE-CLiQ Hub Module are incorrect. Alarm value (r2124, interpret hexadecimal): 01: EEPROM access error. 02: Too many blocks in the EEPROM.
Remedy:	- check whether the permissible ambient temperature for the component is maintained. - Replace DRIVE-CLiQ Hub Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F36820	Hub DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from Control Unit to DRIVE-CLiQ Hub Module in question. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=01$ hex $=1 \mathrm{dec}$: Checksum error (CRC error). $x x=02$ hex $=2$ dec: Telegram is shorter than specified in the length byte or in the receive list. $x x=03$ hex $=3$ dec: Telegram is longer than specified in the length byte or in the receive list. $x x=04$ hex $=4 \mathrm{dec}$: The length of the receive telegram does not match the receive list. $x x=05$ hex $=5$ dec: The type of the receive telegram does not match the receive list. $x x=06 \text { hex }=6 \text { dec: }$ The address of the component in the telegram and in the receive list do not match. $x x=07 \text { hex }=7 \text { dec: }$ A SYNC telegram is expected - but the receive telegram is not a SYNC telegram. $x x=08 \text { hex }=8 \text { dec: }$ No SYNC telegram is expected - but the receive telegram is one. $x x=09$ hex $=9 \mathrm{dec}$: The error bit in the receive telegram is set. $x x=10 \text { hex = } 16 \mathrm{dec}:$ The receive telegram is too early.
Remedy:	- carry out a POWER ON. - check the electrical cabinet design and cable routing for EMC compliance - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

F36835	Hub DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from Control Unit to DRIVE-CLiQ Hub Module in question. The nodes do not send and receive in synchronism.
	Fault value (r0949, interpret hexadecimal):
	$y \mathrm{y} x \mathrm{hex}$: $\mathrm{y}=$ = component number, $\mathrm{xx}=$ fault cause
	$x \mathrm{x}=21 \mathrm{hex}=33 \mathrm{dec}:$
	The cyclic telegram has not been received.
	$\mathrm{xx}=22$ hex $=34 \mathrm{dec}$:
	Timeout in the telegram receive list. $x x=40$ hex $=64 \mathrm{dec}$:
	Timeout in the telegram send list.
Remedy:	- carry out a POWER ON. - replace the component involved.
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F36836	Hub DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from Control Unit to DRIVE-CLiQ Hub Module in question. Data were not able to be sent.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ fault cause
	$x x=41$ hex $=65 \mathrm{dec}$:
	Telegram type does not match send list.
Remedy:	Carry out a POWER ON.
F36837	Hub DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component involved. Faulty hardware cannot be excluded.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ fault cause
	xx = 20 hex = 32 dec :
	Error in the telegram header. $\mathrm{xx}=23 \mathrm{hex}=35 \mathrm{dec}$:
	Receive error: The telegram buffer memory contains an error.
	$\mathrm{xx}=42$ hex $=66$ dec:
	Send error: The telegram buffer memory contains an error.
	$x x=43$ hex $=67$ dec:
	Send error: The telegram buffer memory contains an error.
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.

F36845	Hub DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from Control Unit to DRIVE-CLiQ Hub Module in question. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $x x=0 B$ hex $=11 \mathrm{dec}$: Synchronization error during alternating cyclic data transfer.
Remedy:	Carry out a POWER ON. See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F36851	Hub DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $\mathrm{xx}=0 \mathrm{~A}$ hex $=10 \mathrm{dec}$: The sign-of-life bit in the receive telegram is not set.
Remedy:	Upgrade the firmware of the component involved.
F36860	Hub DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit. Fault value (r0949, interpret hexadecimal): yyxx hex: $y \mathrm{y}=$ component number, $\mathrm{xx}=$ fault cause $x x=11$ hex = 17 dec : Checksum error (CRC error) and receive telegram is too early. xx = 01 hex $=01$ dec: Checksum error (CRC error). $x x=12 \text { hex = } 18 \text { dec: }$ The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early. $x x=02$ hex $=02 \mathrm{dec}$: Telegram is shorter than specified in the length byte or in the receive list. $x x=13 \mathrm{hex}=19 \mathrm{dec}:$ The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early. $x x=03$ hex $=03$ dec: Telegram is longer than specified in the length byte or in the receive list. $x x=14 \text { hex }=20 \mathrm{dec}:$ The length of the receive telegram does not match the receive list and the receive telegram is too early. $x x=04 \text { hex }=04 \mathrm{dec}:$ The length of the receive telegram does not match the receive list. $x x=15 \mathrm{hex}=21 \mathrm{dec}:$ The type of the receive telegram does not match the receive list and the receive telegram is too early. $x x=05 \text { hex }=05 \mathrm{dec}:$ The type of the receive telegram does not match the receive list. $x x=16 \text { hex = } 22 \text { dec: }$ The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.

	xx = 06 hex = 06 dec:
	The address of the power unit in the telegram and in the receive list do not match. $x x=19$ hex $=25$ dec:
	The error bit in the receive telegram is set and the receive telegram is too early.
	xx $=09$ hex $=09 \mathrm{dec}$:
	The error bit in the receive telegram is set.
	$x \mathrm{x}=10 \mathrm{hex}=16 \mathrm{dec}$:
	The receive telegram is too early.
Remedy:	- carry out a POWER ON.
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
F36885	Hub DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
	The nodes do not send and receive in synchronism.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: yy = component number, x = fault cause
	$x \mathrm{x}=1 \mathrm{~A}$ hex $=26 \mathrm{dec}$:
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	$x x=21$ hex = 33 dec :
	The cyclic telegram has not been received.
	xx $=22$ hex $=34 \mathrm{dec}$:
	Timeout in the telegram receive list.
	$x \mathrm{x}=40$ hex $=64 \mathrm{dec}$:
	Timeout in the telegram send list.
	xx = 62 hex = 98 dec :
	Error at the transition to cyclic operation.
Remedy:	- Check supply voltage of component involved.
	- carry out a POWER ON.
	- replace the component involved.
F36886	Hub DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
	Data were not able to be sent.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: yy = component number, $x x=$ fault cause
	$x x=41$ hex $=65 \mathrm{dec}$:
	Telegram type does not match send list.
Remedy:	Carry out a POWER ON.
F36887	Hub DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (DRIVE-CLiQ Hub Module) involved. Faulty hardware cannot be excluded.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: y = component number, $\mathrm{xx}=$ fault cause
	$x x=20$ hex $=32$ dec:
	Error in the telegram header.

	xx = 23 hex = 35 dec:
	Receive error: The telegram buffer memory contains an error. $x x=42$ hex $=66$ dec:
	Send error: The telegram buffer memory contains an error.
	$x x=43$ hex $=67 \mathrm{dec}$:
	Send error: The telegram buffer memory contains an error.
	$x \mathrm{x}=60 \mathrm{hex}=96 \mathrm{dec}$:
	Response received too late during runtime measurement.
	$x x=61$ hex $=97$ dec:
	Time taken to exchange characteristic data too long.
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F36895	Hub DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: yy = component number, $x x=$ fault cause
	$x \mathrm{x}=0 \mathrm{~B}$ hex $=11 \mathrm{dec}$:
	Synchronization error during alternating cyclic data transfer.
Remedy:	Carry out a POWER ON.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
F36896	Hub DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (DRIVE-CLiQ Hub Module) specified by the fault value have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced. Fault value (r0949, interpret decimal): Component number.
Remedy:	- when replacing cables, only use cables with the same length as the original cables.
	- when replacing components, use the same components and firmware releases. - carry out a POWER ON.

F36899 (N, A) Hub: Unknown fault

Message value: New message: \%1
Drive object: A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A fault occurred on the DRIVE-CLiQ Hub Module that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Fault value (r0949, interpret decimal):
Fault number.
Note:
If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy: - Replace the firmware on the DRIVE-CLiQ Hub Module with older firmware (r0158).

- upgrade the firmware on the Control Unit (r0018).

Reaction upon N: NONE
Acknowl. upon N: NONE

Reaction upon A:	NONE
Acknowl. upon A:	NONE

A36999 (F, N)	Hub: Unknown alarm
Message value:	New message: \%1
Drive object:	A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm occurred on the DRIVE-CLiQ Hub Module that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Alarm value (r2124, interpret decimal): Alarm number. Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- Replace the firmware on the DRIVE-CLiQ Hub Module with older firmware (r0158). - upgrade the firmware on the Control Unit (r0018).
Reaction upon F:	A_INFEED: NONE (OFF1, OFF2) SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2) VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F40000	Fault at DRIVE-CLiQ socket X100
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X100. Fault value (r0949, interpret decimal): First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.
F40001	Fault at DRIVE-CLiQ socket X101
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X101. Fault value (r0949, interpret decimal): First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.
F40002	Fault at DRIVE-CLiQ socket X102
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X102. Fault value (r0949, interpret decimal): First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.

F40003	Fault at DRIVE-CLiQ socket X103
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X103. Fault value (r0949, interpret decimal): First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.
F40004	Fault at DRIVE-CLiQ socket X104
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X104. Fault value (r0949, interpret decimal): First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.
F40005	Fault at DRIVE-CLiQ socket X105
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X105. Fault value (r0949, interpret decimal): First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.
A40100	Alarm at DRIVE-CLiQ socket X100
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X100. Alarm value (r2124, interpret decimal): First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.
A40101	Alarm at DRIVE-CLiQ socket X101
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X101. Alarm value (r2124, interpret decimal): First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.

A40102	Alarm at DRIVE-CLiQ socket X102
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X102. Alarm value (r2124, interpret decimal): First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.
A40103	Alarm at DRIVE-CLiQ socket X103
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X103. Alarm value (r2124, interpret decimal): First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.
A40104	Alarm at DRIVE-CLiQ socket X104
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X104. Alarm value (r2124, interpret decimal): First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.
A40105	Alarm at DRIVE-CLiQ socket X105
Message value:	\%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X105. Alarm value (r2124, interpret decimal): First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.
F40799	CX32: Configured transfer end time exceeded
Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The configured transfer end time when transferring the cyclic actual values was exceeded.
Remedy:	- carry out a POWER ON (power off/on) for all components. - contact the Hotline.

F40801	CX32 DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. Fault value (r0949, interpret hexadecimal): $y y x x$ hex: $y y=$ component number, $x x=$ fault cause $x \mathrm{x}=0 \mathrm{~A} \text { hex: }$ The sign-of-life bit in the receive telegram is not set.
Remedy:	- carry out a POWER ON. - replace the component involved. See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F40820	CX32 DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause xx = 01 hex: CRC error. $x x=02$ hex: Telegram is shorter than specified in the length byte or in the receive list. $\mathrm{xx}=03$ hex: Telegram is longer than specified in the length byte or in the receive list. $x x=04$ hex: The length of the receive telegram does not match the receive list. $x x=05$ hex: The type of the receive telegram does not match the receive list. $\text { xx = } 06 \text { hex: }$ The address of the component in the telegram and in the receive list do not match. $x x=07$ hex: A SYNC telegram is expected - but the receive telegram is not a SYNC telegram. xx = 08 hex: No SYNC telegram is expected - but the receive telegram is one. xx = 09 hex: The error bit in the receive telegram is set. $x x=10$ hex: The receive telegram is too early.
Remedy:	- carry out a POWER ON. - check the electrical cabinet design and cable routing for EMC compliance - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F40835	CX32 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. The nodes do not send and receive in synchronism. Fault value (r0949, interpret hexadecimal): yyxx hex: $y \mathrm{y}=$ component number, $\mathrm{xx}=$ fault cause $x x=21 \text { hex: }$ The cyclic telegram has not been received.

	xx = 22 hex:
	Timeout in the telegram receive list.
	xx $=40$ hex:
	Timeout in the telegram send list.
Remedy:	- carry out a POWER ON.
	- replace the component involved.
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

F40851	CX32 DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: yy = component number, $\mathrm{xx}=\mathrm{fault}$ cause
	xx = oA hex:
	The sign-of-life bit in the receive telegram is not set.
	Upgrade the firmware of the component involved.

F40885	CX32 DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit. The nodes do not send and receive in synchronism. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=1 A$ hex: Sign-of-life bit in the receive telegram not set and the receive telegram is too early. $x x=21$ hex: The cyclic telegram has not been received. $x x=22$ hex: Timeout in the telegram receive list. $x x=40$ hex: Timeout in the telegram send list. $x x=62$ hex: Error at the transition to cyclic operation.
Remedy:	- check the power supply voltage of the component involved. - carry out a POWER ON. - replace the component involved. See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
F40886	CX32 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit. Data were not able to be sent. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=41$ hex: Telegram type does not match send list.
Remedy:	Carry out a POWER ON.
F40887	CX32 DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component involved. Faulty hardware cannot be excluded. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=20$ hex: Error in the telegram header. $x x=23$ hex: Receive error: The telegram buffer memory contains an error. xx = 42 hex: Send error: The telegram buffer memory contains an error. $\text { xx = } 43 \text { hex: }$ Send error: The telegram buffer memory contains an error. $\text { xx = } 60 \text { hex: }$ Response received too late during runtime measurement. $\text { xx = } 61 \text { hex: }$ Time taken to exchange characteristic data too long.

Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). - check the electrical cabinet design and cable routing for EMC compliance - if required, use another DRIVE-CLiQ socket (p9904). - replace the component involved.
F40895	CX32 DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit. Fault value (r0949, interpret hexadecimal): yyxx hex: $y y=$ component number, $x x=$ fault cause $x x=0 B$ hex: Synchronization error during alternating cyclic data transfer.
Remedy:	Carry out a POWER ON. See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
F49150	Cooling system: Fault occurred
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The cooling system signals a general fault.
Remedy:	- check the wiring between the cooling system and the input terminal (Terminal Module). - check the external control device for the cooling system. See also: p0266 (Cooling system, feedback signals, signal source)
F49151	Cooling system: Conductivity has exceeded the fault threshold
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The conductivity of the cooling liquid has exceeded the selected fault threshold (p0269[2]). See also: p0261 (Cooling system, starting time 2), p0262 (Cooling system, fault conductivity delay time), p0266 (Cooling system, feedback signals, signal source)
Remedy:	Check the device to de-ionize the cooling liquid.
F49152	Cooling system: ON command feedback signal missing
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The feedback signal of the ON command of the cooling system is missing. - after the ON command, the feedback signal has not been received within the selected starting time (p0260). - the feedback signal has failed in operation. See also: p0260 (Cooling system, starting time 1), r0267 (Cooling system status word)
Remedy:	- check the wiring between the cooling system and the input terminal (Terminal Module). - check the external control device for the cooling system.

F49153	Cooling system: Liquid flow too low
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The drive converter cooling system signals that the cooling liquid flow is too low. - after the ON command, the feedback signal has not been received within the selected starting time (p 0260). - in operation, the feedback signal has failed for longer than the permitted failure time (p0263). See also: p0260 (Cooling system, starting time 1), p0263 (Cooling system fault liquid flow, delay time), r0267 (Cooling system status word)
Remedy:	- check the wiring between the cooling system and the input terminal (Terminal Module). - check the external control device for the cooling system.
F49154 (A)	Cooling system: Liquid leak is present
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The liquid leakage monitoring function has responded. Caution: Before this fault is re-parameterized as an alarm, you must ensure that the drive is shut down if cooling water is lost. See also: r0267 (Cooling system status word)
Remedy:	- check the cooling system for leaks in the cooling circuit. - check the wiring of the input terminal (Terminal Module) used to monitor leaking fluid.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F49155	Cooling system: Power Stack Adapter, firmware version too old
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The firmware version in the Power Stack Adapter (PSA) is too old and does not support the liquid cooling.
Remedy:	Upgrade the firmware. Check EEPROM data.
F49156	Cooling system: Cooling liquid temperature has exceeded the fault threshold
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The cooling liquid intake temperature has exceeded the permanently set fault threshold.
Remedy:	Check the cooling system and the ambient conditions.
A49170	Cooling system: Alarm has occurred
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cooling system signals a general alarm.
Remedy:	- check the wiring between the cooling system and the input terminal (Terminal Module). - check the external control device for the cooling system.

A49171	Cooling system: Conductivity has exceeded the alarm threshold
Message value:	- ${ }^{\text {a }}$
Drive object:	A_INF, B_INF, S_INF, SERVO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The conductivity of the cooling liquid has exceeded the selected alarm threshold ($\mathrm{p} 0269[1]$). See also: p0261 (Cooling system, starting time 2), p0262 (Cooling system, fault conductivity delay time), p0266 (Cooling system, feedback signals, signal source)
Remedy:	Check the device to de-ionize the cooling liquid.
A49171	Cooling system: Conductivity has exceeded the alarm threshold
Message value:	-
Drive object:	VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The conductivity monitoring of the cooling liquid is set (r0267 bit 7, from p0266 index 7). See also: p0261 (Cooling system, starting time 2), p0262 (Cooling system, fault conductivity delay time), p0266 (Cooling system, feedback signals, signal source), r0267 (Cooling system status word)
Remedy:	Check the device to de-ionize the cooling liquid.
A49172	Cooling system: Conductivity actual value is not valid
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	When monitoring the conductivity of the cooling liquid, there is a fault in the wiring or in the sensor.
Remedy:	- check the wiring between the cooling system and the Power Stack Adapter (PSA). - check the function of the sensor to measure the conductivity.
A49173	Cooling system: Cooling liquid temperature has exceeded the alarm threshold
Message value:	-
Drive object:	A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cooling liquid intake temperature has exceeded the specified alarm threshold.
Remedy:	Check the cooling system and the ambient conditions.
F49200	Excitation group signal fault
Message value:	\%1
Drive object:	VECTOR
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The excitation sequence control signals a fault.
	Fault value (r0949, hexadecimal):
	Bit 0:
	When powered down or when powering down the excitation, the signal "excitation ready to be powered up feedback signal" was not received within the monitoring time. Bit 1:
	After an ON command, the signal "excitation ready feedback signal" was not received within the monitoring time. Bit 2:
	After the pulses were enabled, the signal "excitation operational feedback signal" was not received within the monitoring time.
	Bit 3:
	The "excitation group signal fault" signal is present.
Remedy:	- check the excitation. - check commands, feedback signals and BICO interconnections.

A49201 (F)	Excitation group signal alarm
Message value:	-
Drive object:	VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "excitation group signal alarm" signal is present.
Remedy:	Check the excitation equipment.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
A50001 (F)	COMM BOARD: Alarm 1
Message value:	\%1
Drive object:	A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20: A PROFINET controller attempts to establish a connection using an incorrect configuring telegram. The PROFINET version (V2.1/V2.2) of the project (HW Config) is not compatible with the CBE20 firmware.
Remedy:	CBE20: Upgrade the PROFINET version of the project (HW Config) and/or the CBE20 firmware to make them compatible. See also: p8835 (CBE20 firmware selection)
Reaction upon F:	A INFEED: NONE (OFF1, OFF2) SERVO: NONE (OFF1, OFF2, OFF3) VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY

Appendix

Content

A. 1 ASCII table (excerpt) A-1912
A. 2 List for motor code/encoder code A-1913

A. 1
 ASCII table (excerpt)

The following table includes the decimal and hexadecimal notation of selected ASCII characters.

