SINAMICS S110

Manual 11/2009

SINAMICS

SIEMENS

SINAMICS

S110 Manual

Manual

Preface

System overview	1
Line-side power components	2
Power Modules	3
DC link components	4
Motor-side power components	5
CU305 Control Units	6
Supplementary system components and encoder system integration	7
Accessories	8
Cabinet design and EMC for components, Blocksize format	9
Cooling circuit and coolant properties	10
Service and maintenance	11
Appendix A	Α
Appendix B	В

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

indicates that death or severe personal injury will result if proper precautions are not taken.

indicates that death or severe personal injury **may** result if proper precautions are not taken.

with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION

without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE

indicates that an unintended result or situation can occur if the corresponding information is not taken into account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by **personnel qualified** for the specific task in accordance with the relevant documentation for the specific task, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

/!\WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be adhered to. The information in the relevant documentation must be observed.

Trademarks

All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Siemens AG Industry Sector Postfach 48 48 90026 NÜRNBERG GERMANY Ordernumber: 6SL3097-4AC10-0BP1 @ 02/2010

Preface

SINAMICS Documentation

The SINAMICS documentation is organized in 2 parts:

- General documentation / catalogs
- Manufacturer/Service documentation

At http://www.siemens.com/motioncontrol/docu information is available on the following topics:

Ordering documentation

Here you will find the current overview of publications

• Downloading documentation

Links to more information for downloading files from Service & Support

• Researching documentation online

Information on DOConCD and direct access to the publications in DOConWeb.

• For customizing documentation based on Siemens content using My Documentation Manager (MDM), see

http://www.siemens.com/mdm

The My Documentation Manager offers you a number of features for compiling your own machine documenation

• Training and FAQs

Information on the range of training courses and FAQs (frequently asked questions) are available via the page navigation.

Usage phases and the available tools/documents

Usage phase	Tools/documents
Orientation	SINAMICS S Sales Documentation
Planning/configuration	SIZER engineering tool Configuration Manuals, Motors
Decision making / ordering	SINAMICS S Catalogs
Installation / assembly	SINAMICS S110 Equipment Manual
Commissioning	 STARTER parameterization and commissioning tool SINAMICS S110 Getting Started SINAMICS S110 Function Manual Drive Functions SINAMICS S110 List Manual
Usage / operation	 SINAMICS S110 Function Manual Drive Functions SINAMICS S110 List Manual
Maintenance / service	 SINAMICS S110 Function Manual Drive Functions SINAMICS S110 List Manual SINAMICS S110 Equipment Manual

Table 1 Usage phase and the available tools / documents

Target group

This documentation is aimed at machine manufacturers, commissioning engineers, and service personnel who use SINAMICS.

Benefits

This documentation contains the comprehensive information about parameters, function diagrams and faults and alarms required to commission and service the system.

This manual should be used in addition to the other manuals and tools provided for the product.

Standard scope

The scope of the functionality described in this document can differ from the scope of the functionality of the drive system that is actually supplied.

- Other functions not described in this documentation might be able to be executed in the drive system. This does not, however, represent an obligation to supply such functions with a new control or when servicing.
- Functions can be described in the documentation that are not available in a particular product version of the drive system. The functionality of the supplied drive system should only be taken from the ordering documentation.
- Extensions or changes made by the machine manufacturer must be documented by the machine manufacturer.

For reasons of clarity, this documentation does not contain all of the detailed information on all of the product types. This documentation cannot take into consideration every conceivable type of installation, operation and service/maintenance.

Search tools

The following guides are provided to help you locate information in this manual:

- 1. General table of contents for the complete manual (after the preface).
- 2. List of abbreviations
- 3. References.
- 4. Index

Technical Support

If you have any questions, please contact our hotline:

	Europe/Africa
Telephone	+49 180 5050 - 222
Fax	+49 180 5050 - 223
€0.14/min. from German landlines, maximum of €0.42/min. for calls from cell phones in Germany	
Internet	http://www.siemens.de/automation/support-request

	America
Telephone	+1 423 262 2522
Fax	+1 423 262 2200
E-mail	mailto:techsupport.sea@siemens.com

	Asia/Pacific
Telephone	+86 1064 757575
Fax	+86 1064 747474
E-mail	mailto:support.asia.automation@siemens.com

Note

You will find telephone numbers for other countries for technical support in the Internet: http://www.automation.siemens.com/partner

Spare parts

You can find spare parts on the Internet at: http://support.automation.siemens.com/WW/view/de/16612315

Questions about the documentation

If you have any questions (suggestions, corrections) regarding this technical documentation, please fax or e-mail us at:

Fax	+49 9131 98 2176
E-mail	mailto:docu.motioncontrol@siemens.com

A fax form is at the end of this document.

Internet address for SINAMICS

http://www.siemens.com/sinamics.

Test certificates

The Safety Integrated functions of SINAMICS components are generally certified by independent institutes. An up-to-date list of certified components is available on request from your local Siemens office. If you have any questions relating to certifications that have not been completed, please ask your Siemens contact.

EC Declarations of Conformity

The EC Declaration of Conformity for the EMC Directive can be found/obtained:

- in the Internet: http://support.automation.siemens.com under the product/order no. 15257461
- at the responsible regional office of the I DT MC Business Unit of Siemens AG

The EC Declaration of Conformity for the Low Voltage Directive can be found/obtained

 in the Internet: http://support.automation.siemens.com under the Product/Order No. 22383669

Note

When operated in dry areas, SINAMICS S devices conform to the Low Voltage Directive 73/23/EEC or 2006/95/EEC.

Note

SINAMICS S devices fulfill EMC Directive 89/336/EEC or 2004/108/EEC in the configuration specified in the associated EC Declaration of Conformity and when the EMC installation guideline is implemented, Order No. 6FC5297-0AD30-0_P_.

Note

The Equipment Manual describes a desired state which, if maintained, ensures the required level of operational reliability and compliance with EMC limit values.

Should there be any deviation from the requirements in the Equipment Manual, appropriate actions (e.g. measurements) must be taken to check/prove that the required level of operational reliability and compliance with EMC limit values are ensured.

ESD information

Electrostatic sensitive devices (ESD) are single components, integrated circuits or devices that can be damaged by electrostatic fields or electrostatic discharges.

Regulations for handling ESD components:

When handling components, make sure that personnel, workplaces, and packaging are well grounded.

Personnel may only come into contact with electronic components, if

- They are grounded with an ESD wrist band, or
- They are in ESD areas with conductive flooring, ESD shoes or ESD grounding straps.

Electronic boards should only be touched if absolutely necessary. They must only be handled on the front panel or, in the case of printed circuit boards, at the edge.

Electronic boards must not come into contact with plastics or items of clothing containing synthetic fibers.

Boards must only be placed on conductive surfaces (work surfaces with ESD surface, conductive ESD foam, ESD packing bag, ESD transport container).

Electronic boards may not be placed near display units, monitors, or televisions (minimum distance from the screen > 10 cm).

Measurements must only be taken on boards when the measuring instrument is grounded (via protective conductors, for example) or the measuring probe is briefly discharged before measurements are taken with an isolated measuring device (for example, touching a bare metal housing).

Safety information

Commissioning is absolutely prohibited until it has been completely ensured that the machine in which the components described here are to be installed is in full compliance with the provisions of the EC Machinery Directive.

Only appropriately qualified personnel may install, commission, and maintain SINAMICS S devices.

The personnel must take into account the information provided in the technical customer documentation for the product, and be familiar with and observe the specified danger and warning notices.

Operational electrical equipment and motors have parts and components which are at hazardous voltage levels, that if touched, can result in severe bodily injury or death.

All work on the electrical system must be carried out when the system has been disconnected from the power supply.

In combination with the drive system, the motors are generally approved for operation on TN and TT systems with grounded neutral and on IT systems.

In operation on IT systems, the occurrence of a first fault between an active part and ground must be signaled by a monitoring device. In accordance with IEC 60364-4-41 it is recommended that the first fault should be eliminated as quickly as practically possible.

In networks with a grounded external conductor, an isolating transformer with grounded neutral (secondary side) must be connected between the supply and the drive system to protect the motor insulation from excessive stress. The majority of TT systems have a grounded external conductor, so in this case an isolating transformer must be used.

Correct and safe operation of SINAMICS S drive units assumes correct transportation in the transportation packaging, correct long-term storage in the transport packaging, setup and installation, as well as careful operation and maintenance.

The details in the Catalogs and proposals also apply to the design of special equipment versions.

In addition to the danger and warning information provided in the technical customer documentation, the applicable national, local, and system-specific regulations and requirements must be taken into account.

To ensure compliance with EN 61800-5-1 and UL 508, only safety extra-low voltages from the electronics modules may be connected to connections and terminals.

Using protection against direct contact via DVC A (PELV) is only permissible in areas with equipotential bonding and in dry rooms indoors. If these conditions are not fulfilled, then other protective measures against electric shock must be used (e.g. protection using protective impedances or limited voltage or using protective classes I and II).

Electrical, magnetic and electromagnetic fields (EMF) that occur during operation can pose a danger to persons who are present in the direct vicinity of the product - especially persons with pacemakers, implants, or similar devices.

The relevant directives and standards must be observed by the machine/plant operators and people present in the vicinity of the product. These are, for example, EMF Directive 2004/40/EEC and standards EN 12198-1 to -3 in the European Economic Area (EEA) and, in Germany, the accident prevention regulation BGV 11 and the associated rule BGR 11 "Electromagnetic fields" from the German Employer's Liability Insurance Association.

These state that a hazard analysis must drawn up for every workplace, from which measures for reducing dangers and their impact on persons are derived and applied, and exposure and danger zones are defined and observed.

The relevant safety notes in each chapter must be observed.

As part of routine tests, SINAMICS S components will undergo a voltage test in accordance with EN 61800-5-1. Before the voltage test is performed on the electrical equipment of machines acc. to EN 60204-1, Section 18.4, all connectors of SINAMICS S equipment must be disconnected/unplugged to prevent the equipment from being damaged.

Motors should be connected up in accordance with the circuit diagram supplied with the motor (refer to the connection examples for Power Modules). They must not be connected directly to the three-phase supply because this will damage them.

Operating the equipment in the immediate vicinity (< 1.8 m) of cell phones with a transmitter power of > 1 W may cause the equipment to malfunction.

Explanation of symbols

The symbols are in accordance with IEC 617-2.

Table 2 Symbols

Symbol	Meaning
	Protective earth (PE)
	Ground (e.g. M 24 V)
	Functional ground Equipotential bonding

Residual risks of power drive systems

When carrying out a risk assessment of a machine in accordance with the EU Machinery Directive, the machine manufacturer must consider the following residual risks associated with the control and drive components of a power drive system (PDS).

- 1. Unintentional movements of driven machine components during commissioning, operation, maintenance, and repairs caused by, for example:
 - Hardware defects and/or software errors in the sensors, controllers, actuators, and connection technology
 - Response times of the controller and drive
 - Operating and/or ambient conditions not within the scope of the specification
 - Parameterization, programming, cabling, and installation errors
 - Use of radio devices / cellular phones in the immediate vicinity of the controller
 - External influences / damage
- 2. Exceptional temperatures as well as emissions of light, noise, particles, or gas caused by, for example:
 - Component malfunctions
 - Software errors
 - Operating and/or ambient conditions not within the scope of the specification
 - External influences / damage
- 3. Hazardous shock voltages caused by, for example:
 - Component malfunctions
 - Influence of electrostatic charging
 - Induction of voltages in moving motors
 - Operating and/or ambient conditions not within the scope of the specification
 - Condensation / conductive contamination
 - External influences / damage
- 4. Electrical, magnetic and electromagnetic fields generated in operation that can pose a risk to people with a pacemaker, implants or metal replacement joints, etc. if they are too close.
- 5. Release of environmental pollutants or emissions as a result of improper operation of the system and/or failure to dispose of components safely and correctly.

For more information about residual risks of the power drive system components, see the relevant chapters in the technical user documentation.

Preface

Table of contents

	Preface		5
1	System	overview	21
	1.1	Field of application	21
	1.2	Platform concept and Totally Integrated Automation	22
	1.3	Overview of SINAMICS S110	23
	1.4	SINAMICS components	24
	1.5	System data	
	1.6	Standards	
2	Line-sid	e power components	
	2.1	Introduction	
	2.2 2.2.1	Line connection variants	33
	2.2.2	Operation of the Line Connection Components on the Supply Network	34
	2.2.3 2.2.4	Operation of the Line Connection Components via an Autotransformer Operation of the Line Connection Components via an Isolating Transformer	36 37
	2.2.4	Line filter	
	2.3	Description	
	2.3.2	Safety information	
	2.3.3	Dimension drawing	41
	2.3.4	Installation	
	2.3.5	Technical data, Blocksize line filter	43
	2.4	Line reactors	
	2.4.1	Description	
	2.4.2	Safety information	
	2.4.3	Dimension drawings	
	2.4.4	Installation	
	2.4.5 2.4.6	Electrical Connection Technical data, Blocksize	
3	-	Aodules	
•	3.1	Power Modules Blocksize (PM340)	
	3.1.1	Description	
	3.1.2	Safety information	
	3.1.3	Interface description	
	3.1.3.1	Overview	
	3.1.3.2	Example connections	
	3.1.3.3	Line supply connection	
	3.1.3.4	Motor connection	
	3.1.3.5	Braking resistor and DC link connection	
	3.1.3.6	Connection to the option module, brake control	
	3.1.4	Dimension drawings	
	3.1.5	Mounting	
	3.1.5.1	Drilling patterns	82

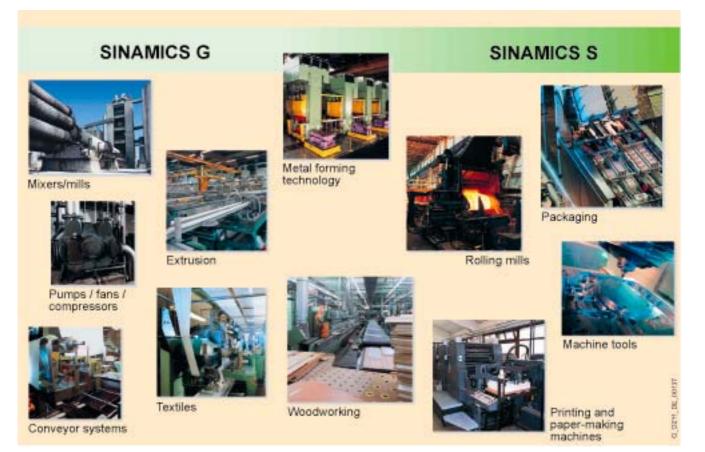
	3.1.5.2	Mounting dimensions and tightening torques	
	3.1.5.3	Access to the power supply terminals and motor terminals	
	3.1.6	Technical data	
	3.1.6.1	Characteristics	
	3.1.6.2	Current derating depending on the pulse frequency	
	3.2	Power Modules Blocksize Liquid Cooled (PM340)	
	3.2.1	Description	
	3.2.2	Safety information	
	3.2.3	Interface description	
	3.2.3.1	Overview	105
	3.2.3.2	Connection example	106
	3.2.3.3	Line supply connection	
	3.2.3.4	Braking resistor and DC link connection	
	3.2.3.5	Motor connection	
	3.2.3.6	Connection to the option module, brake control	
	3.2.4	Dimension drawings	
	3.2.5	Installation	
	3.2.5.1	Drilling patterns	
	3.2.5.2	Installation	
	3.2.5.3	Access to the power supply terminals and motor terminals	
	3.2.6	Connection to the cooling circuit	
	3.2.7	Commissioning	
	3.2.8	Technical data	
	3.2.8.1	Characteristics	119
4	DC link	components	125
	4.1	Braking resistors (in blocksize format)	
	4.1.1	Description	
	4.1.2	Safety information	125
	4.1.3	Dimension drawings	
	4.1.4	Mounting	
	4.1.5	Technical data	131
5	Motor-si	ide power components	133
	5.1	Motor reactors (blocksize)	
	5.1.1	Description	
	5.1.2	Safety information	
	5.1.3	Dimension drawings	134
	5.1.4	Mounting	
	5.1.5	Electrical connection	145
	5.1.6	Technical data	146
6	CU305 (Control Units	149
	6.1	Description	149
	6.2	Safety information	150
	6.3	Interface description	151
	6.3.1	Overview CU305 DP.	
	6.3.2	Overview CU305 CAN	
	6.3.3	Connection examples	
	6.3.4	CU305 DP and CU305 CAN, common interfaces	
	6.3.4.1	X100 DRIVE-CLiQ interface	
	6.3.4.2	Electronics power supply X124	
	6.3.4.3	X130 failsafe digital inputs	
	6.3.4.4	X131 failsafe digital inputs/outputs	

	6.3.4.5	X132 Digital inputs/outputs, analog input	
	6.3.4.6	X133 digital inputs, motor temperature sensor input	
	6.3.4.7	X23 HTL/TTL/SSI encoder interface Pulse/direction interface	
	6.3.4.8 6.3.4.9	X22 serial interface (RS232)	
		X520/521/522 measuring sockets	
		Memory card slot	
	6.3.4.12	Description of the LEDs on Control Unit CU305	
	6.3.5	Interfaces to the CU305 DP	
	6.3.5.1	PROFIBUS/USS X126	175
	6.3.5.2	PROFIBUS/USS address switch	
	6.3.6	Interfaces to the CU305 CAN	
	6.3.6.1	X126 CAN interface	
	6.3.6.2	S100 DIP switch	
	6.4	Dimension drawing	
	6.5	Mounting	
	6.6	Technical data	
7	Supplem	nentary system components and encoder system integration	
	7.1	Basic Operator Panel BOP20	
	7.1.1	Description	
	7.1.2	Interface description	
	7.1.3	Installation	
	7.2	Sensor Module Cabinet-Mounted SMC10	
	7.2.1	Description	
	7.2.2 7.2.3	Safety information	
	7.2.3	Overview	
	7.2.3.1	DRIVE-CLiQ interface X500	
	7.2.3.3	X520 encoder system interface	
	7.2.3.4	X524 Electronics power supply	
	7.2.3.5	Meaning of LEDs on the Sensor Module Cabinet-Mounted SMC10	193
	7.2.4	Dimension drawings	
	7.2.5	Installation	
	7.2.6	Technical data	
	7.3	Sensor Module Cabinet-Mounted SMC20	
	7.3.1	Description	
	7.3.2 7.3.3	Safety information Interface description	
	7.3.3.1	Overview	
	7.3.3.2	DRIVE-CLiQ interface X500	
	7.3.3.3	X520 encoder system interface	
	7.3.3.4	Electronics power supply X524	
	7.3.3.5	Meaning of LEDs on the Sensor Module Cabinet-Mounted SMC20	
	7.3.4	Dimension drawing	
	7.3.5	Installation	
	7.3.6	Technical data	
	7.4	Sensor Module Cabinet-Mounted SMC30	
	7.4.1 7.4.2	Description	
	7.4.2 7.4.3	Safety information	
	7.4.3.1	Overview	

	7.4.3.2 7.4.3.3 7.4.3.4	Connection examples DRIVE-CLiQ interface X500 X520 encoder system interface	212 213
	7.4.3.5 7.4.3.6 7.4.3.7	X521 / X531 alternative encoder system interface X524 Elektronikstromversorgung_GH8 Significance of LEDs on the Sensor Module Cabinet 30 (SMC30)	215 216
	7.4.4 7.4.5	Dimension drawing Installation	
	7.4.6	Protective conductor connection and shield support	220
	7.4.7	Technical data	221
	7.5	Option modules, braking signal	
	7.5.1	Introduction	
	7.5.2 7.5.2.1	Safe Brake Relay Safety Information	
	7.5.2.1	Interface description	
	7.5.2.3	Dimension drawing	
	7.5.2.4	Mounting	
	7.5.2.5	Technical data	233
8	Accesso	ries	235
	8.1	DRIVE-CLiQ cabinet gland	
	8.1.1	Description	
	8.1.2	Safety Information	
	8.1.3 8.1.3.1	Interface description Overview	
	8.1.3.1 8.1.4	Dimension drawing	
	8.1.5	Installation	
	8.1.6	Technical data	
	8.2	DRIVE-CLiQ coupling	
	8.2.1	Description	240
	8.2.2	Safety Information	
	8.2.3	Interface description	
	8.2.3.1 8.2.4	Overview Dimension drawing	
	8.2.5	Installation	
	8.2.6	Technical data	
	8.3	Screening Kit	
	8.3.1	Description	243
	8.3.2	Dimension drawings	
	8.3.2.1	Screening Kits	
	8.3.2.2 8.3.3	Blocksize Power Modules with Screening Kits Mounting	
	8.3.3.1	Blocksize Power Modules	
	8.3.3.2	Blocksize Liquid Cooled Power Modules	
9	Cabinet	design and EMC for components, Blocksize format	257
	9.1	Information	
	9.1.1	General	257
	9.1.2	Safety information	258
	9.2	Selecting the line-side devices and components required to operate SINAMICS	259
	9.2.1	General	
	9.2.2	Information on the disconnector unit.	
	9.2.3	Overcurrent protection by means of line fuses and circuit breakers	

	9.2.4 9.2.5 9.2.6 9.2.7	Using residual-current devices Overvoltage protection Line contactors Description	
	9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5	24 V DC Supply Voltage General Selecting power supply units Typical 24 V current consumption of the components Overcurrent protection Overvoltage protection	
	9.4 9.4.1 9.4.2	Arrangement of components and equipment General Mounting	269
	9.5 9.5.1 9.5.2 9.5.3 9.5.4	Information about electromagnetic compatibility (EMC) and cable routing General Cable Shielding and Routing Signal cables and 24 V supply cables Equipotential bonding	271 272 274
	9.6 9.6.1 9.6.2 9.6.3 9.6.3.1 9.6.3.2 9.6.3.3 9.6.3.4	Notes on electrical cabinet cooling General Ventilation Power loss of components during rated operation General information Power loss for Control Units and Sensor Modules Power loss for Cintrol Units and Sensor Modules Power loss for Power Modules Power loss for Power Modules	276 278 280 280 280 280 280
10	Cooling	circuit and coolant properties	283
	10.1 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6	Cooling circuit requirements Technical cooling circuits Cooling system requirements Cooling circuit configuration Installation Preventing cavitation Commissioning.	
	10.2 10.2.1 10.2.2 10.2.3 10.2.4	Coolant requirements Coolant properties Anti-corrosion additives (inhibitors) Anti-freeze additives Biocide additives (only if required)	292 293 293
	10.3	Anti-condensation measures	295
	10.4	Equipotential bonding	296
11	Service	and maintenance	297
	11.1	Safety information	297
	11.2 11.2.1 11.2.2	Service and maintenance for components, Blocksize format Replacing hardware components Replacing the fan on the PM340	298
	11.3	Spare parts	
	11.4	Disposal	

Α	Appendix A		305
	A.1	Spring-loaded terminals/screw terminal	305
в	Appendix B		307
	B.1	List of abbreviations	308
	Index		321


System overview

1.1 Field of application

SINAMICS is the new range of drives from Siemens designed for mechanical and plant engineering applications. SINAMICS offers solutions for all drive tasks:

- Simple pump and fan applications in the process industry.
- Complex individual drives in centrifuges, presses, extruders, elevators, as well as conveyor and transport systems.
- Drive line-ups in textile, plastic film, and paper machines, as well as in rolling mill plants.
- Highly dynamic servo drives for machine tools, as well as packaging and printing machines.

Depending on the application, the SINAMICS range offers the ideal version for any drive task.

1.2 Platform concept and Totally Integrated Automation

All SINAMICS versions are based on a platform concept. Joint hardware and software components, as well as standardized tools for design, configuration, and commissioning tasks ensure high-level integration across all components. SINAMICS handles a wide variety of drive tasks with no system gaps. The different SINAMICS versions can be easily combined with each other.

SINAMICS is part of Siemens "Totally Integrated Automation". Integrated SINAMICS systems covering configuration, data storage, and communication at automation level ensure low-maintenance solutions with SIMATIC, SIMOTION, and SINUMERIK.

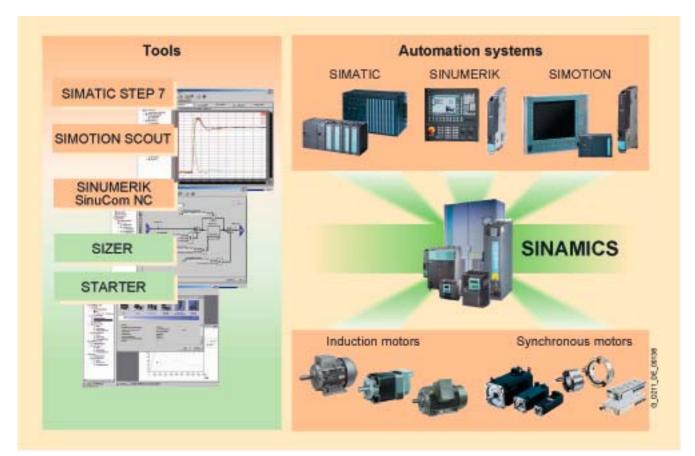


Figure 1-2 SINAMICS as part of the Siemens modular automation system

1.3 Overview of SINAMICS S110

SINAMICS S110 is the "simple servo" in the range of SINAMICS AC Drives. As a modular drive system for single axes in "servo" control mode, it is primarily used for simple positioning tasks in a wide range of industrial applications.

Typical areas of application for positioning, setting up and referencing include:

- Simple infeed tasks (e.g. rotary indexing tables)
- Handling technology, robotics
- Pick & place tasks
- Printing and paper machines
- Packaging machines

As a combination of a power unit (Power Module) and a Control Unit (CU) the SINAMICS S110 forms a single-motor drive in a compact format for machinery and plant construction.

SIZER, a high-performance engineering tool, makes it easier to choose and determine the optimum drive configuration. The drive can be simply commissioned a user-friendly fashion using the STARTER commissioning tool.

SINAMICS S110 can be used to operate synchronous and induction motors. Direct drives, such as linear and torque motors, can only be operated with SINAMICS S120.

1.4 SINAMICS components

1.4 SINAMICS components

This overview shows the components of SINAMICS S110 and S120.