Table A-1 ASCII table (excerpt)

Letter/number	decimal	Hexadecimal	Letter/number	decimal	Hexadecimal
Blanks	32	20	H	72	48
-	45	2 D	I	73	49
0	48	30	J	74	4 A
1	49	31	K	75	4 B
2	50	32	L	76	4 C
3	51	33	M	77	4 D
4	52	34	N	78	4 E
5	53	35	O	79	4 F
6	54	36	P	80	50
7	55	37	Q	81	51
8	56	38	R	82	52
9	57	39	S	83	53
A	65	41	T	84	54
B	66	42	U	85	55
C	67	43	V	86	56
D	68	44	W	87	57
E	69	45	X	88	58
F	70	46	Y	89	59
G	71	47	Z	90	5 A

A. 2 List for motor code/encoder code

A.2.1 Motor code

Induction motors (Version: 2603400)

Table A-2 Motor code for induction motors

Order number	Motor type (p0300)	Motor code (p0301)
1PH2092-4WG4x-xxxx	102	10201
1PH2093-6WF4x-xxxx	102	10202
1PH2095-6WF4x-xxxx	102	10203
1PH2096-4WG4x-xxxx	102	10204
1PH2113-6WF4x-xxxx	102	10205
1PH2115-6WF4x-xxxx	102	10206
1PH2117-6WF4x-xxxx	102	10207
1PH2118-6WF4x-xxxx	102	10208
1PH2123-4WF4x-xxxx	102	10209
1PH2127-4WF4x-xxxx	102	10210
1PH2128-4WF4x-xxxx	102	10211
1PH2143-4WF4x-xxxx	102	10212
1PH2147-4WF4x-xxxx	102	10213
1PH2182-6WC4x-xxxx	102	10214
1PH2184-6WP4x-xxxx	102	10215
1PH2186-6WB4x-xxxx	102	10216
1PH2188-6WB4x-xxxx	102	10217
1PH2254-6WB4x-xxxx	102	10218
1PH2256-6WB4x-xxxx	102	10219
1PH4103-4NF2x-xxxx	104	10401
1PH4103-4xF5x-xxxx	104	10421
1PH4105-4NF2x-xxxx	104	10403
1PH4105-4xF5x-xxxx	104	10422
1PH4107-4NF2x-xxxx	104	10405
1PH4107-4xF5x-xxxx	104	104
1PH4133-4NF2x-xxxx	104	104
1PH4133-4xF5x-xxxx	104	104
1PH4135-4NF2x-xxxx	104	
1PH4135-4xF5x-xxxx	104	
		102

Table A-2 Motor code for induction motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1PH4137-4NF2x-xxxx	104	10411
1PH4137-4xF5x-xxxx	104	10426
1PH4138-4NF2x-xxxx	104	10413
1PH4163-4NF2x-xxxx	104	10416
1PH4163-4xF5x-xxxx	104	10427
1PH4163-xxF2x(L37)	104	10431
1PH4167-4NF2x-xxxx	104	10418
1PH4167-4xF5x-xxxx	104	10428
1PH4168-4NF2x-xxxx	104	10420
1PH4168-4xF5x-xxxx	104	10429
1PH7101-xxFxx-xLxx	107	12701
1PH7101-xxFxx-xxxx	107	10701
1PH7103-xxDxx-xLxx	107	12702
1PH7103-xxDxx-xxxx	107	10702
1PH7103-xxFxx-xLxx	107	12703
1PH7103-xxFxx-xxxx	107	10703
1PH7103-xxGxx-xLxx	107	12704
1PH7103-xxGxx-xxxx	107	10704
1PH7105-xxFxx-xLxx	107	12705
1PH7105-xxFxx-xxxx	107	10705
1PH7107-xxDxx-xLxx	107	12706
1PH7107-xxDxx-xxxx	107	10706
1PH7107-xxFxx-xLxx	107	12707
1PH7107-xxFxx-xxxx	107	10707
1PH7107-xxGxx-xLxx	107	12708
1PH7107-xxGxx-xxxx	107	10708
1PH7131-xxFxx-xLxx	107	12709
1PH7131-xxFxx-xxxx	107	10709
1PH7133-xxDxx-xLxx	107	12710
1PH7133-xxDxx-xxxx	107	10710
1PH7133-xxFxx-xLxx	107	12711
1PH7133-xxFxx-xxxx	107	10711
1PH7133-xxGxx-xLxx	107	12712
1PH7133-xxGxx-xxxx	107	10712
1PH7135-xxFxx-xLxx	107	12713

Table A-2 Motor code for induction motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1PH7135-xxFxx-xxxx	107	10713
1PH7137-xxBxx-xxxx	107	10766
1PH7137-xxDxx-xLxx	107	12714
1PH7137-xxDxx-xxxx	107	10714
1PH7137-xxFxx-xLxx	107	12715
1PH7137-xxFxx-xxxx	107	10715
1PH7137-xxGxx-xLxx	107	12716
1PH7137-xxGxx-xxxx	107	10716
1PH7163-xxBxx-xLxx	107	12717
1PH7163-xxBxx-xxxx	107	10717
1PH7163-xxDxx-xLxx	107	12718
1PH7163-xxDxx-xxxx	107	10718
1PH7163-xxFxx-xLxx	107	12719
1PH7163-xxFxx-xxxx	107	10719
1PH7163-xxGxx-xLxx	107	12720
1PH7163-xxGxx-xxxx	107	10720
1PH7167-xxBxx-xLxx	107	12721
1PH7167-xxBxx-xxxx	107	10721
1PH7167-xxDxx-xLxx	107	12722
1PH7167-xxDxx-xxxx	107	10722
1PH7167-xxFxx-xxxx	107	10723
1PH7167-xxGxx-xLxx	107	12724
1PH7167-xxGxx-xxxx	107	10724
1PH7184-xxBxx-xxxx	107	10725
1PH7184-xxDxx-xxxx	107	10735
1PH7184-xxExx-xxxx	107	10727
1PH7184-xxFxx-xxxx	107	10736
1PH7184-xxLxx-xxxx	107	10737
1PH7184-xxTxx-xxxx	107	10726
1PH7186-xxBxx-xxxx	107	10770
1PH7186-xxDxx-xxxx	107	10734
1PH7186-xxExx-xxxx	107	10730
1PH7186-xxFxx-xxxx	107	10768
1PH7186-xxLxx-xxxx	107	10769
1PH7186-xxTxx-xxxx	107	10729

Table A-2 Motor code for induction motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1PH7224-xxBxx-xxxx	107	10743
1PH7224-xxCxx-xxxx	107	10731
1PH7224-xxDxx-xxxx	107	10738
1PH7224-xxFxx-xxxx	107	10732
1PH7224-xxLxx-xxxx	107	10744
1PH7224-xxUxx-xxxx	107	10745
1PH7226-xxBxx-xxxx	107	10746
1PH7226-xxDxx-xxxx	107	10747
1PH7226-xxFxx-xxxx	107	10739
1PH7226-xxLxx-xxxx	107	10748
1PH7228-xxBxx-xxxx	107	10749
1PH7228-xxDxx-xxxx	107	10750
1PH7228-xxFxx-xxxx	107	10741
1PH7228-xxLxx-xxxx	107	10751
1PH7284-xxBxx-xxxx	107	10752
1PH7284-xxCxx-xxxx	107	10753
1PH7284-xxDxx-xxxx	107	10754
1PH7284-xxFxx-xxxx	107	10755
1PH7286-xxBxx-xxxx	107	10756
1PH7286-xxCxx-xxxx	107	10757
1PH7286-xxDxx-xxxx	107	10758
1PH7286-xxFxx-xxxx	107	10759
1PH7288-xxBxx-xxxx	107	10760
1PH7288-xxCxx-xxxx	107	10761
1PH7288-xxDxx-xxxx	107	10762
1PH7288-xxFxx-xxxx	107	10763
1PH8131-1xF0x-xxxx	108	10803
1PH8131-1xF1x-xxxx	108	10804
1PH8131-1xF2x-xxxx	108	10805
1PH8131-1xG2x-xxxx	108	10806
1PH8133-1xD0x-xxxx	108	10811
1PH8133-1xD1x-xxxx	108	10812
1PH8133-1xF0x-xxxx	108	10813
1PH8133-1xF1x-xxxx	108	10814
1PH8133-1xF2x-xxxx	108	10815

Table A-2 Motor code for induction motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1PH8133-1xG0x-xxxx	108	10816
1PH8133-1xG1x-xxxx	108	10817
1PH8133-1xG2x-xxxx	108	10818
1PH8135-1xF0x-xxxx	108	10819
1PH8135-1xF1x-xxxx	108	10820
1PH8135-1xF2x-xxxx	108	10821
1PH8137-1xD0x-xxxx	108	10827
1PH8137-1xD1x-xxxx	108	10828
1PH8184-1xB2x-xxxx	108	10839
1PH8184-1xC2x-xxxx	108	10840
1PH8184-1xD2x-xxxx	108	10841
1PH8184-1xF2x-xxxx	108	10842
1PH8184-1xL2x-xxxx	108	10843
1PH8186-1xB2x-xxxx	108	10844
1PH8186-1xC2x-xxxx	108	10845
1PH8186-1xD2x-xxxx	108	10846
1PH8186-1xF2x-xxxx	108	10847
1PH8186-1xL2x-xxxx	108	10848
1PL6184-xxBxx-xxxx	166	16600
1PL6184-xxCxx-xxxx	166	16631
1PL6184-xxDxx-xxxx	166	16601
1PL6184-xxFxx-xxxx	166	16602
1PL6184-xxLxx-xxxx	166	16603
1PL6186-xxBxx-xxxx	166	16604
1PL6186-xxDxx-xxxx	166	16605
1PL6186-xxFxx-xxxx	166	16606
1PL6186-xxLxx-xxxx	166	16630
1PL6224-xxBxx-xxxx	166	16608
1PL6224-xxDxx-xxxx	166	16609
1PL6224-xxFxx-xxxx	166	16610
1PL6224-xxLxx-xxxx	166	16611
1PL6226-xxBxx-xxxx	166	16612
1PL6226-xxDxx-xxxx	166	16614
1PL6226-xxFxx-xxxx	166	16615
1PL6226-xxLxx-xxxx	166	16616

Table A-2 Motor code for induction motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1PL6228-xxBxx-xxxx	166	16617
1PL6228-xxDxx-xxxx	166	16618
1PL6228-xxFxx-xxxx	166	16619
1PL6228-xxLxx-xxxx	166	16620
1PL6284-xxCxx-xxxx	166	16621
1PL6284-xxDxx-xxxx	166	16622
1PL6284-xxFxx-xxxx	166	16623
1PL6286-xxCxx-xxxx	166	16624
1PL6286-xxDxx-xxxx	166	16626
1PL6286-xxFxx-xxxx	166	16625
1PL6288-xxCxx-xxxx	166	16627
1PL6288-xxDxx-xxxx	166	16628
1PL6288-xxFxx-xxxx	166	16629
1PM4101-xxF8x(L37)	134	14409
1PM4101-xxF8x(L37)	134	14410
1PM4101-xxF8x-xxxx	134	14401
1PM4101-xxF8x-xxxx	134	14402
1PM4101-xxW2x(L37)	134	13409
1PM4101-xxW2x-xxxx	134	13401
1PM4105-xxF8x(L37)	134	14411
1PM4105-xxF8x(L37)	134	14412
1PM4105-xxF8x-xxxx	134	14403
1PM4105-xxF8x-xxxx	134	14404
1PM4105-xxW2x(L37)	134	13411
1PM4105-xxW2x-xxxx	134	13403
1PM4133-xxF8x(L37)	134	14414
1PM4133-xxF8x(L37)	134	14413
1PM4133-xxF8x-xxxx	134	14405
1PM4133-xxF8x-xxxx	134	14406
1PM4133-xxW2x(L37)	134	13413
1PM4133-xxW2x-xxxx	134	13405
1PM4137-xxF8x(L37)	134	14415
1PM4137-xxF8x(L37)	134	14416
1PM4137-xxF8x-xxxx	134	14407
1PM4137-xxF8x-xxxx	134	14408

Table A-2 Motor code for induction motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1PM4137-xxW2x(L37)	134	13415
1PM4137-xxW2x-xxxx	134	13407
1PM6101-xxF8x(L37)	136	14615
1PM6101-xxF8x(L37)	136	14616
1PM6101-xxF8x-xxxx	136	14601
1PM6101-xxF8x-xxxx	136	14602
1PM6105-xxF8x(L37)	136	14617
1PM6105-xxF8x(L37)	136	14618
1PM6105-xxF8x-xxxx	136	14603
1PM6105-xxF8x-xxxx	136	14604
1PM6107-xxF8x-xxxx	136	14619
1PM6107-xxF8x-xxxx	136	14620
1PM6133-xxF8x(L37)	136	14621
1PM6133-xxF8x(L37)	136	14622
1PM6133-xxF8x-xxxx	136	14605
1PM6133-xxF8x-xxxx	136	14606
1PM6137-xxF8x(L37)	136	14623
1PM6137-xxF8x(L37)	136	14624
1PM6137-xxF8x-xxxx	136	14607
1PM6137-xxF8x-xxxx	136	14608
1PM6138-xxF8x(L37)	136	14626
1PM6138-xxF8x(L37)	136	14625
1PM6138-xxF8x-xxxx	136	14609
1PM6138-xxF8x-xxxx	136	14610
2SP1253-8xAxx-0xxx	191	19102
2SP1253-8xAxx-0xxx	191	19101
2SP1255-8xAxx-0xxx	191	19103
2SP1255-8xAxx-0xxx	191	19104

Synchronous motors (Version: 2603400)

Table A-3 Motor code for synchronous motors

Order number	Motor type (p0300)	Motor code (p0301)
1FE1051-4WL11-xxxx	261	26103
1FE1051-4WL51-xxxx	261	26104
1FE1051-4WN11-xxxx	261	26105
1FE1051-6WK10-xxxx	261	26106
1FE1051-6WN00-xxxx	261	26107
1FE1051-6WN10-xxxx	261	26108
1FE1051-6WN20-xxxx	261	26109
1FE1051-6WN30-xxxx	261	26110
1FE1052-4WK11-xxxx	261	26111
1FE1052-4WN11-xxxx	261	26112
1FE1052-4WN51-xxxx	261	26113
1FE1052-6LK00-xxxx	261	26114
1FE1052-6WK10-xxxx	261	26115
1FE1052-6WN00-xxxx	261	26116
1FE1052-6WN10-xxxx	261	26117
1FE1052-6WY10-xxxx	261	26118
1FE1053-4WN11-xxxx	261	26119
1FE1054-6LR00-xxxx	261	26120
1FE1054-6WQ10-xxxx	261	26122
1FE1054-6WR10-xxxx	261	26287
1FE1055-6LU00-xxxx	261	26123
1FE1055-6LX00-xxxx	261	26124
1FE1061-6LW00-xxxx	261	26125
1FE1061-6WV10-xxxx	261	26284
1FE1061-6WY10-xxxx	261	26126
1FE1064-6LQ00-xxxx	261	26127
1FE1064-6WN11-xxxx	261	26128
1FE1072-4WH11-xxxx	261	26129
1FE1072-4WL11-xxxx	261	26130
1FE1072-4WN01-xxxx	261	26131
1FE1072-4WN11-xxxx	261	26132
1FE1072-4WN31-xxxx	261	26133
1FE1073-4WL11-xxxx	261	26289
1FE1073-4WN01-xxxx	261	26134

Table A-3 Motor code for synchronous motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FE1073-4WN11-xxxx	261	26135
1FE1073-4WR01-xxxx	261	26136
1FE1073-4WT11-xxxx	261	26137
1FE1073-4WT31-xxxx	261	26138
1FE1074-4WM11-xxxx	261	26139
1FE1074-4WN11-xxxx	261	26140
1FE1074-4WN51-xxxx	261	26141
1FE1082-4WN01-xxxx	261	26142
1FE1082-4WN11-xxxx	261	26143
1FE1082-4WN51-xxxx	261	26144
1FE1082-4WP11-xxxx	261	26145
1FE1082-4WR11-xxxx	261	26146
1FE1082-4WR31-xxxx	261	26147
1FE1082-6WE11-xxxx	261	26285
1FE1082-6WP10-xxxx	261	26148
1FE1082-6WQ11-xxxx	261	26149
1FE1082-6WS10-xxxx	261	26150
1FE1082-6WS30-xxxx	261	26151
1FE1082-6WW11-xxxx	261	26152
1FE1083-4WN01-xxxx	261	26153
1FE1083-4WN11-xxxx	261	26154
1FE1084-4WN11-xxxx	261	26155
1FE1084-4WN31-xxxx	261	26156
1FE1084-4WP11-xxxx	261	26157
1FE1084-4WQ11-xxxx	261	26158
1FE1084-4WQ51-xxxx	261	26159
1FE1084-4WT11-xxxx	261	26160
1FE1084-4WT51-xxxx	261	26161
1FE1084-6LN00-xxxx	261	26162
1FE1084-6WN11-xxxx	261	26163
1FE1084-6WR11-xxxx	261	26164
1FE1084-6WX11-xxxx	261	26165
1FE1085-4WN11-xxxx	261	26166
1FE1085-4WQ11-xxxx	261	26167
1FE1085-4WT11-xxxx	261	26168

Table A-3 Motor code for synchronous motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FE1091-6WN10-xxxx	261	26169
1FE1091-6WN30-xxxx	261	26170
1FE1091-6WS10-xxxx	261	26171
1FE1092-4WV11-xxxx	261	26172
1FE1092-6WN00-xxxx	261	26173
1FE1092-6WN10-xxxx	261	26174
1FE1092-6WN30-xxxx	261	26175
1FE1092-6WR11-xxxx	261	26176
1FE1093-4WF01-xxxx	261	26177
1FE1093-4WH11-xxxx	261	26178
1FE1093-4WK01-xxxx	261	26179
1FE1093-4WM11-xxxx	261	26180
1FE1093-4WN01-xxxx	261	26181
1FE1093-4WN10-xxxx	261	26182
1FE1093-4WN11-xxxx	261	26183
1FE1093-6WN10-xxxx	261	26184
1FE1093-6WS10-xxxx	261	26185
1FE1093-6WS30-xxxx	261	26186
1FE1093-6WV01-xxxx	261	26286
1FE1093-6WV11-xxxx	261	26187
1FE1093-6WV31-xxxx	261	26188
1FE1093-7LN00-xxxx	261	26189
1FE1094-4LW01-xxxx	261	26190
1FE1094-4WK11-xxxx	261	26191
1FE1094-4WL11-xxxx	261	26192
1FE1094-4WS11-xxxx	261	26193
1FE1094-4WU11-xxxx	261	26243
1FE1095-4WN11-xxxx	261	26194
1FE1095-6LT01-xxxx	261	26195
1FE1095-6WU11-xxxx	261	26290
1FE1096-4WK10-xxxx	261	26196
1FE1096-4WN11-xxxx	261	26197
1FE1103-4WN01-xxxx	261	26245
1FE1103-4WN11-xxxx	261	26198
1FE1103-4WN31-xxxx	261	26199