Figure 1-3 SINAMICS S110/S120 component overview

The following system components are available:

- Line-side power components, such as fuses, contactors, reactors and line filters for switching the power supply and complying with EMC regulations.
- Power Modules, with or without integrated line filter, as well as an integrated braking chopper to provide power to the connected motor

To carry out the required functions, SINAMICS S110 is equipped with:

- Control Units that provide the drive and technological functions.
- Supplementary system components that enhance functionality and offer different interfaces for encoders and process signals.

The SINAMICS S110 components were developed for installation in cabinets.

They have the following features and characteristics:

- Easy to handle, simple installation and wiring
- Practical connection system, cable routing in accordance with EMC requirements
- Standard design

1.5 System data

1.5 System data

Table 1-1 Ge	neral technical data
--------------	----------------------

Electrical data	
Line supply voltage Blocksize format units	1-ph. 200 V to 240 V AC ±10 % 3-ph. 380 V to 480 V AC ±10 %
Rated pulse frequency Blocksize format units	4 kHz
Line frequency	47 Hz to 63 Hz
Output voltage Blocksize format units	0 V to rated line supply voltage at 3-ph. 380 V up to 480 V AC units, 0 V to 0.78 of the line supply voltage for 1-ph. 200 V to 240 V AC units.
Electronics power supply	24 V DC -15/+20 %*), safety extra-low voltage DVC A (PELV)
Short-circuit current rating SCCR in accordance with UL508C (up to 600 V)	 1.1 kW - 447 kW: 65 kA 448 kW - 671 kW: 84 kA 672 kW - 1193 kW: 170 kA ≥ 1194 kW: 200 kA
Radio interference suppression acc. to EN 61800-3	Category C3 (option) Category C2 (option) for systems implemented in conformance with the documentation
Overvoltage category	III acc. to EN 60664-1
Degree of pollution	2 acc. to 60664-1

*) If a motor holding brake is used, restricted voltage tolerances (±10%) may have to be taken into account.

Environmental conditions		
Note for the safety functions of Safety Integrated:		
The components must be protected against conductive pollution (e.g. by installing them in a cabinet with degree of protection IP54B acc. to EN 60529). Provided that conductive pollution can be prevented at the installation site, the degree of protection for the cabinet can be decreased accordingly.		
Degree of protection	IP20 or IPXXB acc. to EN 60529, open type acc. to UL 508	
Protective class line supply circuits Protective class electronic circuits	I (with protective conductor connection) III (safety extra-low voltage DVC A /PELV) acc. to EN 61800-5-1	
Type of cooling	Internal air cooling, power units with forced air cooling using an integrated fan	
Permissible cooling medium temperature (air) and installation altitude in operation	0 °C to +40 °C and an installation altitude of up to 1,000 m without derating, >40 °C to 55 °C, see the characteristic for current derating. Installation altitude >1,000 m and up to 4,000 m, see the characteristic for current derating or reduction of the ambient temperature by 3.5 K per 500 m.	
Chemically active substances		
Long-term storage in the transport packagingTransport in the transport packagingOperation	Class 1C2 to EN 60721-3-1 Class 2C2 to EN 60721-3-2 Class 3C2 to EN 60721-3-3	

System overview

1.5 System data

 Biological environmental conditions: Storage in the transport packaging Transport in the transport packaging Operation 	Class 1B1 to EN 60721-3-1 Class 2B1 to EN 60721-3-2 Class 3B1 to EN 60721-3-3
 Vibratory load Long-term storage in the transport packaging Transport in the transport packaging Operation 	Class 1M2 acc. to EN 60721-3-1 Class 2M3 acc. to EN 60721-3-2 Test values: 10 Hz to 58 Hz 0.075 mm; 58 Hz to 200 Hz 1 g
 Shock load Long-term storage in the transport packaging Transport in the transport packaging Operation 	Class 1M2 acc. to EN 60721-3-1 Class 2M3 acc. to EN 60721-3-2 Test values: 15 g / 11 ms
 Climatic ambient conditions Long-term storage in the transport packaging Transport in the transport packaging Operation 	Class 1K4 acc. to EN 60721-3-1 Temperature -25 °C to +55 °C Class 2K4 acc. to EN 60721-3-2 Temperature -40 °C to +70 °C Class 3K3 acc. to EN 60721-3-3 Temperature +0 °C to +40 °C Relative / absolute humidity 5% to 90% / 25 g/m ³ \leq 60%, in environments which contain corrosive gases and/or dust. Oil mist, saline fog, ice, condensation, dripping water, spray water, and splashes or jets of water are not permissible.

Certificates	
Declarations of Conformity	CE (Low-Voltage and EMC Directive)
Approvals	cULus

1.6 Standards

1.6 Standards

Note

The standards listed in the table below are non-binding and do not in any way claim to be complete. The standards listed do not represent a guaranteed property of the product.

Only the statements made in the Declaration of Conformity shall be deemed binding.

Table 1-2 Fundamental, application-relevant standards in succession: EN, IEC/ISO, DIN, VDE

Standards*	Title
EN 1037 ISO 14118 DIN EN 1037	Safety of machinery; avoiding unexpected starting
EN ISO 9001 ISO 9001 DIN EN ISO 9001	Quality management systems - requirements
EN ISO 12100-x ISO 12100-x DIN EN ISO 12100-x	Safety of Machinery; General Design Guidelines; Part 1: Basic terminology, methodology Part 2: Technical Principles and Specifications
EN ISO 13849-x ISO 13849-x DIN EN ISO 13849-x	Safety of machinery; safety-related parts of control systems; Part 1: General basic design principles Part 2: Validation
EN ISO 14121-1 ISO 14121-1 DIN EN ISO 14121-1	Safety of Machinery - Risk Assessment; Part 1: Guidelines
EN 55011 CISPR 11 DIN EN 55011 VDE 0875-11	Industrial, scientific and medical high-frequency devices (ISM devices) - radio interference - limit values and measuring techniques
EN 60146-1-1 IEC 60146-1-1 DIN EN 60146-1-1 VDE 0558-11	Semiconductor converters; general requirements and line-commutated converters; Part 1-1: Defining the basic requirements
EN 60204-1 IEC 60204-1 DIN EN 60204-1 VDE 0113-1	Electrical equipment of machines; Part 1: General definitions
EN 60228 IEC 60228 DIN EN 60228 VDE0295	Conductors for cables and insulated leads
EN 60269-1 IEC 60269-1 DIN EN 60269-1 VDE 0636-1	Low-voltage fuses; Part 1: General requirements

Standards*	Title
IEC 60287-1 to -3	Cables - Calculation of the current carrying capacity Part 1: Current carrying capacity equations (100 % load factor) and calculating the losses Part 2: Thermal resistance - Part 3: Main sections for operating conditions
HD 60364-x-x IEC 60364-x-x DIN VDE 0100-x-x VDE 0100-x-x	Erection of power installations with nominal voltages up to 1000 V; Part 200: Definitions Part 410: Protection for safety, protection against electric shock Part 420: Protection for safety, protection against thermal effects Part 430: Protection of cables and conductors for over-current Part 450: Protection for safety, protection against undervoltage Part 470: Protection for safety; use of protection for safety Part 5xx: Selecting and erecting electrical equipment Part 520: Wiring systems Part 540: Earthing, protective conductor, potential bonding conductor Part 560: Electrical equipment for safety purposes
EN 60439 IEC 60439 DIN EN 60439 VDE 0660-500	Low-voltage switchgear assemblies; Part 1: Type-tested and partially type-tested assemblies
EN 60529 IEC 60529 DIN EN 60529 VDE 0470-1	Degrees of protection provided by enclosures (IP code)
EN 60721-3-x IEC 60721-3-x DIN EN 60721-3-x	Classification of environmental conditions Part 3-0: Classification of environmental parameters and their severities; Introduction Part 3-1: Classification of environmental parameters and their severities; Long-term storage Part 3-2: Classification of environmental parameters and their severities; Transport Part 3-3: Classification of environmental parameters and their severities; stationary use, weather protected
EN 60947-x-x IEC 60947 -x-x DIN EN 60947-x-x VDE 0660-x	Low-voltage switchgear
EN 61000-6-x IEC 61000-6-x DIN EN 61000-6-x VDE 0839-6-x	Electromagnetic compatibility (EMC) Part 6-1: Generic standard; Immunity for residential, commercial and light-industrial environments Part 6-2: Generic standards; Immunity for industrial environments Part 6-3: Generic standards; Generic standard emission for residential, commercial and light- industrial environments Part 6-4: Generic standards; Generic standard noise emission for industrial environments
EN 61140 IEC 61140 DIN EN 61140 VDE 0140-1	Protection against electric shock; Common aspects for installation and equipment
EN 61800-2 IEC 61800-2 DIN EN 61800-2 VDE 0160-102	Adjustable-speed electrical power drive systems; Part 2: General requirements - Rating specifications for low-voltage adjustable frequency a.c. power drive systems
EN 61800-3 IEC 61800-3 DIN EN 61800-3 VDE 0160-103	Adjustable-speed electrical power drive systems; Part 3: EMC - Requirements and specific test methods

System overview

1.6 Standards

Standards*	Title
EN 61800-5-x	Adjustable-speed electrical power drive systems;
IEC 61800-5-x	Part 5: Safety requirements;
DIN EN 61800-5-x	Main section 1: Electrical, thermal and energy requirements
VDE 0160-105-x	Main section 2: Functional safety requirements
EN 62061 IEC 62061 DIN EN 62061 VDE 0113-50	Safety of machinery; Functional safety of safety-related electrical, electronic and programmable electronic control systems
UL 50 CSA C22.2 No. 94.1	Enclosures for Electrical Equipment
UL 508	Industrial Control Equipment
CSA C22.2 No. 142	Process Control Equipment
UL 508C	Power Conversion Equipment
CSA C22.2 No. 14	Industrial Control Equipment

* The technical requirements in the standards listed are not necessarily identical.

Line-side power components

2.1 Introduction

The line connection for a SINAMICS blocksize drive line-up comprises an optional line reactor and an optional line filter:

- Line supply voltages:
 - 1-ph. 200 V to 1-ph. 240 V AC +/- 10%.
 - 3-ph. 380 V to 3-ph. 480 V AC +/- 10%.
- Line reactor versions:
 - 3 versions for frame sizes FSA FSC (chassis).
 - 5 versions for frame sizes FSD FSF (3 chassis and 2 standalone).
- Line filter versions:
 - Integrated
 - External
 - chassis
 - standalone

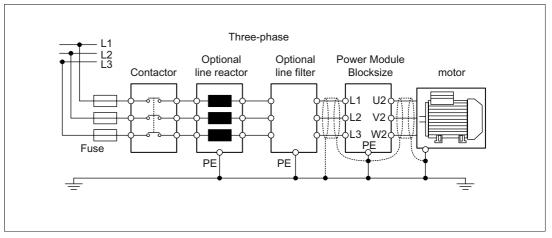


Figure 2-1 Example of a blocksize line connection for Power Modules without an integrated line filter

Note

Compliance with limit values for interference voltage under Category C2 acc. to EN 61800-3 can only be assured if a line filter is used.

2.1 Introduction

CAUTION

The following can occur if line reactors/line filters are used, which have not been approved for SINAMICS by SIEMENS:

- the Power Modules could be damaged/destroyed.

- Line reactions can occur that can damage or interfere with other loads powered from the same network.

CAUTION

The Power Modules in blocksize format with line filters are only suitable for direct connection to TN line supplies.

2.2 Line connection variants

2.2.1 Methods of line connection

A distinction is made between:

- Direct operation of the line connection components on the supply system
- Operation of the Line Connection Components via an Autotransformer
- Operation of the line connection components via an isolating transformer:

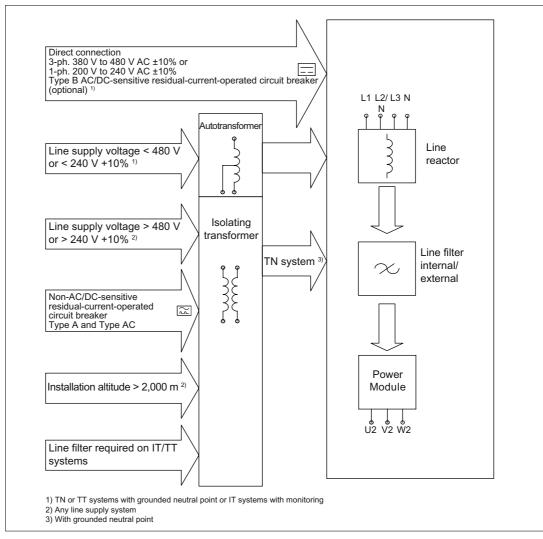


Figure 2-2 Overview of line connection variants

2.2 Line connection variants

Note

Line connection of motors

In combination with the drive system, the motors are generally approved for operation on TN and TT systems with grounded neutral point and on IT systems.

In operation on IT systems, the occurrence of a first fault between an active part and ground must be signaled by a monitoring device. In accordance with IEC 60364-4-41, it is recommended that the first fault be eliminated as quickly as is practically possible in order to minimize the temporary overload of the motor insulation.

In all other systems, except TN and TT systems with grounded neutral point and IT systems, such as systems with a grounded line conductor, an isolating transformer with grounded neutral point (secondary side) must be connected between the supply and the drive system in order to protect the motor insulation from continuous excessive stress.

2.2.2 Operation of the Line Connection Components on the Supply Network

The SINAMICS S Blocksize drive system is designed to be directly connected to TN, TT line supply systems with grounded neutral conductor or grounded phase conductor as well as to IT line systems with rated voltages from 3-ph. 380 V to 480 V AC and 1-ph. 200 V to 240 V AC. Operation with line filter is only possible, without having to use additional measures, when connected to TN line supply systems with grounded neutral conductor.

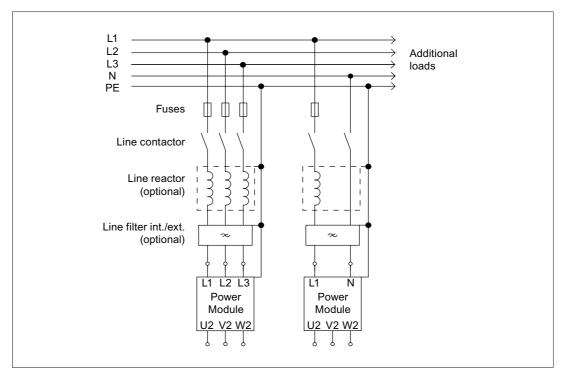
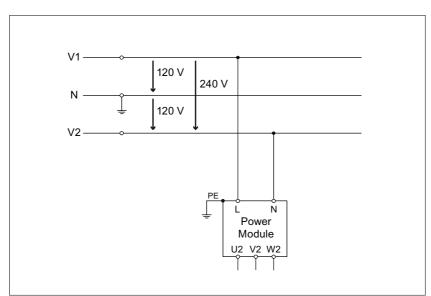
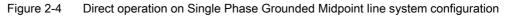




Figure 2-3 Direct operation on the line supply

Operation of single-phase units on the Single Phase Grounded Midpoint line system configuration

The line connection depicted below applies to the operation of single-phase units (1-ph. 230 V AC) on the Single Phase Grounded Midpoint line system configuration commonly used in the USA:

2.2 Line connection variants

2.2.3 Operation of the Line Connection Components via an Autotransformer

An autotransformer can be used to adapt the voltage in the range up to 3-ph. 480 V AC +10 % or 1-ph. 240 V AC +10 %.

To ensure safe electrical separation, an isolating transformer must be used for voltages greater than 3-ph. 480 V AC and 1-ph. 240 V AC.

Application example:

• The motor insulation must be protected from excessive voltages.

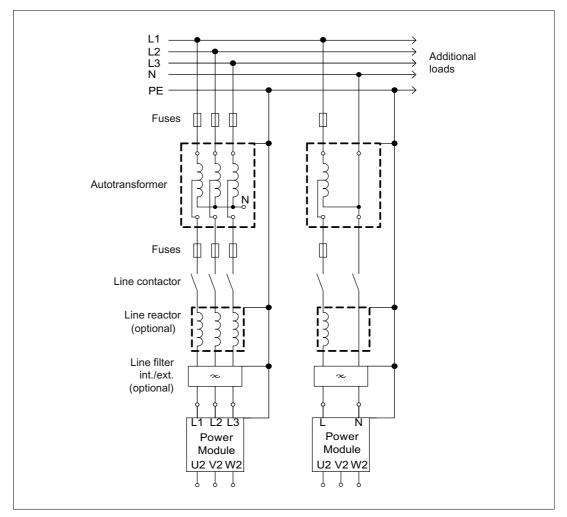


Figure 2-5 Autotransformer

2.2.4 Operation of the Line Connection Components via an Isolating Transformer

The isolating transformer converts the type of the line supply type in the plant (e.g. IT/TT line supply) to a TN line supply. Additional voltage adaptation to the permissible voltage tolerance range is possible.

An isolating transformer must be used in the following cases:

- The insulation of the Power Module and/or the motor is not adequate for the voltages that occur.
- There is no compatibility to an existing residual-current protective device.
- The installation altitude is greater than 2000 m above sea level.
- For all other systems that are not TN line supply systems with grounded neutral conductor, a line filter should always be used.

CAUTION

If the line supply voltage is greater than 3-ph. 480 V AC +10% or 1-ph. 240 V AC +10%, it is not permissible that an autotransformer is used.

In order to ensure protective separation, an isolating transformer must always be used.

Line-side power components

2.2 Line connection variants

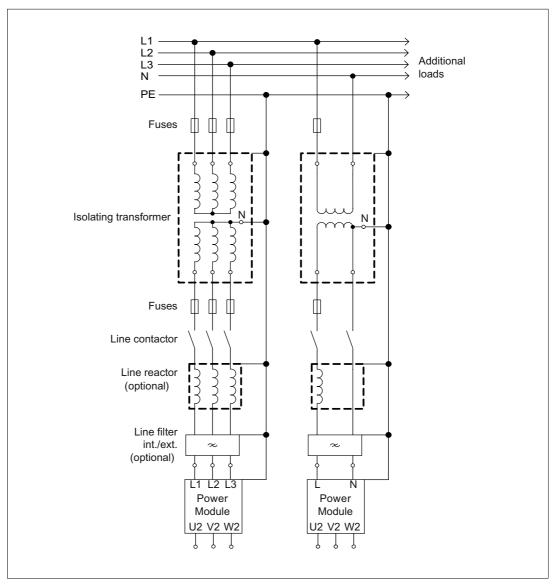


Figure 2-6 Isolating transformer

2.3 Line filter

2.3.1 Description

In conjunction with a suitably EMC-compliant system configuration, line filters limit the conducted interference emitted by the Power Modules to the limit values of Category C2 acc. to EN 61800-3.

A separate line filter (see catalog) must be used for the SINAMICS S110 drive line-up.

Note

All PM340 Power Modules are available with integrated line filters.

This does not apply, however, to frame size FSA for a 3-ph. 380 to 480 V AC line supply voltage; an external line filter is required here.

NOTICE

An additional line filter must be used to suppress interference in other loads. To prevent mutual interference, this line filter must not be equipped with line-side capacitors with respect to ground. Filter series B84144A*R120 (EPCOS) is recommended.

Note

According to product standard EN 61800-3, RFI suppression commensurate with the relevant rated conditions must be provided and is a legal requirement in the EU (EMC Directive). Line filters and/or line reactors are required for this purpose. The use of filters of other makes can lead to limit value violations, resonances, overvoltages and irreparable damage to motors or other equipment. The machine manufacturer must provide verification that the machinery to be operated with the drive products and the installed suppression elements, e.g. line filters, are CE/EMC-compliant before the machines are approved for delivery.

2.3.2 Safety information

Line filters are only suitable for direct connection to TN systems with grounded neutral conductor.

The cooling clearances of 100 mm above and below the components must be observed. This prevents thermal overload of the line filter.

The connections must not be interchanged:

- Incoming line cable to LINE/NETZ L1, L2, L3
- Outgoing cable to the line reactor to LOAD/LAST L1', L2', L3'

Non-observance may damage the line filter

Using line filters not released by Siemens AG for SINAMICS can lead to line reactions that can damage or destroy other loads powered from the network.

2.3.3 Dimension drawing

Blocksize line filter

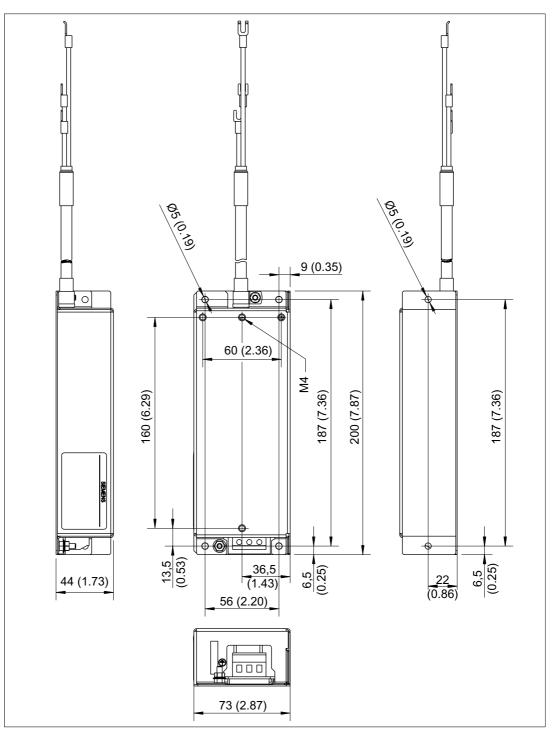


Figure 2-7 Dimension drawing of line filter, frame size FSA, all data in mm and (inches)

2.3.4 Installation

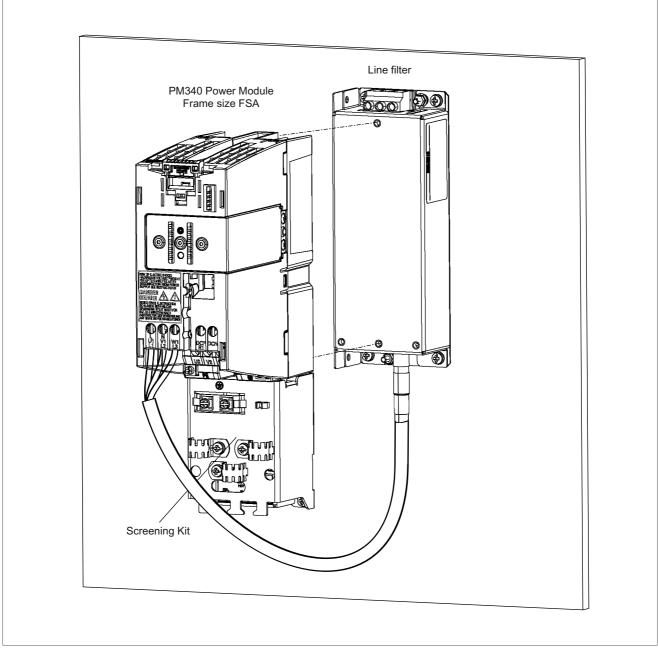


Figure 2-8 Mounting: Power Module PM340 frame size FSA with Screening Kit and line filter

2.3.5 Technical data, Blocksize line filter

Table 2-1 Technical data, Blocksize line filter

Line supply voltage 3-ph. 380480 V A	C	
Line filter 6SE6400-2FA00-6AD0		
Suitable for Power Module		6SL3210-1SE11-3UA0, 6SL3210-1SE11-7UA0 6SL3210-1SE12-2UA0, 6SL3210-1SE13-1UA0 6SL3210-1SE14-1UA0
Rated current	А	6
Power loss	W	< 5
Line supply connection L1, L2, L3		2.5 mm screw terminals ²
PE connection		At the housing with M4 stud
Load connection U, V, W		Shileded cable 3 x 2.5 mm ² 0.4 m long
Degree of protection		IP20 or IPXXB
Weight, approx.	kg	0.5

2.4 Line reactors

2.4.1 Description

The line reactors limit low-frequency line harmonics and reduce the load on the rectifiers in the Power Modules. They are used to smooth voltage spikes (line supply faults) or to bridge voltage dips/interruptions when commutating. We therefore recommend the use of line reactors with PM340 Power Modules.

The line reactors are sub-chassis components.

2.4.2 Safety information

/!\warning

The cooling clearances of 100 mm above and below the components must be observed.

Note

The connecting cables to the Power Module must be as short as possible (max. 5 m). If possible, they should be shielded.

The connections must not be interchanged:

- Incoming line cable at U1, V1, W1 or L1, N and

- Outgoing cable to the load 1U2, 1V2, 1W2.

CAUTION

When using line reactors that have not been approved by SIEMENS for SINAMICS, the following can occur:

- the Power Modules could be damaged/destroyed.

- Line harmonics that may interfere with or damage other loads connected to the same line supply.

The surface temperature of the line reactors may exceed 80 °C.

2.4.3 Dimension drawings

Blocksize line reactors

Figure 2-9 Dimension drawing of line reactors, frame sizes FSA, FSB, and FSC

Table 2- 2	Dimensions of line reactors, frame size FSA, all data in mm and (inches)
------------	--

Line reactor 6SE6400-	3CC00-4AB3	3CC01-0AB3	3CC00-2AD3	3CC00-4AD3	3CC00-6AD3
Frame size	FSA				
А			200 (7.87)		
В	75 (2.95)				
С	50 (1.96)				

Line-side power components

Line reactor 6SL3203-	0CD21-0AA0	0CD21-4AA0	0CD22-2AA0	0CD23-5AA0
Frame size	FSB		F	SC
А	270 (10.62)		336 (13.22)	336 (13.22)
В	153 (6.02)		189 (7.44)	189 (7.44)
С	70 (2.75)		50 (1.96)	80 (3.14)

Table 2-3 Dimensions of line reactors, frame sizes FSB and FSC, all data in mm and (inches)

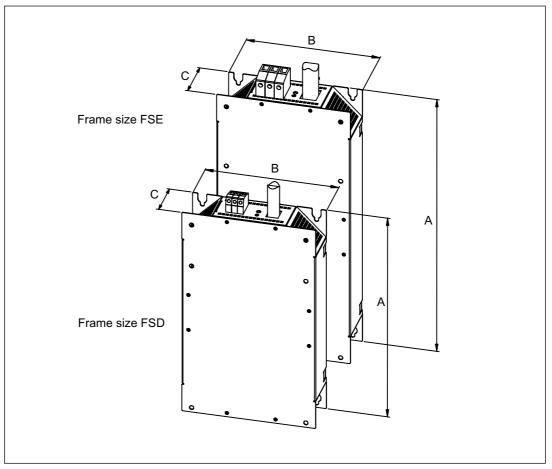


Figure 2-10 Dimension drawing of line reactors, frame sizes FSD and FSE

Table 2- 4	Dimensions of line reactors, frame sizes FSD and FSE, all data in mm and (inches)

Line reactor 6SL3203-	eactor 6SL3203- 0CJ24-5AA0 0CD25-3AA0		0CJ28-6AA0
Frame size	F	FSE	
А	455 (*	577 (22.71)	
В	275 (*	275 (10.82)	
С	83.5 (3.28)		93.5 (3.68)

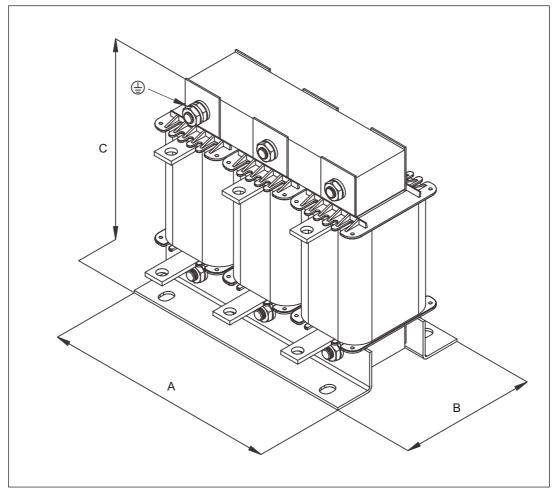
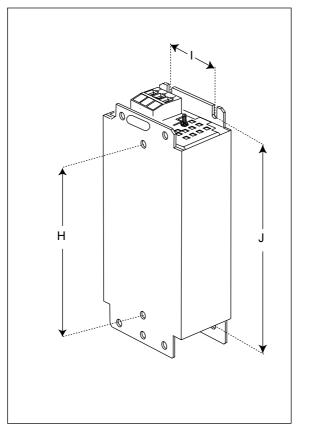


Figure 2-11 Dimension drawing of line reactor, frame size FSF

Table 2- 5	Dimensions of line reactor,	frame size FSF,	, all data in mm and (inches)
------------	-----------------------------	-----------------	-------------------------------


Line reactor 6SE6400-	3CC11-2FD0 3CC11-7FD0			
Frame size	FSF			
А	240 (9.44)			
В	141 (5.55)			
С	228 (8.97)			

2.4.4 Installation

The line reactors for Power Modules with frame sizes FSA to FSE are designed as subchassis components. The line reactor is attached to the mounting surface and, to save space, the Power Module is mounted directly on the line reactor. The cables to the Power Modules are already connected at the line reactor. The line reactor is connected to the line supply through terminals.

When installed, the power supply terminals are at the top on frame sizes FSA to FSC, and at the bottom on frame sizes FSD and FSE.

Given their weight and their size, the line reactors for Power Modules with frame size FSF are mounted separately.

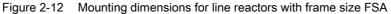


Table 2-6 Mounting dimensions for line reactors with frame size FSA, all data in mm and (inches)

Line reactor 6SE6400-	3CC00-4AB3	3CC01-0AB3	3CC00-2AD3	3CC00-4AD3	3CC00-6AD3
Frame size	FSA				
Н		160 (6.29)			
1	56 (2.20)				
J	187 (7.36)				
Securing screws	M4/1.1 Nm				

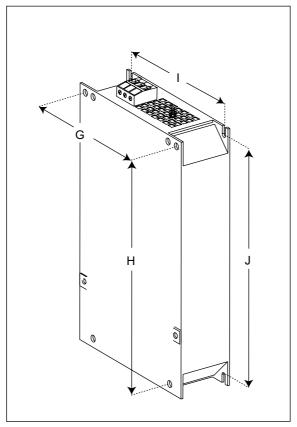


Figure 2-13 Mounting dimensions for line reactors with frame sizes FSB and FSC

Table 2- 7	Mounting dimensions for line reactors with frame sizes FSB and FSC, all data in mm and (inches)	
------------	---	--

Line reactor 6SL3203-	0CD21-0AA0	0CD21-4AA0	0CD22-2AA0	0CD22-2AA0	0CD23-5AA0
Frame size	FSB			FSC	
G	138 (5.43)			174 (6.85)	
Н	174 (6.85)			204 (8.03)	
Ι	120 (4.72)			156	(6.14)
J	200 (7.87)			232	(9.13)
Securing screws	M4/1.5 Nm			M5/2.	25 Nm

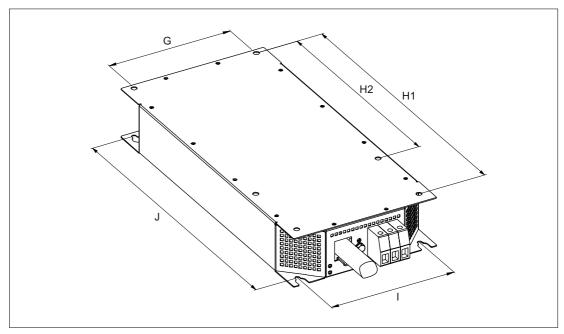


Figure 2-14 Mounting dimensions for line reactors with frame sizes FSD and FSE

Table 2- 8	Mounting dimensions for line reactors with frame sizes FSD and FSE, all data in mm and (inches)	
------------	---	--

Line reactor 6SL3203-	0CD25-3AA0	0CJ24-5AA0	0CJ28-6AA0
Frame size	FSD		FSE
G	235 (9.25)	235 (9.25)	235 (9.25)
H1	325 (12.79)	325 (12.79)	405 (15.95)
H2	419 (16.50)	419 (16.50)	541 (21.30)
	235 (9.25)	235 (9.25)	235 (9.25)
J	421 (16.57)	421 (16.57)	544 (21.42)
Securing screws	4 x M8/13 Nm		4 x M8/13 Nm

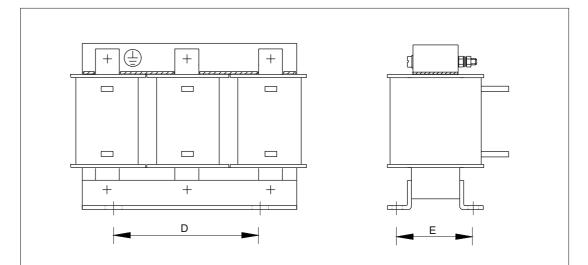


Figure 2-15 Mounting dimensions for line reactors with frame size FSF

Table 2-9	Mounting dimensions for line reactors with frame size FSF, all data in mm and (inches)
-----------	--

Line reactor 6SE6400-	3CC11-2FD0	3CC11-7FD0	
Frame size	FSF		
D	185 (7.28)		
E	95 (3.74)		
Securing screws	4 x M8/13 Nm		

Mounting examples

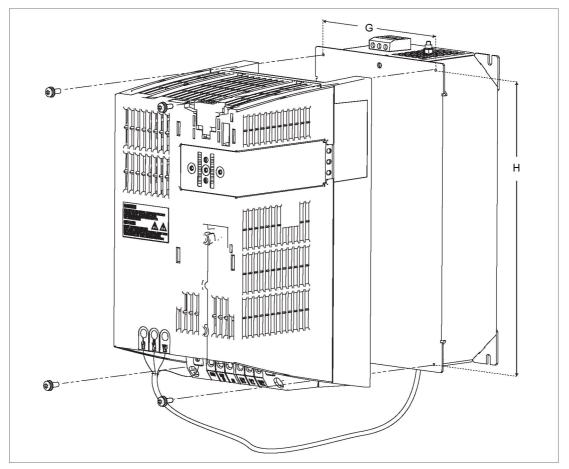


Figure 2-16 Mounting of PM340 with line reactor (based on frame size FSB)

Figure 2-17 Side mounting of line reactors with frame sizes FSB and FSC

Line-side power components

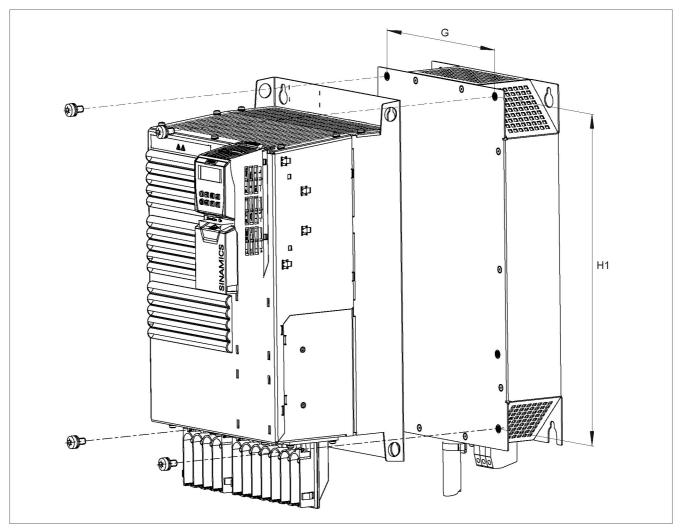


Figure 2-18 Mounting of PM340 with line reactor (based on frame size FSD)

2.4.5 Electrical Connection

Line supply/load connection

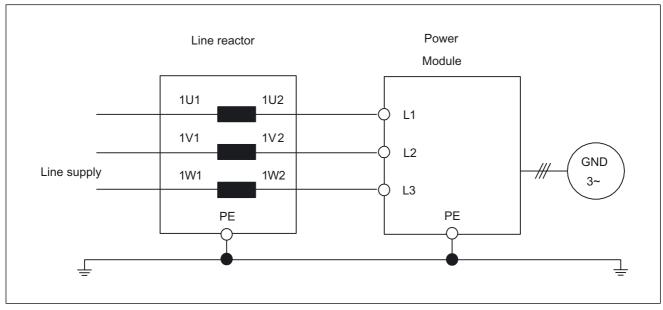


Figure 2-19 Power Module with line filter

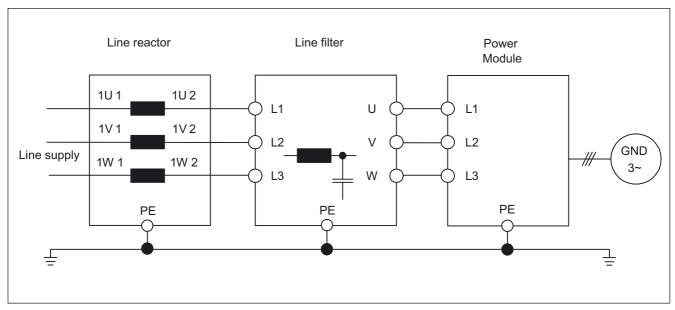


Figure 2-20 Power Module Blocksize with line reactor and line filter

2.4.6 Technical data, Blocksize

Line supply voltage 1-ph 200 V AC -10 % to 240 V AC +10%				
Order No. 6SE6400-		3CC00-4AB3	3CC01-0AB3	
Suitable for Power Module 6SL3210-		1SB11-0xxx 1SB12-3xxx	1SB14-0xxx	
Rated line reactor current	А	3.4	8.1	
Power loss 50 / 60 Hz	W	12.5/15	11.5/14.5	
Line supply connection L1, N		6 mm screw terminals ²	6 mm screw terminals ²	
Load connection 1U2, 1V2, 1W2		Cable 3 x 1.5 mm ² Length approx. 0.38 m	Cable 3 x 1.5 mm ² Length approx. 0.38 m	
PE connection		M5 stud	M5 stud	
Degree of protection		IP20 or IPXXB	IP20 or IPXXB	
Weight	kg	1.3	1.3	

Table 2-11 Technical specifications, blocksize line reactors, frame size FSA

Line supply voltage 3-ph 380 V AC -10 % to 480 V AC +10 %					
Order no. 6SE6400-		3CC00-2AD3	3CC00-4AD3	3CC00-6AD3	
Suitable for Power Module 6SL3210-		1SE11-3UA0 1SE11-7UA0	1SE12-2UA0 1SE13-1UA0	1SE14-1UA0	
Rated line reactor current	А	1.9	3.5	4.8	
Power loss 50 / 60 Hz	W	6/7	12.5/15	7.5/9	
Line supply connection U1, V1, W1		Screw-type terminal 6 mm ²	Screw-type terminal 6 mm ²	Screw-type terminal 6 mm ²	
Load connection 1U2, 1V2, 1W2		Cable 4 x 1.5 mm ² Length approx. 0.38 m	Cable 4 x 1.5 mm ² Length approx. 0.38 m	Cable 4 x 1.5 mm ² Length approx. 0.38 m	
PE connection		At the housing with M5 stud	At the housing with M5 stud	At the housing with M5 stud	
Degree of protection		IP20 or IPXXB	IP20 or IPXXB	IP20 or IPXXB	
Weight	kg	1.2	1.3	1.3	

Line supply voltage 3-ph 380 V AC -10% to 480 V AC +10%						
Frame size		FSB		FSC		
Order No. 6SL3203-		0CD21-0AA0	0CD21-4AA0	0CD22-2AA0	0CD23-5AA0	
Suitable for Power Module 6SL3210-		1SE16-0xxx 1SE17-7xxx	1SE21-0xxx	1SE21-8xxx 1SE22-5xxx	1SE23-2xxx	
Rated line reactor current	A	9	11.6	25	31.3	
Power loss 50 / 60 Hz	W	9/11	27/32	98/118	37/44	
Line supply connection U1, V1, W1		Screw-type terminal 6 mm ²	Screw-type terminal 6 mm ²	Screw-type terminal 6 mm ²	Screw-type terminal 6 mm ²	
Load connection 1U2, 1V2, 1W2		Cable 4 x 1.5 mm ² Length approx. 0.46 m	Cable 4 x 1.5 mm ² Length approx. 0.46 m	Cable 4 x 2.5 mm ² Length approx. 0.49 m	Cable 4 x 2.5 mm ² Length approx. 0.49 m	
PE connection		At the housing with M5 stud	At the housing with M5 stud	At the housing with M5 stud	At the housing with M5 stud	
Degree of protection		IP20 or IPXXB	IP20 or IPXXB	IP20 or IPXXB	IP20 or IPXXB	
Weight	kg	3.4	3.4	6.3	6.4	

Table 2-12	Technical specifications,	blocksize line reactors,	frame sizes FSB and FSC
------------	---------------------------	--------------------------	-------------------------

Table 2-13 Technical specifications, blocksize line reactors, frame sizes FSD, FSE, and FSF

Line supply voltage 3-ph 380 V AC -10% to 480 V AC +10%						
Frame size	FSD			FSE	FSF	
Order number		6SL3203- 0CJ24-5AA0	6SL3203- 0CD25-3AA0	6SL3203- 0CJ28-6AA0	6SE6400- 3CC11-2FD0	6SE6400- 3CC11-7FD0
Suitable for Power Module 6SL3210- 6SL3215-		1SE23-8xxx 1SE24-5xxx 1SE23-8UAx	1SE26-0xxx 1SE26-0UAx	1SE27-5xxx 1SE31-0xxx 1SE27-5UAx 1SE31-0UAx	1SE31-1xxx 1SE31-5xxx 1SE31-1UAx	1SE31-8xxx 1SE31-8UAx
Rated line reactor current	A	54	71	105	178	225
Power loss 50/60 Hz	W	90/115	90/115	170/215	280/360	280/360
Line supply connection U1, V1, W1		Screw-type terminal 16 mm ²	Screw-type terminal 16 mm ²	Screw-type terminal 50 mm ²	Flat connector for M10 cable lug	Flat connector for M10 cable lug
Load connection 1U2, 1V2, 1W2		Cable 4 x 16 mm ² Length approx. 0.70 m	Cable 4 x 16 mm ² Length approx. 0.70 m	Cable 4 x 35 mm ² Length approx. 0.70 m	Flat connector for M10 cable lug	Flat connector for M10 cable lug
PE connection		At the housing with M8 screw	At the housing with M8 screw	At the housing with M8 screw	On housing with M8 bolt	On housing with M8 bolt
Degree of protection		IP20 or IPXXB	IP20 or IPXXB	IP20 or IPXXB	IP00	IP00
Weight	kg	13	13	19	25	25

Line-side power components

Manual Manual, 11.2009 Edition, 6SL3097-4AC10-0BP1

The Power Modules cover the power range from 0.12 kW to 90.0 kW and are available in versions with and without line filter.

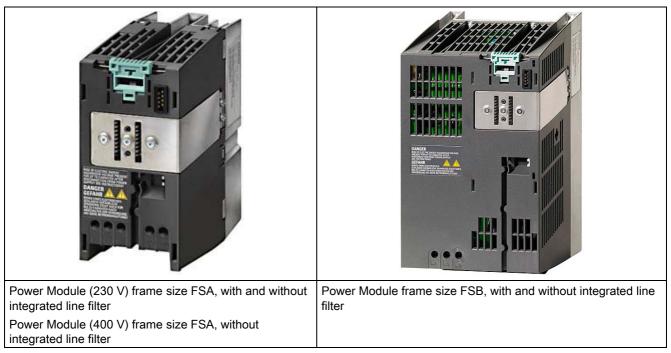
Description

• Line-side diode rectifier

• 24 V DC / 1 A power supply

Gating unit, actual value acquisitionFan to cool the power semiconductors

• Output inverter


Table 3-1 Overview, Power Modules PM340 (selection)

Power Modules Blocksize (PM340)

The Power Modules in blocksize format are designed as follows:

• DC link electrolytic capacitors with pre-charging circuit

• Braking chopper for (external) braking resistor

Power Modules

3.1

3.1.1

59

Power Module frame size FSC, with and without integrated line filter	Power Module frame size FSD, with and without integrated line filter		
Power Module frame size FSE, with and without integrated line filter	Power Module frame size FSF, with and without integrated line filter		

3.1.2 Safety information

During transport and during storage, Power Modules must be protected against mechanical shock and vibration. It is also important to protect the unit against water (rain) and against excessively high/excessively low temperatures.

Note

Connection authorization

Power Modules have been designed for use in the industrial environment and generate current harmonics on the line side as a result of the rectifier circuit.

When connecting a machine with integrated Power Modules to the public low-voltage line supply, authorization is required in advance from the local power supply company (utility company) if

- the rated input current of the motor ≤ 16 A per conductor, and
- the rated input current of the motor does not comply with the requirements specified in EN 61000-3-2 regarding current harmonics.

In a residential environment this product can cause radio disturbances, which may make interference-suppression measures necessary.

Grounding/protective grounding of the Power Module

The Power Module housing must always be grounded. If the Power Module is not correctly grounded, then extremely hazardous states can occur, which under certain circumstances, can result in death.

It must be checked as to whether the Power Module is designed for the correct power supply - higher supply voltages may not be connected to the Power Module.

After connecting the line and motor feeder cables to the appropriate terminals, check that the front covers (only frame sizes FSD to FSF) are closed and latched. Only then may the Power Module be connected to the power supply.

NOTICE

For a UL-approved system use UL-approved cables only.

Once all the supply voltages have been disconnected, a hazardous voltage may be present in the power unit for up to 5 minutes. The cover for the terminals may only be opened after this time has definitely elapsed.

When opening the protective cover, you must activate the release. A suitable tool (e.g. screwdriver) must be used for this purpose.

Damaged components must not be used, otherwise this could result in secondary damage or accidents.

The hazard warning in the local language for the DC link discharge time must be affixed to the component. A set of labels bearing this warning in 16 languages is provided with the component.

The drive components generate high leakage currents in the protective conductor. The components must only be operated in cabinets or in closed electrical operating areas and must be connected with the protective conductor. To protect against electric shock, the protective conductor connection on the cabinet or machine must be implemented in accordance with one of the following measures:

- Fixed connection and protective conductor connection by means of ≥ 10 mm² Cu or ≥ 16 mm² Al
- stationary connection and automatic shutdown of the power supply if the protective conductor is interrupted

Power Modules

3.1 Power Modules Blocksize (PM340)

Cooling and mounting clearances for Power Modules

Power Modules must be mounted in the vertical position.

The following clearances must be observed between the components when mounting ¹):

- frame size FSA: 30 mm (1.18 inch)
- frame size FSB: 40 mm (1.57 inch)
- frame size FSC: 50 mm (1.96 inch)

The following cooling clearances must be observed above and below the component:

- frame sizes FSA and FSB: 100 mm (3.93 inch)

- frame size FSC: 125 mm (4.92 inch)
- frame sizes FSD and FSE: 300 mm (11.81 inch) and
- frame size FSF: 350 mm (13.77 inches).

The following cooling clearances must be observed in front of the component:

- frame sizes FSB to FSF: 30 mm (1.18 inch)

Devices, that could restrict the cooling air flow may not be mounted/installed in this area. It must be carefully ensured that the cooling air flow of the Power Modules can flow unrestricted.

- 1) The Power Modules can be mounted side by side without sub-chassis components up to an ambient temperature of 40 °C.
- In combination with sub-chassis components and at ambient temperatures of 40 °C to 55 °C, the specified lateral minimum clearances must
- be observed. Where combinations of different frame sizes are concerned, the longer of the two clearances shall apply.

Cable shields and unused power-cable cores (e.g. brake cores) must be connected to PE potential to dissipate capacitive cross-talk charges.

Non-observance can cause lethal shock voltages.