Table A-3 Motor code for synchronous motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FE1103-4WQ01-xxxx	261	26200
1FE1103-4WQ11-xxxx	261	26201
1FE1103-4WT01-xxxx	261	26202
1FE1103-4WT11-xxxx	261	26203
1FE1103-4WU01-xxxx	261	26204
1FE1104-4WN11-xxxx	261	26205
1FE1105-4WN01-xxxx	261	26206
1FE1105-4WN11-xxxx	261	26207
1FE1105-4WQ01-xxxx	261	26208
1FE1105-4WQ11-xxxx	261	26209
1FE1106-4WN11-xxxx	261	26210
1FE1106-4WS11-xxxx	261	26211
1FE1106-4WY11-xxxx	261	26212
1FE1112-6LW01-xxxx	261	26213
1FE1113-6LU01-xxxx	261	26214
1FE1114-6LU11-xxxx	261	26215
1FE1114-6WR11-xxxx	261	26216
1FE1114-6WR31-xxxx	261	26217
1FE1114-6WT10-xxxx	261	26218
1FE1114-6WT11-xxxx	261	26219
1FE1114-6WT31-xxxx	261	26220
1FE1114-6WT51-xxxx	261	26221
1FE1114-6WW11-xxxx	261	26222
1FE1114-6WW31-xxxx	261	26223
1FE1116-6LS01-xxxx	261	26224
1FE1116-6LT01-xxxx	261	26225
1FE1116-6WR11-xxxx	261	26226
1FE1116-6WT11-xxxx	261	26227
1FE1116-6WW11-xxxx	261	26242
1FE1116-6WY11-xxxx	261	26228
1FE1124-4WN11-xxxx	261	26229
1FE1125-4WN11-xxxx	261	26230
1FE1125-4WP11-xxxx	261	26231
1FE1126-4WN11-xxxx	261	26232
1FE1126-4WP11-xxxx	261	26233

Table A-3 Motor code for synchronous motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FE1126-4WQ11-xxxx	261	26234
1FE1144-8WT10-xxxx	261	26244
1FE1145-8WN11-xxxx	261	26235
1FE1145-8WS11-xxxx	261	26237
1FE1147-8WN11-xxxx	261	26238
1FE1147-8WQ11-xxxx	261	26239
1FE1147-8WQ31-xxxx	261	26240
1FE1147-8WS11-xxxx	261	26241
1FK6032-6AK7x-xxxx	236	23601
1FK6033-7AK7x-xxxx	236	23602
1FK6040-6AK7x-xxxx	236	23603
1FK6042-6AF7x-xxxx	236	23604
1FK6043-7AH7x-xxxx	236	23605
1FK6043-7AK7x-xxxx	236	23606
1FK6044-7AF7x-xxxx	236	23607
1FK6044-7AH7x-xxxx	236	23608
1FK6060-6AF7x-xxxx	236	23609
1FK6061-7AF7x-xxxx	236	23610
1FK6061-7AH7x-xxxx	236	23611
1FK6063-6AF7x-xxxx	236	23612
1FK6064-7AF7x-xxxx	236	23613
1FK6064-7AH7x-xxxx	236	23614
1FK6080-6AF7x-xxxx	236	23615
1FK6082-7AF7x-xxxx	236	23616
1FK6083-6AF7x-xxxx	236	23617
1FK6085-7AF7x-xxxx	236	23618
1FK6100-8AF7x-xxxx	236	23619
1FK6101-8AF7x-xxxx	236	23620
1FK6103-8AF7x-xxxx	236	23621
1FK7011-xAK2x-xxxx	237	23738
1FK7011-xAK7x-xxxx	237	23747
1FK7015-xAK2x-xxxx	237	23739
1FK7015-xAK7x-xxxx	237	23748
1FK7022-xAK2x-xxxx	237	23733
1FK7022-xAK7x-xxxx	237	23726

Table A-3 Motor code for synchronous motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FK7032-xAF2x-xxxx	237	23742
1FK7032-xAK7x-xxxx	237	23727
1FK7033-xAF2x-xxxx	237	23741
1FK7033-xAK7x-xxxx	237	23701
1FK7034-xAF2x-xxxx	237	23740
1FK7034-xAK7x-xxxx	237	23732
1FK7040-xAK7x-xxxx	237	23702
1FK7042-xAC7x-xxxx	237	23749
1FK7042-xAF2x-xxxx	237	23735
1FK7042-xAF7x-xxxx	237	23703
1FK7042-xAK7x-xxxx	237	23704
1FK7043-xAF2x-xxxx	237	23743
1FK7043-xAH7x-xxxx	237	23705
1FK7043-xAK7x-xxxx	237	23706
1FK7044-xAF7x-xxxx	237	23707
1FK7044-xAH7x-xxxx	237	23708
1FK7060-xAF7x-xxxx	237	23709
1FK7060-xAH7x-xxxx	237	23710
1FK7061-xAF7x-xxxx	237	23711
1FK7061-xAH7x-xxxx	237	23712
1FK7063-xAF7x-xxxx	237	23713
1FK7063-xAH7x-xxxx	237	23714
1FK7064-xAF7x-xxxx	237	23715
1FK7064-xAH7x-xxxx	237	23716
1FK7080-xAF7x-xxxx	237	23717
1FK7080-xAH7x-xxxx	237	23718
1FK7082-xAF7x-xxxx	237	23719
1FK7083-xAF7x-xxxx	237	23720
1FK7083-xAH7x-xxxx	237	23721
1FK7085-xAF7x-xxxx	237	23722
1FK7086-xAA7x-xxxx	237	23737
1FK7086-xAC7x-xxxx	237	23744
1FK7086-xAF7x-xxxx	237	23731
1FK7086-xSF7x-xxxx	237	23730
1FK7100-xAF7x-xxxx	237	23723

Table A-3 Motor code for synchronous motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FK7101-xAC7x-xxxx	237	23745
1FK7101-xAF7x-xxxx	237	23724
1FK7103-xAC7x-xxxx	237	23746
1FK7103-xAF7x-xxxx	237	23725
1FK7105-xAC7x-xxxx	237	23728
1FK7105-xAF7x-xxxx	237	23729
1FS6074-xAC7x-xxxx	276	27601
1FS6074-xAF7x-xxxx	276	27602
1FS6074-xAH7x-xxxx	276	27603
1FS6074-xAK7x-xxxx	276	27604
1FS6096-xAC7x-xxxx	276	27605
1FS6096-xAF7x-xxxx	276	27606
1FS6096-xAH7x-xxxx	276	27607
1FS6115-xAB7x-xxxx	276	27608
1FS6115-xAC7x-xxxx	276	27609
1FS6115-xAF7x-xxxx	276	27610
1FS6134-xAB7x-xxxx	276	27611
1FS6134-xAC7x-xxxx	276	27612
1FS6134-xAF7x-xxxx	276	27613
1FT6021-6AK7x-xxxx	206	20601
1FT6024-6AK7x-xxxx	206	20602
1FT6031-xAK7x-xxxx	206	20603
1FT6034-xAK7x-xxxx	206	20604
1FT6041-xAF7x-xxxx	206	20605
1FT6041-xAK7x-xxxx	206	20606
1FT6044-xAF7x-xxxx	206	20607
1FT6044-xAK7x-xxxx	206	20608
1FT6061-xAC7x-xxxx	206	20609
1FT6061-xAF7x-xxxx	206	20610
1FT6061-xAH7x-xxxx	206	20611
1FT6061-xAK7x-xxxx	206	20612
1FT6062-xAC7x-xxxx	206	20613
1FT6062-xAF7x-xxxx	206	20614
1FT6062-xAH7x-xxxx	206	20615
1FT6062-xAK7x-xxxx	206	20616

Table A-3 Motor code for synchronous motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FT6062-xWF7x-xxxx	206	22601
1FT6062-xWH7x-xxxx	206	22602
1FT6062-xWK7x-xxxx	206	22603
1FT6064-xAC7x-xxxx	206	20617
1FT6064-xAF7x-xxxx	206	20618
1FT6064-xAH7x-xxxx	206	20619
1FT6064-xAK7x-xxxx	206	20620
1FT6064-xWF7x-xxxx	206	22604
1FT6064-xWH7x-xxxx	206	22605
1FT6064-xWK7x-xxxx	206	22606
1FT6081-xAC7x-xxxx	206	20621
1FT6081-xAF7x-xxxx	206	20622
1FT6081-xAH7x-xxxx	206	20623
1FT6081-xAK7x-xxxx	206	20624
1FT6082-xAC7x-xxxx	206	20625
1FT6082-xAF7x-xxxx	206	20626
1FT6082-xAH7x-xxxx	206	20627
1FT6082-xAK7x-xxxx	206	20628
1FT6082-xWH7x-xxxx	206	22630
1FT6084-xAC7x-xxxx	206	20629
1FT6084-xAF7x-xxxx	206	20630
1FT6084-xAH7x-xxxx	206	20631
1FT6084-xAK7x-xxxx	206	20632
1FT6084-xSF7x-xxxx	206	21601
1FT6084-xSH7x-xxxx	206	21602
1FT6084-xSK7x-xxxx	206	21603
1FT6084-xWF7x-xxxx	206	22607
1FT6084-xWH77-xxxx	206	22608
1FT6084-xWK7x-xxxx	206	22609
1FT6086-xAC7x-xxxx	206	20633
1FT6086-xAF7x-xxxx	206	20634
1FT6086-xAH7x-xxxx	206	20635
1FT6086-xSF7x-xxxx	206	21604
1FT6086-xSG7x-xxxx	206	21626
1FT6086-xSH7x-xxxx	206	21605

Table A-3 Motor code for synchronous motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FT6086-xSK7x-xxxx	206	21606
1FT6086-xWF7x-xxxx	206	22610
1FT6086-xWH7x-xxxx	206	22611
1FT6086-xWK7x-xxxx	206	22612
1FT6102-xAB7x-xxxx	206	20636
1FT6102-xAC7x-xxxx	206	20637
1FT6102-xAF7x-xxxx	206	20638
1FT6102-xAH7x-xxxx	206	20639
1FT6105-xAB7x-xxxx	206	20640
1FT6105-xAC7x-xxxx	206	20641
1FT6105-xAF7x-xxxx	206	20642
1FT6105-xSB7x-xxxx	206	21607
1FT6105-xSC7x-xxxx	206	21608
1FT6105-xSF7x-xxxx	206	21609
1FT6105-xSH7x-xxxx	206	21610
1FT6105-xWC7x-xxxx	206	22613
1FT6105-xWF7x-xxxx	206	22614
1FT6108-xAB7x-xxxx	206	20643
1FT6108-xAC7x-xxxx	206	20644
1FT6108-xAF7x-xxxx	206	20645
1FT6108-xSB7x-xxxx	206	21611
1FT6108-xSC7x-xxxx	206	21612
1FT6108-xSF7x-xxxx	206	21613
1FT6108-xWB7x-xxxx	206	22615
1FT6108-xWC7x-xxxx	206	22616
1FT6108-xWF7x-xxxx	206	22617
1FT6132-xAB7x-xxxx	206	20646
1FT6132-xAC7x-xxxx	206	20647
1FT6132-xAF7x-xxxx	206	20648
1FT6132-xSB7x-xxxx	206	21614
1FT6132-xSC7x-xxxx	206	21615
1FT6132-xSF7x-xxxx	206	21616
1FT6132-xWB7x-xxxx	206	22618
1FT6132-xWD7x-xxxx	206	22619
1FT6134-xAB7x-xxxx	206	20649

Table A-3 Motor code for synchronous motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FT6134-xAC7x-xxxx	206	20650
1FT6134-xSB7x-xxxx	206	21617
1FT6134-xSC7x-xxxx	206	21618
1FT6134-xSF7x-xxxx	206	21619
1FT6134-xWB7x-xxxx	206	22620
1FT6134-xWD7x-xxxx	206	22621
1FT6136-xAB7x-xxxx	206	20651
1FT6136-xAC7x-xxxx	206	20652
1FT6136-xSB7x-xxxx	206	21620
1FT6136-xSC7x-xxxx	206	21621
1FT6136-xSF7x-xxxx	206	21622
1FT6136-xWB7x-xxxx	206	22622
1FT6136-xWD7x-xxxx	206	22623
1FT6138-xWB7x-xxxx	206	22624
1FT6138-xWD7x-xxxx	206	22625
1FT6163-xSB7x-xxxx	206	21623
1FT6163-xSD7x-xxxx	206	21624
1FT6163-xWB7x-xxxx	206	22626
1FT6163-xWD7x-xxxx	206	22627
1FT6168-xSB7x-xxxx	206	21625
1FT6168-xWB7x-xxxx	206	22628
1FT7034-xAK7x-xxxx	207	20740
1FT7036-xAK7x-xxxx	207	20741
1FT7042-xAF7x-xxxx	207	20701
1FT7042-xAK7x-xxxx	207	20702
1FT7044-xAF7x-xxxx	207	20703
1FT7044-xAK7x-xxxx	207	20704
1FT7046-xAF7x-xxxx	207	20705
1FT7046-xAH7x-xxxx	207	20732
1FT7046-xAK7x-xxxx	207	20706
1FT7062-xAF7x-xxxx	207	20716
1FT7062-xAK7x-xxxx	207	20717
1FT7062-xWF7x-xxxx	207	20745
1FT7062-xWK7x-xxxx	207	20746
1FT7064-xAF7x-xxxx	207	20720

Table A-3 Motor code for synchronous motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FT7064-xAK7x-xxxx	207	20721
1FT7064-xWF7x-xxxx	207	20747
1FT7064-xWK7x-xxxx	207	20748
1FT7066-xAF7x-xxxx	207	20722
1FT7066-xAH7x-xxxx	207	20733
1FT7066-xWF7x-xxxx	207	20749
1FT7066-xWH7x-xxxx	207	20750
1FT7068-xAF7x-xxxx	207	20725
1FT7068-xWF7x-xxxx	207	20751
1FT7082-xAC7x-xxxx	207	20734
1FT7082-xAF7x-xxxx	207	20709
1FT7082-xAH7x-xxxx	207	20707
1FT7082-xWC7x-xxxx	207	20752
1FT7082-xWF7x-xxxx	207	20753
1FT7082-xWH7x-xxxx	207	20754
1FT7084-xAC7x-xxxx	207	20735
1FT7084-xAF7x-xxxx	207	20711
1FT7084-xAH7x-xxxx	207	20712
1FT7084-xWC7x-xxxx	207	20755
1FT7084-xWF7x-xxxx	207	20756
1FT7084-xWH7x-xxxx	207	20757
1FT7086-xAC7x-xxxx	207	20736
1FT7086-xAF7x-xxxx	207	20714
1FT7086-xAH7x-xxxx	207	20715
1FT7086-xWC7x-xxxx	207	20758
1FT7086-xWF7x-xxxx	207	20759
1FT7086-xWH7x-xxxx	207	20760
1FT7102-xAB7x-xxxx	207	20726
1FT7102-xAC7x-xxxx	207	20737
1FT7102-xAF7x-xxxx	207	20727
1FT7102-xWB7x-xxxx	207	20761
1FT7102-xWC7x-xxxx	207	20762
1FT7102-xWF7x-xxxx	207	20763
1FT7105-xAB7x-xxxx	207	20728
1FT7105-xAC7x-xxxx	207	20738

Table A-3 Motor code for synchronous motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FT7105-xAF7x-xxxx	207	20729
1FT7105-xWB7x-xxxx	207	20744
1FT7105-xWC7x-xxxx	207	20764
1FT7105-xWF7x-xxxx	207	20765
1FT7108-xAB7x-xxxx	207	20730
1FT7108-xAC7x-xxxx	207	20739
1FT7108-xAF7x-xxxx	207	20731
1FT7108-xWB7x-xxxx	207	20742
1FT7108-xWC7x-xxxx	207	20766
1FT7108-xWF7x-xxxx	207	20767
1FW3150-1xH7x-xxxx	283	28301
1FW3150-1xL7x-xxxx	283	28302
1FW3150-1xP7x-xxxx	283	28303
1FW3152-1xH7x-xxxx	283	28304
1FW3152-1xL7x-xxxx	283	28305
1FW3152-1xP7x-xxxx	283	28306
1FW3154-1xH7x-xxxx	283	28307
1FW3154-1xL7x-xxxx	283	28308
1FW3154-1xP7x-xxxx	283	28309
1FW3155-1xH7x-xxxx	283	28310
1FW3155-1xL7x-xxxx	283	28311
1FW3155-1xP7x-xxxx	283	28312
1FW3156-1xH7x-xxxx	283	28313
1FW3156-1xL7x-xxxx	283	28314
1FW3156-1xP7x-xxxx	283	28315
1FW3201-1xE7x-xxxx	283	28316
1FW3201-1xH7x-xxxx	283	28317
1FW3201-1xL7x-xxxx	283	28318
1FW3202-1xE7x-xxxx	283	28319
1FW3202-1xH7x-xxxx	283	28320
1FW3202-1xL7x-xxxx	283	28321
1FW3203-1xE7x-xxxx	283	28322
1FW3203-1xH7x-xxxx	283	28323
1FW3203-1xL7x-xxxx	283	28324
1FW3204-1xE7x-xxxx	283	28325

Table A-3 Motor code for synchronous motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FW3204-1xH7x-xxxx	283	28326
1FW3204-1xL7x-xxxx	283	28327
1FW3206-1xE7x-xxxx	283	28328
1FW3206-1xH7x-xxxx	283	28329
1FW3206-1xL7x-xxxx	283	28330
1FW3208-1xE7x-xxxx	283	28331
1FW3208-1xH7x-xxxx	283	28332
1FW3208-1xL7x-xxxx	283	28333
1FW3281-1xE7x-xxxx	283	28334
1FW3281-1xG7x-xxxx	283	28335
1FW3281-2xE7x-xxxx	283	29301
1FW3281-2xG7x-xxxx	283	29302
1FW3281-3xJ7x-xxxx	283	29303
1FW3281-3xM7x-xxxx	283	29304
1FW3283-1xE7x-xxxx	283	28336
1FW3283-1xG7x-xxxx	283	28337
1FW3283-2xE7x-xxxx	283	29305
1FW3283-2xG7x-xxxx	283	29306
1FW3283-3xJ7x-xxxx	283	29307
1FW3283-3xM7x-xxxx	283	29308
1FW3285-1xE7x-xxxx	283	28338
1FW3285-1xG7x-xxxx	283	28339
1FW3285-2xE7x-xxxx	283	29309
1FW3285-2xG7x-xxxx	283	29310
1FW3285-3xJ7x-xxxx	283	29311
1FW3285-3xM7x-xxxx	283	29312
1FW3287-2xE7x-xxxx	283	29313
1FW3287-2xG7x-xxxx	283	29314
1FW3287-3xJ7x-xxxx	283	29315
1FW3287-3xM7x-xxxx	283	29316
1FW3288-1xE7x-xxxx	283	28340
1FW3288-1xG7x-xxxx	283	28341
1FW6090-0xx05-0Fxx	286	28601
1FW6090-0xx05-0Kxx	286	28602
1FW6090-0xx07-0Kxx	286	28603