Power Modules

3.1 Power Modules Blocksize (PM340)

3.1.3 Interface description

3.1.3.1 Overview

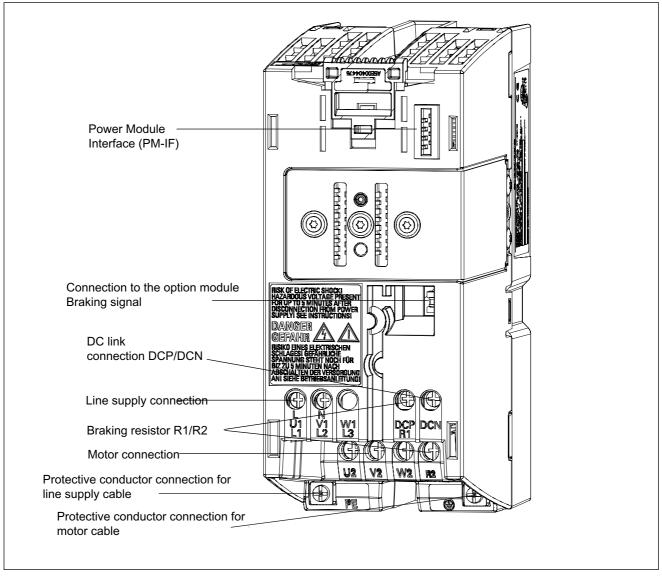


Figure 3-1 PM340, frame size FSA

Power Modules

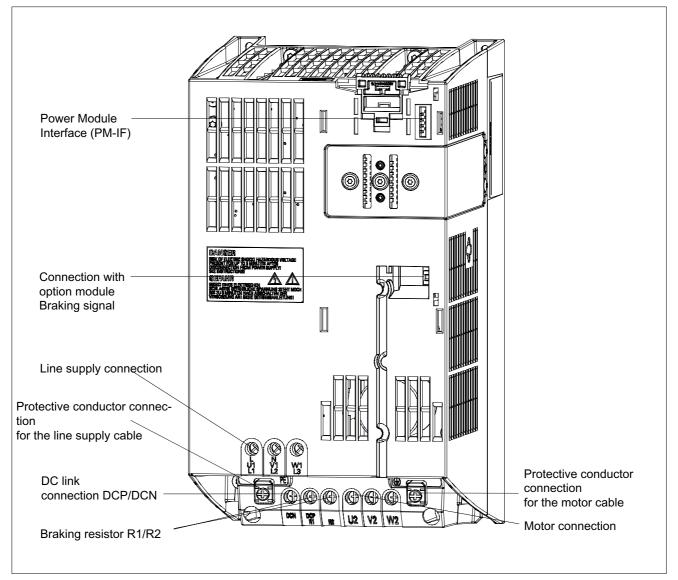


Figure 3-2 PM340, frame size FSB

Power Modules

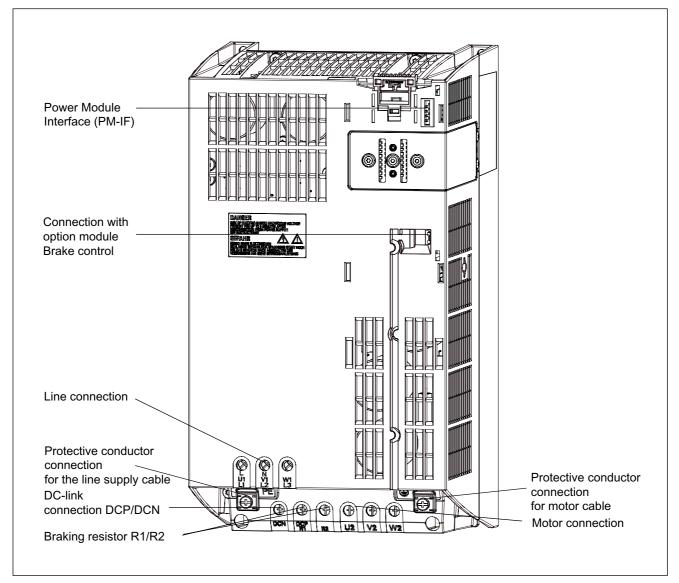


Figure 3-3 PM340, frame size FSC

Power Modules

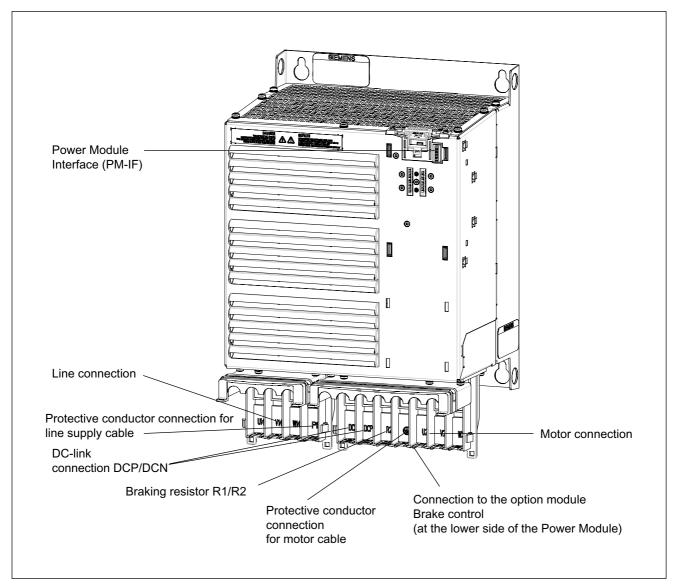


Figure 3-4 PM340, frame size FSD

Power Modules

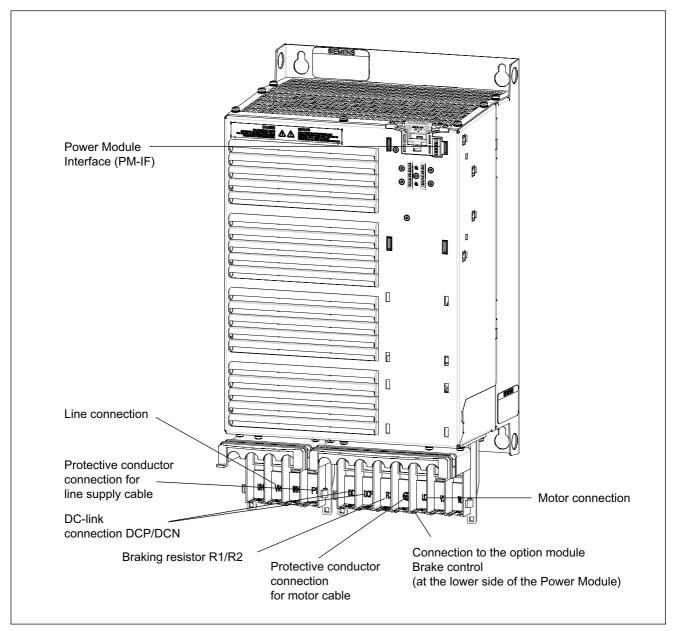


Figure 3-5 PM340, frame size FSE

Power Modules

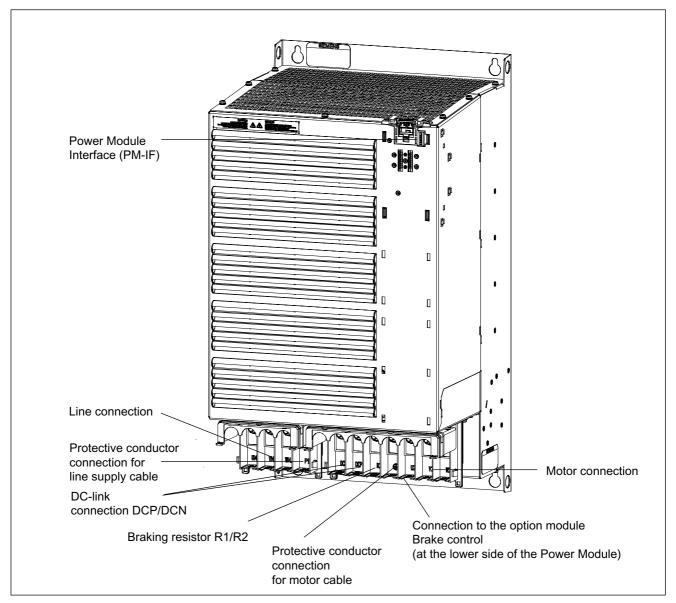


Figure 3-6 PM340, frame size FSF

3.1.3.2 Example connections

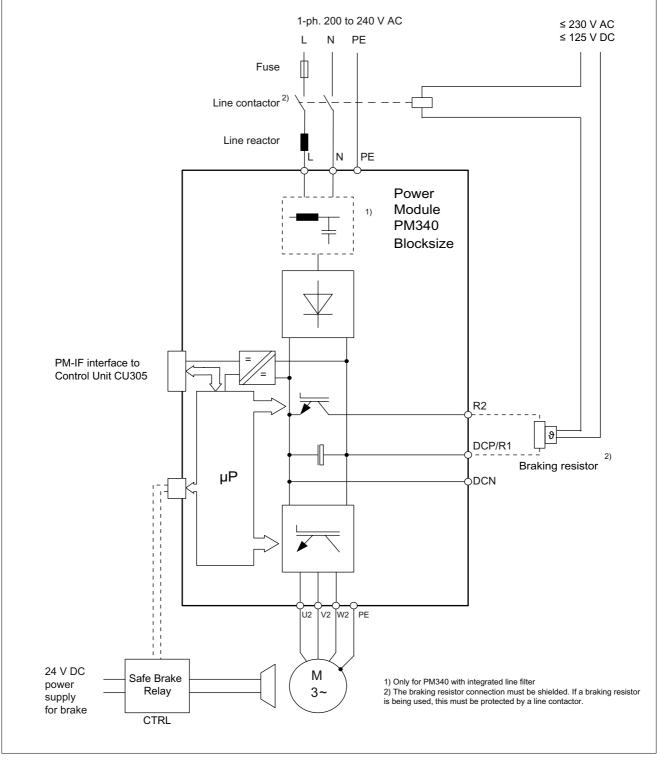


Figure 3-7 Connection example PM340, 1-ph. 200 V - 240 V AC

Power Modules

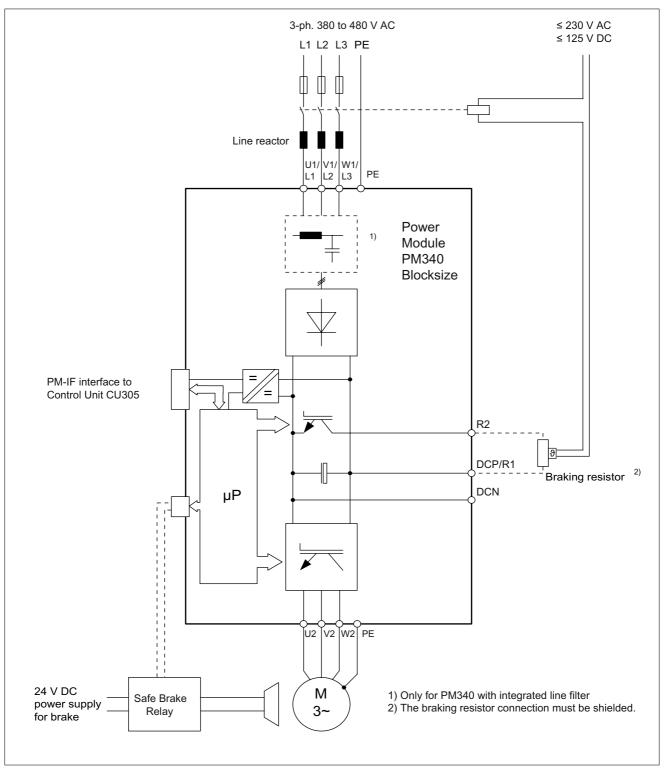


Figure 3-8 Connection example PM340, 3-ph. 380 V - 480 V AC

Power Modules

3.1 Power Modules Blocksize (PM340)

Arrangement of the line supply and motor terminals.

The following diagram shows the arrangement of the line and motor terminals for frame sizes FSA to FSF of the PM340 Power Module. The diagram also includes the terminal tightening torques.

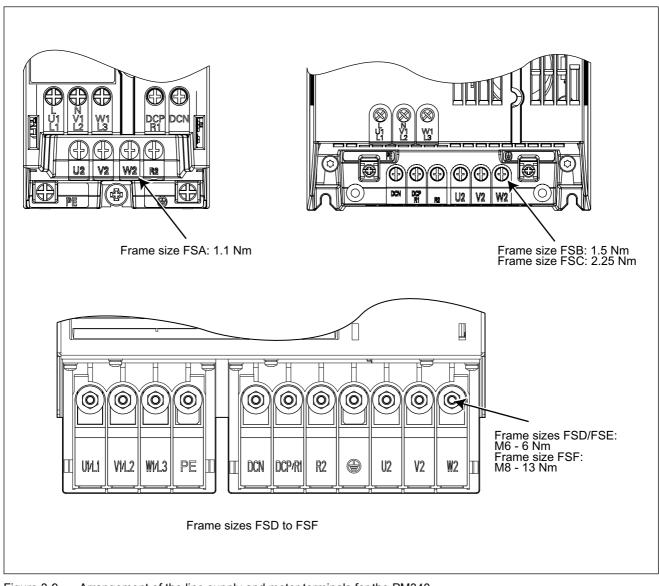


Figure 3-9 Arrangement of the line supply and motor terminals for the PM340

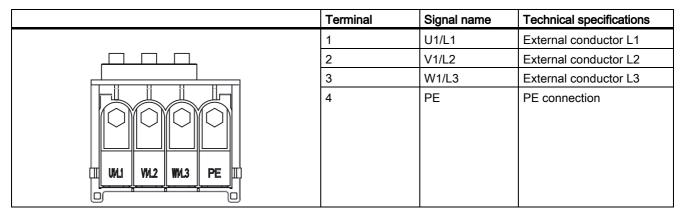

3.1.3.3 Line supply connection

Table 3-2	Terminal block, line supply connection 1-ph. 200 V - 240 V AC
Table 3- Z	Terminal block, line supply connection 1-ph. 200 v - 240 v AC

	Terminal	Signal name	Technical specifications
	1	L	Line phase L
L U1 U1 L U1 L U1 L U1 L U1 L U1 L U1 L	2	N	Line phase N

Max. conductor cross-section: 2.5 mm²

Table 3-3 Terminal block, line supply connection 3-ph. 380 V - 480 V AC

3.1.3.4 Motor connection

Table 3-4 Terminal block, motor connection 200 V - 240 V 1 AC and 380 V - 480 V 3 AC

Terminal	Technical specifications
	PE connection
U2	Motor phase U
V2	Motor phase V
W2	Motor phase W
	() U2 V2

3.1 Power Modules Blocksize (PM340)

3.1.3.5 Braking resistor and DC link connection

Table 3-5 Terminal block, braking resistor, and DC link connection

Terminal	Technical specifications
DCN	DC link negative
DCP/R1	DC link positive and positive connection for braking resistor
R2	Negative connection for the braking resistor

Note

To connect the cable lugs of the brake resistor cable to a PM340 Power Module frame size FSA it is necessary to nip the lug on connection R2 off using a diagonal cutter tool. Take great care to ensure that no pieces of plastic fall into the housing.

3.1.3.6 Connection to the option module, brake control

Table 3- 6 Connector

Terminal	Designation	Technical specifications
1	Low	Low signal, option module brake control at PM340
2	High	High signal, option module brake control at PM340

3.1 Power Modules Blocksize (PM340)

Dimension drawings 3.1.4

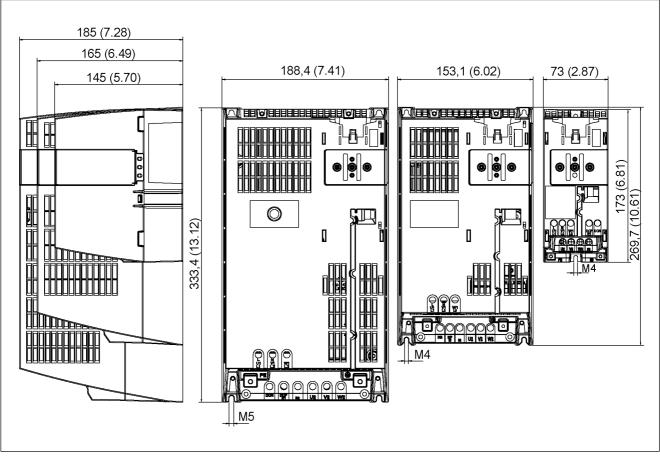


Figure 3-10 Dimension drawings, Power Module PM340

Frame size FSC

Frame size FSB

Frame size FSA

Power Modules

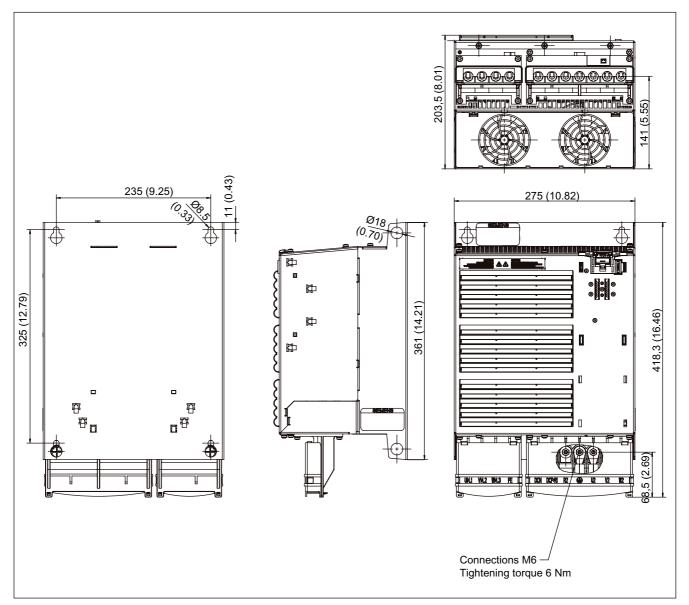


Figure 3-11 Dimension drawing: Power Module PM340, frame size FSD

Power Modules

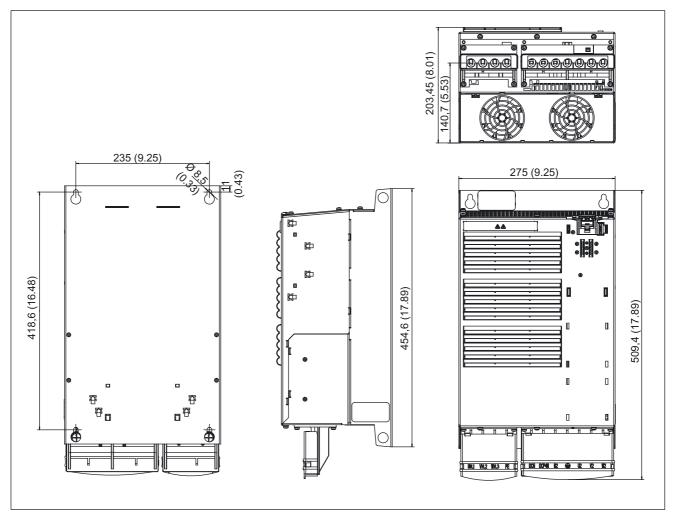


Figure 3-12 Dimension drawing: Power Module PM340 with integrated line filter, frame size FSD

Power Modules

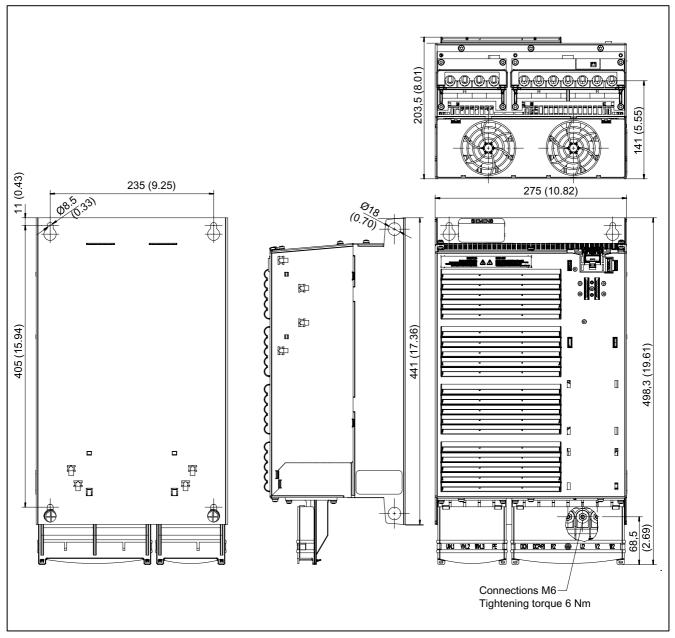


Figure 3-13 Dimension drawing: Power Module PM340, frame size FSE

Power Modules

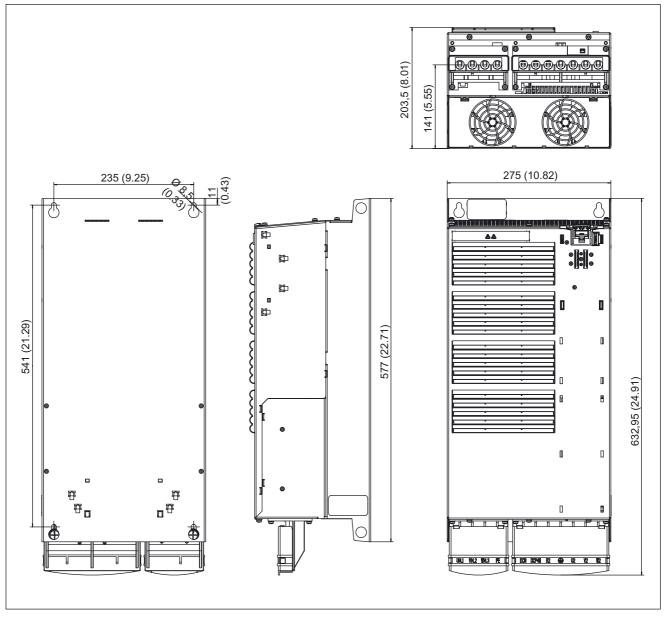


Figure 3-14 Dimension drawing: Power Module PM340 with integrated line filter, frame size FSE

Power Modules

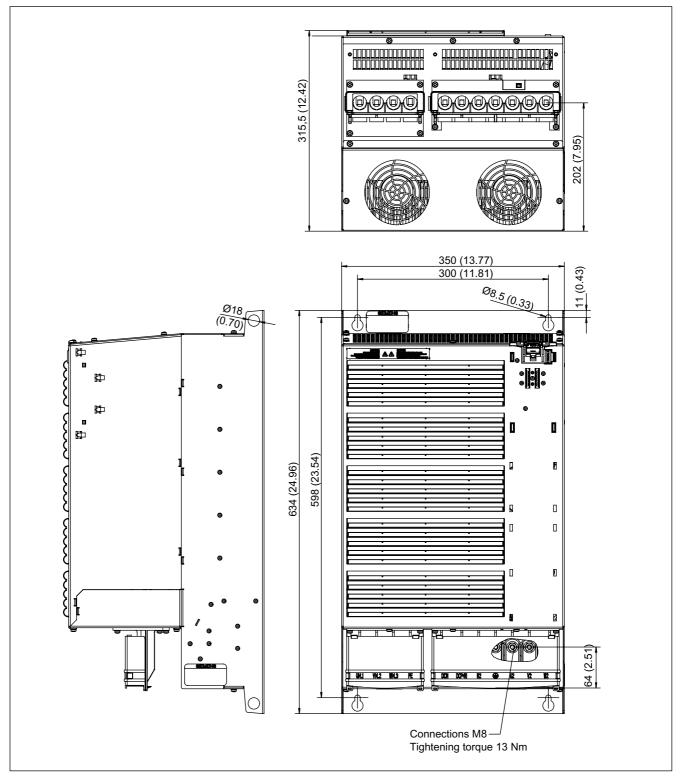


Figure 3-15 Dimension drawing: Power Module PM340, frame size FSF

Power Modules

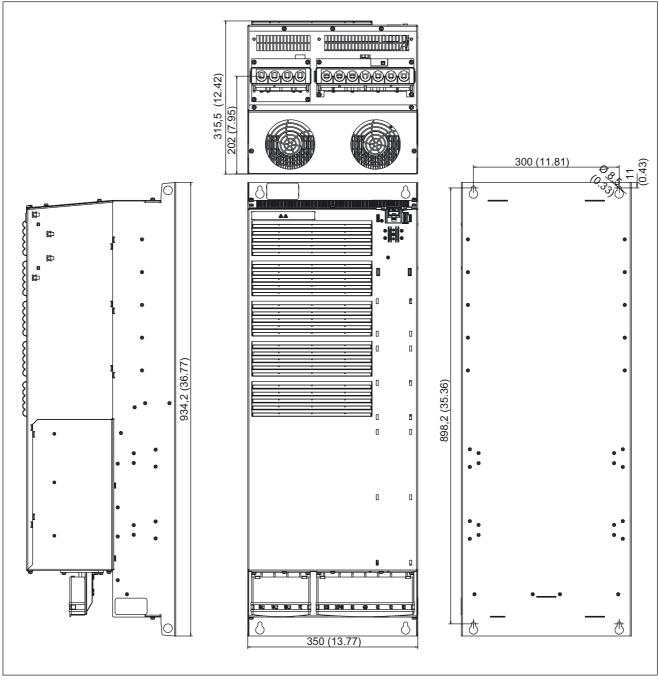


Figure 3-16 Dimension drawing: Power Module PM340 with integrated line filter, frame size FSF

3.1.5 Mounting

3.1.5.1 Drilling patterns

Drilling templates for frame sizes FSA and FSC

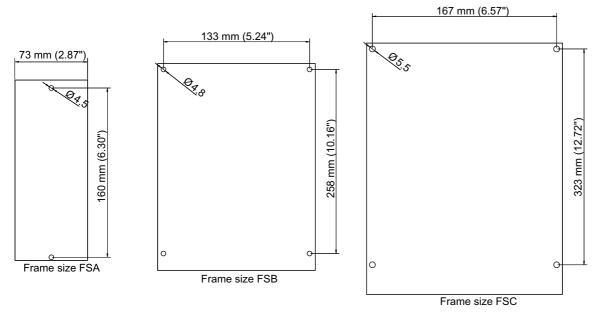
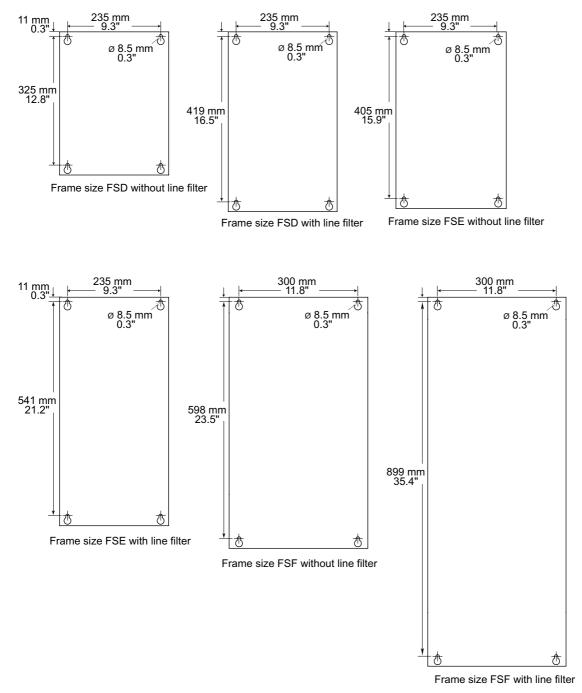



Figure 3-17 Drilling templates for frame sizes FSA and FSC

3.1 Power Modules Blocksize (PM340)

Drilling templates for frame sizes FSD to FSF

Figure 3-18 Drilling templates for frame sizes FSD to FSF - with and without line filter

3.1 Power Modules Blocksize (PM340)

3.1.5.2 Mounting dimensions and tightening torques

The mounting dimensions and the tightening torques for fixing the Power Modules are specified in the following table.

Frame size	Height, width, depth		eight, width, depth Dimensions (with Control Unit)	Retaining type	Tightening torques
FSA	HxWxD	mm Inches	173 x 73 x 145 6.81 x 2.87 x 5.71	2 x M4 studs, 2 x M4 nuts, 2 x M4 washers	2.5 Nm with washers
FSB	HxWxD	mm Inches	270 x 153 x 165 10.63 x 6.02 x 6.50	4 x M4 studs, 4 x M4 nuts, 4 x M4 washers	
FSC	HxWxD	mm Inches	334 x 189 x 185 13.1 x 7.41 x 7.28	4 x M5 studs, 4 x M5 nuts, 4 x M5 washers	
FSD without line filter	HxWxD	mm Inches	419 x 275 x 204 16.3 x 10.8 x 8.0	4 x M6 studs, 4 x M6nuts, 4 x M6 washers	6 Nm with washers
FSD with integrated line filter	HxWxD	mm Inches	512 x 275 x 204 20.1 x 10.8 x 8.0	-	
FSE without line filter	HxWxD	mm Inches	499 x 275 x 204 19.6 x 10.8 x 8.0		
FSE with integrated line filter	HxWxD	mm Inches	635 x 275 x 204 25 x 10.8 x 8.0		
FSF without line filter	HxWxD	mm Inches	635 x 350 x 316 25.0 x 13.8 x 12.4	4 x M8 studs, 4 x M8 nuts, 4 x M8 washers	13 Nm with washers
FSF with integrated line filter	HxWxD	mm Inches	934 x 350 x 316 36.8 x 13.8 x 12.4		

Table 3-7 PM340, dimensions and tightening torques for mounting

Frame size	Tightenii	ng torques
FSA	Nm	1.1
FSB	Nm	1.5
FSC	Nm	2.25
FSD	Nm	6
FSE	Nm	6
FSF	Nm	13

3.1.5.3 Access to the power supply terminals and motor terminals

For frame sizes FSD to FSF, the terminals are accessed by releasing the tongue at the side of the terminal covers using a suitable flat screwdriver. The cover can then be pushed upwards and engaged in this position as shown in the following diagram.

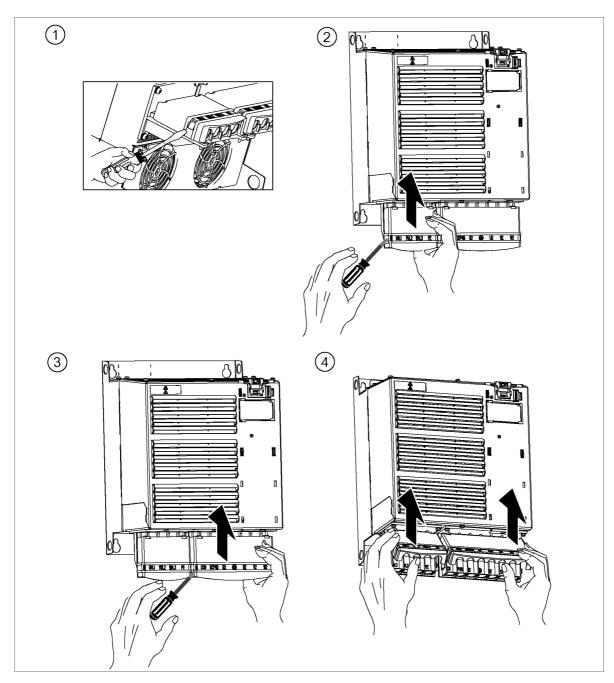


Figure 3-19 Access to the line and motor terminals for frame sizes FSD to FSF

Once the terminal cover has been removed, the degree of protection of the Power Module is reduced to IP00.

Operation on non-grounded line supply systems (IT)

It is not permissible to use Power Modules with integrated line filter in IT line supply systems.

3.1.6 Technical data

Line supply voltage 1-ph. 200 V to 2	40 V AC ±10)%		
PM340	6SL3210-	1SB11-0UA0	1SB12-3UA0	1SB14-0UA0
PM340 with integrated line filter	6SL3210-	1SB11-0AA0	1SB12-3AA0	1SB14-0AA0
Frame size		FSA	FSA	FSA
Rated output current In	А	0.9	2.3	3.9
Base load current I _H	А	0.8	2.0	3.4
Output current for S6 duty (40%) I_{s6}	Α	1.4	3.3	5.5
Max. output current I _{max}	Α	2.0	4.6	7.8
Rated power based on In	kW	0.12	0.37	0.75
Rated pulse frequency	kHz	4	4	4
Power loss	kW	0.06	0.075	0.11
Cooling air requirement	m³/s	0.005	0.005	0.005
Sound pressure level	dB(A)	< 45	< 45	< 45
24 V DC power supply for the Control Unit	А	1.0	1.0	1.0
Rated input current ¹⁾ - with line reactor - without line reactor	A	1.4 2.2	4	6.5 10
Class J UL safety fuses Rated current Rated short-circuit current SCCR	A kA	6 65	10 65	15 65
Circuit breaker type designation EN 60947 Rated current	A	5SJ4206-7HG41 6	5SJ4210-7HG41	5SJ4216-7HG41 16
Circuit breaker type designation UL489 / CSA C22.2 No. 5-02 Rated current Rated short-circuit current SCCR	A kA	5SJ4206-7HG41 6 14	5SJ4210-7HG41 10 14	5SJ4216-7HG41 16 14
Resistance value of the external braking resistor	Ω	> 180	> 180	> 180

Table 3-9 Technical specifications PM340, Part 1

3.1 Power Modules Blocksize (PM340)

Line supply voltage 1-ph. 200 V to 240 V AC ±10%					
PM340	6SL3210-	1SB11-0UA0	1SB12-3UA0	1SB14-0UA0	
PM340 with integrated line filter	6SL3210-	1SB11-0AA0	1SB12-3AA0	1SB14-0AA0	
Max. cable length to braking resistor	m	15	15	15	
Line supply connection L, N					
Motor connection U2, V2, W2		Screw-type terminals for cable cross-sections 1.0 to 2.5 mm ²) to 2.5 mm ²	
DC link connection, connection for braking resistor DCP/R1, DCN, R2					
PE connection		at the housing with M 4	screw		
Max. motor cable length ²⁾ (without external options)	m	50 (shielded) 75 (unshielded)			
Degree of protection		IP20 or IPXXB			
Weight	kg	1.2	1.3	1.3	

 The input current depends on the motor load and line impedance. The input currents apply for rated power loading (based on I_{rated}) for a line impedance corresponding to u_k = 1%.

2) Max. motor cable length 15 m (shielded) for PM340 Power Modules with integrated line filter to comply with the limit values of EN 61800-3 Category C2.

Line supply voltage 3-ph. 380 V to 480 V AC ±10%						
PM340	6SL3210-	1SE11-3UA0	1SE11-7UA0	1SE12-2UA0	1SE13-1UA0	1SE14-1UA0
PM340 with integrated line filter	-	-	-	-	-	-
Frame size		FSA	FSA	FSA	FSA	FSA
Rated output current I _{rated}	A	1.3	1.7	2.2	3.1	4.1
Base load current I _H	А	1.1	1.5	1.9	2.7	3.6
Output current for S6 duty (40%) I _{S6}	A	1.3	2.0	2.5	3.5	4.5
Max. output current I _{max}	А	2.6	3.4	4.4	6.2	8.2
Rated power based on I _{rated}	kW	0.37	0.55	0.75	1.1	1.5
Rated power based on I _H	kW	0.37	0.55	0.75	1.1	1.5
Rated pulse frequency	kHz	4	4	4	4	4
Power loss	kW	0.10	0.10	0.10	0.11	0.11
Cooling air requirement	m³/s	0.005	0.005	0.005	0.005	0.005
Sound pressure level	dB(A)	< 45	< 45	< 45	< 45	< 45
24 V DC power supply for the Control Unit	A	1.0	1.0	1.0	1.0	1.0

Table 3-10 Technical specifications PM340, Part 2

3.1 Power Modules Blocksize (PM340)

PM340	6SL3210-	1SE11-3UA0	1SE11-7UA0	1SE12-2UA0	1SE13-1UA0	1SE14-1UA0	
PM340 with integrated line filter	-	-	-	-	-	-	
Rated input current ¹⁾ - with line reactor - without line reactor	A	1.3 1.7	1.7 2.2	2.2 2.6	3.1 3.9	4.1 4.8	
Class J UL safety fuses Rated current Rated short-circuit current SCCR	A kA	4 65	4 65	6 65	8 65	10 65	
LV HRC safety fuses Rated current	A	3NA3 804 4	3NA3 804 4	3NA3 801 6	3NA3 803 10	3NA3 803 10	
Circuit breaker type designation EN 60947		3RV1021- 1DA10	3RV1021- 1DA10	3RV1021- 1FA10	3RV1021- 1GA10	3RV1021- 1HA10	
Rated current	А	2.2 - 3.2	2.2 - 3.2	3.5 - 5	4.5 - 6.3	5.5 - 8	
Resistance value of the external braking resistor	Ω	> 390	> 390	> 390	> 390	> 390	
Max. cable length to braking resistor	m	15	15	15	15	15	
Line supply connection L1, L2, L3							
Motor connection U2, V2, W2		Screw terminals cable cross-sec	for tions 1.0 to 2.5 m	m²			
DC link connection, connection for braking resistor DCP/R1, DCN, R2							
PE connection		at the housing w	vith M 4 screw				
Max. motor cable length ²⁾	m	50 (shielded) 75 (unshielded)	50 (shielded)				
Degree of protection		IP20 or IPXXB	IP20 or IPXXB				
Weight	kg	1.2	1.2	1.2	1.2	1.2	

 The input current depends on the motor load and line impedance. The input currents apply for rated power loading (based on I_{rated}) for a line impedance corresponding to u_k = 1%.

2) Max. motor cable length 25 m (shielded) for PM340 Power Modules with integrated line filter to comply with the limit values of EN 61800-3 Category C2.

3.1 Power Modules Blocksize (PM340)

Line supply voltage 3-	ph. 380 V to	480 V AC ±10%				
PM340	6SL3210-	1SE16-0UA0	1SE17-7UA0	1SE21-0UA0	1SE21-8AA0	1SE22-5UA0
PM340 with integrated line filter	6SL3210-	1SE16-0AA0	1SE17-7AA0	1SE21-0AA0	1SE21-8UA0	1SE22-5AA0
Frame size		FSB	FSB	FSB	FSC	FSC
Rated output current I _{rated}	A	5.9	7.7	10.2	18	25
Base load current I _H	А	5.2	6.8	9.1	14	21
Output current for S6 duty (40%) I _{S6}	А	6.4	8.3	10.8	19.6	27.8
Max. output current I _{max}	А	11.8	15.4	20.4	26.4	38
Rated power based on I _{rated}	kW	2.2	3	4	7.5	11
Rated power based on I _H	kW	2.2	3	4	5.5	7.5
Rated pulse frequency	kHz	4	4	4	4	4
Power loss	kW	0.14	0.16	0.18	0.24	0.30
Cooling air requirement	m³/s	0.009	0.009	0.009	0.038	0.038
Sound pressure level	dB(A)	< 50	< 50	< 50	< 60	< 60
24 V DC power supply for the Control Unit	A	1.0	1.0	1.0	1.0	1.0
Rated input current ¹⁾ ⁻ with line reactor - without line reactor	A	5.6 6.7	7.5 8.9	9.8 12.4	17.1 23.1	24.6 32.6
Class J UL safety fuses Rated current Rated short-circuit current SCCR	A kA	10 65	12 65	15 65	25 65	35 65
Safety fuses NH Rated current	A	3NA3 803 10	3NA3 805 16	3NA3 805 16	3NA3 810 25	3NA3 814 35
Circuit breaker type designation EN 60947		3RV1021- 1KA10	3RV1021- 4AA10	3RV1021- 4BA10	3RV1031- 4EA10	3RV1031- 4FA10
Rated current	А	9 - 12.5	11 - 16	14 - 20	22 - 32	28 - 40
Resistance value of the external braking resistor	Ω	> 160	> 160	> 160	> 56	> 56
Max. cable length to braking resistor	m	15	15	15	15	15

Table 3-11 Technical specifications PM340, Part 3

3.1 Power Modules Blocksize (PM340)

Line supply voltage 3-	ph. 380 V to	480 V AC ±10%					
PM340	6SL3210-	1SE16-0UA0	1SE17-7UA0	1SE21-0UA0	1SE21-8AA0	1SE22-5UA0	
PM340 with integrated line filter	6SL3210-	1SE16-0AA0	1SE17-7AA0	1SE21-0AA0	1SE21-8UA0	1SE22-5AA0	
Line supply connection L1, L2, L3			_				
Motor connection U2, V2, W2		Screw terminals for Screw terminals cable cross-sections 1.0 to 6 mm ² cable cross-sec mm ²					
DC link connection, connection for braking resistor DCP/R1, DCN, R2					mm²		
PE connection		at the housing with M 5 screw					
Max. motor cable length 2)	m	50 (shielded) 75 (unshielded)					
Degree of protection		IP20 or IPXXB					
Weight	kg	4.0	4.0	4.0	6.5	6.5	

1) The input current depends on the motor load and line impedance. The input currents apply for rated power loading (based on I_{rated}) for a line impedance corresponding to $u_k = 1\%$.

2) Max. motor cable length 25 m (shielded) for PM340 Power Modules with integrated line filter to comply with the limit values of EN 61800-3 Category C2.

Table 3-12 Technical specifications PM340, Part 4

Line supply voltage 3-	Line supply voltage 3-ph. 380 V to 480 V AC ±10%					
PM340	6SL3210-	1SE23-2UA0	1SE23-8UA0	1SE24-5UA0	1SE26-0UA0	1SE27-5UA0
PM340 with integrated line filter	6SL3210-	1SE23-2AA0	1SE23-8AA0	1SE24-5AA0	1SE26-0AA0	1SE27-5AA0
Frame size		FSC	FSD	FSD	FSD	FSE
Rated output current I _{rated}	А	32	38	45	60	75
Base load current I _H	А	27	33	40	48	65
Output current for S6 duty (40%) I _{S6}	А	37.1	49	58	78	98
Max. output current I _{max}	А	52	64	76	90	124
Rated power based on I _{rated}	kW	15	18.5	22	30	37
Rated power based on I _H	kW	11	15	18.5	22	30
Rated pulse frequency	kHz	4	4	4	4	4
Power loss	kW	0.40	0.38	0.51	0.69	0.99
Cooling air requirement	l/s	54.9	54.9	54.9	54.9	2 x 54.9
Sound pressure level	dB(A)	< 60	< 60	< 60	< 60	< 60

	6SL3210-	480 V AC ±10%	10500 01140	40504 51140	10506 01140		
PM340 PM340 with	6SL3210-	1SE23-2UA0 1SE23-2AA0	1SE23-8UA0 1SE23-8AA0	1SE24-5UA0 1SE24-5AA0	1SE26-0UA0 1SE26-0AA0	1SE27-5UA0 1SE27-5AA0	
integrated line filter	65L3210-	15E23-2AAU	13E23-0AAU	15224-5880	15E20-0AAU	15E27-5AAU	
24 V DC power supply for the Control Unit	A	1.0	1.0	1.0	1.0	1.0	
Rated input current ¹⁾ ⁻ with line reactor - without line reactor	A	33 39	40 46	47 53	63 72	78 88	
Class J UL safety fuses Rated current Rated short-circuit current SCCR	A kA	45 65	50 65	60 65	90 65	100 65	
LV HRC safety fuses Rated current	A	3NA3 817 40	3NA3 820 50	3NA3 822 63	3NA3 824 80	3NA3 830 100	
Circuit breaker type designation EN 60947		3RV1031- 4HA10	3RV1042- 4JA10	3RV1042- 4KA10	3RV1042- 4MA10	3VL1712- 1DD33-0AA0	
Rated current	A	40 - 50	45 - 63	57 - 75	80 - 100	100 - 125	
Circuit breaker type designation UL 489/CSA C22.2 No. 5-02 Rated current Rated short-circuit current SCCR	A kA				3VL2191- 3KN30-0AA0 90 65	3VL2110- 3KN30-0AA0 100 65	
Resistance value of the external braking resistor	Ω	> 56	> 27	> 27	> 27	> 15	
Max. cable length to braking resistor	m	15	15	15	15	15	
Line supply connection L1, L2, L3		Corour	Stud MC				
Motor connection U2, V2, W2		Screw terminals for cable cross-	Stud M6, connectable cable cross-sections 10 to 50 mm ²				
DC link connection, connection for braking resistor DCP/R1, DCN, R2		sections 2.5 to 10 mm ²					
PE connection		at the housing with M 5 screw	at the housing v	vith M6 screw			
Max. motor cable length ²⁾	m	50 (shielded) 75 (unshielded)	70 (shielded) 100 (unshielded	1)			
Degree of protection		IP20 or IPXXB					

г

3.1 Power Modules Blocksize (PM340)

Line supply voltage 3-	ph. 380 V to	480 V AC ±10%				
PM340	6SL3210-	1SE23-2UA0	1SE23-8UA0	1SE24-5UA0	1SE26-0UA0	1SE27-5UA0
PM340 with integrated line filter	6SL3210-	1SE23-2AA0	1SE23-8AA0	1SE24-5AA0	1SE26-0AA0	1SE27-5AA0
Height PM340 without/with integrated line filter	mm	333.4 (13.12)	418.3 (16.47)/ 511 (20.11)	418.3 (16.47)/ 511 (20.11)	418.3 (16.47)/ 511 (20.11)	498.3 (19.62)/ 633 (24.92)
Weight without/with integrated line filter	kg	6.5/6.5	15.9/19.3	15.9/19.3	15.9/19.3	19.8/27.1

1) The input current depends on the motor load and line impedance. The input currents apply for rated power loading (based on I_{rated}) for a line impedance corresponding to $u_k = 1\%$.

2) Max. motor cable length 25 m (shielded) for PM340 Power Modules with integrated line filter to comply with the limit values of EN 61800-3 Category C2.

Line supply voltage 3-ph. 380 V to 480 V AC ±10%					
PM340	6SL3210-	1SE31-0UA0	1SE31-1UA0	1SE31-5UA0	1SE31-8UA0
PM340 with integrated line filter	6SL3210-	1SE31-0AA0	1SE31-1AA0	1SE31-5AA0	1SE31-8AA0
Frame size		FSE	FSF	FSF	FSF
Rated output current Irated	А	90	110	145	178
Base load current I_H	A	80	95	115	155
Output current for S6 duty (40%) I _{S6}	A	117	143	188	231
Max. output current Imax	А	150	180	220	290
Rated power based on I _{rated}	kW	45	55	75	90
Rated power based on I_H	kW	37	45	55	75
Rated pulse frequency	kHz	4	4	4	4
Power loss	kW	1.21	1.42	1.93	2.31
Cooling air requirement	l/s	2 x 54.9	150	150	150
Sound pressure level	dB(A)	62	< 60	< 60	65
24 V DC power supply for the Control Unit	A	1.0	1.0	1.0	1.0
Rated input current ¹⁾ ⁻ with line reactor - without line reactor	A	94 105	115 129	151 168	186 204
Class J UL safety fuses Rated current Rated short-circuit current SCCR	A kA	125 65	150 65	200 65	250 65
Safety fuses NH Rated current	A	3NA3 832 125	3NA3 836 160	3NA3 140 200	3NA3 144 250
Circuit breaker type designation EN 60947		3VL1716-1DD33- 0AA0	3VL3720-1DC36- 0AA0	3VL3720-1DC36- 0AA0	3VL3725-1DC36- 0AA0
Rated current	A	125 - 160	160 - 200	160 - 200	200 - 250

Table 3-13 Technical specifications PM340, Part 5

3.1 Power Modules Blocksize (PM340)

Line supply voltage 3-ph. 3	Line supply voltage 3-ph. 380 V to 480 V AC ±10%						
PM340	6SL3210-	1SE31-0UA0	1SE31-1UA0	1SE31-5UA0	1SE31-8UA0		
PM340 with integrated line filter	6SL3210-	1SE31-0AA0	1SE31-1AA0	1SE31-5AA0	1SE31-8AA0		
Circuit breaker type designation UL 489/CSA C22.2 No. 5-02		3VL2112-3KN30- 0AA0	3VL2115-3KN30- 0AA0	3VL3120-3KN30- 0AA0	3VL3125-3KN30- 0AA0		
Rated current Rated short-circuit current SCCR	A kA	125 65	150 65	200 65	250 65		
Resistance value of the external braking resistor	Ω	> 15	> 8.2	> 8.2	> 8.2		
Max. cable length to braking resistor	m	15	15	15	15		
Line supply connection L1, L2, L3							
Motor connection U2, V2, W2		Stud M6, connectable cable	Stud M8,				
DC link connection, connection for braking resistor DCP/R1, DCN, R2		cross-sections 10 max. connection cable cross-section 120 mm ²					
PE connection		at the housing with M6 screw	At the housing with M8 screw				
Max. motor cable length ²⁾	m	70 (shielded) 100 (unshielded)					
Degree of protection		IP20 or IPXXB					
Height PM340 without/with integrated line filter	mm	498.3 (19.62)/ 633 (24.92)	634 (24.96)/ 934 (36.77)	634 (24.96)/ 934 (36.77)	634 (24.96)/ 934 (36.77)		
Weight without/with integrated line filter	kg	19.8/27.1	50.7/66.7	50.7/66.7	50.7/66.7		

1) The input current depends on the motor load and line impedance. The input currents apply for rated power loading (based on I_{rated}) for a line impedance corresponding to $u_k = 1\%$.

2) Max. motor cable length 25 m (shielded) for PM340 Power Modules with integrated line filter to comply with the limit values of EN 61800-3 Category C2.

3.1 Power Modules Blocksize (PM340)

3.1.6.1 Characteristics

Overload capability

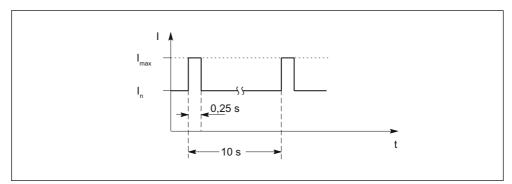


Figure 3-20 Duty cycle with initial load (for servo drives)

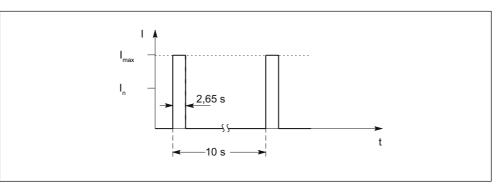


Figure 3-21 Duty cycle without initial load (for servo drives)

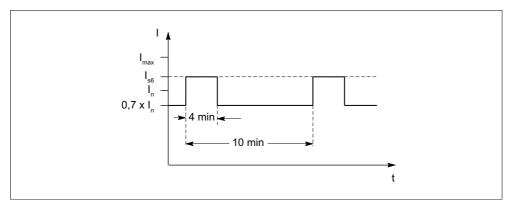


Figure 3-22 S6 duty cycle with initial load (for servo drives)

3.1 Power Modules Blocksize (PM340)

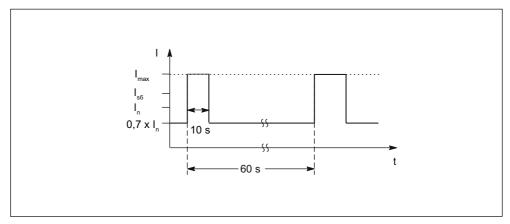


Figure 3-23 Duty cycle with initial load (for servo drives)

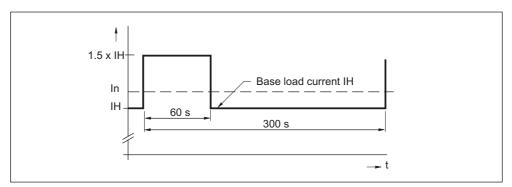


Figure 3-24 Duty cycle with 60 s overload with a duty cycle duration of 300 s

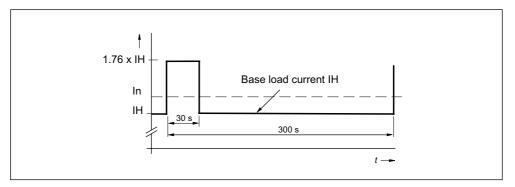
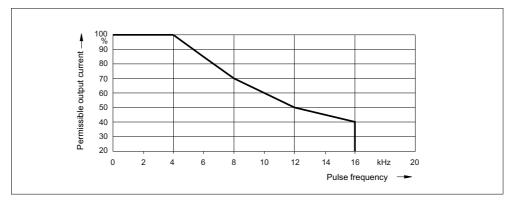



Figure 3-25 Duty cycle with 30 s overload with a duty cycle duration of 300 s

Note

The short leading edges of the duty cycles shown can only be achieved using speed or torque control.

Derating characteristic for Power Modules in blocksize format

Figure 3-26 Frame sizes FSA to FSE: Output current as a function of the pulse frequency

Figure 3-27 Frame size FSF: Output current as a function of the pulse frequency

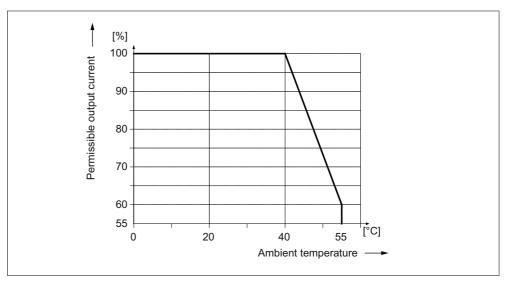


Figure 3-28 Output current as a function of the ambient temperature

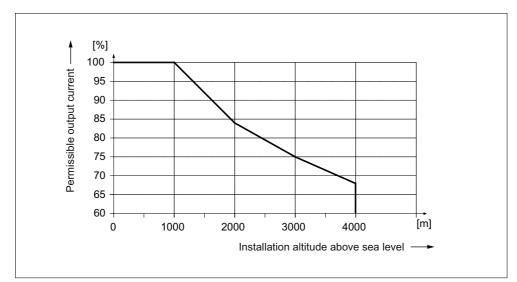


Figure 3-29 Output current as a function of the installation altitude

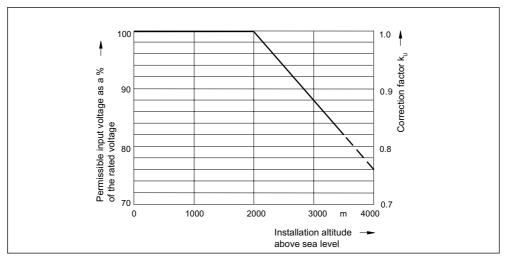


Figure 3-30 Voltage derating as a function of the installation altitude

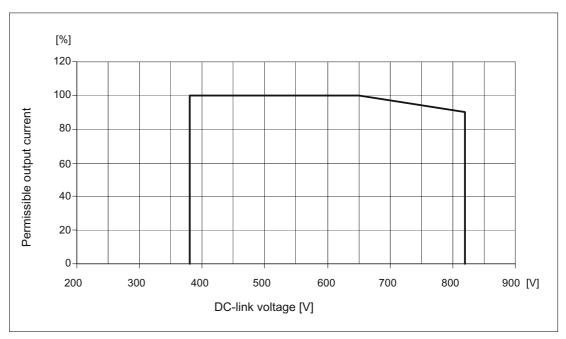


Figure 3-31 Current derating as a function of the DC-link voltage

3.1.6.2 Current derating depending on the pulse frequency

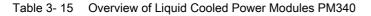
Interrelationship between the pulse frequency and current de-rating

Order No.	Line supply voltage	Rated current	Power (low overload)		Ou	itput curren	t in A at a p	ulse frequer	ncy of:	
6SL3210		A	[kW]	4 kHz	6 kHz 85%	8 kHz 70 %	10 kHz 60%	12 kHz 50 %	14 kHz 45%	16 kHz 40 %
FSA	1-ph.									
1SB11- 0UA0	230 V AC	0.9	0.12	0.9	0.76	0.63	0.54	0.45	0.40	0.36
1SB12- 3UA0		2.3	0.37	2.3	1.96	1.61	1.38	1.15	1.03	0.92
1SB14- 0UA0		3.9	0.75	3.9	3.31	2.73	2.34	1.95	1.75	1.56
FSA	3-ph.									
1SE11- 3UA0	400 V AC	1.3	0.37	1.3	1.10	0.91	1.78	0.65	0.58	0.52
1SE11- 7UA0		1.7	0.55	1.7	1.44	1.19	1.02	0.85	0.76	0.68
1SE12- 2UA0		2.2	0.75	2.2	1.87	1.54	1.32	1.1	0.99	0.88
1SE13- 1UA0		3.1	1.1	3.1	2.63	2.17	1.86	1.55	1.39	1.24
1SE14- 1UA0		4.1	1.5	4.1	3.48	2.87	2.46	2.05	1.84	1.64
FSB										
1SE16- 0UA0		5.9	2.2	5.9	5.01	4.13	3.54	2.95	2.65	2.36
1SE17- 7UA0		7.7	3	7.7	6.54	5.39	4.62	3.85	3.46	3.08
1SE21- 0UA0		10.2	4	10.2	8.67	7.14	6.12	5.1	4.59	4.08
FSC										
1SE21- 8UA0		18	5.5	18	15.3	12.6	10.8	9	8.1	7.2
1SE22- 5UA0		25	7.5	25	21.25	17.5	15	12.5	11.25	10
1SE23- 2UA0		32	15	32	27.2	22.4	19.2	16	14.4	12.8
FSD										
1SE23- 8UA0		38	18.5	38	32.3	26.6	22.8	19	17.1	15.2
1SE24- 5UA0		45	22	45	38.25	31.5	27	22.5	20.25	18

 Table 3- 14
 Current de-rating depending on the pulse frequency

Order No.	Line supply voltage	Rated current	Power (low overload)		Ou	itput curren	t in A at a p	ulse frequer	ncy of:	
6SL3210		Α	[kW]	4 kHz	6 kHz 85%	8 kHz 70 %	10 kHz 60%	12 kHz 50 %	14 kHz 45%	16 kHz 40 %
1SE26- 0UA0		60	30	60	51	42	36	30	27	24
FSE										
1SE27- 5UA0		75	37	75	63.75	52.5	45	37.5	33.75	30
1SE31- 0UA0		90	45	90	76.5	63	54	45	40.5	36
FSF										
1SE31- 1UA0		110	55	110	93.5	77	-	-	-	-
1SE31- 5UA0		145	75	145	123.3	101.5	-	-	-	-
1SE31- 8UA0		178	90	178	151.3	124.6	-	-	-	-

3.2 Power Modules Blocksize Liquid Cooled (PM340)


3.2 Power Modules Blocksize Liquid Cooled (PM340)

3.2.1 Description

The Power Modules in Blocksize Liquid Cooled format (frame sizes FSD - FSF) are designed as follows:

- Line-side diode rectifier
- DC link electrolytic capacitors with pre-charging circuit
- Output inverter
- Braking chopper for (external) braking resistor
- 24 V DC / 1 A power supply
- Gating unit, actual value acquisition
- Internal liquid cooling

The Blocksize Liquid Cooled Power Modules cover the power range from 18.5 kW to 90.0 kW and are available without an integrated line filter.