Table A-3 Motor code for synchronous motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FW6090-0xx07-1Jxx	286	28604
1FW6090-0xx10-0Kxx	286	28605
1FW6090-0xx10-1Jxx	286	28606
1FW6090-0xx15-1Jxx	286	28607
1FW6090-0xx15-2Jxx	286	28608
1FW6130-0xx05-0Kxx	286	28620
1FW6130-0xx05-1Jxx	286	28621
1FW6130-0xx07-0Kxx	286	28622
1FW6130-0xx07-1Jxx	286	28623
1FW6130-0xx10-1Jxx	286	28624
1FW6130-0xx10-2Jxx	286	28625
1FW6130-0xx15-1Jxx	286	28626
1FW6130-0xx15-2Jxx	286	28627
1FW6150-0xx05-1Jxx	286	28642
1FW6150-0xx05-4Fxx	286	28643
1FW6150-0xx07-2Jxx	286	28644
1FW6150-0xx07-4Fxx	286	28645
1FW6150-0xx10-2Jxx	286	28646
1FW6150-0xx10-4Fxx	286	28647
1FW6150-0xx15-2Jxx	286	28648
1FW6150-0xx15-4Fxx	286	28649
1FW6160-0xx05-1Jxx	286	28628
1FW6160-0xx05-2Jxx	286	28629
1FW6160-0xx07-1Jxx	286	28630
1FW6160-0xx07-2Jxx	286	28631
1FW6160-0xx10-1Jxx	286	28632
1FW6160-0xx10-2Jxx	286	28633
1FW6160-0xx15-2Jxx	286	28634
1FW6160-0xx15-5Gxx	286	28635
1FW6190-0xx05-1Jxx	286	28636
1FW6190-0xx05-2Jxx	286	28637
1FW6190-0xx07-1Jxx	286	28638
1FW6190-0xx07-2Jxx	286	28639
1FW6190-0xx10-1Jxx	286	28640
1FW6190-0xx10-2Jxx	286	28641

Table A-3 Motor code for synchronous motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FW6190-0xx15-2Jxx	286	28609
1FW6190-0xx15-5Gxx	286	28610
1FW6230-0xx05-1Jxx	286	28611
1FW6230-0xx05-2Jxx	286	28612
1FW6230-0xx07-1Jxxx	286	28613
1FW6230-0xx07-2Jxx	286	28614
1FW6230-0xx10-2Jxx	286	28615
1FW6230-0xx10-5Gxx	286	28616
1FW6230-0xx15-4Cxx	286	28617
1FW6230-0xx15-5Gxx	286	28618
1FW6290-0xx15-7Axx	286	28619
1LE400x-1ABxx-xxxx	204	20401
1LE400x-1BBxx-xxxx	204	20402
1PH8131-2xF0x-xxxx	200	20001
1PH8131-2xF1x-xxxx	200	20002
1PH8131-2xF2x-xxxx	200	20003
1PH8131-2xL0x-xxxx	200	20004
1PH8131-2xL1x-xxxx	200	20005
1PH8131-2xL2x-xxxx	200	20006
1PH8133-2xF0x-xxxx	200	20007
1PH8133-2xF1x-xxxx	200	20008
1PH8133-2xF2x-xxxx	200	20009
1PH8133-2xG2x-xxxx	200	20010
1PH8133-2xL0x-xxxx	200	20011
1PH8133-2xL1x-xxxx	200	20012
1PH8135-2xF0x-xxxx	200	20013
1PH8135-2xF1x-xxxx	200	20014
1PH8135-2xF2x-xxxx	200	20015
1PH8135-2xG0x-xxxx	200	20016
1PH8135-2xG1x-xxxx	200	20017
1PH8135-2xG2x-xxxx	200	20018
1PH8137-2xF0x-xxxx	200	20019
1PH8137-2xF1x-xxxx	200	20020
1PH8137-2xF2x-xxxx	200	20021
1PH8137-2xG2x-xxxx	200	20022

Table A-3 Motor code for synchronous motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1PH8137-2xL0x-xxxx	200	20023
1PH8137-2xL1x-xxxx	200	20024
1PH8137-2xM0x-xxxx	200	20025
1PH8137-2xM1x-xxxx	200	20026
1PH8138-2xF2x-xxxx	200	20027
1PH8138-2xG2x-xxxx	200	20028
2SP1202-1HAxx-xxxx	291	29101
2SP1202-1HBxx-xxxx	291	29102
2SP1204-1HAxx-xxxx	291	29103
2SP1204-1HBxx-xxxx	291	29104
2SP1253-1xAxx-xxxx	291	29105
2SP1253-1xBxx-xxxx	291	29106
2SP1255-1xAxx-xxxx	291	29107
2SP1255-1xBxx-xxxx	291	29108

Linear motors (Version: 2603400)

Table A-4 Motor code for linear motors

Order number	Motor type (p0300)	Motor code (p0301)
1FN1072-3xF7x-xxxx	401	40131
1FN1076-3xF7x-xxxx	401	40132
1FN1122-5xC7x-xxxx	401	40103
1FN1122-5xF7x-xxxx	401	40121
1FN1124-5xC7x-xxxx	401	40101
1FN1124-5xF7x-xxxx	401	40123
1FN1126-5xC7x-xxxx	401	40104
1FN1126-5xF7x-xxxx	401	40122
1FN1184-5xC7x-xxxx	401	40102
1FN1184-5xF7x-xxxx	401	40124
1FN1186-5xC7x-xxxx	401	40105
1FN1186-5xF7x-xxxx	401	40125
1FN1244-5xC7x-xxxx	401	40106
1FN1244-5xF7x-xxxx	401	40126
1FN1246-5xC7x-xxxx	401	40107
1FN1246-5xF7x-xxxx	401	40127
1FN3050-1KD0x-xxxx	403	41329
1FN3050-1ND0x-xxxx	403	41301
1FN3050-2KC4x-xxxx	403	41328
1FN3050-2NB8x-xxxx	403	41302
1FN3050-2WC0x-xxxx	403	40349
1FN3100-1KC5x-xxxx	403	41331
1FN3100-1NC0x-xxxx	403	41303
1FN3100-1WC0x-xxxx	403	40341
1FN3100-2KC5x-xxxx	403	41325
1FN3100-2NC8x-xxxx	403	41304
1FN3100-2WC0x-xxxx	403	40302
1FN3100-2WE0x-xxxx	403	40303
1FN3100-3KC5x-xxxx	403	41326
1FN3100-3NC0x-xxxx	403	41305
1FN3100-3WC0x-xxxx	403	40342
1FN3100-3WE0x-xxxx	403	40304
1FN3100-4NC8x-xxxx	403	41306
1FN3100-4WC0x-xxxx	403	40305

Table A-4 Motor code for linear motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FN3100-4WE0x-xxxx	403	40306
1FN3100-5WC0x-xxxx	403	40307
1FN3150-1KC7x-xxxx	403	41324
1FN3150-1NC2x-xxxx	403	41307
1FN3150-1WC0x-xxxx	403	40308
1FN3150-1WE0x-xxxx	403	40309
1FN3150-2KC7x-xxxx	403	41327
1FN3150-2NB8x-xxxx	403	41308
1FN3150-2WC0x-xxxx	403	40310
1FN3150-3KC7x-xxxx	403	41330
1FN3150-3NC7x-xxxx	403	41309
1FN3150-3WC0x-xxxx	403	40311
1FN3150-4NB8x-xxxx	403	41310
1FN3150-4WC0x-xxxx	403	40312
1FN3150-5WC0x-xxxx	403	40313
1FN3300-1NC1x-xxxx	403	41311
1FN3300-1WC0x-xxxx	403	40343
1FN3300-2NC1x-xxxx	403	41312
1FN3300-2WB0x-xxxx	403	40314
1FN3300-2WC0x-xxxx	403	40315
1FN3300-2WG0x-xxxx	403	40316
1FN3300-3NC4x-xxxx	403	41313
1FN3300-3WC0x-xxxx	403	40317
1FN3300-3WG0x-xxxx	403	40318
1FN3300-4NB8x-xxxx	403	41314
1FN3300-4WB0x-xxxx	403	40319
1FN3300-4WC0x-xxxx	403	40320
1FN3450-2NC5x-xxxx	403	41315
1FN3450-2WA5x-xxxx	403	40344
1FN3450-2WC0x-xxxx	403	40321
1FN3450-2WE0x-xxxx	403	40322
1FN3450-3NC5x-xxxx	403	41316
1FN3450-3WA5x-xxxx	403	40345
1FN3450-3WB0x-xxxx	403	40323
1FN3450-3WB5x-xxxx	403	40324

Table A-4 Motor code for linear motors, continued

Order number	Motor type (p0300)	Motor code (p0301)
1FN3450-3WC0x-xxxx	403	40325
1FN3450-3WE0x-xxxx	403	40326
1FN3450-4NB8x-xxxx	403	41317
1FN3450-4WB0x-xxxx	403	40327
1FN3450-4WB5x-xxxx	403	40328
1FN3450-4WC0x-xxxx	403	40329
1FN3450-4WE0x-xxxx	403	40330
1FN3600-2NB8x-xxxx	403	41318
1FN3600-2WA5x-xxxx	403	40346
1FN3600-3NB8x-xxxx	403	41319
1FN3600-3WB0x-xxxx	403	40331
1FN3600-3WC0x-xxxx	403	40332
1FN3600-4NB8x-xxxx	403	41320
1FN3600-4WA3x-xxxx	403	40347
1FN3600-4WB0x-xxxx	403	40333
1FN3600-4WB5x-xxxx	403	40334
1FN3600-4WC0x-xxxx	403	40335
1FN3900-2NB2x-xxxx	403	41321
1FN3900-2WB0x-xxxx	403	40336
1FN3900-2WC0x-xxxx	403	40337
1FN3900-3NB2x-xxxx	403	41322
1FN3900-3WB0x-xxxx	403	40348
1FN3900-4NB2x-xxxx	403	40340
1FN3900-4WB0x-xxxx	403	
1FN3900-4WB5x-xxxx	403	40339
1FN3900-4WC0x-xxxx	403	4
		4

A.2.2 Encoder code

1FK6 encoders

Table A-5 Encoder code for 1FK6 encoders

Order number	Encoder code (p0400)	Comments
1FK6xxx-xxxxx-xAxx	2001	-
1FK6xxx-xxxxx-xExx	2051	-
1FK6xxx-xxxxx-xGxx	2052	-
1FK6xxx-xxxxx-xHxx	2053	-
1FK6xxx-xxxxx-xJxx	2054	-
1FK6xxx-xxxxx-xSxx	1002	$4 p$ (2-speed)
	1003	$6 p$ (3-speed)
	1004	8p (4-speed) The pole number of the resolver cor- responds to the pole number of the motor (see catalog).
		-

1FK7 encoders

Table A-6 Encoder code for 1FK7 encoders

Order number	Encoder code (p0400)	Comments
1FK7xxx-xxxxx-xAxx	2001	-
1FK7xxx-xxxxx-xExx	2051	-
1FK7xxx-xxxxx-xGxx	2052	-
1FK7xxx-xxxxx-xHxx	2053	-
1FK7xxx-xxxxx-xJxx	2054	-
1FK7xxx-xxxxx-xSxx	1002	4p (2-speed) 1003
1004	8p (3-speed) (4-speed) The pole number of the resolver cor- responds to the pole number of the motor (see catalog).	
1FK7xxx-xxxxx-xTxx	1001	-

1FS6 encoders

Table A-7 Encoder code for 1FS6 encoders

Order number	Encoder code (p0400)	Comments
1FS6xxx-xxxxx-xAxx	2001	-
1FS6xxx-xxxxx-xExx	2051	-

1FT6 encoders

Table A-8 Encoder code for 1FT6 encoders

Order number	Encoder code (p0400)	Comments
1FT6xxx-xxxxx-xAxx	2001	-
1FT6xxx-xxxxx-xExx	2051	-
1FT6xxx-xxxxx-xHxx	2053	-
1FT6xxx-4xxxx-xSxx	1002	$4 p$ (2-speed)
1FT6xxx-6xxxx-xSxx	1003	$6 p$ (3-speed)
1FT6xxx-8xxxx-xSxx	1004	$8 p$ (4-speed)
1FT6xxx-xxxxx-xTxx	1001	-

1FW3 encoders

Table A-9 Encoder code for 1FW3 encoders

Order number	Encoder code (p0400)	Comments
1FW3xxx-xAxxx-xxxx	2001	-
1FW3xxx-xExxx-xxxx	2051	-
1FW3xxx-xGxxx-xxxx	2052	-
1FW3xxx-xSxxx-xxxx	1003	-

1PH4 encoders

Table A-10 Encoder code for 1PH4 encoders

Order number	Encoder code (p0400)	Comments
1PH4xxx-xNxxx-xxxx	2002	-

1PH7 encoders

Table A-11 Encoder code for 1PH7 encoders

Order number	Encoder code (p0400)	Comments
1PH7xxx-xExxx-xxxx	2051	-
1PH7xxx-xHxxx-xxxx	3002	-
1PH7xxx-xJxxx-xxxx	3003	-
1PH7xxx-xMxxx-xxxx	2001	-
1PH7xxx-xNxxx-xxxx	2002	-
1PH7xxx-xRxxx-xxxx	1001	-

1PM4 encoders
Table A-12 Encoder code for 1PM4 encoders

Order number	Encoder code (p0400)	Comments
1PM4xxx-xGxxx-xxxx	2002	-
1PM4xxx-xLxxx-xxxx	2003	-

1PM6 encoders

Table A-13 Encoder code for 1PM6 encoders

Order number	Encoder code (p0400)	Comments
1PM6xxx-xGxxx-xxxx	2002	-
1PM6xxx-xLxxx-xxxx	2003	-

2SP1 encoders

Table A-14 Encoder code for 2SP1 encoders

Order number	Encoder code (p0400)	Comments
2SP1xxx-xHxxx-xxxx	2003	-

List of abbreviations

Note:

The following list of abbreviations contains the abbreviations and their meanings used in the entire SINAMICS user documentation.

Abbreviation	Derivation of abbreviation	Meaning
A		
A...	Alarm	Alarm
AC	Alternating Current	Alternating current
ADC	Analog Digital Converter	Analog digital converter
AI	Analog Input	Analog input
AIM	Active Interface Module	Active Interface Module
ALM	Active Line Module	Active Line Module
AO	Analog Output	Analog output
AOP	Advanced Operator Panel	Advanced Operator Panel
APC	Advanced Positioning Control	Advanced positioning control
AR	Automatic Restart	Automatic restart
ASC	Armature Short-Circuit	Armature short-circuit
ASCII	American Standard Code for Information	American Standard Code for Information
ASM	Interchange	Asynchronmotor
B		Induction motor
BERO	-	Tradename for a type of contactless proxim-
		ity switch
BI	Binector Input	Binector input
BIA	Berufsgenossenschaftliches Institut für Arbe-German Institute for Occupational Safety	
BICO	itssicherheit	Binector Connector Technology

Abbreviation	Derivation of abbreviation	Meaning
CD	Compact Disc	Compact Disc
CDS	Command Data Set	Command data set
CF Card	CompactFlash Card	CompactFlash card
Cl	Connector Input	Connector input
CLC	Clearance Control	Clearance control
CNC	Computer Numerical Control	Computer numerical control
CO	Connector Output	Connector output
CO/BO	Connector Output/Binector Output	Connector output/Binector output
COB-ID	CAN Object-Identification	CAN object identification
COM	Common contact of a change-over relay	Common contact of a change-over relay
COMM	Commissioning	Commissioning
CP	Communications Processor	Communications processor
CPU	Central Processing Unit	Central processing unit
CRC	Cyclic Redundancy Check	Cyclic redundancy check
CSM	Control Supply Module	Control Supply Module
CU	Control Unit	Control Unit
D		
DAC	Digital Analog Converter	Digital Analog Converter
DC	Direct Current	Direct current
DCB	Drive Control Block	Drive Control Block
DCC	Drive Control Chart	Drive Control Chart
DCC	Data Cross-Check	Data cross-check
DCN	Direct Current Negative	Direct current negative
DCP	Direct Current Positive	Direct current positive
DDS	Drive Data Set	Drive data set
DI	Digital Input	Digital input
DI/DO	Digital Input/Digital Output	Bidirectional digital input/digital output
DMC	DRIVE-CLiQ Hub Module Cabinet	DRIVE-CLiQ Hub Module Cabinet
DME	DRIVE-CLiQ Hub Module External	DRIVE-CLiQ Hub Module External
DO	Digital Output	Digital output
DO	Drive Object	Drive object
DP	Distributed I/Os	Distributed I/Os
DPRAM	Dual-Port Random Access Memory	Dual-Port Random Access Memory
DRAM	Dynamic Random Access Memory	Dynamic Random Access Memory
DRIVE-CLiQ	Drive Component Link with IQ	Drive Component Link with IQ
DSC	Dynamic Servo Control	Dynamic servo control
E		
EASC	External Armature Short-Circuit	External armature short-circuit
EDS	Encoder Data Set	Encoder data set
ELCB	Earth Leakage Circuit Breaker	Earth leakage circuit breaker
ELP	Earth Leakage Protection	Earth leakage protection

Abbreviation	Derivation of abbreviation	Meaning
EMC	Electromagnetic Compatibility	Electromagnetic compatibility
EMF	Electromagnetic Force	Electromagnetic force
EN	Europäische Norm	European Standard
EnDat	Encoder-Data-Interface	Encoder interface
EP	Enable Pulses	Enable Pulses
EPOS	Einfachpositionierer	Basic positioner
ES	Engineering System	Engineering system
ESB	Ersatzschaltbild	Equivalent circuit diagram
ESD	Electrostatic Sensitive Devices	Electrostatic sensitive devices
ESR	Extended Stop and Retract	Extended stop and retract
F		
F...	Fault	Fault
FAQ	Frequently Asked Questions	Frequently asked questions
FBL	Free Blocks	Free function blocks
FCC	Function Control Chart	Function Control Chart
FCC	Flux Current Control	Flux current control
FD	Function Diagram	Function diagram
F-DI	Failsafe Digital Input	Failsafe digital input
F-DO	Failsafe Digital Output	Failsafe digital output
FEM	Fremderregter Synchronmotor	Separate-field synchronous motor
FEPROM	Flash-EPROM	Non-volatile write and read memory
FG	Function Generator	Function generator
FI	-	Fault current
FO	Fiber-Optic Cable	Fiber optic cable
FPGA	Field Programmable Gate Array	Field Programmable Gate Array
FW	Firmware	Firmware
G		
GB	Gigabyte	Gigabyte
GC	Global Control	Global Control Telegram (Broadcast Telegram)
GND	Ground	Reference potential for all signal and operating voltages, usually defined with 0 V (also designated as M)
GSD	Gerätestammdatei	Device master file: describes the features of a PROFIBUS slave
GSV	Gate Supply Voltage	Gate supply voltage
GUID	Globally Unique Identifier	Globally unique identifier
H		
HF	High Frequency	High frequency
HFD	Hochfrequenzdrossel	High-frequency reactor
HMI	Human Machine Interface	Human Machine Interface
HTL	High-Threshold Logic	High-threshold logic

Abbreviation	Derivation of abbreviation	Meaning
HW	Hardware	Hardware
1		
I/O	Input/Output	Input/Output
I2C	Inter Integrated Circuit	Internal serial data bus
IASC	Internal Armature Short-Circuit	Internal armature short-circuit
ID	Identifier	Identifier
IEC	International Electrotechnical Commission	International standard in electrical engineering
IF	Interface	Interface
IGBT	Insulated Gate Bipolar Transistor	Bipolar transistor with insulated control electrode
IGCT	Integrated Gate-Controlled Thyristor	Semiconductor circuit-breaker with integrated control electrode
IL	Impulslöschung	Pulse suppression
IP	Internet Protocol	Internet Protocol
IPO	Interpolator	Interpolator
IT	Isolé Terré	Insulated three-phase supply system
IVP	Internal Voltage Protection	Internal voltage protection
J		
JOG	Jogging	Jogging
K		
KIP	Kinetische Pufferung	Kinetic buffering
Kp	-	Proportional gain
KTY	-	Special temperature sensor
L		
L	-	Formula symbol for inductance
LED	Light Emitting Diode	Light Emitting Diode
LIN	Linearmotor	Linear motor
LR	Lageregler	Position controller
LSB	Least Significant Bit	Least Significant Bit
LSC	Line-Side Converter	Line-Side Converter
LSS	Line Side Switch	Line Side Switch
LU	Length Unit	Length Unit
M		
M	-	Formula symbol for torque
M	Masse	Reference potential for all signal and operating voltages, usually defined with 0 V (also designated as GND)
MB	Megabyte	Megabyte
MCC	Motion Control Chart	Motion Control Chart
MDS	Motor Data Set	Motor data set
MLFB	Maschinenlesbare Fabrikatebezeichnung	Machine-readable product designation

Abbreviation	Derivation of abbreviation	Meaning
MMC	Man-Machine Communication	Man-Machine Communication
MMC	Micro Memory Card	Micro Memory Card
MSB	Most Significant Bit	Most Significant Bit
MSC	Motor-Side Converter	Motor-Side Converter
MSCY_C1	Master Slave Cycle Class 1	Cyclic communication between master (class 1) and slave
MT	Messtaster	Probe
N		
N. C.	Not Connected	Not connected
N...	No Report	No report or internal message
NAMUR	Normenarbeitsgemeinschaft für Mess- und Regeltechnik in der chemischen Industrie	Standardization association for measurement and control in chemical indstries
NC	Normally Closed (contact)	Normally Closed (contact)
NC	Numerical Control	Numerical control
NEMA	National Electrical Manufacturers Association	Standards association in USA
NO	Normally Open (contact)	Normally Open (contact)
0		
OA	Open Architecture	Open Architecture
OC	Operating Condition	Operating condition
OEM	Original Equipment Manufacturer	Original Equipment Manufacturer
OLP	Optical Link Plug	Optical link plug
OMI	Option Module Interface	Option Module Interface
P		
p...	-	Setting parameter
PB	PROFIBUS	PROFIBUS
PcCtrl	PC Control	Master control
PD	PROFIdrive	PROFIdrive
PDS	Power unit Data Set	Power unit data set
PE	Protective Earth	Protective Earth
PELV	Protective Extra Low Voltage	Protective Extra Low Voltage
PEM	Permanenterregter Synchronmotor	Permanent-field synchronous motor
PG	Programmiergerät	Programming device
PI	Proportional Integral	Proportional Integral
PID	Proportional Integral Differential	Proportional Integral Differential
PLC	Programmable Logic Controller	Programmable logic controller
PLL	Phase-Locked Loop	Phase-Locked Loop
PN	PROFINET	PROFINET
PNO	PROFIBUS Nutzerorganisation	PROFIBUS User Organization (PROFIBUS International)
PPI	Point to Point Interface	Point to point interface
PRBS	Pseudo Random Binary Signal	Pseudo Random Binary Signal

Abbreviation	Derivation of abbreviation	Meaning
PROFIBUS	Process Field Bus	Serial data bus
PS	Power Supply	Power supply
PSA	Power Stack Adapter	Power stack adapter
PTC	Positive Temperature Coefficient	Positive Temperature Coefficient
PTP	Point-To-Point	Point-to-point
PWM	Pulse Width Modulation	Pulse width modulation
PZD	Prozessdaten	Process data
Q		
R		
r...	-	Display parameter (read only)
RAM	Random Access Memory	Read and write memory
RCCB	Residual Current Circuit Breaker	Residual current circuit breaker
RCD	Residual Current Device	Residual current device
RFG	Ramp-Function Generator	Ramp-function generator
RJ45	Registered Jack 45	Describes an 8-pole connector system for data transfer with shielded or unshielded multicore copper cables
RKA	Rückkühlanlage	Cooling unit
RO	Read Only	Read only
RPDO	Receive Process Data Object	Receive Process Data Object
RS232	Recommended Standard 232	Interface standard for conducted serial data transfer between a transmitter and a receiver (also designated as EIA232)
RS485	Recommended Standard 485	Interface standard for a conducted differential, parallel and/or serial bus system (data transfer between several transmitters and receivers, also designated as EIA485)
RTC	Real Time Clock	Real time clock
S		
S1	-	Continuous duty
S3	-	Intermittent duty
SBC	Safe Brake Control	Safe brake control
SBH	Sicherer Betriebshalt	Safe Operating Stop
SBR	-	Safe Acceleration Monitor
SCA	Safe Cam	Safe cam
SD Card	SecureDigital Card	Secure Digital Card
SE	Sicherer Software-Endschalter	Safe software limit switch
SG	Sicher reduzierte Geschwindigkeit	Safely reduced speed
SGA	Sicherheitsgerichteter Ausgang	Safety-related output
SGE	Sicherheitsgerichteter Eingang	Safety-related input
SH	Sicherer Halt	Safe standstill
SP	Safety Integrated	Safety Integrated
SIL	Safety Integrity Level	Safety Integrity Level

Abbreviation	Derivation of abbreviation
SLM	Smart Line Module
SLP	Safely-Limited Position
SLS	Safely-Limited Speed
SLVC	Sensorless Vector Control
SM	Sensor Module
SMC	Sensor Module Cabinet
SME	Sensor Module External
SN	Sicherer Software-Nocken
SOS	Safe Operating Stop
SP	Service Pack
SPC	Setpoint Channel
SPI	Serial Peripheral Interface
SS1	Safe Stop 1
SS2	Safe Stop 2
SSI	Synchronous Serial Interface
SSM	Safe Speed Monitor
SSR	Safe Stop Ramp
STO	Safe Torque Off
STW	Steuerwort
SVA	Space-vector approximation
T	
TB	Terminal Board
TIA	Totally Integrated Automation
TM	Terminal Module
TN	Terre Neutre
Tn	-
TPDO	Transmit Process Data Object
TT	Terre Terre
TTL	Transistor-Transistor Logic
Tv	-
U	
UL	Underwriters Laboratories Inc.
UPS	Uninterruptible Power Supply
V	
VC	Vector Control
Vdc	-
VdcN	-
VdcP	-
VDE	Verband Deutscher Elektrotechniker
VDI	Verein Deutscher Ingenieure

Meaning

Smart Line Module
Safely-Limited Position
Safely Limited Speed
Sensorless Vector Control
Sensor Module
Sensor Module Cabinet
Sensor Module External
Safe software cam
Safe operating stop
Service pack
Setpoint channel
Serial I/O interface
Safe Stop 1
(time-monitored, ramp-monitored)
Safe Stop 2
Synchronous serial interface
Safe feedback from speed monitor ($\mathrm{n}<\mathrm{nx}$)
Safe brake ramp
Safely switched-off torque
Control word
Space-vector approximation

Terminal Board
Totally Integrated Automation
Terminal Module
Grounded three-phase supply system Integral time
Transmit Process Data Object
Grounded three-phase supply system
Transistor-Transistor-Logic
Derivative action time

Underwriters Laboratories Inc.
Uninterruptible power supply

Vector control
DC link voltage
Partial DC link voltage negative
Partial DC link voltage positive
Association of German Electrical Engineers Assocation of German Engineers

Abbreviation	Derivation of abbreviation	Meaning
VPM	Voltage Protection Module	Voltage Protection Module
Vpp	Volt peak to peak	Volt peak to peak
VSM	Voltage Sensing Module	Voltage Sensing Module
\mathbf{W}		
WZM	Werkzeugmaschine	Machine tool
\mathbf{X}		Extensible Markup Language (standard lan- guage for Web publishing and document management)
XML	Extensible Markup Language	
\mathbf{Y}		DC link
Z		Zero mark
ZK	Zwischenkreis	Status word
ZM	Zero Mark	Zustandswort

References

SINAMICS documentation

Catalogs

/D11.1/ SINAMICS G110/SINAMICS G120 Inverter Chassis Units SINAMICS G120D Distributed Frequency Inverters

Order number: E86060-K5511-A111-A4 Edition: 04/2007
$\begin{array}{ll}\text { ID11/ } & \text { SINAMICS G130 Drive Converter Chassis Units } \\ & \text { SINAMICS G150 Drive Converter Cabinet Units }\end{array}$
Order no.: E86060-K5511-A101-A3 Edition: 12/2005
/PM21/ SIMOTION, SINAMICS S120 and Motors for Production Machines
Order No.: E86060-K4921-A101-A1
Edition: 2008
ID21.3/ SINAMICS S150 Converter Cabinet Units
75 kW to 1200 kW
Ordner No.: E86060-K5521-A131-A1 Edition: 05/2004

Related catalogs
/ST70/ SIMATIC Products for Totally Integrated Automation
Ordering information
Ordner No.: E86060-K4670-A101-B1 Edition: 09/2006
/NC61/ SINUMERIK \& SINAMICS
Automation Systems for Machine Tools
Ordering information
Order no.: E86060-K4461-A101-A2 Edition: 2007/2008

Interactive catalogs
/CA01/ Automation and Drives' Offline Mall
CD-ROM
Order
E86060-D4001-A100-C6
Edition: 10/2007

/Mall/	A\&D Mall, Catalog and Online Ordering System http://www.siemens.com/automation/mall		
Electronic documentation			
/CD2/	SINAMICS DOCONCD		
	The SINAMICS System		
	Order no.:	6SL3097-2CA00-0YG5	Edition: 07/2007
User Documentation			
/BA1/	SINAMICS G150		
	Operating instructions		
	Order number:	On request	Edition: 10/2008
/BA2]	SINAMICS G130		
	Operating instructions		
	Order number:	On request	Edition: 10/2008
/BA3/	SINAMICS S150		
	Operating instructions		
	Order number:	On request	Edition: 10/2008
/GH1/	SINAMICS S120		
	Equipment Manual for Control Units and Additional System Components		
	Order number:	6SL3097-2AH00-0?P5	Edition: 10/2008
/GH2/	SINAMICS S120		
	Equipment Manual for Booksize Power Units		
	Order number:	6SL3097-2AC00-0?P7	Edition: 10/2008
/GH3/	SINAMICS S120		
	Equipment Manual for Chassis Power Units		
	Order number:	6SL3097-2AE00-0?P3	Edition: 10/2008
/GH5/	SINAMICS S120		
	Equipment Manual Cabinet Modules		
	Order number:	On request	Edition: 10/2008
/GH6/	SINAMICS S120		
	Equipment Manual AC Drive		
	Order number:	6SL3097-2AL00-0?P4	Edition: 10/2008

/GH7]	SINAMICS S120	
	Equipment Manual for Chassis Liquid Cooled Power Units	
	Order number: 6SL3097-2AM00-0?P5	Edition: 10/2008
/GS1/	SINAMICS S120	
	Getting Started	
	Order number: 6SL3097-2AG00-0?P2	Edition: 03/2006
/IH1/	SINAMICS S120	
	Commissioning Manual	
	Order number: 6SL3097-2AF00-0?P8	Edition: 10/2008
/IH2/	SINAMICS S120	
	Commissioning Manual for CANopen	
	Order number: 6SL3097-2AA00-0?P3	Edition: 10/2008
/FH1/	SINAMICS S120	
	Function Manual Drive Functions	
	Order number: 6SL3097-2AB00-0?P5	Edition: 10/2008
/FHS/	SINAMICS S120	
	Function Manual Safety Integrated	
	Order number: 6SL3097-2AR00-0?P2	Edition: 10/2008
/FH4/	SINAMICS / SIMOTION	
	Function Manual DCC Standard Blocks	
	Order number: 6SL3097-2AQ00-0?P2	Edition: 08/2008
/PB1/	SINAMICS / SIMOTION	
	Programming and Operating Manual DCC Editor Description	
	Order number: 6SL3097-2AN00-0?P2	Edition: 08/2008
/LH1/	SINAMICS S120/S150	
	List Manual	
	Order number: 6SL3097-2AP00-0?P7	Edition: 10/2008
/PFK7S/	SINAMICS 1FK7 Synchronous Motors	
	Configuration Manual	
	Order number: 6SN1197-0AD16-0?P1	Edition: 12/2006
/PFT6S/	SINAMICS 1FT6 Synchronous Motors	
	Configuration Manual	
	Order number: 6SN1197-0AD12-0?P0	Edition: 12/2004

/PFT7S/	SINAMICS Synchronous Motors 1FT7	
	Configuration Manual	
	Order number: 6SN1197-0AD13-0?P1	Edition: 12/2008
[APH4S/	SINAMICS Induction Motors 1PH4	
	Configuration Manual	
	Order number: 6SN1197-0AD64-0?P1	Edition: 08/2008
/APH7P/	SINAMICS Induction Motors 1PH7	
	Configuration Manual Production Machines	
	Order number: 6SN1197-0AC71-0?P0	Edition: 05/2007
/PPMS/	SINAMICS Hollow-Shaft Motors 1PM4/1PM6	
	Configuration Manual	
	Order number: 6SN1197-0AD23-0?P0	Edition: 04/2008
/PKTS/	SINAMICS Complete Torque Motors 1FW3	
	Configuration Manual	
	Order number: 6SN1197-0AD70-0?P2	Edition: 02/2008
/PMH2/	SINAMICS Hollow-Shaft Measuring System SIMAG H2	
	Configuration Manual	
	Order number: 6SN1197-0AB31-0?P7	Edition: 02/2008

PROFIBUS documentation

/P1/ PROFIBUS-DP/DPV1 IEC 61158
Basics, tips and tricks for users
Hüthig; Manfred Popp, 2. Auflage
ISBN 3-7785-2781-9
/P2/ PROFIBUS-DP, Getting Started
PROFIBUS Nutzerorganisation e.V.; Manfred Popp
Ordner No.: 4.071
/P3/ Distributed Layouts using PROFIBUS-DP
Architecture and Fundamentals, Configuration and Use of PROFIBUS-DP withSIMATIC S7SIEMENS; Publicis MCD Verlag; Josef Weigmann, Gerhard Kilian
Order No.: A19100-L531-B714
ISBN 3-89578-074-X
(P4/ Manual for PROFIBUS Networks, SIEMENS
Ordner No.: 6GK1970-5CA20-0BA0
/P5/ PROFIBUS and PROFINET, PROFIdrive Profile Drive Technology
PROFIBUS Nutzerorganisation e. V.
Haid-und-Neu-Straße 7, D-76131 Karlsruhe
http://www.profibus.com
Ordner No.: 3.172
Version 4.0 August 2005
/IKPI/ Industrial Communication for Automation and Drives
Catalog
Ordner No. E86060-K6710-A101-B4 Edition: 2005
/PDP/ PROFIBUS Installation Guidelines
Installation Guideline for PROFIBUS-FMS/DP
Installation and wiring recommendation for RS 485 Transmission
Order number $\quad 2.111$ (German)
2.112 (English) Version 1.0

Documentation for Safety Equipment

Note

For more information about technical documentation for Safety Integrated, visit the following address:
http://www.siemens.de/safety
The following list contains some of the safety-related documentation available.
/LV1/ Low Voltage Switchgear SIRIUS-SENTRON-SIVACON
Catalog
Order No.
E86060-K1002-A101-A5
Edition: 2006
/MRL/ Directive 98/37/EG of the European Parliament and Council
Machinery directive
Bundesanzeiger-Verlags GmbH
Edition: 22.06.1998
/SISH/ Safety Integrated
System Manual
Order No.: 6ZB5000-0AA01-OBA1 5th edition
System Manual supplement to 5th edition
Order number: 6ZB5000-0AB01-0BA0
ISICD/ Safety Integrated
CD-ROM
Order number: E20001-D10-M103-X-7400 Edition: 09/2004

Index

Numbers

1020
Explanation of the symbols (Part 1), 2-1183
1021
Explanation of the symbols (Part 2), 2-1184
1024
Explanation of the symbols (Part 3), 2-1185
1025
Handling BICO technology, 2-1186 1508

CU310 input/output terminals, 2-1188 1510

CU320 input/output terminals, 2-1189
1512
CX32 input/output terminals, 2-1190
1520
PROFIdrive, 2-1191
1530
Internal control/status words, data sets, 2-1192
1550
Setpoint channel, 2-1193
1580
Servo control, encoder evaluation
(position, speed, temperature), 2-1194
1590
Servo control speed control and V/f-control, 2-1195
1610
Servo control generation of the torque limits, 2-1196
1630
Servo control current control, 2-1197 1680

Vector control, encoder evaluation
(position, speed, temperature), 2-1198
1690
Vector control V/f control, 2-1199 1700

Vector control, speed control and generation of the torque limits, 2-1200

1710
Vector control current control, 2-1201
1750
Monitoring functions, faults, alarms, 2-1202
1773
Basic Infeed, 2-1203
1774
Active Infeed, 2-1204
1775
Smart Infeed, 2-1205
1780
Terminal Module 15 (TM15), 2-1206
1781
Terminal Module 15 for SINAMICS
(TM15DI/DO), 2-1207
1782
Terminal Module 17 High Feature
(TM17 High Feature), 2-1208
1790
Terminal Board 30 (TB30), 2-1209
1840
Terminal Module 31 (TM31), 2-1210
2020
CU310 digital inputs
electrically isolated (DI $0 \ldots$ DI 3),
2-1212
2030
CU310 Digital inputs/outputs, bidirectional
(DI/DO 8 ... DI/DO 9), 2-1213
2031
CU310 Digital inputs/outputs, bidirectional
(DI/DO 10 ... DI/DO 11), 2-1214
2120
CU320 digital inputs, electrically isolated (DI 0 ... DI 3), 2-1216
2121
CU320 digital inputs, electrically isolated (DI 4 ... DI 7), 2-1217
2130
CU320 Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2-1218

2131
CU320 Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2-1219
2132
CU320 Digital inputs/outputs, bidirectional
(DI/DO 12 ... DI/DO 13), 2-1220
2133
CU320 Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15), 2-1221
2211
CU_LINK data transfer, 2-1223
2220
CX32 digital inputs, electrically isolated (DI 0 ... DI 3), 2-1225
2230
CX32 digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2-1226
2231
CX32 digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2-1227
2410
PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics, 2-1230
2420
Standard telegrams and process data (PZD), 2-1231
2422
Manufacturer-specific telegrams and process data (PZD), 2-1232
2423
Manufacturer-specific/free telegrams and process data (PZD), 2-1233
2425
STW1 BM control word metals sector interconnection (p2038 = 0), 2-1234
2426
STW2_BM control word metals sector interconnection (p2038 = 0), 2-1235
2427
E_STW1_BM control word, infeed, metals sector interconnection, 2-1236
2428
ZSW1_BM status word metals sector interconnection (p2038 = 0), 2-1237
2429
ZSW2 BM status word metals sector interconnection (p2038 = 0), 2-1238
2430
E_ZSW1_BM status word, infeed, metals sector interconnection, 2-1239
2439
PZD receive signals interconnection profile-specific, 2-1240