3.2 Power Modules Blocksize Liquid Cooled (PM340)

3.2.2 Safety information

During transport and during storage, Power Modules must be protected against mechanical shock and vibration. It is also important to protect the unit against water (rain) and against excessively high/excessively low temperatures.

Note

Connection authorization

Power Modules have been designed for use in the industrial environment and generate current harmonics on the line side as a result of the rectifier circuit.

When a machine with integrated Power Modules is connected to the public network, authorization is required from the local power supply company if the rated input current of the machine does not fulfill the requirements of EN 61000-3-2 with respect to current harmonics.

3.2 Power Modules Blocksize Liquid Cooled (PM340)

In a residential environment this product can cause radio disturbances, which may make interference-suppression measures necessary.

Grounding/protective grounding of the Power Module

The Power Module housing must always be grounded. If the Power Module is not correctly grounded, then extremely hazardous states can occur, which under certain circumstances, can result in death.

It must be checked as to whether the Power Module is designed for the correct power supply - higher supply voltages may not be connected to the Power Module.

After connecting the line and motor feeder cables to the appropriate terminals, check that the front covers (only frame sizes FSD to FSF) are closed and latched. Only then may the Power Module be connected to the power supply.

NOTICE

For a UL-approved system use UL-approved cables only.

Once all the supply voltages have been disconnected, a hazardous voltage may be present in the power unit for up to 5 minutes. The cover for the terminals may only be opened after this time has definitely elapsed.

When opening the protective cover, you must activate the release. A suitable tool (e.g. screwdriver) must be used for this purpose.

Damaged components must not be used, otherwise this could result in secondary damage or accidents.

3.2 Power Modules Blocksize Liquid Cooled (PM340)

∕!∖DANGER

The drive components generate high leakage currents in the protective conductor. The components must only be operated in cabinets or in closed electrical operating areas and must be connected with the protective conductor. To protect against electric shock, the protective conductor connection on the cabinet or machine must be implemented in accordance with one of the following measures:

- stationary connection and protective conductor connection by means of ≥ 10 mm² Cu or ≥ 16 mm² Al
- stationary connection and automatic shutdown of the power supply if the protective conductor is interrupted

The hazard warning in the local language for the DC link discharge time must be affixed to the component. A set of labels bearing this warning in 16 languages is provided with the component.

Power Modules must be mounted in the vertical position.

For the Liquid Cooled Power Modules, a cooling clearance of 300 mm (11.81 inch) must be maintained above and below the component.

Cooling clearances of 30 mm (1.18 inch) must be observed in front of the component.

Devices, that could restrict the cooling air flow may not be mounted/installed in this area. It must be carefully ensured that the cooling air flow of the Power Modules can flow unrestricted.

Note

The Power Modules with frame sizes FSD, FSE, and FSF can be mounted without any lateral clearance.

Cable shields and unused power cable conductors (e.g. brake conductors) must be connected to PE potential to prevent capacitive cross-talk charges.

Non-observance can cause lethal shock voltages.

The equipment must be safely disconnected from the supply before any installation or service work is carried out on cooling circuit components.

The cooling circuit may only be connected by a trained specialist.

3.2 Power Modules Blocksize Liquid Cooled (PM340)

3.2.3 Interface description

3.2.3.1 Overview

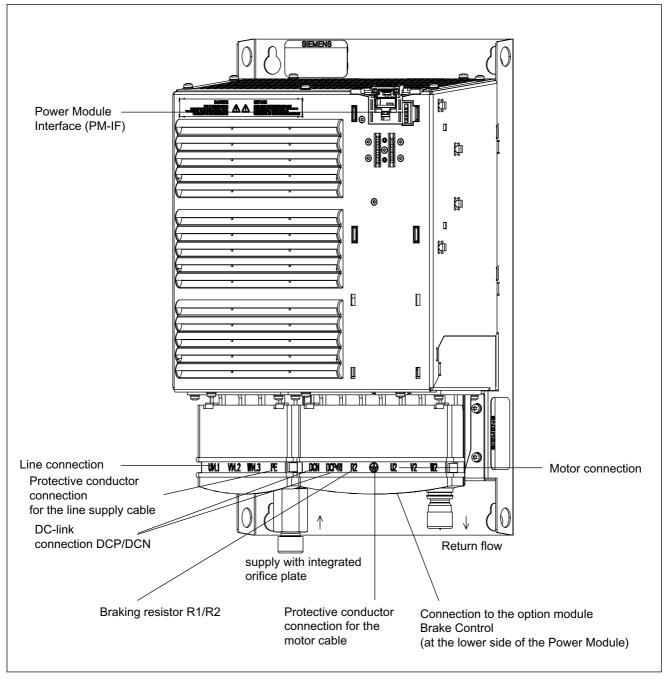


Figure 3-32 Liquid Cooled Power Module PM340 (Example: Frame size FSD)

3.2 Power Modules Blocksize Liquid Cooled (PM340)

3.2.3.2 Connection example

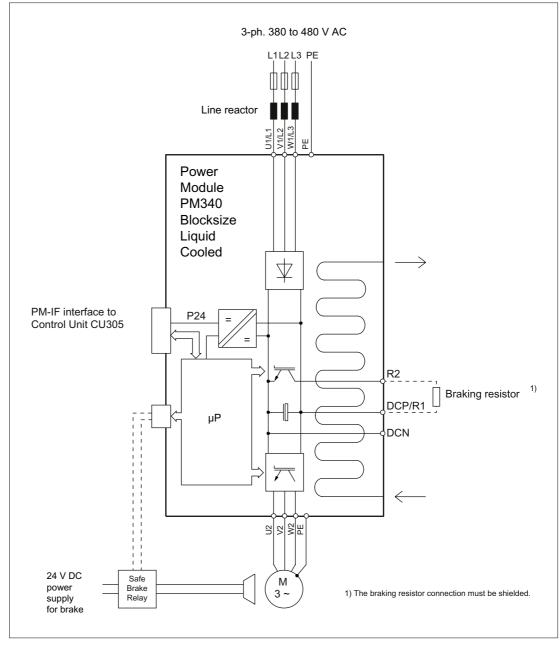
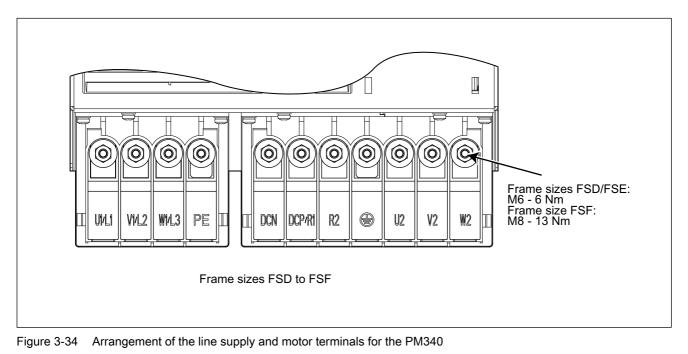



Figure 3-33 Connection example, Liquid Cooled Power Module PM340, 3-ph. 380 to 480 V AC

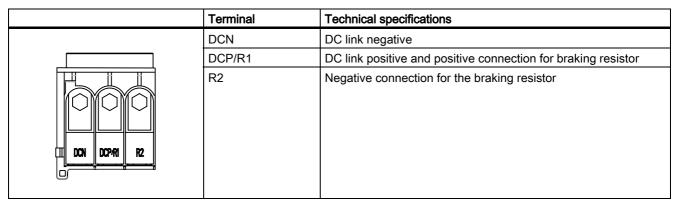
3.2 Power Modules Blocksize Liquid Cooled (PM340)

Arrangement of the line and motor terminals

The following diagram shows the arrangement of the line and motor terminals for PM340 Power Modules (frame sizes FSD to FSF). The diagram also includes the terminal tightening torques.

3.2.3.3 Line supply connection

Table 3- 10 Terminal block, line supply connection 3-ph. 300 V - 400 V AC	Table 3- 16	Terminal block, line supply connection 3-ph. 380 V - 480 V AC
---	-------------	---


	Terminal	Signal name	Technical specifications
	1	U1/L1	External conductor L1
	2	V1/L2	External conductor L2
	3	W1/L3	External conductor L3
ULL VIL2 WIL3 PE	4	PE	PE connection

```
Power Modules
```

3.2 Power Modules Blocksize Liquid Cooled (PM340)

3.2.3.4 Braking resistor and DC link connection

Table 3-17 Terminal block, braking resistor, and DC link connection

3.2.3.5 Motor connection

Table 3- 18 Terminal block, motor connection 380 V - 480 V 3 AC

Terminal	Technical specifications
	PE connection
U2	Motor phase U
V2	Motor phase V
W2	Motor phase W

3.2.3.6 Connection to the option module, brake control

Table 3- 19 Connector

Terminal	Designation	Technical specifications
1	Low	Low signal, option module brake control at PM340
2	High	High signal, option module brake control at PM340

Power Modules

3.2.4 Dimension drawings

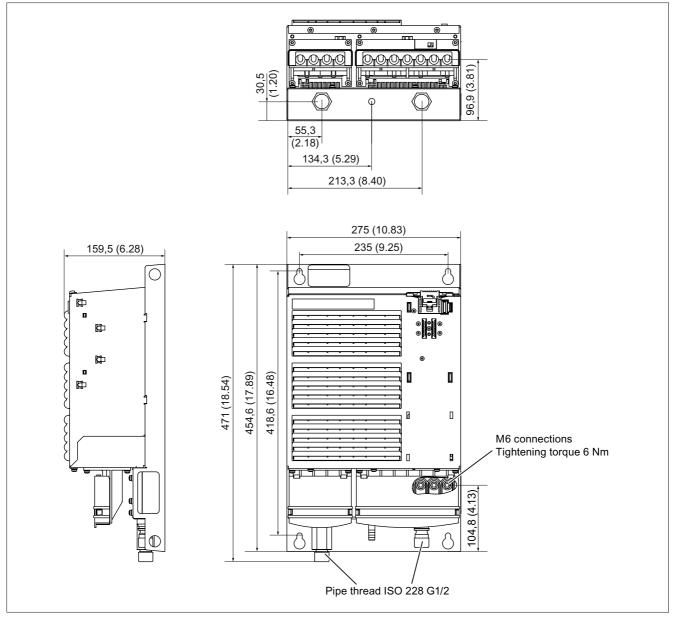


Figure 3-35 Dimension drawing of Liquid Cooled Power Module PM340, frame size FSD, all dimensions in mm and (inches)

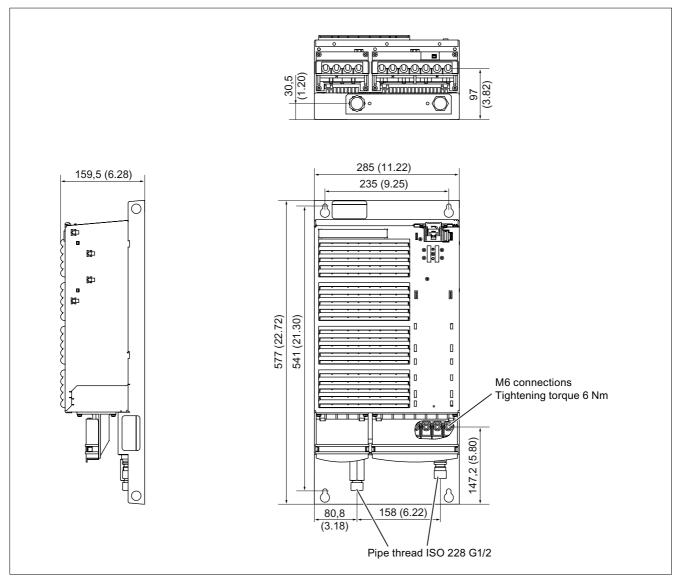


Figure 3-36 Dimension drawing of Liquid Cooled Power Module PM340, frame size FSE, all dimensions in mm and (inches)

Power Modules

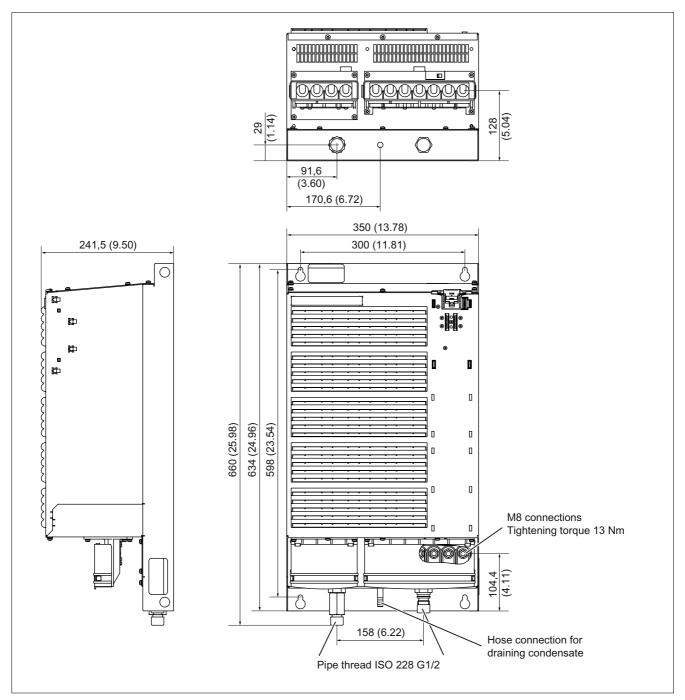


Figure 3-37 Dimension drawing of Liquid Cooled Power Module PM340, frame size FSF, all dimensions in mm and (inches)

3.2 Power Modules Blocksize Liquid Cooled (PM340)

3.2.5 Installation

The coolant hoses should be connected before the devices are installed.

3.2.5.1 Drilling patterns

Hole drilling templates for frame sizes FSD to FSF

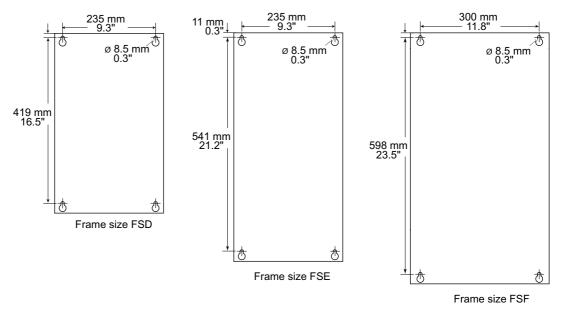
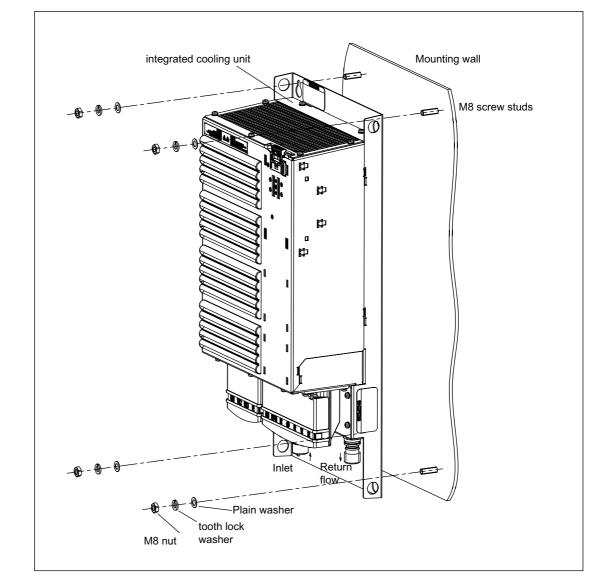



Figure 3-38 Hole drilling templates for frame sizes FSD to FSF

Power Modules

3.2.5.2 Installation

Figure 3-39 Installation of Power Module PM340 Liquid Cooled with integrated cooling unit (example: frame size FSE)

The connections for the coolant are on the underside. Water connection thread type: Pipe thread ISO 228 G $\frac{1}{2}$ B.

3.2.5.3 Access to the power supply terminals and motor terminals

For frame sizes FSD to FSF, the terminals are accessed by releasing the tongue at the side of the terminal covers using a suitable flat screwdriver. The cover can then be pushed upwards and engaged in this position as shown in the following diagram.

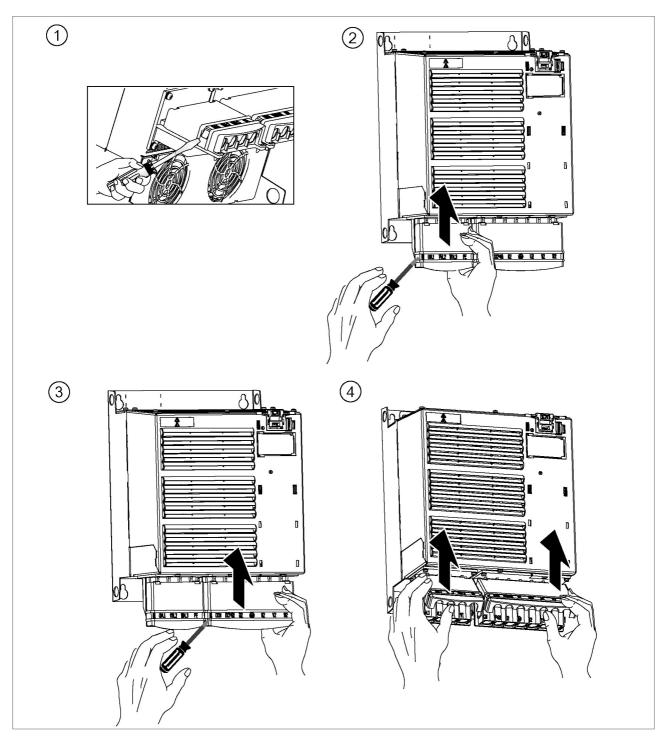


Figure 3-40 Access to the line and motor terminals for frame sizes FSD to FSF

Once the terminal cover has been removed, the degree of protection of the Power Module is reduced to IP00.

3.2.6 Connection to the cooling circuit

The coolant connection for SINAMICS units is established by means of a 1/2" screwed joint. The supply and return lines must be connected using a flexible, non-conductive hose, in order to

- Prevent electrochemical corrosion,
- Reduce the transmission of vibrations, and
- Dampen pressure transients in the coolant.

The hose should be about 1.5 m in length (total of supply and return lines).

For information about the coolant and the configuration of the cooling circuit, refer to the chapter titled "Cooling circuit and coolant properties".

3.2.7 Commissioning

Prior to commissioning

Once the devices have been installed and before they are commissioned, the cooling circuit must be checked for leaks.

After commissioning

The recommended servicing procedure for the cooling circuit is to check the fill level and the coolant for discoloration or cloudiness at least once a year.

If the coolant level has dropped, the loss should be corrected on closed or semi-open circuits with a prepared mixture of distilled water and inhibitor or Antifrogen N.

3.2.8 Technical data

Table 3-20 Technical data, Liquid Cooled Power Modules PM340 blocksize format, Part 1

PM340 Power Module	6SL3215-	1SE23-8UAx	1SE26-0UAx	1SE27-5UAx	
Frame size		FSD	FSD	FSE	
Rated output current In	A	38	60	75	
Base load current I _H	A	33	48	65	
Output current for S6 duty (40%) I_{S6}	A	49	78	98	
Max. output current I _{max}	A	64	90	124	
Rated power based on In	kW	18.5	30	37	
Rated power based on I _H	kW	15	22	30	
Rated pulse frequency	kHz	4	4	4	
Power loss	kW	0.38	0.69	0.99	
Power loss to ambient air, approx.	kW	0.09	0.13	0.16	
Coolant requirements	l/min	8	8	8	
Sound pressure level	dB(A)	< 60	< 60	< 60	
24 V DC power supply for the Control Unit	A	1.0	1.0	1.0	
Rated input current ¹⁾	А				
with line reactor		40	63	78	
- without line reactor		46	72	88	
Class J UL safety fuses Rated current Rated short-circuit current SCCR	A kA	50 65	90 65	100 65	
Safety fuses NH Rated current	A	3NA3 820 50	3NA3 824 80	3NA3 830 100	
Circuit-breaker type designation EN 60947 Rated current	A	3RV1042-4JA10 45 - 63	3RV1042-4MA10 80 - 100	3VL1712-1DD33- 0AA0 100 - 125	
Circuit-breaker type designation UL489 / CSA C22.2 No. 5-02 Rated current	A		3VL2191-3KN30-0AA0	3VL2110-3KN30- 0AA0 100	
Rated short-circuit current SCCR	kA		65	65	
Resistance value of the external braking resistor	Ohms	> 27	> 27	> 15	
Max. cable length to braking resistor	m	15	15	15	
Line connection L1, L2, L3					
Motor connection					
U2, V2, W2		connectable cable	Stud M6, e cross-sections 10 to 50 mm	² for ring cable lugs	
DC link connection, connection for braking resistor DCP/R1, DCN, R2					

3.2 Power Modules Blocksize Liquid Cooled (PM340)

PM340 Power Module	6SL3215-	1SE23-8UAx	1SE26-0UAx	1SE27-5UAx	
Max. motor cable length	m		70 (shielded)		
		100 (unshielded)			
Degree of protection		IP20 or IPXXB			
Depth					
- PM340		159.5 (6.28)			
- PM340 with Control Unit CU305	mm	214.1 (8.43)			
Weight	kg	10.5	10.5	14.8	
with CU305		11.5	11.5	15.8	

1) The input current depends on the motor load and line impedance. The input currents apply for a load with the rated power (based on In) for a line impedance corresponding to $u_k = 1\%$.

Table 3-21	Technical data, Liquid Cooled Power Modules PM340 blocksize format, Part 2
------------	--

PM340 Power Module	6SL3215-	1SE31-0UAx	1SE31-1UAx	1SE31-8UAx
Frame size		FSE	FSF	FSF
Rated output current In	А	90	110	178
Base load current I _H	А	80	95	155
Output current for S6 duty (40%) I _{S6}	A	117	143	231
Max. output current I _{max}	А	150	180	290
Rated power based on In	kW	45	55	90
Rated power based on I_H	kW	37	45	75
Rated pulse frequency	kHz	4	4	4
Power loss	kW	1.21	1.42	2.31
Power loss to ambient air, approx.	kW	0.19	0.21	0.35
Coolant requirements	l/min	8	8	8
Sound pressure level	dB(A)	62	< 60	65
24 V DC power supply for the Control Unit	A	1.0	1.0	1.0
Rated input current ¹⁾ - with line reactor - without line reactor	A	94 105	115 129	186 204
Class J UL safety fuses Rated current Rated short-circuit current SCCR	A kA	125 65	150 65	250 65
Safety fuses NH Rated current	A	3NA3 832 125	3NA3 836 160	3NA3 144 250
Circuit-breaker type designation EN 60947 Rated current	A	3VL1716-1DD33-0AA0 125 - 160	3VL3720-1DC36-0AA0 160 - 200	3VL3725-1DC36- 0AA0 200 - 250
Circuit-breaker type designation UL489 / CSA C22.2 No. 5-02 Rated current Rated short-circuit current SCCR	A kA	3VL2112-3KN30-0AA0 125 65	3VL2115-3KN30-0AA0 150 65	3VL3125-3KN30- 0AA0 250 65
Resistance value of the external braking resistor	Ohms	> 15	> 8.2	> 8.2

3.2 Power Modules Blocksize Liquid Cooled (PM340)

PM340 Power Module	6SL3215-	1SE31-0UAx	1SE31-1UAx	1SE31-8UAx
Max. cable length to braking resistor	m	15	15	15
Line connection L1, L2, L3				
Motor connection U2, V2, W2		Stud MG	Stud M9	
DC link connection, connection for braking resistor DCP/R1, DCN, R2		Stud M6, connectable cable cross-sections 10 to 50	Stud M8, max. connection cable (cross-section 120 mm ²
PE connection		mm ² for ring cable lugs		
Max. motor cable length	m		70 (shielded)	
		100 (unshielded)		
Degree of protection			IP20 or IPXXB	
Depth				
- PM340		159.5 (6.28)	241.5 (9.50)	241.5 (9.50)
- PM340 with Control Unit CU305	mm	214.1 (8.43)	296.1 (11.66)	296.1 (11.66)
Weight with CU305	kg	14.8 15.8	29.2 30.2	29.2 30.2

1) The input current depends on the motor load and line impedance. The input currents apply for a load with the rated power (based on In) for a line impedance corresponding to $u_k = 1\%$.