2440
PZD receive signals interconnection manufacturer-specific, 2-1241
2441
STW1 control word interconnection (p2038 = 2), 2-1242
2442
STW1 control word interconnection (p2038 = 0), 2-1243
2443
STW1 control word interconnection (p2038 = 1), 2-1244
2444
STW2 control word interconnection (p2038 = 0), 2-1245
2445
STW2 control word interconnection (p2038 = 1), 2-1246
2447
E_STW1 control word infeed interconnection, 2-1247
2449
PZD send signals interconnection profilespecific, 2-1248
2450
PZD send signals interconnection manufacturer-specific, 2-1249
2451
ZSW1 status word interconnection (p2038 = 2), 2-1250
2452
ZSW1 status word interconnection (p2038 = 0), 2-1251
2453
ZSW1 status word interconnection
(p2038 = 1), 2-1252
2454
ZSW2 status word interconnection (p2038 = 0), 2-1253
2455
ZSW2 status word interconnection (p2038 = 1), 2-1254
2456
MELDW status word interconnection, 2-1255
2457
E_ZSW1 status word infeed interconnection, 2-1256
2462
PosSTW pos control word interconnection (r0108.4 = 1), 2-1257

```
2463
    POS_STW1 positioning control word 1
        interconnection (r0108.4 = 1), 2-1258
2464
    POS_STW2 positioning control word 2
        interconnection (r0108.4 = 1), 2-1259
2466
    POS_ZSW1 positioning status word 1
        interconnection (r0108.4 = 1), 2-1260
2467
    POS_ZSW2 positioning status word 2
        interconnection (r0108.4 = 1), 2-1261
2468
    IF1 receive telegram, free interconnection
        via BICO (p0922 = 999), 2-1262
2 4 7 0
    IF1 send telegram, free interconnection
        via BICO (p0922 = 999), 2-1263
2472
    IF1 status words, free interconnection,
        2-1264
2475
    STW1 control word 1 interconnection
        (r0108.4 = 1), 2-1265
2476
    SATZANW-Pos block selection intercon-
        nection (r0108.4 = 1), 2-1266
2479
    ZSW1 status word 1 interconnection
        (r0108.4 = 1), 2-1267
2480
    MDI_MOD-MDI mode interconnection
        (r0108.4 = 1), 2-1268
2481
    IF1 receive telegram, free interconnection
        via BICO (p0922 = 999), 2-1269
2483
    IF1 send telegram, free interconnection
        via BICO (p0922 = 999), 2-1270
2485
    IF2 receive telegram, free interconnection
    via BICO (p0922 = 999), 2-1271
2487
    IF2 send telegram, free interconnection
        via BICO (p0922 = 999), 2-1272
2489
    IF2 status words, free interconnection,
        2-1273
2491
    IF2 receive telegram, free interconnection
        via BICO (p0922 = 999), 2-1274
```

2463
POS_STW1 positioning control word 1 interconnection (r0108.4 = 1), 2-1258
2464
POS_STW2 positioning control word 2 interconnection (r0108.4 = 1), 2-1259
2466
POS_ZSW1 positioning status word 1 interconnection (r0108.4 = 1), 2-1260
2467
POS_ZSW2 positioning status word 2 interconnection (r0108.4 = 1), 2-1261
2468
IF1 receive telegram, free interconnection via BICO (p0922 = 999), 2-1262
2470
IF1 send telegram, free interconnection via BICO (p0922 = 999), 2-1263
2472
IF1 status words, free interconnection, 2-1264
2475
STW1 control word 1 interconnection (r0108.4 = 1), 2-1265
2476
SATZANW-Pos block selection interconnection (r0108.4 = 1), 2-1266
2479
ZSW1 status word 1 interconnection (r0108.4 = 1), 2-1267
2480
MDI_MOD-MDI mode interconnection (r0108.4 = 1), 2-1268
2481
IF1 receive telegram, free interconnection
via BICO (p0922 = 999), 2-1269
2483
IF1 send telegram, free interconnection
via BICO (p0922 = 999), 2-1270
2485
F2 receive telegram, free interconnection
via BICO (p0922 = 999), 2-1271
2487
IF2 send telegram, free interconnection
via BICO (p0922 = 999), 2-1272
2489
IF2 status words, free interconnection, 2-1273
2491
IF2 receive telegram, free interconnection via BICO (p0922 = 999), 2-1274

2493
IF2 send telegram, free interconnection via BICO (p0922 = 999), 2-1275
2495
CU_STW1 control word 1 Control Unit interconnection, 2-1276
2496
CU_ZSW1 status word 1 Control Unit interconnection, 2-1277
2497
A_DIGITAL interconnection, 2-1278
2498
E_DIGITAL interconnection, 2-1279
2501
Control word sequence control, 2-1281
2503
Status word sequence control, 2-1282 2505

Control word setpoint channel, 2-1283 2520

Control word speed controller, 2-1284 2522

Status word speed controller, 2-1285 2526

Status word, closed-loop control, 2-1286 2530

Status word,closed-loop current control, 2-1287
2534
Status word monitoring functions 1 , 2-1288
2536
Status word monitoring functions 2 , 2-1289
2537
Status word monitoring functions 3 , 2-1290
2546
Control word, faults/alarms, 2-1291
2548
Status word, faults/alarms 1 and 2, 2-1292
2610
Sequencer, 2-1294
2634
Missing enable signals, line contactor control, logic operation, 2-1295
2701
Basic braking control (r0108.14 = 0), 2-1297
2704
Extended braking control, zero speed detection (r0108.14 = 1), 2-1298

2707

Extended braking control, open/close brake (r0108.14 = 1), 2-1299
2711
Extended braking control, signal outputs (r0108.14 = 1), 2-1300
2800
Basic functions, parameter manager, 2-1302
2802
Basic functions, monitoring and faults/alarms, 2-1303
2804
Basic functions, status words, 2-1304 2810

Basic functions, STO (Safe Stop Off)/SS1 (Safe Stop 1), 2-1305
2814
Basic functions, SBC (Safe Brake Control), 2-1306
2825
Extended functions, SS1, SS2, SOS, Internal STOP B, C, D, F, 2-1307
2840
Extended functions, control word and status word, 2-1308
2846
Extended functions, parameter manager, 2-1309
2847
Extended functions, TM54F parameter manager, 2-1310
2848
Extended functions, TM54F configuration, F-DI/F-DO test, 2-1311
2850
Extended functions, TM54F (F-DI 0 ... F-DI 4), 2-1312
2851
Extended functions, TM54F
(F-DI 5 ... F-DI 9), 2-1313
2853
Extended functions, TM54F (F-DO 0 ... F-DO 3, DI 20 ... DI 23), 2-1314
2855
Extended functions, TM54F
control interface, 2-1315
2856
Extended functions, TM54F
Safe State selection, 2-1316

2857
Extended functions, TM54F assignment (F-DO 0 ... F-DO 3), 2-1317
3010
Fixed speed setpoints, 2-1319
3020
Motorized potentiometer, 2-1320
3030
Main/supplementary setpoint, setpoint scaling, jogging, 2-1321
3040
Direction limiting and direction reversal, 2-1322
3050
Skip frequency bands and speed limiting, 2-1323
3060
Basic ramp-function generator, 2-1324
3070
Extended ramp-function generator, 2-1325
3080
Ramp-function generator selection, status word, tracking--, 2-1326
3090
Dynamic Servo Control (DSC), 2-1327
3095
Generating the speed limits (r0108.8 = 0), 2-1329
3610
Jog mode (r0108.4 = 1), 2-1331
3612
Referencing/reference point approach mode (r0108.4 = 1)
(p2597 = 0-signal), 2-1332
3614
Flying referencing mode (r0108.4 = 1) (p2597 = 1 signal), 2-1333
3615
Traversing blocks, external block change mode (r0108.4 = 1), 2-1334
3616
Traversing blocks mode (r0108.4 = 1), 2-1335
3617
Traversing to fixed stop, 2-1336
3618
Direct setpoint input/MDI mode, dynamic values (r0108.4 = 1), 2-1337
3620
Direct setpoint input/MDI mode (r0108.4 = 1), 2-1338

3625
Mode control (r0108.4 = 1), 2-1339
3630
Traversing range limits (r0108.4 = 1), 2-1340
3635
Interpolator (r0108.4 = 1), 2-1341
3640
Control word block selection/MDI selection (r0108.4 = 1), 2-1342
3645
Status word 1 (r0108.3 = 1, r0108.4 = 1),
2-1343
3646
Status word $2(r 0108.3=1, r 0108.4=1)$, 2-1344
3650
Status word active traversing block/MDI
active (r0108.4 = 1), 2-1345
4010
Position actual value preprocessing (r0108.3 = 1), 2-1347
4015
Position controller (r0108.3 = 1), 2-1348
4020
Standstill/positioning monitoring (r0108.3 = 1), 2-1349
4025
Dynamic following error monitoring, cam
controllers (r0108.3 = 1), 2-1350
4704
Position and temperature sensing, encoders 1 ... 3, 2-1352
4710
Speed actual value and pole position sensing, motor encoder (encoder 1), 2-1353
4711
Speed actual value sensing, encoder 2, 3 (r0108.7 = 1, APC activated), 2-1354
4715
Speed actual value and pole pos. sens., motor enc. ASM/SM (encoder 1), 2-1355
4720
Encoder interface, receive signals, encoders 1 ... 3, 2-1356
4730
Encoder interface, send signals, encoders 1 ... 3, 2-1357

4735
Reference mark search with
equivalent zero mark, encoders 1 ... 3, 2-1358
4740
Measuring probe evaluation, measured value memory, encoders 1 ... 3, 2-1359
5020
Speed setpoint filter and
speed pre-control, 2-1361
5030
Reference model/pre-control balan-
cing/speed limiting, 2-1362
5040
Speed controller with encoder, 2-1363
5042
Speed controller, torque-speed pre-cont-
rol with encoder (p1402 = 1), 2-1364
5050
Kp_n-/Tn_n adaptation, 2-1365
5060
Torque setpoint, changeover control type, 2-1366
5210
Speed controller without encoder, 2-1367
5300
V/f control for diagnostics, 2-1368
5301
Variable signaling function, 2-1369
5490
Speed control configuration, 2-1370
5610
Torque limiting/reduction/interpolator , 2-1371
5620
Motor/generator torque limit, 2-1372
5630
Upper/lower torque limit, 2-1373
5640
Mode changeover, power/current limiting, 2-1374
5650
Vdc_max controller and Vdc_min controller, 2-1375
5710
Current setpoint filter, 2-1376
5714
Iq and Id controller, 2-1377
5722
Field current / flux specification, flux reduction, flux controller, 2-1378

5730

Interface to the Motor Module (control signals, current actual values), 2-1379
6030
Speed setpoint, droop, 2-1381
6031
Pre-control balancing reference/acceleration model , 2-1382
6040
Speed controller with / without encoder, 2-1383
6050
Kp_n-/Tn_n adaptation, 2-1384
6060
Torque setpoint, 2-1385
6220
Vdc_max controller and Vdc_min controller, 2-1386
6300
V/f characteristic and voltage boost, 2-1387
6310
Resonance damping and slip compensation, 2-1388
6320
Vdc_max controller and Vdc_min controller, 2-1389
6490
Speed control configuration, 2-1390
6491
Flux control configuration, 2-1391
6495
Excitation (FEM, p0300 = 5), 2-1392
6630
Upper/lower torque limit, 2-1393
6640
Current/power/torque limits , 2-1394
6710
Current setpoint filter, 2-1395
6714
Iq and Id controller, 2-1396
6721
Id setpoint (PEM, p0300 = 2), 2-1397
6722
Field weakening characteristic, Id setpoint (ASM, p0300 = 1), 2-1398
6723
Field weakening controller, flux controller (ASM, p0300 = 1), 2-1399

6724
Field weakening controller (PEM, p0300 = 2), 2-1400
6725
Flux setpoint, field weakening controller (FEM, p0300 = 5), 2-1401
6726
Field weakening controller, flux controller (FEM, p0300 = 5), 2-1402
6727
Current model, excitation current monitoring, control cos phi (FEM, p0300 = 5), 2-1403
6730
Interface to Motor Module (ASM, p0300 = 1), 2-1404
6731
Interface to the Motor Module (PEM, p0300 = 2), 2-1405
6732
Interface to Motor Module (FEM, p0300 = 5), 2-1406
6799
Display signals, 2-1407
7008
kT estimator, 2-1409
7010
Friction characteristic, 2-1410
7012
Advanced Positioning Control (APC, r0108 = 1), 2-1411
7014
External armature short circuit (EASC, p0300 = 2xx or $4 x x$), 2-1412
7016
Internal armature short circuit (IASC, p0300 $=2 x x$ or $4 x x$), 2-1413
7017
DC injection brake (p0300 = 1xx), 2-1414 7020

Synchronization, 2-1415
7950
Fixed values (r0108.16 = 1), 2-1417
7954
Motorized potentiometer (r0108.16 = 1), 2-1418
7958
Closed-loop control (r0108.16 = 1), 2-1419
8010
Speed signals, 2-1421

8012
Torque signals, motor locked/stalled , 2-1422
8013
Load monitoring (r0108.17 = 1), 2-1423 8014

Thermal monitoring, power unit, 2-1424
8016
Thermal monitoring motor, 2-1425
8017
Thermal 12 t motor model
(PEM, p0300 = 2xx), 2-1426
8018
Separately excited synchronous motor (FEM, p0300 = 5), 2-1427
8060
Fault buffer, 2-1429
8065
Alarm buffer, 2-1430
8070
Fault/alarm trigger word (r2129), 2-1431 8075

Fault/alarm configuration, 2-1432 8134

Measuring sockets, 2-1433
8560
Command Data Sets (CDS), 2-1435
8565
Drive Data Set (DDS), 2-1436
8570
Encoder data set (EDS), 2-1437
8575
Motor Data Sets (MDS), 2-1438
8580
Power unit Data Set, PDS, 2-1439
8720
Control word
sequence control infeed, 2-1441
8726
Status word
sequence control infeed, 2-1442
8732
Sequencer, 2-1443
8734
Missing enable signals, line contactor control, 2-1444
8750
Interface to the Basic Infeed power unit (control signals, actual values), 2-1445
8760
Signals and monitoring functions (p3400 = 0), 2-1446

8820
Control word
sequence control infeed, 2-1448
8826
Status word
sequence control infeed, 2-1449
8828
Status word infeed, 2-1450
8832
Sequencer, 2-1451
8834
Missing enable signals, line contactor control, 2-1452
8850
Interface to the Smart Infeed (control signals, actual values), 2-1453
8860
Signals and monitoring functions, line supply voltage monitoring, 2-1454
8864
Signals and monitoring functions, line frequency and Vdc monitoring, 2-1455
8920
Control word
sequence control infeed, 2-1457
8926
Status word
sequence control infeed, 2-1458
8928
Status word infeed, 2-1459
8932
Sequencer, 2-1460
8934
Missing enable signals, line contactor control, 2-1461
8940
Controller modulation depth reserve / controller DC link voltage (p3400.0 = 0), 2-1462
8946
Current pre-control / current controller /
gating unit (p3400.0 = 0), 2-1463
8948
Master/slave (r0108.19 = 1), 2-1464
8950
Interface to the Active Infeed, control signals, actual values (p3400.0 = 0) , 2-1465
8960
Signals and monitoring functions, line supply voltage monitoring (p3400.0 = 0), 2-1466

8964
Signals and monitoring functions, line frequency and Vdc monitoring (p3400.0 = 0), 2-1467
9100
TB30 digital inputs, electrically isolated (DI 0 ... DI 3), 2-1469
9102
TB30 digital outputs, electrically isolated (DO 0 ... DO 3), 2-1470
9104
TB30 analog inputs (AI 0 ... AI 1), 2-1471
9106
TB30 analog outputs (AO $0 \ldots$ AO 1), 2-1472
9204
Receive telegram, free PDO mapping (p8744 = 2), 2-1474
9206
Receive telegram, Predefined Connection
Set (p8744 = 1), 2-1475
9208
Send telegram, free PDO mapping (p8744 = 2), 2-1476
9210
Send telegram, predefined connection set (p8744 = 1), 2-1477
9220
Control word CANopen, 2-1478 9226

Status word CANopen, 2-1479
9400
TM15DI/DO digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 7), 2-1481
9401
TM15DI/DO digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 15), 2-1482
9402
TM15DI/DO digital inputs/outputs, bidirectional (DI/DO 16 ... DI/DO 23), 2-1483
9550
TM31 digital inputs, electrically isolated (DI 0 ... DI 3), 2-1485
9552
TM31 digital inputs, electrically isolated (DI 4 ... DI 7), 2-1486
9556
TM31 digital relay outputs, electrically isolated (DO 0 ... DO 1), 2-1487
9560
TM31 digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2-1488

9562
TM31 digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2-1489
9566
TM31 analog input 0 (AI 0), 2-1490 9568

TM31 analog input 1 (AI 1), 2-1491
9572
TB31 analog outputs (AO 0 ... AO 1), 2-1492
9576
TM31 temperature evaluation KTY/PTC, 2-1493
9577
TM31 sensor monitoring KTY/PTC, 2-1494
9660
TM41 digital inputs (DI 0 ... DI 3), 2-1496
9661
TM41 digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 1), 2-1497
9662
TM41 digital inputs/outputs, bidirectional (DI/DO 2 ... DI/DO 3), 2-1498
9663
TM41 Analog input (AI 0), 2-1499
9674
TM41 incremental encoder emulation (p4400 = 0), 2-1500
9676
TM41 incremental encoder emulation ($\mathrm{p} 4400=1$), 2-1501
9677
STW1 control word interconnection (p0922 = 3), 2-1502
9678
TM41 control word sequence control, 2-1503
9679
STW2 control word interconnection (p0922 = 3), 2-1504
9680
TM41 status word sequence control, 2-1505
9681
ZSW1 status word interconnection (p0922 = 3), 2-1506
9682
TM41 sequencer, 2-1507
9683
ZSW2 status word interconnection (p0922 = 3), 2-1508

9794

Cooling system, control and feedback signals, 2-1510
9795
Cooling unit sequence control, 2-1511 9880

VSM analog inputs (AI 0 ... AI 3), 2-1513 9886

VSM temperature evaluation, 2-1514 9887

VSM sensor evaluation KTY/PTC, 2-1515 9912

BOP20 control word interconnection, 2-1517
9951
Braking Module external sequencer (r0108.26 = 1), 2-1519

A

A value, 3-1529
Access Level (Parameter), 1-19
Acknowledgment
Adjustable, 3-1528
Default, 3-1528
IMMEDIATELY, 3-1525
POWER ON, 3-1525
PULSE INHIBIT, 3-1525
Active (parameter, C1 (x), C2(x), U, T), 1-18
Active Infeed, 2-1456
Control word sequence control, 2-1457
Line contactor control, 2-1461
Sequencer, 2-1460
Signals and monitoring functions, 2-1456
Status word sequence control, 2-1458
Table of contents, 2-1456
Address
PROFIBUS, 2-1230
PROFINET, 2-1230
Technical Support, Foreword-7
Adjustable parameter, 1-13
Advanced Positioning Control (APC, r0108 = 1), 2-1411

Alarm
Cause, 3-1529
Display, 3-1522
Drive object, 3-1528
Explanation of list, 3-1527
Fault location, 3-1528
General information, 3-1522
How to distinguish from a fault, 3-1522
List of all alarms, 3-1532
Message value, 3-1528
Name, 3-1528
Number, 3-1527
Range, 3-1532
Remedy, 3-1529
Alarm buffer, 2-1428
Analog inputs
Terminal Board 30 (TB30), 2-1468
Terminal Module 31 (TM31), 2-1484
Analog outputs
Terminal Board 30 (TB30), 2-1468
Terminal Module 31 (TM31), 2-1484
ASCII table, A-1912
Auxiliaries, 2-1509
Axxxx, 3-1527