3.2 Power Modules Blocksize Liquid Cooled (PM340)

3.2.8.1 Characteristics

Overload capability

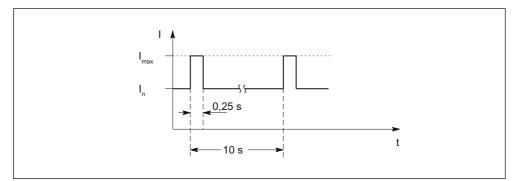


Figure 3-41 Duty cycle with initial load (for servo drives)

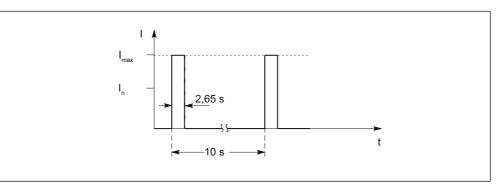


Figure 3-42 Duty cycle without initial load (for servo drives)

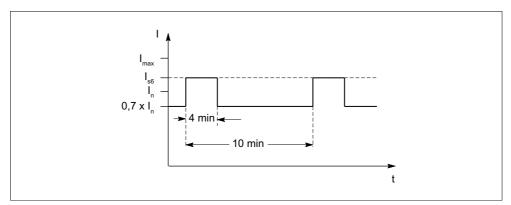


Figure 3-43 S6 duty cycle with initial load (for servo drives)

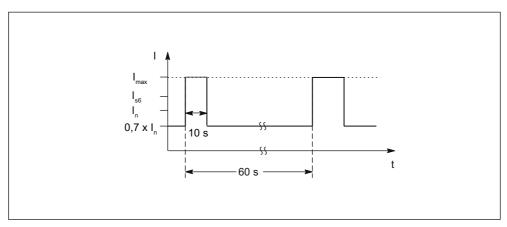


Figure 3-44 Duty cycle with initial load (for servo drives)

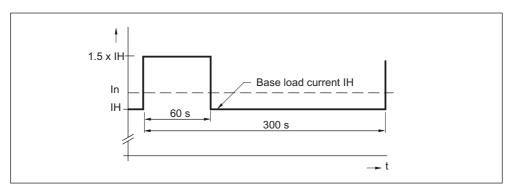


Figure 3-45 Duty cycle with 60 s overload with a duty cycle duration of 300 s

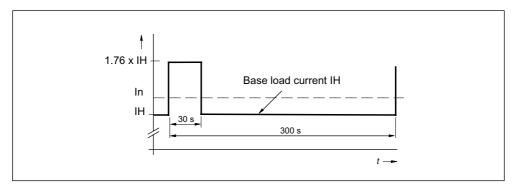


Figure 3-46 Duty cycle with 30 s overload with a duty cycle duration of 300 s

Note

The short leading edges of the duty cycles shown can only be achieved using speed or torque control.

3.2 Power Modules Blocksize Liquid Cooled (PM340)

Derating characteristics for Power Modules in blocksize Liquid Cooled format

Figure 3-47 Frame sizes FSD and FSE: Output current as a function of the pulse frequency

Figure 3-48 Frame size FSF: Output current as a function of the pulse frequency

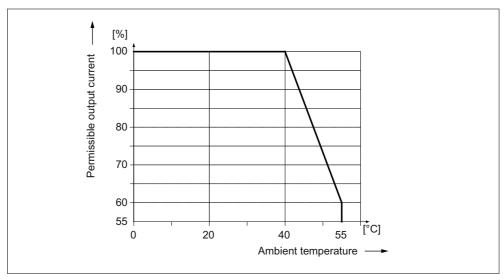


Figure 3-49 Output current as a function of the ambient temperature

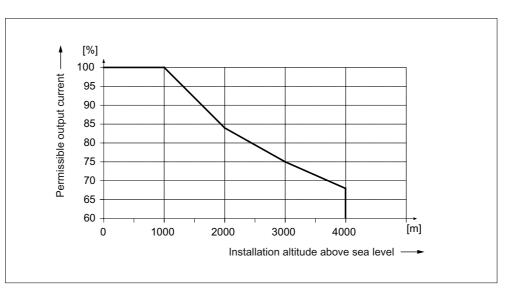


Figure 3-50 Output current as a function of the installation altitude

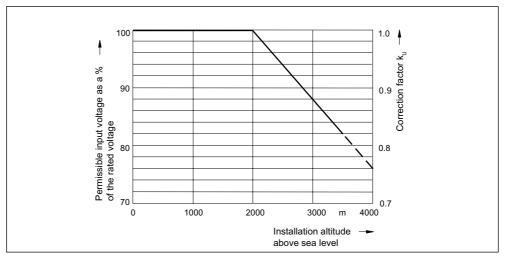


Figure 3-51 Voltage derating as a function of the installation altitude

Power Modules

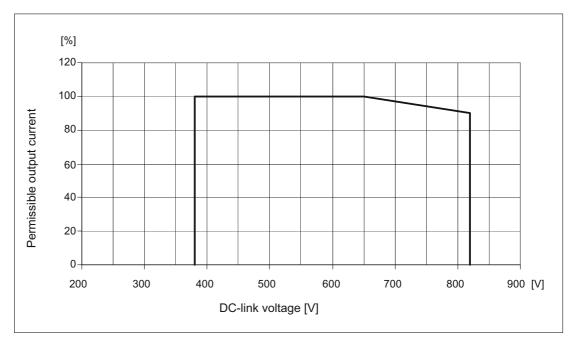


Figure 3-52 Current derating as a function of the DC-link voltage

4.1 Braking resistors (in blocksize format)

4.1.1 Description

The PM340 Power Modules cannot regenerate into the line supply. For regenerative operation, e.g. the braking of a rotating mass, a braking resistor must be connected to convert the resulting energy into heat.

A temperature protection switch monitors the braking resistor for overtemperature and issues a signal on a floating contact if the limit value is exceeded.

4.1.2 Safety information

The surface temperature of the braking resistors may exceed 80 °C.

4.1 Braking resistors (in blocksize format)

Protecting the resistance

The power supply to the Power Modules must be established through a contactor which can then shut down the power supply when the resistor overheats.

A temperature protection switch handles the protective function (this is supplied with each break resistor). This is connected in series with the coil feeder cable for the main contactor.

The contacts of the temperature protection switch close again as soon as the resistor temperature has fallen below the selected value.

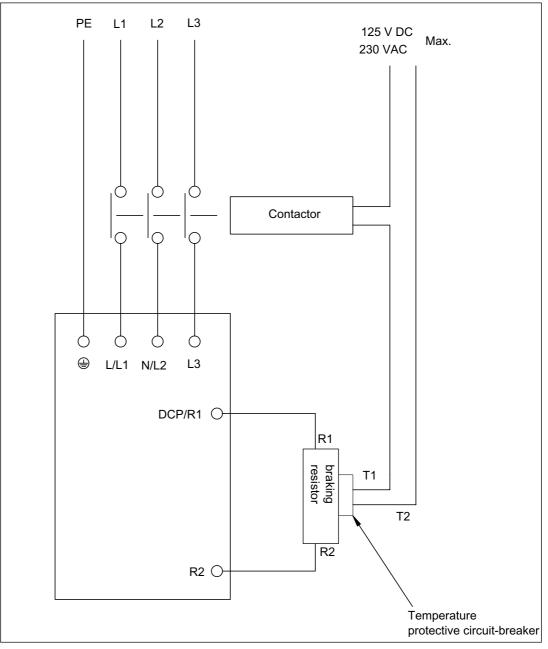


Figure 4-1 Connection example: Braking resistor

DC link components

4.1 Braking resistors (in blocksize format)

4.1.3 Dimension drawings

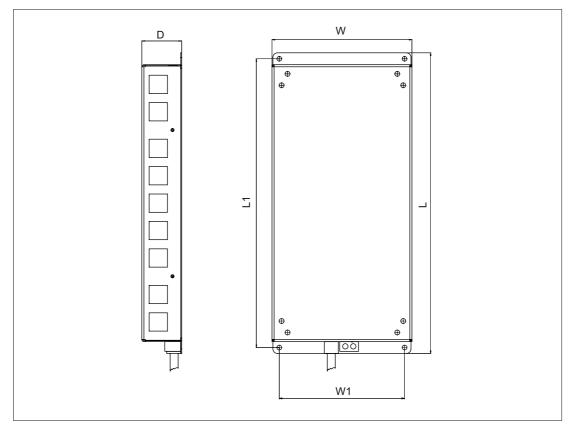


Figure 4-2 Dimension drawing of braking resistor, frame sizes FSA and FSB

4.1 Braking resistors (in blocksize format)

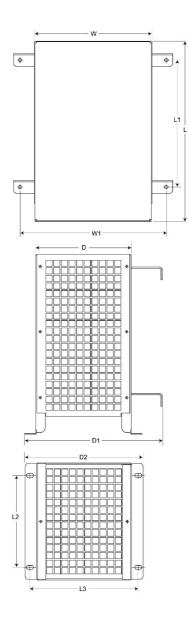


Figure 4-3 Dimension drawing of braking resistor, frame sizes FSC, FSD, FSE, FSF

DC link components

4.1 Braking resistors (in blocksize format)

Order number	6SE6400-4BC05- 0AA0	6SE6400-4BD11- 0AA0	6SL3201-0BE12- 0AA0	6SE6400-4BD16- 5CA0
Frame size	FSA	FSA	FSB	FSC
L	230 (9.05)	230 (9.05)	239 (9.40)	285 (11.22)
L1	217 (8.54)	217 (8.54)	226 (8.89)	200 (7.87)
L2	-	-	-	145 (5.70)
L3	-	-	-	170 (6.69)
D	43.5 (1.71)	43.5 (1.71)	43.5 (1.71)	150 (5.90)
D1	-	-	-	217 (8.54)
D2	-	-	-	185 (7.28)
W	72 (2.83)	72 (2.83)	149 (5.86)	185 (7.28)
W1	56 (2.20)	56 (2.20)	133 (5.24)	230 (9.05)

Table 4-1Dimensions of braking resistor, all data in mm and (inches), Part 1

Table 4-2 Dimensions of braking resistor, all data in mm and (inches), Part 2

Order number	6SE6400-4BD21-2DA0	6SE6400-4BD22-2EA0	6SE6400-4BD24-0FA0
Frame size	FSD	FSE	FSF
L	515 (20.27)	645 (25.39)	650 (25.59)
L1	350 (13.77)	480 (18.89)	510 (20.07)
L2	205 (8.07)	205 (8.07)	270 (10.62)
L3	195 (7.67)	195 (7.67)	335 (13.18)
D	175 (6.88)	175 (6.88)	315 (12.40)
D1	242 (9.52)	242 (9.52)	382 (15.03)
D2	210 (8.26)	210 (8.26)	382 (15.03)
W	270 (10.62)	270 (10.62)	400 (15.74)
W1	315 (12.40)	315 (12.40)	435 (17.12)

4.1 Braking resistors (in blocksize format)

4.1.4 Mounting

The braking resistor is connected at terminals DCP/R1 and R2. Since it generates heat, it should be mounted to the side of the PM340 Power Modules.

The braking resistors for the FSA and FSB frame sizes are designed as sub-chassis components. If the PM340 Power Modules of the FSA or FSB frame size are operated without a line reactor, the braking resistors can also be installed under the Power Modules.

The braking resistors for the Power Modules of the FSC to FSF frame sizes should be placed outside the control cabinet or the switchgear room in order to direct the resulting heat loss away from the Power Modules. This reduces the level of air conditioning required.

The braking resistors can be installed horizontally or vertically. The power connections on vertically installed resistors must be at the bottom.

The braking resistors for the Power Modules of the FSC to FSF frame sizes should be placed outside the control cabinet or the switchgear room in order to direct the resulting heat loss away from the Power Modules. This reduces the level of air conditioning required.

Note

PE connection

The PE connection for the braking resistor is established via the Screening Kit for frame sizes FSA to FSF.

DC link components

4.1 Braking resistors (in blocksize format)

4.1.5 Technical data

Table 4- 3	Technical specifications	, braking resistors, Part 1
	recinical specifications	, braking resistors, r art r

Order number		6SE6400- 4BC05-0AA0	6SE6400- 4BD11-0AA0	6SL3201- 0BE12-0AA0	6SE6400- 4BD16-5CA0
Suitable for Power Modules of frame size		FSA	FSA	FSB	FSC
Resistance	Ω	180	390	160	56
Rated power PDB	kW	0.05	0.1	0.2	0.65
Peak power P _{max}	kW	1	1.7	4.0	13
Load duration for peak power Ta	s	27.6	13.8	12.6	13.1
Period duration of braking duty cycle t	s	276	276	252	262
Degree of protection		IP20 or IPXXB	IP20 or IPXXB	IP20 or IPXXB	IP20 or IPXXB
Power connections		Cable 3 x 2.5 mm ² shielded, length 0.4 m	Cable 3 x 2.5 mm ² shielded, length 0.5 m	Cable 3 x 2.5 mm ² shielded, length 0.5 m	Cable 3 x 2.5 mm ² shielded, length 0.9 m
Thermoswitch (NC contact) maximum contact load connecting cable		250 V _{AC} /2.5 A			
Weight	kg	1.0	1.0	1.6	3.8

Table 4-4 Technical specifications, braking resistors, Part 2

Order number	6SE6400-	4BD21-2DA0	4BD22-2EA0	4BD24-0FA0
Suitable for Power Modules of frame size		FSD	FSE	FSF
Resistance	Ω	27	15	8.2
Rated power PDB	kW	1.2	2.2	4.0
Peak power P _{max}	kW	24	44	80
Load duration for peak power T _a	s	13.6	14.5	13.1
Period duration of braking duty cycle t	s	271	290	252
Degree of protection		IP20 or IPXXB	IP20 or IPXXB	IP20 or IPXXB
Power connections		M6 studs	M6 studs	M6 studs
Thermoswitch (NC contact) maximum contact load connecting cable		250 V _{AC} / 2.5 A	250 V _{AC} /2.5 A	250 V _{AC} /2.5 A
Weight	kg	7.4	10.6	16.7

4.1 Braking resistors (in blocksize format)

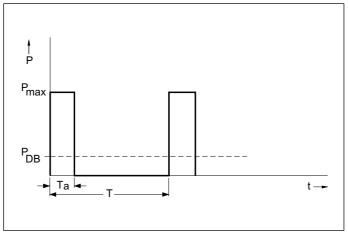


Figure 4-4 Load diagram for the braking resistor, Blocksize format

T [s] period duration of braking duty cycle

 $T_a\left[s\right]$ load duration for peak power

 $\mathsf{P}_{\mathsf{DB}}\left[W\right]$ rated power of the braking resistor

P_{max} [W] peak braking power of the braking resistor

Motor-side power components

5.1 Motor reactors (blocksize)

5.1.1 Description

Motor reactors reduce the voltage stress on the motor windings by reducing the voltage gradients at the motor terminals that occur when motors are fed from drive converters. At the same time, the capacitive re-charging currents that additionally load the output of the Power Module when longer motor cables are used are simultaneously reduced.

The motor reactors for Power Modules 3-ph. 380 V to 480 V AC are suitable for a pulse frequency of 4 kHz. Higher pulse frequencies are not permissible.

5.1.2 Safety information

The 100 mm clearances above and below the components must be observed.

Note

The connecting cables to the Power Module must be kept as short as possible (max. 5 m).

CAUTION

When using motor reactors that SIEMENS has not approved for SINAMICS, then these can thermally damage the reactor.

The surface temperature of the motor reactors can exceed 80 °C.

CAUTION

The maximum permissible output frequency when motor reactors are used is 150 Hz.

CAUTION

The maximum permissible pulse frequency when motor reactors are used is 4 kHz.

5.1 Motor reactors (blocksize)

5.1.3 Dimension drawings

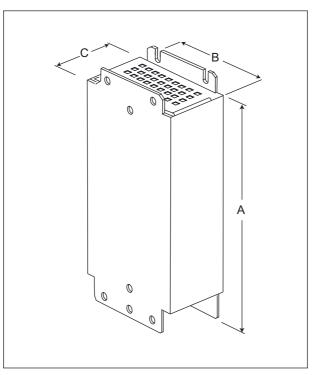


Figure 5-1 Dimension drawing: Motor reactor, frame size FSA

Table 5- 1	Total dimensions: Motor reactor, frame size FSA	A all data in mm and (inches)
		t, an data in min and (mones)

Motor reactor 6SE6400-	3TC00-4AD2
Frame size	FSA
Dimension A in mm and (inches)	200 (7.87)
Dimension B in mm and (inches)	75.5 (2.97)
Dimension C in mm and (inches)	110 (4.33)

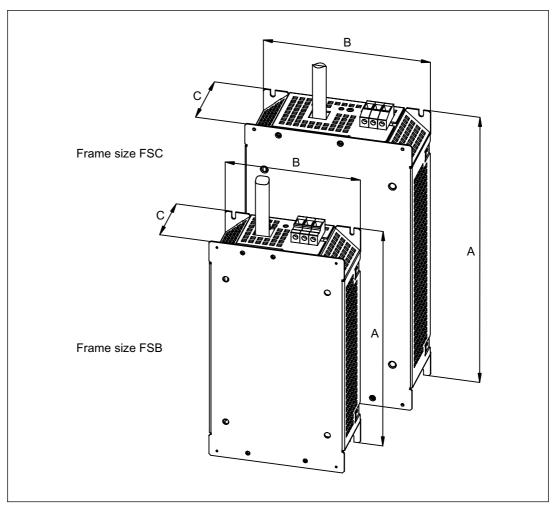


Figure 5-2 Dimension drawing: Motor reactor, frame sizes FSB and FSC

Table 5-2 Total dimensions: Motor reactor, frame sizes FSB and F
--

Motor reactor 6SL3202-	0AE21-0CA0	0AJ23-2CA0
Frame size	FSB	FSC
Dimension A in mm and (inches)	270 (10.62)	334 (13.14)
Dimension B in mm and (inches)	153 (6.02)	189 (7.44)
Dimension C in mm and (inches)	70 (2.75)	50 (1.96)

Motor-side power components

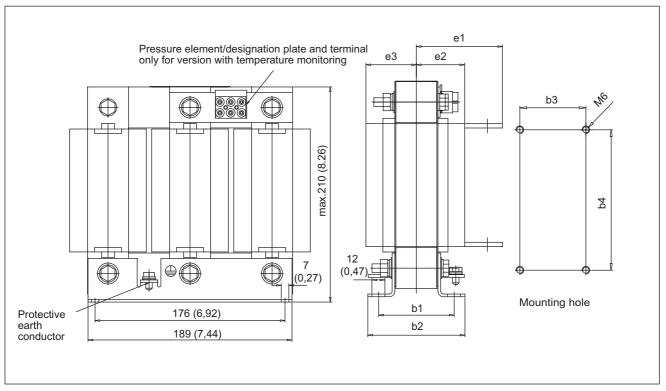


Figure 5-3 Dimension drawing: Motor reactor, frame size FSD

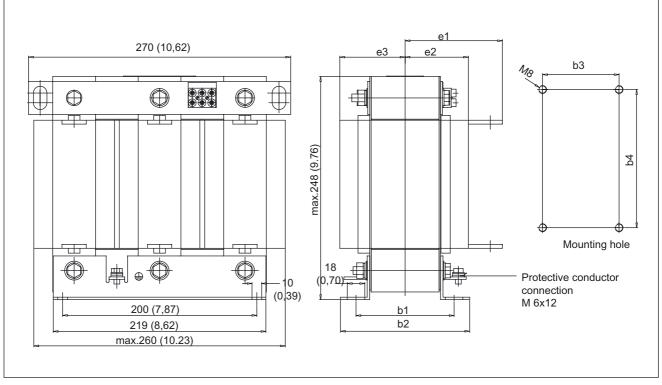


Figure 5-4 Dimension drawing: Motor reactor, frame size FSE

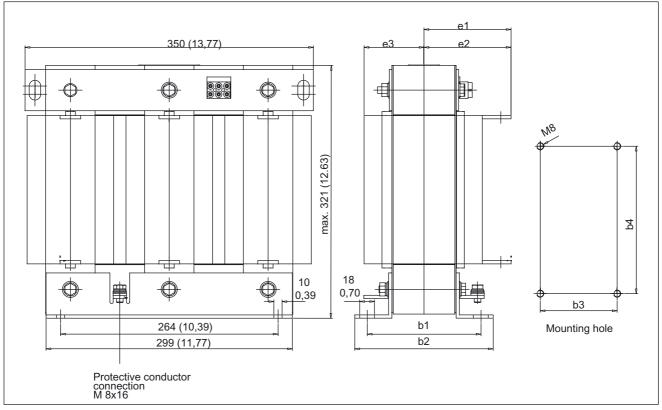


Figure 5-5 Dimension drawing: Motor reactor, frame size FSF

Table 5- 3	Total dimensions: Motor reactor, frame sizes FSD, FSE, all data in mm and (inches)

Motor reactor 6SE6400-	3TC05-4DD0	3TC03-8DD0	3TC07-5ED0	3TC08-0ED0
Frame size	FSD	FSD	FSE	FSE
b1	70 (2.75)	94 (3.70)	101 (3.97)	70 (2.75)
b2	91 (3.58)	115 (4.52)	133 (5.23)	90 (3.54)
b3	70 (2.75)	94 (3.70)	101 (3.97)	70 (2.75)
b4	176 (6.92)	176 (6.92)	200 (7.87)	176 (6.92)
e1	91 (3.58)	103 (4.05)	110 (4.33)	89 ± 2 (3.50 ± 0.07)
e2	57 (2.24)	69 (2.71)	76 (2.99)	79 ± 2 (3.50 ± 0.07)
e3	49 (1.92)	61 (2.40)	68 (2.67)	-

Motor-side power components

Motor reactor 6SE6400-	3TC14-5FD0	3TC15-4FD0
Frame size	FSF	FSF
b1	138 (5.43)	101 (3.97)
b2	169 (6.65)	121 (4.76)
b3	138 (5.43)	101 (3.97)
b4	264 (10.39)	200 (7.87)
e1	131 (5.15)	119 ± 2 (4.68 ± 0.07)
e2	90 (3.54)	109 ± 2 (4.29 ± 0.07)
e3	78 (3.07)	-

Table 5- 4	Total dimensions: Motor reactor, frame size FSF, all data in mm and (inches)

5.1.4 Mounting

Note

The motor reactor must be installed as close as possible to the Power Module.

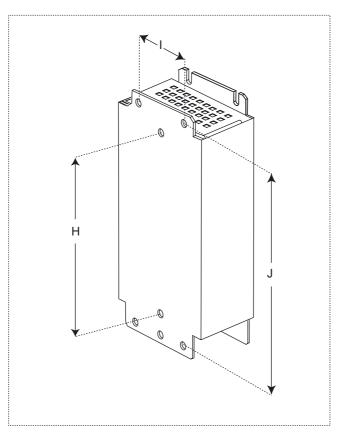


Figure 5-6 Mounting dimensions of motor reactor, frame size FSA

Table 5- 5	Mounting dimensions of motor reactor, frame size FSA, all data in mm and (inches)
------------	---

Motor reactor 6SE6400-	3TC00-4AD2
Frame size	FSA
Н	160 (6.29)
I	56 (2.20)
J	187 (7.36)

Motor-side power components

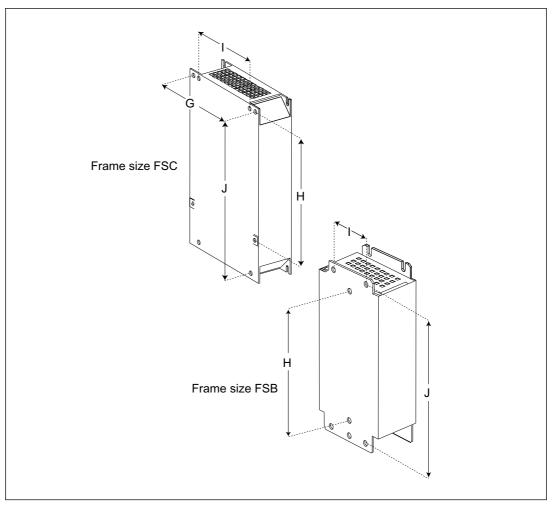


Figure 5-7 Mounting dimensions of motor reactors, frame sizes FSB and FSC

Motor reactor	6SL3202-	0AE21-0CA0	0AJ23-2CA0
Frame size		FSB	FSC
Power Module	G	138 (5.43)	174 (6.85)
	Н	174 (6.85)	204 (8.03)
Mounting surface	I	120 (4.72)	156 (6.14)
	J	200 (7.87)	232 (9.13)
Fixing screw		M4	M5

Table 5- 6Mounting dimensions of motor reactors, frame sizes FSB and FSC, all data in mm and
(inches)

Cable cross-section and terminal tightening torques Terminals for wiring on site

Frame size	FSA	FSB	FSC
Tightening torque [Nm]	1.1	1.5	2.25
Recommended minimum conductor cross-section [mm ²]	1	1.5	2.5
Highest conductor cross-section [mm ²]	2.5	6	10

Motor-side power components

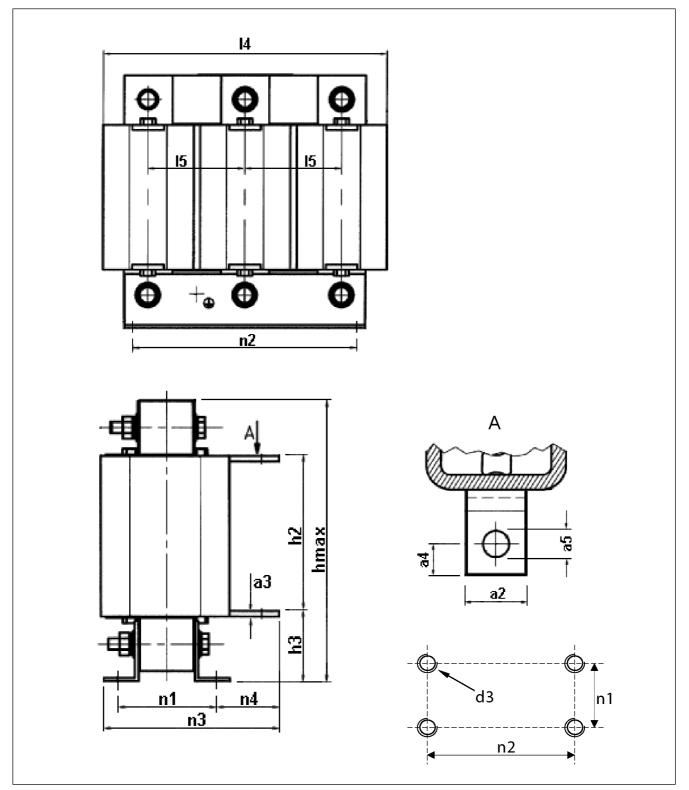


Figure 5-8 Mounting dimensions of motor reactors, frame sizes FSD, FSE, FSF

Mounting dimensions of motor reactors, frame sizes FSD, FSE, all data in mm and (inches)