B

Basic Infeed, 2-1440
Control word sequence control, 2-1441
Interface (control signals, actual values), 2-1445
Missing enable signals, line contactor control, 2-1444
Sequencer, 2-1443
Signals and monitoring functions, 2-1440, 2-1446
Status word sequence control, 2-1442
Table of contents, 2-1440
Basic Operator Panel (BOP), 2-1516
Basic positioner (EPOS), 2-1330
BI, Binector Input, 1-14
BICO technology, 2-1186
Binector
Input (BI), 1-14
Output (BO), 1-14
Bit field (parameter), 1-26
BO, Binector Output, 1-14
Braking control
Extended, 2-1296
Simple, 2-1296
Braking Module external, 2-1518

C

C1(x) - Status commissioning unit, 1-18

C2(x) - Status commissioning drive, 1-18
Calculated (parameter), 1-18
Catalogs, C-1951
CDS, Command Data Set, 1-21, 2-1434, 2-1435
Changeable (parameter, $\mathrm{C} 1(\mathrm{x}), \mathrm{C} 2(\mathrm{x}), \mathrm{U}, \mathrm{T}$), 1-18
CI, Connector Input, 1-14
Closed-loop control
Active Infeed, 2-1456
Basic Infeed, 2-1440
Servo, 2-1360
Smart Infeed, 2-1447
Technology controller, 2-1419
Vector, 2-1380
Closed-loop position control, 2-1346
Closed-loop speed control
Servo, 2-1360
Vector, 2-1380
CO, Connector Output, 1-14
CO/BO, Connector/Binector Output, 1-14
Command Data Sets, 2-1434
Communication
CANopen, 2-1473
Communication Board CAN 10 (CBC10), 2-1473
Configuring messages, 2-1428
Connector
Input (CI), 1-14
Output (CO), 1-14
Control mode, 2-1366
Control Unit 310 (CU310)
Digital inputs, 2-1211
Control Unit 320 (CU310)
Digital inputs/outputs, 2-1211
Control Unit 320 (CU320)
Digital inputs, 2-1215
Digital inputs/outputs, 2-1215
Control words, 2-1228
Internal, 2-1280
Standard telegrams, 2-1228
Controller extension 32 (CX32)
Digital inputs, 2-1224
Digital inputs/outputs, 2-1224
Converter
Connector / binector, 2-1269, 2-1271, 2-1274
Converters
Binector / connector, 2-1264, 2-1273
Connector / binector, 2-1262
CU_LINK, 2-1222
Cxxxxx, 3-1527

D

Data Set, 1-21, 2-1434
Command Data Set, CDS, 1-21
Drive Data Set, DDS, 1-21
Encoder Data Set, EDS, 1-21
Motor Data Set, MDS, 1-21
Power unit Data Set, PDS, 1-21
Data set, 1-21, 2-1434
Command Data Set, 1-21
Drive Data Set, 1-21
Encoder Data Set, 1-21
Motor Data Set, 1-21
Power unit Data Set, 1-21
Data Type (Parameter, signal source), 1-20
DC link voltage controller, 2-1456
DCBRAKE, 3-1524
DDS, Drive Data Set, 1-21, 2-1434, 2-1436
Dependency (parameter), 1-26
Description (Parameter), 1-25
Digital inputs
Control Unit 310 (CU310), 2-1211
Control Unit 320 (CU320), 2-1215
Controller extension 32 (CX32), 2-1224
Terminal Board 30 (TB30), 2-1468
Terminal Module 15 for SINAMICS (TM15DI/DO), 2-1480
Terminal Module 31 (TM31), 2-1484
Digital inputs/outputs
Control Unit 310 (CU310), 2-1211
Control Unit 320 (CU320), 2-1215
Terminal Module 31 (TM31), 2-1484
Digital outputs
Control Unit 310 (CU310), 2-1211
Control Unit 320 (CU320), 2-1215
Controller extension 32 (CX32), 2-1224
Terminal Board 30 (TB30), 2-1468
Terminal Module 15 for SINAMICS (TM15DI/DO), 2-1480
Terminal Module 31 (TM31), 2-1484
Direction of rotation limiting, 2-1318
Direction reversal, 2-1318
Directory
ASCII table, A-1912
Encoder code, A-1939
List of abbreviations, B-1943
Motor code, A-1913
References, C-1951
Table of contents, function diagrams, 2-1171
Table of contents, total, Contents-9
Display
Alarms, 3-1522
Faults, 3-1522

Display parameter, 1-13
Display parameters, 1-13
DO, Drive Object, 1-14
Drive Data Sets, 2-1434
Drive object, 1-14
DSC (Dynamic Servo Control), 2-1318, 2-1327

E

EDS, Encoder Data Set, 1-21, 2-1434, 2-1437
ENCODER, 3-1524
Encoder code, A-1939
Encoder Data Sets, 2-1434
Encoder evaluation, 2-1351
Expert List, 1-25
Explanations
about function diagrams, 2-1182

F

F value, 3-1529
Factory setting, 1-25
Fault
Acknowledgment, 3-1525, 3-1528
Cause, 3-1529
Display, 3-1522
Drive object, 3-1528
Explanation of list, 3-1527
Fault location, 3-1528
Fault reaction, 3-1523, 3-1528
General information, 3-1522
How to distinguish from an alarm, 3-1522
List of all faults, 3-1532
Message value, 3-1528
Name, 3-1528
Number, 3-1527
Range, 3-1532
Remedy, 3-1529
Save on POWER OFF, 3-1526
Fault buffer, 2-1428
Form, 2-1429
Save on POWER OFF, 3-1526
Fixed speed setpoints, 2-1318
Fixed values, 2-1184, 2-1417
Free interconnection via BICO, 2-1228
Free interconnection, status words, 2-1264, 2-1273
Friction characteristic, 2-1410
Function (Parameter), 1-25
Function diagrams Basic Operator Panel 20
(BOP20)
Control word BOP20 interconnection, 2-1517

Function diagrams basic positioner (EPOS)
Control word block selection/MDI selection (r0108.4 = 1), 2-1342
Direct setpoint input/MDI mode (r0108.4 = 1), 2-1338
Direct setpoint input/MDI mode, dynamic values (r0108.4 = 1), 2-1337
Flying referencing mode (r0108.4 = 1) (p2597 = 1 signal), 2-1333
Interpolator (r0108.4 = 1), 2-1341
Jog mode (r0108.4 = 1), 2-1331
Mode control (r0108.4 = 1), 2-1339
Referencing/reference point approach mode (r0108.4 = 1) (p2597 = 0-signal), 2-1332
Status word 1 (r0108.3 = 1, r0108.4 = 1), 2-1343
Status word $2(r 0108.3=1, r 0108.4=1)$, 2-1344
Status word active traversing block/MDI active (r0108.4 = 1), 2-1345
Traversing blocks mode (r0108.4 = 1), 2-1335
Traversing blocks, external block change mode (r0108.4 = 1), 2-1334
Traversing range limits (r0108.4 = 1), 2-1340
Traversing to fixed stop, 2-1336
Function diagrams Braking Module external
Sequencer (r0108.26 = 1), 2-1519
Function diagrams CU310 input/output
terminals
Digital inputs, electrically isolated (DI 0 ... DI 3), 2-1212
Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2-1214
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2-1213
Function diagrams CU320 input/output
terminals
Digital inputs, electrically isolated (DI 0 ... DI 3), 2-1216
Digital inputs, electrically isolated (DI 4 ... DI 7), 2-1217
Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2-1219
Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13), 2-1220
Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15), 2-1221
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2-1218

Function diagrams CX32 input/output terminals
Digital inputs, electrically isolated (DI 0 ... DI 3), 2-1225
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2-1226
Function diagrams PROFIdrive
A_DIGITAL interconnection, 2-1278
CU_STW1 control word 1 Control Unit interconnection, 2-1276
CU_ZSW1 status word 1 Control Unit interconnection, 2-1277
E_DIGITAL interconnection, 2-1279
E_STW1 control word infeed interconnection, 2-1247
E_STW1_BM control word, infeed, metals sector interconnection, 2-1236
E_ZSW1 status word infeed interconnection, 2-1256
E_ZSW1_BM status word, infeed, metals sector interconnection, 2-1239
IF1 receive telegram, free interconnection via BICO (p0922 = 999), 2-1262, 2-1269
IF1 send telegram, free interconnection via BICO (p0922 = 999), 2-1263, 2-1270
IF1 status words, free interconnection, 2-1264
IF2 receive telegram, free interconnection via BICO (p0922 = 999), 2-1271, 2-1274
IF2 send telegram, free interconnection via BICO (p0922 = 999), 2-1272, 2-1275
IF2 status words, free interconnection, 2-1273
Manufacturer-specific telegrams and process data (PZD), 2-1232
Manufacturer-specific/free telegrams and process data (PZD), 2-1233
MDI_MOD-MDI mode interconnection (r0108.4 = 1), 2-1268
MELDW status word interconnection, 2-1255
POS_STW1 positioning control word 1 interconnection (r0108.4 = 1), 2-1258
POS_STW2 positioning control word 2 interconnection (r0108.4 = 1), 2-1259
POS_ZSW1 positioning status word 1 interconnection (r0108.4 = 1), 2-1260

POS_ZSW2 positioning status word 2 interconnection (r0108.4 = 1), 2-1261
PosSTW pos control word interconnection (r0108.4 = 1), 2-1257
PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics, 2-1230
PZD receive signals interconnection manufacturer-specific, 2-1241
PZD receive signals interconnection profile-specific, 2-1240
PZD send signals interconnection manufacturer-specific, 2-1249
PZD send signals interconnection profilespecific, 2-1248
SATZANW-Pos block selection interconnection (r0108.4 = 1), 2-1266
Standard telegrams and process data (PZD), 2-1231
STW1 control word 1 interconnection (r0108.4 = 1), 2-1265
STW1 control word interconnection (p 2038 = 0), 2-1243
STW1 control word interconnection (p 2038 = 1), 2-1244
STW1 control word interconnection ($\mathrm{p} 2038=2$), 2-1242
STW1_BM control word metals sector interconnection (p2038 = 0), 2-1234
STW2 control word interconnection (p2038 = 0), 2-1245
STW2 control word interconnection (p 2038 = 1), 2-1246
STW2_BM control word metals sector interconnection (p2038 = 0), 2-1235
ZSW1 status word 1 interconnection (r0108.4 = 1), 2-1267
ZSW1 status word interconnection (p2038 = 0), 2-1251
ZSW1 status word interconnection (p 2038 = 1), 2-1252
ZSW1 status word interconnection (p 2038 = 2), 2-1250
ZSW1_BM status word metals sector interconnection (p2038 = 0), 2-1237
ZSW2 status word interconnection (p2038 = 0), 2-1253
ZSW2 status word interconnection (p 2038 = 1), 2-1254
ZSW2_BM status word metals sector interconnection (p2038 = 0), 2-1238

Function diagrams signals and monitoring functions
Load monitoring (r0108.17 = 1), 2-1423
Separately excited synchronous motor (FEM, p0300 = 5), 2-1427
Speed signals, 2-1421
Thermal 12 t motor model
(PEM, p0300 = 2xx), 2-1426
Thermal monitoring motor, 2-1425
Thermal monitoring, power unit, 2-1424
Torque signals, motor locked/stalled , 2-1422
Function diagrams, Active Infeed
Control word sequence control infeed, 2-1457
Controller modulation depth reserve, controller DC link voltage (p3400.0 = 0), 2-1462
Current pre-control / current controller / gating unit (p3400.0 = 0), 2-1463
Interface to the Active Infeed, control signals, actual values (p3400.0 = 0), 2-1465
Master/slave (r0108.19 = 1), 2-1464
Missing enable signals, line contactor control, 2-1461
Sequencer, 2-1460
Signals and monitoring functions, line frequency and Vdc monitoring (p3400.0 = 0), 2-1467
Signals and monitoring functions, line supply voltage monitoring (p3400.0 = 0), 2-1466
Status word infeed, 2-1459
Status word sequence control infeed, 2-1458
Function diagrams, auxiliary equipment
Cooling system, control and feedback signals, 2-1510
Cooling unit sequence control, 2-1511

Function diagrams, Basic Infeed
Control word sequence control infeed, 2-1441
Interface to the Basic Infeed power unit (control signals, actual values), 2-1445
Missing enable signals, line contactor control, 2-1444
Sequencer, 2-1443
Signals and monitoring functions (p3400 = 0), 2-1446
Status word sequence control infeed, 2-1442
Function diagrams, braking control
Basic braking control (r0108.14=0), 2-1297
Extended braking control, open/close brake (r0108.14 = 1), 2-1299
Extended braking control, signal outputs (r0108.14 = 1), 2-1300
Extended braking control, zero speed detection (r0108.14 = 1), 2-1298
Function diagrams, Communication Board
CAN
Control word CANopen, 2-1478
Receive telegram, free PDO mapping (p8744 = 2), 2-1474
Receive telegram, Predefined Connection Set (p8744 = 1), 2-1475
Send telegram, free PDO mapping (p8744 = 2), 2-1476
Send telegram, predefined connection set (p8744 = 1), 2-1477
Status word CANopen, 2-1479
Function diagrams, CU_LINK
CU_LINK data transfer, 2-1223
Function diagrams, CX32 input/output terminals
Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2-1227
Function diagrams, data sets
Command Data Sets (CDS), 2-1435
Drive Data Set (DDS), 2-1436
Encoder data set (EDS), 2-1437
Motor Data Sets (MDS), 2-1438
Power unit Data Set, PDS, 2-1439

Function diagrams, encoder evaluation
Encoder interface, receive signals, encoders 1 ... 3, 2-1356
Encoder interface, send signals, encoders 1 ... 3, 2-1357
Measuring probe evaluation, measured value memory, encoders 1 ... 3, 2-1359
Position and temperature sensing, encoders 1 ... 3, 2-1352
Reference mark search with equivalent zero mark, encoders 1 ... 3, 2-1358
Speed actual value and pole pos. sens., motor enc. ASM/SM (encoder 1), 2-1355
Speed actual value and pole position sensing, motor encoder (encoder 1), 2-1353
Speed actual value sensing, encoder 2, 3 (r0108.7 = 1, APC activated), 2-1354
Function diagrams, explanations
Explanation of the symbols (Part 1), 2-1183
Explanation of the symbols (Part 2), 2-1184
Explanation of the symbols (Part 3), 2-1185
Handling BICO technology, 2-1186
Function diagrams, faults and alarms
Alarm buffer, 2-1430
Fault buffer, 2-1429
Fault/alarm configuration, 2-1432
Fault/alarm trigger word (r2129), 2-1431
Function diagrams, internal control/status words
Control word sequence control, 2-1281
Control word setpoint channel, 2-1283
Control word speed controller, 2-1284
Control word, faults/alarms, 2-1291
Status word monitoring functions 1 , 2-1288
Status word monitoring functions 2 , 2-1289
Status word monitoring functions 3 , 2-1290
Status word sequence control, 2-1282
Status word speed controller, 2-1285
Status word, closed-loop control, 2-1286
Status word, faults/alarms 1 and 2, 2-1292
Status word,closed-loop current control, 2-1287

Function diagrams, measuring sockets
Measuring sockets, 2-1433
Function diagrams, overviews
Active Infeed, 2-1204
Basic Infeed, 2-1203
CU310 input/output terminals, 2-1188
CU320 input/output terminals, 2-1189
CX32 input/output terminals, 2-1190
Internal control/status words, data sets, 2-1192
Monitoring functions, faults, alarms, 2-1202
PROFIdrive, 2-1191
Servo control current control, 2-1197
Servo control generation of the torque limits, 2-1196
Servo control speed control and V/f-control, 2-1195
Servo control, encoder evaluation (position, speed, temperature), 2-1194
Setpoint channel, 2-1193
Smart Infeed, 2-1205
Terminal Board 30 (TB30), 2-1209
Terminal Module 15 (TM15), 2-1206
Terminal Module 15 for SINAMICS (TM15DI/DO), 2-1207
Terminal Module 17 High Feature (TM17 High Feature), 2-1208
Terminal Module 31 (TM31), 2-1210
Vector control current control, 2-1201
Vector control V/f control, 2-1199
Vector control, encoder evaluation (position, speed, temperature), 2-1198
Vector control, speed control and generation of the torque limits, 2-1200
Function diagrams, position control
Dynamic following error monitoring, cam controllers (r0108.3 = 1), 2-1350
Position actual value preprocessing (r0108.3 = 1), 2-1347
Position controller (r0108.3 = 1), 2-1348
Standstill/positioning monitoring (r0108.3 = 1), 2-1349

Function diagrams, Safety Integrated
Basic functions, monitoring and faults/alarms, 2-1303
Basic functions, parameter manager, 2-1302
Basic functions, SBC (Safe Brake Control), 2-1306
Basic functions, status words, 2-1304
Basic functions, STO (Safe Stop Off)/SS1 (Safe Stop 1), 2-1305
Extended functions, control word and status word, 2-1308
Extended functions, parameter manager, 2-1309
Extended functions, SS1, SS2, SOS, Internal STOP B, C, D, F, 2-1307
Extended functions, TM54F (F-DI 0 ... F-DI 4), 2-1312
Extended functions, TM54F (F-DI 5 ... F-DI 9), 2-1313
Extended functions, TM54F (F-DO 0 ... F-DO 3, DI 20 ... DI 23), 2-1314
Extended functions, TM54F assignment (F-DO 0 ... F-DO 3), 2-1317
Extended functions, TM54F configuration, F-DI/F-DO test, 2-1311
Extended functions, TM54F control interface, 2-1315
Extended functions, TM54F parameter manager, 2-1310
Extended functions, TM54F Safe State selection, 2-1316
Function diagrams, sequence control
Missing enable signals, line contactor control, logic operation, 2-1295
Sequencer, 2-1294

Function diagrams, servo control
Current setpoint filter, 2-1376
Field current / flux specification, flux reduction, flux controller, 2-1378
Interface to the Motor Module (control signals, current actual values), 2-1379
Iq and Id controller, 2-1377
Kp_n-/Tn_n adaptation, 2-1365
Mode changeover, power/current limiting, 2-1374
Motor/generator torque limit, 2-1372
Reference model/pre-control balancing/speed limiting, 2-1362
Speed control configuration, 2-1370
Speed controller with encoder, 2-1363
Speed controller without encoder, 2-1367
Speed controller, torque-speed pre-control with encoder (p1402 = 1), 2-1364
Speed setpoint filter and speed pre-control, 2-1361
Torque limiting/reduction/interpolator , 2-1371
Torque setpoint, changeover control type, 2-1366
Upper/lower torque limit, 2-1373
V/f control for diagnostics, 2-1368
Variable signaling function, 2-1369
Vdc_max controller and Vdc_min controller, 2-1375
Function diagrams, setpoint channel
Direction limiting and direction reversal, 2-1322
Dynamic Servo Control (DSC), 2-1327
Fixed speed setpoints, 2-1319
Main/supplementary setpoint, setpoint scaling, jogging, 2-1321
Motorized potentiometer, 2-1320
Ramp-function generator (basic), 2-1324
Ramp-function generator (extended), 2-1325
Ramp-function generator selection, status word, tracking--, 2-1326
Skip frequency bands and speed limiting, 2-1323
Function diagrams, setpoint channel not activated
Generating the speed limits (r0108.8 = 0), 2-1329

Function diagrams, Smart Infeed
Control word
sequence control infeed, 2-1448
Interface to the Smart Infeed (control signals, actual values), 2-1453
Missing enable signals, line contactor control, 2-1452
Sequencer, 2-1451
Signals and monitoring functions, line frequency and Vdc monitoring, 2-1455
Signals and monitoring functions, line supply voltage monitoring, 2-1454
Status word infeed, 2-1450
Status word sequence control infeed, 2-1449
Function diagrams, technology controller
Closed-loop control (r0108.16 = 1), 2-1419
Fixed values (r0108.16 = 1), 2-1417
Motorized potentiometer (r0108.16 = 1), 2-1418
Function diagrams, technology functions
Advanced Positioning Control (APC), 2-1411
DC injection brake (p0300 = 1xx), 2-1414
External armature short circuit (EASC, p0300 = $2 x x$ or $4 x x$), 2-1412
Friction characteristic, 2-1410
Internal armature short circuit (IASC, p0300 $=2 \mathrm{xx}$ or 4 xx), 2-1413
kT estimator, 2-1409
Synchronization, 2-1415
Function diagrams, Terminal Board 30
(TB30)
Analog inputs (AI $0 \ldots \mathrm{Al}$ 1), 2-1471
Analog outputs (AO $0 \ldots$ AO 1), 2-1472
Digital inputs, electrically isolated (DI 0 ... DI 3), 2-1469
Digital outputs, electrically isolated (DO 0 ... DO 3), 2-1470

Function diagrams, Terminal Module 31
(TM31)
Analog input 0 (AI 0), 2-1490
Analog input 1 (AI 1), 2-1491
Analog outputs (AO $0 \ldots$ AO 1), 2-1492
Digital inputs, electrically isolated (DI 0 ... DI 3), 2-1485
Digital inputs, electrically isolated (DI 4 ... DI 7), 2-1486
Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2-1489
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2-1488
Digital relay outputs, electrically isolated (DO 0 ... DO 1), 2-1487
Sensor monitoring KTY/PTC, 2-1494
Temperature evaluation KTY/PTC, 2-1493
Function diagrams, Terminal Module 41
(TM41)
Analog input (AI 0), 2-1499
Control word sequence control, 2-1503
Digital inputs (DI 0 ... DI 3), 2-1496
Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 1), 2-1497
Digital inputs/outputs, bidirectional (DI/DO 2 ... DI/DO 3), 2-1498
Incremental encoder emulation (p4400 = 0), 2-1500
Incremental encoder emulation (p4400 = 1), 2-1501
Sequencer, 2-1507
Status word sequence control, 2-1505
STW1 control word interconnection (p0922 = 3), 2-1502
STW2 control word interconnection (p0922 = 3), 2-1504
ZSW1 status word interconnection (p0922 = 3), 2-1506
ZSW2 status word interconnection (p0922 = 3), 2-1508

Function diagrams, vector control
Current model, excitation current monitoring, control cos phi (FEM, p0300 = 5), 2-1403
Current setpoint filter, 2-1395
Current/power/torque limits , 2-1394
Display signals, 2-1407
Excitation (FEM, p0300 = 5), 2-1392
Field weakening characteristic, Id setpoint (ASM, p0300 = 1), 2-1398
Field weakening controller (PEM, p0300 = 2), 2-1400
Field weakening controller, flux controller (ASM, p0300 = 1), 2-1399
Field weakening controller, flux controller (FEM, p0300 = 2), 2-1402
Flux control configuration, 2-1391
Flux setpoint, field weakening controller (FEM, p0300 = 5), 2-1401
Id setpoint (PEM, p0300 = 2), 2-1397
Interface to Motor Module (ASM, p0300 = 1), 2-1404
Interface to Motor Module (FEM, p0300 = 5), 2-1406
Interface to the Motor Module (PEM, p0300 = 2), 2-1405
Iq and Id controller, 2-1396
Kp_n-/Tn_n adaptation, 2-1384
Pre-control balancing reference/acceleration model , 2-1382
Resonance damping and slip compensation, 2-1388
Speed control configuration, 2-1390
Speed controller with / without encoder, 2-1383
Speed setpoint, droop, 2-1381
Torque setpoint, 2-1385
Upper/lower torque limit, 2-1393
V/f characteristic and voltage boost, 2-1387
Vdc_max controller and Vdc_min controller, 2-1386, 2-1389
Function diagrams, Voltage Sensing Module (VSM)
Analog inputs (AI $0 \ldots$ AI 3), 2-1513
Sensor monitoring KTY/PTC, 2-1515
Temperature evaluation, 2-1514

Function diagrams: Terminal Module 15 for SINAMICS (TM15DI/DO)
Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 7), 2-1481
Digital inputs/outputs, bidirectional (DI/DO 16 ... DI/DO 23), 2-1483
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 15), 2-1482
Function module, 1-14
Fxxxx, 3-1527

G

General information
about faults and alarms, 3-1522
about function diagrams, 2-1182
about parameters, 1-12

H

Holding brake, 2-1296
Hotline, Foreword-7

I

IASC, 3-1524
Incremental encoder emulation, 2-1495
Index
Factory setting, 1-26
Parameter, 1-13, 1-26
Input terminals
Control Unit 310 (CU310), 2-1211
Control Unit 320 (CU320), 2-1215
Controller extension 32 (CX32), 2-1224
Terminal Board 30 (TB30), 2-1468
Terminal Module 31 (TM31), 2-1484
Internal control/status words, 2-1280

J

Jogging, 2-1318, 2-1321

K

kT estimator, 2-1409

L

Line contactor control, 2-1295, 2-1440, 2-1447, 2-1452, 2-1456, 2-1461
Linked parameter, 1-13

List
Abbreviations, B-1943
ASCII table, A-1912
Encoder code, A-1939
Faults and alarms, 3-1532
Message ranges, 3-1532
Motor code, A-1913
Parameter ranges, 1-28
Parameters for Command Data Sets, 1-1148
Parameters for Drive Data Sets, 1-1151
Parameters for Encoder Data Sets, 1-1162
Parameters for Motor Data Sets, 1-1164
Parameters for Power unit Data Sets, 1-1167
Parameters, all, 1-30
References, C-1951
List of abbreviations, B-1943
Load monitoring (r0108.17 = 1), 2-1420

M

Main/supplementary setpoint, 2-1318
Manufacturer-specific telegrams, 2-1228
MDS, Motor Data Set, 1-21, 2-1434, 2-1438
Measuring sockets, 2-1428
Message buffer, 2-1428
Message value, 3-1528
Messages, 2-1420
Missing enable signals
Active Infeed, 2-1461
Basic Infeed, 2-1444
Drive, 2-1295
Smart Infeed, 2-1452
Monitoring, 2-1420
Motor code, A-1913
Motor data sets, 2-1434
Motor holding brake, 2-1296
Motorized potentiometer, 2-1318, 2-1418

N

Name
Alarm, 3-1528
Fault, 3-1528
Parameter, 1-14
Not for motor type, 1-25
Notes
Hotline, Foreword-7
Technical Support, Foreword-7
Number
Alarm, 3-1527
Fault, 3-1527
Parameter, 1-13

0

Object, 1-14
OFF1, 3-1523
OFF2, 3-1523
OFF3, 3-1524
Output terminals
Control Unit 310 (CU310), 2-1211
Control Unit 320 (CU320), 2-1215
Controller extension 32 (CX32), 2-1224
Terminal Board 30 (TB30), 2-1468
Terminal Module 31 (TM31), 2-1484

P

P group (parameter), 1-22
Parameter
Access level, 1-19
Calculated, 1-18
Changeable in, 1-18
Data type, 1-20
Description, 1-25
Dynamic index, 1-21
Expert List, 1-25
Full name, 1-14
Function, 1-25
Index, 1-13, 1-26
Linked parameter, 1-13
List of parameters for Drive Data Sets, 1-1151
List of parameters for Encoder Data Sets, 1-1162
List of parameters for Motor Data Sets, 1-1164
List of parameters for Power unit Data Sets, 1-1167
Name, 1-14
Not for motor type, 1-25
Number, 1-13
P group, 1-22
Range, 1-28
Safety-related information, 1-27
Short name, 1-14
Unit, 1-22
Unit Choice, 1-22
Unit group, 1-22
Values, 1-26
Parameters
List of all parameters, 1-30
List of parameters for Command Data Sets, 1-1148
Password for access level 4, 1-19
PDS, Power unit Data Set, 1-21, 2-1434, 2-1439
PID controller ($\mathrm{p} 0108.16=1$), 2-1416

Power unit Data Sets, 2-1434
Process data, 2-1228
PROFIdrive, 2-1228
pxxxx, 1-13

Q

Questions about the Manual, Foreword-8

R

Ramp-function generator, 2-1318
Range
Alarms, 3-1532
Faults, 3-1532
Parameter, 1-28
Reaction to faults, 3-1523
References, C-1951
Relay outputs, 2-1484
Resetting faults, 3-1528
rxxxx, 1-13
S
Safety Integrated
Basic functions, 2-1301
Extended functions, 2-1301
Safety-related information (parameters), 1-27
Search tools for manual, Foreword-7
Sequence control, 2-1293
Servo control
Current setpoint filter, 2-1376
Encoder evaluation, 2-1351
Iq and Id controller, 2-1377
Kp_n-/Tn_n adaptation, 2-1365
speed controller, 2-1363
Speed controller without encoder, 2-1367
Speed setpoint filter and pre-control, 2-1361
Switch control type, 2-1366
Table of contents, 2-1360
Torque setpoint, 2-1366
V/f control for diagnostics, 2-1368
Variable signaling function, 2-1369
Setpoint channel, 2-1318
Setpoint channel not activated, 2-1328
Signal path in function diagrams, 2-1183
Signals, 2-1420
Simple/extended braking control, 2-1296
Skip frequency bands, 2-1318

Smart Infeed, 2-1447
Control word sequence control, 2-1448
Interface (control signals, actual values), 2-1453
Line contactor control, 2-1452
Line supply voltage monitoring, 2-1454
Sequencer, 2-1451
Signals and monitoring functions, 2-1447
Status word sequence control, 2-1449
Table of contents, 2-1447
Speed signals, 2-1420
Status words
Internal, 2-1280
Standard telegrams, 2-1228
STOP1, 3-1524
STOP2, 3-1524
Support, Foreword-7
Support Request, Foreword-7
Synchronization, 2-1415

T

T - status Ready to run, 1-18
Target group, Foreword-6
Technical Support, Foreword-7
Technology controller (p0108.16 = 1), 2-1416
Technology functions, 2-1408
Telegrams, 2-1228
Terminal Board 30 (TB30)
Analog inputs/outputs, 2-1468
Digital inputs/outputs, 2-1468
Terminal Module 15 for SINAMICS
(TM15DI/DO), 2-1480
Terminal Module 31 (TM31), 2-1484
Analog inputs/outputs, 2-1484
Digital inputs/outputs, 2-1484
Relay outputs, 2-1484
Terminal Module 41 (TM41), 2-1495
Terminals
Control Unit 310 (CU310), 2-1211
Control Unit 320 (CU320), 2-1215
Controller extension 32 (CX32), 2-1224
Terminal Board 30 (TB30), 2-1468
Terminal Module 31 (TM31), 2-1484
Thermal monitoring, 2-1420
Torque signals, 2-1420
Triggering on messages (r2129), 2-1428

U

U - status Run, 1-18
Unit (Parameter), 1-22
Usage phases, Foreword-6

V

V/f control
Servo, 2-1368
Vector, 2-1387
Values (Parameter), 1-26
Variable signaling function, 2-1369
Vector control
Current setpoint filter, 2-1395
Droop Function, 2-1381
Encoder evaluation, 2-1351
Field weakening characteristic, Id setpoint, 2-1398
Flux control, 2-1391
Iq and Id controller, 2-1396
Kp_n-/Tn_n adaptation, 2-1384
Resonance damping and slip compensation, 2-1388
Speed control configuration, 2-1390
Speed controller with / without encoder, 2-1383
Table of contents, 2-1380
Torque setpoint, 2-1385
V/f characteristic, 2-1387
Vdc_max controller and Vdc_min controller, 2-1389

Version
List of all parameters, 1-30
List of faults and alarms, 3-1532
List of parameters for Command Data Sets, 1-1148
List of parameters for Drive Data Sets, 1-1151
List of parameters for Encoder Data Sets, 1-1162
List of parameters for Motor Data Sets, 1-1164
List of parameters for Power unit Data Sets, 1-1167
Voltage Sensing Module (VSM)
Analog inputs, 2-1512
Sensor monitoring KTY/PTC, 2-1512
Temperature evaluation, 2-1512

To

SIEMENS AG
I DT MC MS1
P.O. Box 3180

D-91050 Erlangen

Tel. +49 (180) 5050222
Fax +49 (9131) 982176
E-mail: docu.motioncontrol@siemens.com

Sender:

Please check the industry sector that applies to you:
\square Automotive
\square Chemical

- Electrical
- Food and beverage
- Instrumentation and control
- Mechanical engineering
] Petrochemicals

Comments／suggestions

Your comments and suggestions help us to improve the quality and usability of our documenta－ tion．Please complete the questionnaire and return it by mail or fax to Siemens．

Name of manual：	SINAMICS S120／S150
Order No．of Manual：	6SL3097－2AP00－0BP7

Please answer the following questions，giving each one a mark between $1=\operatorname{good}$ to $5=$ poor ．

1．Do the contents meet your requirements？
2．Is it easy to find the information you need？
3．Is the text easy to understand？
4．Is the level of technical detail appropriate for your needs？
5．Please rate the quality of the graphics and tables．

If you encountered any specific problems，please describe these in the space provided below：
\qquad

 －ーーー －－－ －ーー
 －－

\qquad
\qquad

Manufacturer/Service Documentation

Manufacturer/Service Documentation

SINAMICS
S110

Gquipment Manua
 Eunction Started -unctions

and Supplementary Components
Equipment Manuay or Bonoksize Power Units
Equipment Manual for Chassis Power Units
oquipment Manual for Chassis Liquid Cooled
Equipment Manual for Cabinet Modules

Liserating Instructions
Manufacturer/Service Documentation

DOCONCD

Configuration Manuals

EMC Configuration

Siemens AG
Industry Sector
Drive Technologies
Motion Control Systems
P.O. Box 3180

91050 ERLANGEN
GERMANY

[^0]: Description: Enters the capacitance of a sine-wave filter connected at the power unit output.

[^1]: 4260: r4260 (set/resetting time digital output 10)
 4261: r4261 (set/resetting time digital output 11)
 4262: r4262 (set/resetting time digital output 12)
 4263: r4263 (set/resetting time digital output 13)
 4264: r4264 (set/resetting time digital output 14)
 4265: r4265 (set/resetting time digital output 15)
 4266: r4266 (set/resetting time digital output 16)
 4267: r4267 (set/resetting time digital output 17)
 4268: r4268 (set/resetting time digital output 18)
 4269: r4269 (set/resetting time digital output 19)
 4270: r4270 (set/resetting time digital output 20)
 4271: r4271 (set/resetting time digital output 21)
 4272: r4272 (set/resetting time digital output 22)
 4273: r4273 (set/resetting time digital output 23)

 Index:

 Note:
 [0] = PZD 1
 [1] = PZD 2
 [2] = PZD 3
 [3] = PZD 4
 [4] = PZD 5
 [5] = PZD 6
 [6] = PZD 7
 [7] = PZD 8
 [8] = PZD 9
 [9] = PZD 10
 [10] = PZD 11
 [11] = PZD 12
 [12] = PZD 13
 [13] = PZD 14
 [14] = PZD 15
 [15] = PZD 16
 [16] = PZD 17
 [17] = PZD 18
 [18] = PZD 19
 [19] = PZD 20
 [20] = PZD 21
 [21] = PZD 22
 [22] = PZD 23
 [23] = PZD 24
 [24] = PZD 25
 [25] = PZD 26
 [26] = PZD 27
 [27] = PZD 28
 [28] = PZD 29
 [29] = PZD 30
 Example:
 The telegram for the setpoints should have the following process data (PZD) and assignments:
 PZD 1 (r4201), PZD 2 (r4204), PZD 3 (r4250)
 The setpoint assignment must be realized as follows:
 p0915[0] = 4201-16 bit
 p0915[1] = 4204-16 bit
 p0915[2] = 4250-16 bit
 p0915[3] $=0$
 p0915[29] $=0$

[^2]: 4360: r4360 (edge times digital input 10)
 4361: r4361 (edge times digital input 11)
 4362: r4362 (edge times digital input 12)
 4363: r4363 (edge times digital input 13)
 4364: r4364 (edge times digital input 14)
 4365: r4365 (edge times digital input 15)
 4366: r4366 (edge times digital input 16)
 4367: r4367 (edge times digital input 17)
 4368: r4368 (edge times digital input 18)
 4369: r4369 (edge times digital input 19)
 4370: r4370 (edge times digital input 20)
 4371: r4371 (edge times digital input 21)
 4372: r4372 (edge times digital input 22)
 4373: r4373 (edge times digital input 23)

 Index:

 Note:
 [0] = PZD 1
 [1] = PZD 2
 [2] = PZD 3
 [3] = PZD 4
 [4] = PZD 5
 [5] = PZD 6
 [6] = PZD 7
 [7] = PZD 8
 [8] = PZD 9
 [9] = PZD 10
 [10] = PZD 11
 [11] = PZD 12
 [12] = PZD 13
 [13] = PZD 14
 [14] = PZD 15
 [15] = PZD 16
 [16] = PZD 17
 [17] = PZD 18
 [18] = PZD 19
 [19] = PZD 20
 [20] = PZD 21
 [21] = PZD 22
 [22] = PZD 23
 [23] = PZD 24
 [24] = PZD 25
 [25] = PZD 26
 [26] = PZD 27
 [27] = PZD 28
 [28] = PZD 29
 [29] = PZD 30
 Example:
 The telegram for the actual values should have the following process data (PZD) and assignments:
 PZD 1 (r4301), PZD 2 (r4304), PZD 3 (r4350)
 The actual value assignment must be implemented as follows:
 p0916[0] = 4301-16 bit
 p0916[1] = 4304-16 bit
 p0916[2] = 4350-16 bit
 p0916[3] $=0$
 p0916[29] $=0$

[^3]: Description: Sets the absolute number of start attempts for the automatic restart function when any faults are automatically acknowledged (p1210 = 6).

[^4]:

[^5]:

[^6]: sмә!мәлО
 Function diagrams

[^7]: © Siemens AG 2008 All Rights Reserved
 SINAMICS S120/S150 List Manual (LH1), 10/2008, 6SL3097-2AP00-OBP7

[^8]: рәделбәдии къәлея

[^9]: əәииецэ ұи！оdəәs

[^10]: Function diagrams

[^11]:

[^12]: юдиоэ ェоұวәィ
 Function diagrams

[^13]: ノ๐ィиоэ ィоџэәл

[^14]:

[^15]: © Siemens AG 2008 All Rights Reserved
 SINAMICS S120／S150 List Manual（LH1），10／2008，6SL3097－2AP00－0BP7

[^16]:

[^17]:

[^18]: Voltage Sensing Module (VSM)

 ## Function diagrams

[^19]: Voltage Sensing Module (VSM)