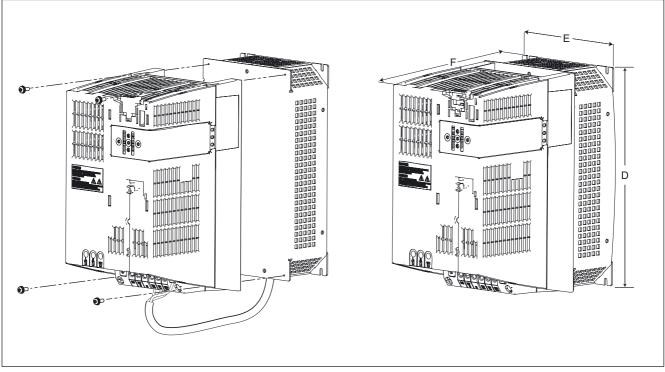

Motor reactor	6SE6400-	3TC05-4DD0	3TC03-8DD0	3TC07-5ED0	3TC08-0ED0
Frame size		FSD	FSD	FSE	FSE
Motor reactor	a2	20 (0.78)	20 (0.78)	20 (0.78)	20 (0.78)
	a3	4 (0.15)	4 (0.15)	4 (0.15)	4 (0.15)
	a4	10 (0.39)	10 (0.39)	10 (0.39)	10 (0.39)
	a5	Ø6 (0.23)	Ø6 (0.23)	Ø7 (0.27)	Ø7
	14	225 (8.85)	225 (8.85)	270 (10.62)	225 (8.85)
	15	76 ±5 (2.99 ±0.19)	76 ±5 (2.99 ±0.19)	88 ±5 (3.46 ±0.19)	76 ±5 (2.99 ±0.19)
	hmax	210 (8.26)	210 (8.26)	248 (9.76)	210 (8.26)
	h2	120 ±2 (4.72 ±0.07)	120 ±2 (4.72 ±0.07)	140 ±2 (5.51 ±0.07)	120 ±2 (4.72 ±0.07)
	h3	45 ±2 (1.77 ±0.07)	45 ±2 (1.77 ±0.07)	50 ±2 (1.96 ±0.07)	45 ±2 (1.77 ±0.07)
	n1	70 (2.75)	94 (3.70)	101 (3.97)	70 (2.75)
	n2	176 (6.88)	176 (6.88)	200 (7.87)	176 (6.88)
	n3	max. 140 (5.51)	max. 164	max. 187.5 (7.38)	max. 140 (5.51)
	n4	54 ±2 (2.12 ±0.07)	54 ±2 (2.12 ±0.07)	68.5 ±2 (2.69 ±0.07)	54 ±2 (2.12 ±0.07)
	d3	M6	M6	M8	M6
	PE	M6	M6	M6	M6
Tightening torque [Nm]		3.5-4.0	3.5-4.0	9.5-10.0 3.5-4.0	3.5-4.0

Table 5- 8	Mounting dimensions of motor reactor, frame size FSF, all data in mm and (inches)
------------	---

Motor reactor	6SE6400-	3TC14-5FD0	3TC15-4FD0 FSF	
Frame size		FSF		
Motor reactor	a2	20 (0.78)	20 (0.78)	
	a3	4 (0.15)	4 (0.15)	
	a4	10 (0.39)	10 (0.39)	
	a5	Ø9 (0.35)	Ø9 (0.35)	
	14	357 (14.05)	270 (10.62)	
	15	120 ±5 (4.72 ±0.19)	88 ±5 (3.46 ±0.19)	
	hmax	321 (12.63)	248 (9.76)	
	h2	185 ±2 (7.28 ±0.07)	140 ±2 (5.51 ±0.07)	
	h3	60 ±2 (2.36 ±0.07)	50 ±2 (1.96 ±0.07)	
	n1	138 (5.43)	101 (3.97)	
	n2	264 (10.39)	200 (7.87)	
	n3	max. 220.5 (8.68)	max. 187.5 (7.38)	
	n4	65.5 ±2 (2.57 ±0.07)	68.5 ±2 (2.69 ±0.07)	
	d3	M8	M8	
	PE	M8	M6	
Tightening torque [Nm]		9.5-10.0	9.5-10.0 3.5-4.0	

Table 5-7

5.1 Motor reactors (blocksize)

Mounting Power Modules and motor reactors

Figure 5-9 Mounting Power Modules and motor reactors, frame sizes FSB and FSC

Table 5- 9	Total dimensions, PM340 Power Module and motor reactor, frame sizes FSA, FSB, and FSC, all data in mm
	and (inches)

Motor reactor		6SE6400-3TC00- 4AD3	6SE6400-3TC00- 4AD2	6SL3202-0AE21- 0CA0	6SL3202-0AJ23-2CA0
Frame size		FSA	FSA	FSB	FSC
Total dimension	D	200 (7.87)	200 (7.87)	270 (10.62)	334 (13.14)
of the Power	Е	75.5 (2.97)	75.5 (2.97)	153 (6.02)	189 (7.44)
Module and motor reactor	F	259 (10.19)	259 (10.19)	235 (9.25)	245 (9.64)

5.1.5 Electrical connection

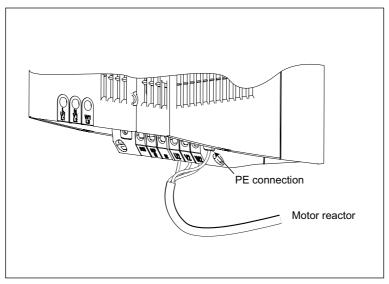


Figure 5-10 Electrical connection

5.1 Motor reactors (blocksize)

5.1.6 Technical data

Table 5-10 Motor reactors for Power Modules 3-ph. 380 V to 480 V AC, frame size FSA

			Motor reacto	or (for a 4 kHz pul	se frequency)	
Order number			6S	E6400-3TC00-44	AD2	
Frame size		FSA	FSA	FSA	FSA	FSA
Suitable for Power Module		6SL3210- 1SE11-3UA0	6SL3210- 1SE11-7UA0	6SL3210- 1SE12-2UA0	6SL3210- 1SE13-1UA0	6SL3210- 1SE14-1UA0
Rated current	А			4.5		
Power loss	kW		0.005			
Connection to the Power Module		Cable 4 x 1.5 mm ² Length approx. 0.3 m				
Motor connection			Screw termina	Is for cable cross	-section 6 mm ²	
PE connection			M5 stud			
Max. permissible cable length between motor reactor and motor	m	100 (shielded)100 (shielded)150 (unshielded)225 (unshielded)		,		
Degree of protection			IP20 or IPXXB			
Weight, approx.	kg	2				
Rated current I _{rated} of the Power Module	А	1.3	1.7	2.2	3.1	4.1

Table 5- 11 Motor reactors for Power Modules 3-ph. 380 V to 480 V AC, frame sizes FSB and FSC

		Motor reactor (for a 4 kHz pulse frequency)					
Order number		6S	L3202-0AE21-0	CA0	6SL3202-0AJ23-2CA0		
Frame size		FSB	FSB	FSB	FSC	FSC	FSC
Suitable for Power Module 6SL3210-		1SE16-0xxx	1SE17-7xxx	1SE21-0xxx	1SE21-8xxx	1SE22-5xxx	1SE23-2xxx
Rated current	А		10			25	
Power loss	kW		0.02			0.06	
Connection to the Power Module		Cable 4 x 1.5 Length approx			Cable 4 x 1.5 mm ² Length approx. 0.35 m		
Motor connection		Screw-type ter 6 mm ²	minals for cable	e cross-section	Screw-type terminals for cable cross- sections 2.5 mm ² to 10 mm ²		
PE connection		M5 stud			M5 stud		
Max. permissible cable length between motor reactor and motor	m	100 (shielded) 150 (unshielded)					
Degree of protection		IP20 or IPXXB					
Weight, approx.	kg		4.5		9		
Rated current I _{rated} of the Power Module	A	5.9	7.7	10	18	25	32

5.1 Motor reactors (blocksize)

			Motor read	tor (for a 4 kHz pu	se frequency)		
Order no. 6SE6400-		3TC05-4DD0	3TC03-8DD0	3TC05-4DD0	3TC08-0ED0	3TC07-5ED0	
Frame size		FSD	FSD	FSD	FSE	FSE	
Suitable for Power Module 6SL3210- 6SL3215-		1SE23-8xxx 1SE23-8UAx	1SE24-5xxx	1SE26-0xxx 1SE26-0UAx	1SE27-5xxx 1SE27-5UAx	1SE31-0xxx 1SE31-0UAx	
Rated current	А	68	45	68	104	90	
Power loss	kW	0.2	0.2	0.2	0.17	0.27	
Connection to the Power Module		Flat connector for M6 cable lug					
Motor connection			Flat connector for M6 cable lug				
PE connection			M6 screw				
Max. permissible	m		200 (shielded)				
cable length between motor reactor and motor		300 (unshielded)					
Degree of protection		IP00					
Weight, approx.	kg	11.5	19	11.5	12	27	
Rated current I _{rated} of the Power Module	A	38	45	60	75	90	

T 1 5 40	
Table 5-12	Motor reactors for Power Modules 3-ph. 380 V to 480 V AC, frame sizes FSD and FSE

Table 5- 13 Motor reactors for Power Modules 3-ph. 380 V to 480 V AC, frame size FSF

		Motor reactor (for a 4	kHz pulse frequency)		
Order no. 6SE6400-		3TC14-5FD0	3TC15-4FD0	3TC14-5FD0	
Frame size		FSF	FSF	FSF	
Suitable for Power Module 6SL3210- 6SL3215-		1SE31-1xxx 1SE31-1UAx	1SE31-5xxx	1SE31-8xxx 1SE31-8UAx	
Rated current	А	178	178	178	
Power loss	kW	0.47	0.25	0.47	
Connection to the Power Module		Flat connector for M8 cable lug			
Motor connection			Flat connector for M8 cable lug		
PE connection			M8 screw		
Max. permissible cable length between motor reactor and motor	m	200 (shielded) 300 (unshielded)			
Degree of protection		IP00			
Weight, approx.	kg	57	24	57	
Rated current I _{rated} of the Power Module	A	110	145	178	

Motor-side power components

5.1 Motor reactors (blocksize)

6.1 Description

The CU305 DP Control Unit (PROFIBUS) and CU305 CAN are the components in which the open-loop and closed-loop control functions of a drive are implemented.

The CU305 DP and CU305 CAN have the following interfaces (ports):

Туре	CU305 DP	CU305 CAN
Digital inputs*/outputs	4	4
Digital inputs, electrically isolated	5	5
Failsafe digital inputs (F-DI)**	3	3
Analog input	1	1
Failsafe digital output (F-DO)***	1	1
DRIVE-CLiQ interfaces	1	1
PROFIBUS interface	1	
CAN interface		1
Serial interface (RS232)	1	1
Power Module Interface (PM-IF)	1	1
Encoder interface (HTL/TTL/SSI)	1	1
Motor temperature sensor input	1	1
24 V electronics power supply	1	1
Test sockets	2	2
Interface for BOP	1	1

Table 6-1 Overview of the CU305 DP and CU305 CAN interfaces

* The bidirectional inputs are designed as "rapid inputs" and can be used for BEROs (3-core) or measuring probes.

** If the safety functions of the Control Unit are not being used, the failsafe digital inputs can be used as 6 additional electrically isolated digital inputs.

*** If the safety functions of the Control Unit are not being used, the failsafe digital input can be used as 1 additional electrically isolated digital input.

Note

The rated values of the F-DO meet the requirements of EN 61131-2 for digital DC outputs with 0.5 A rated current.

The operating ranges of the F-DIs meet the requirements of EN 61131-2 for type 1 digital inputs.

6.2 Safety information

The cooling clearances of 50 mm above and below the components must be observed. It is not permissible that the connecting cables cover the cooling openings.

6.3.1 Overview CU305 DP

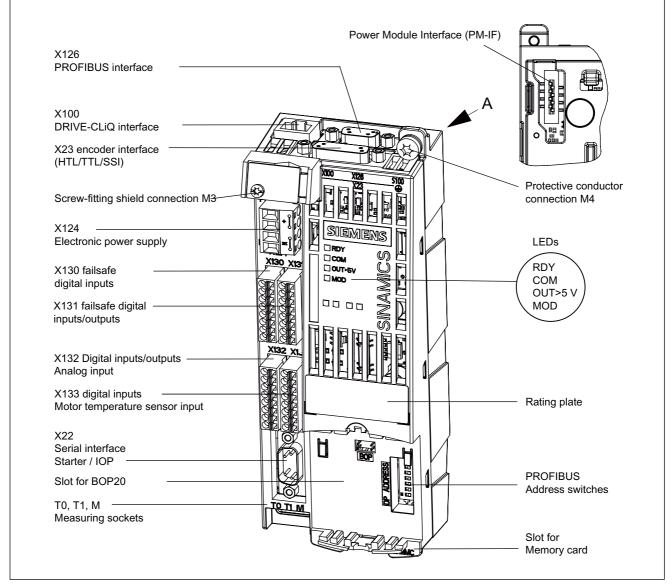


Figure 6-1 Description of the CU305 DP interfaces (ports)

6.3.2 Overview CU305 CAN

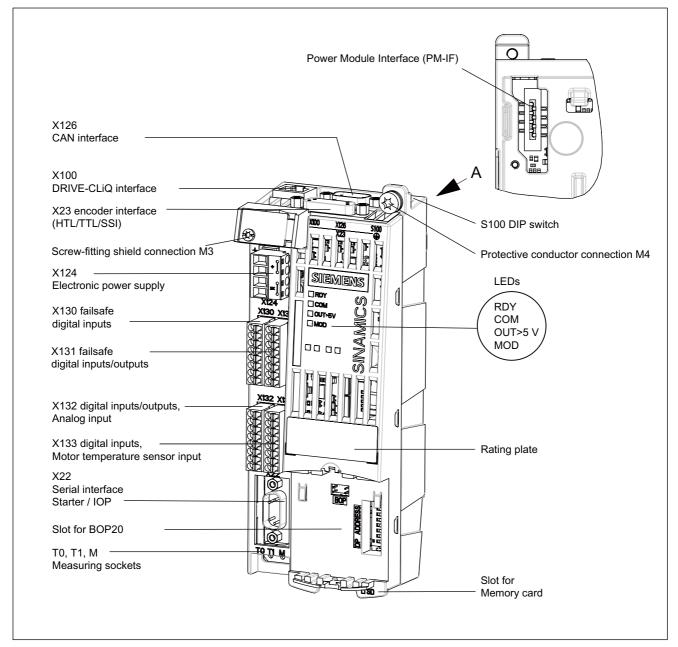
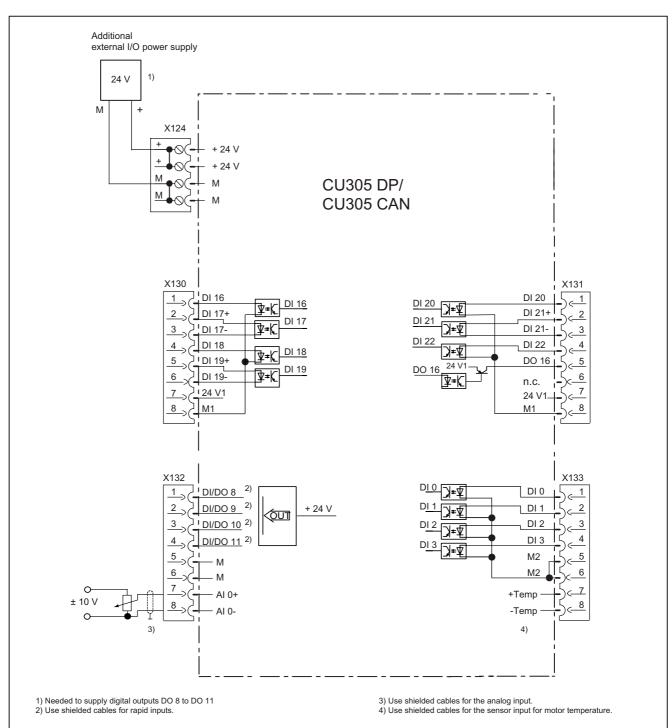



Figure 6-2 Interface description CU305 CAN

6.3.3 Connection examples

Connection examples without the safety function

Figure 6-3 Internal connections of the CU305 without the safety function

CU305 Control Units

6.3 Interface description

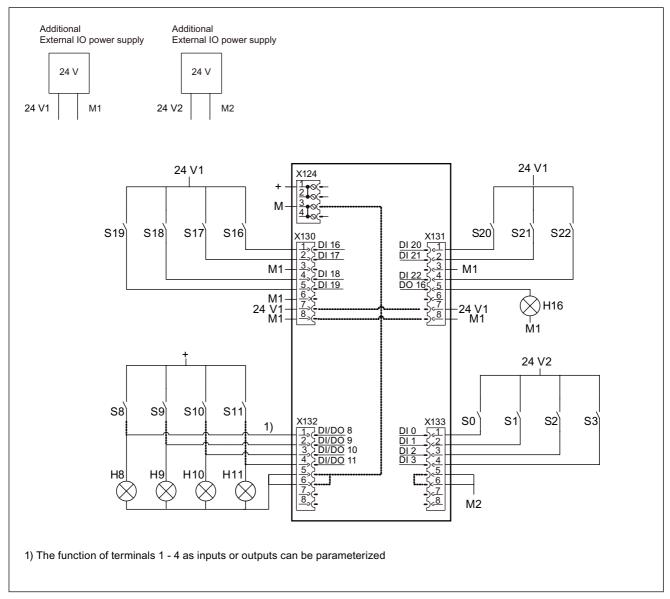
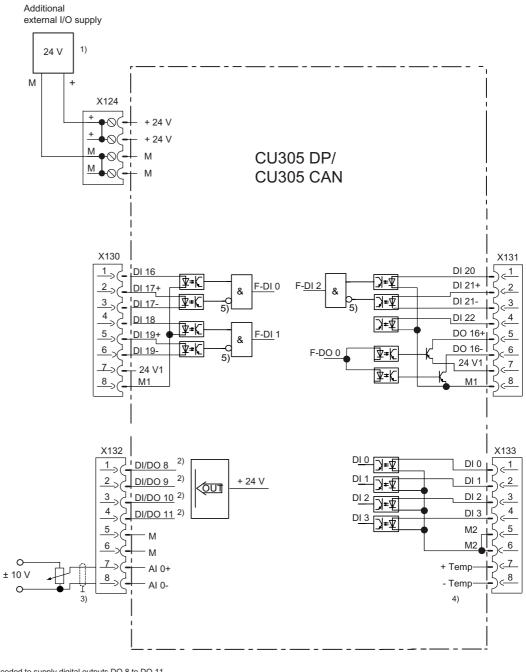



Figure 6-4 Example of circuits for the DI/DO without the safety function

CU305 Control Units 6.3 Interface description

Connection examples with the safety function

Needed to supply digital outputs DO 8 to DO 11
 Use shielded cables for rapid inputs

3) Use shielded cable for analog input4) Use shielded cable for motor temperature sensor input

5) Inversion is parameterizable

Figure 6-5 Internal connections of the CU305 with the safety function

CU305 Control Units

6.3 Interface description

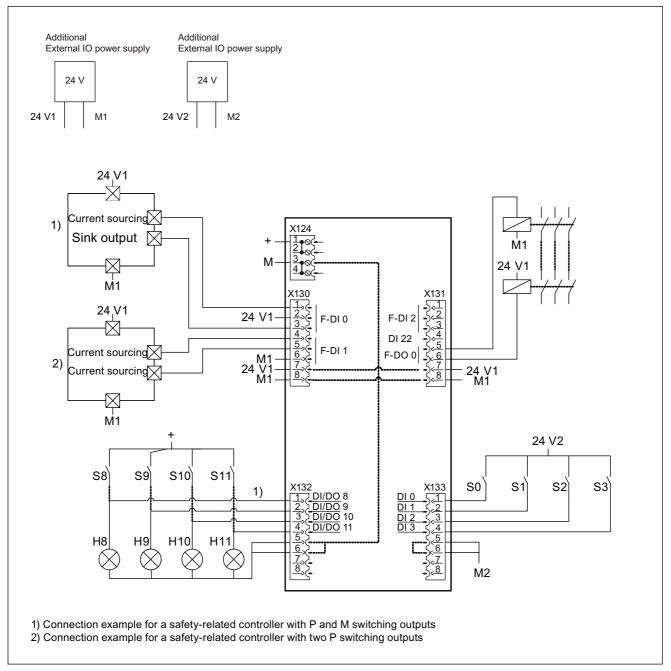


Figure 6-6 Example of circuits for the F-DI/F-DO with the safety function

For further information on connection methods, please refer to the following documents: References: SINAMICS S110, Function Manual Drive Functions

6.3.4 CU305 DP and CU305 CAN, common interfaces

6.3.4.1 X100 DRIVE-CLiQ interface

Table 6-2 DRIVE-CLiQ interface

	Pin	Signal name	Technical specifications	
	1	ТХР	Transmit data +	
	2	TXN	Transmit data -	
	3	RXP	Receive data +	
	4	Reserved, do not use		
I E E A	5	Reserved, do not use		
	6	RXN	Receive data -	
	7	Reserved, do not use		
	8	Reserved, do not use		
	А	+ (24 V)	Power supply	
	В	GND (0 V)	Electronics ground	
Connector type: RJ45 socket; blanking plate for DRIVE-CLiQ interface included in the scope of delivery; blanking plate (50 pieces) Order number: 6SL3066-4CA00-0AA0 The maximum DRIVE-CLiQ cable length is 100 m.				

6.3.4.2 Electronics power supply X124

Table 6- 3 Terminal block X124

	Terminal	Function	Technical specifications			
	+	Electronics power supply	Voltage: 24 V DC (20.4 V - 28.8 V)			
	+	Electronics power supply	Current consumption: max. 0.8 A (incl. 0.35A for HTL			
	М	Electronic ground	encoders, without DRIVE-CLiQ and digital outputs)			
⋳∊	Μ	Electronic ground	Max. current via jumper in connector: 20 A at 55 °C			
Max. cross-section that can be connected: 2.5 mm ²						
Screw termina	I: see Appendix	< A				

Note

The two "+" or "M" terminals are jumpered in the connector. This ensures the supply voltage is looped through.

Note

An additional external electronics power supply via terminal X124 is required in two cases:

- If the digital outputs DO 8 to DO 11 are in use, the power supply needs to be connected to X124.
- The electronics power supply to the CU305 is supplied using the Power Module. If the CU305 needs to remain functional when the Power Module is switched off, the power supply needs to be connected to X124.

6.3.4.3 X130 failsafe digital inputs

	Terminal	Designation	Technical specifications		
	1	DI 16	Input characteristics in accordance with IEC61131-2,		
	2	DI 17+	Туре 1		
	3	DI 17-	All digital inputs are electrically isolated. The reference		
	4	DI 18	potential is M1		
	5	DI 19+	Typical current consumption at 24 V DC: 6 mA		
	6	DI 19-	Permissible level (incl. ripple) High level: 15 V to 30 V Low level: -3 V to 5 V		
	7	24 V1	Additional external power supply for connecting DI 16/DI 18 to ground M1. See also "Example of circuits for the F-DI/F-DO" in the chapter titled "Example connections".		
	8	M1	Reference potential for the failsafe digital inputs/outputs		
An F-DI consists of one digital input and a second digital input where the cathode of the optocoupler is also fed out. F-DI 0 = terminals 1, 2, and 3 (DI 16, DI 17+, and DI 17-) F-DI 1 = terminals 4, 5, and 6 (DI 18, DI 19+, and DI 19-)					
	table cross-sect -loaded terminal	ion: 1.5 mm² 1 (see Appendix A)			

NOTICE

An open input is interpreted as "low".

Note

If M1 is connected to M (X124 or X132), the system is no longer electrically isolated.

6.3.4.4 X131 failsafe digital inputs/outputs

	Terminal	Designation	Technical specifications
Р	1	DI 20	Input characteristics in accordance with IEC61131-2,
	2	DI 21+	Туре 1
	3	DI 21-	All digital inputs are electrically isolated. The reference
	4	DI 22	 potential is M1. Typical current consumption at 24 V DC: 6 mA
			Permissible level (incl. ripple) High level: 15 V to 30 V Low level: -3 V to 5 V
	5	DO 16+	Maximum load current: 500 mA
	6	DO 16-	Max. leakage current: 0.5 mA Short-circuit protected load types: resistive, capacitive, inductive
			Switching frequency: For inductive load: Max. 0.5 Hz Maximum lamp load: 2 W
			DO 16+: Current sourcing DO 16-: Sink output
	7	24 V1	Additional external power supply for DO 16+, terminal X131/5. See also "Example of circuits for the F-DI/F-DO" in the chapter titled "Example connections".
	8	M1	Reference potential for the failsafe digital inputs/ outputs
The F-DO cons F-DI 2 = termin	sists of two digita als 1, 2, and 3 (nput and a second digital input w al outputs connected to an externa DI 20, DI 21+, and DI 21-) D 16+ and DO 16-)	here the cathode of the optocoupler is also fed out. al 24 V power supply.
	ble cross-section baded terminal 1	n: 1.5 mm² (see Appendix A)	

Table 6- 5 Terminal block X131

Note

The failsafe digital output (DO 16+, DO 16-) switches off retentively in the event of a short-circuit.

6.3.4.5 X132 Digital inputs/outputs, analog input

	Terminal	Designation	Technical specifications
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 2 3 4	DO 8 / DI 8 DO 9 / DI 9 DO 10 / DI 10 DO 11 / DI 11	Digital inputs: Input characteristics in accordance with IEC 61131-2, Type 1 All digital inputs are non-isolated. The reference potential is M. Typical current consumption at 24 V DC: 7 mA Permissible level (incl. ripple) High level: 15 V to 30 V Low level: -3 V to 5 V Signal propagation times: L → H approx. 4 µs H → L: approx. 4 µs Digital outputs: Maximum load current: 100 mA Max. leakage current: 0.5 mA Short-circuit protected, automatic restart after short-circuit Load types: Resistive, capacitive, inductive Switching frequency: For inductive load: Max. 0.5 Hz Maximum lamp load: 2 W
	5	М	Reference potential for the digital inputs/outputs and the
	6	М	analog input
	7	AI +	Differential input voltage: -10 to +10 V, maximum resolvable
	8	AI -	range: -11 to +11 V Common mode range: -15 V to +15 V Resolution 13 bits
Max. connecta Type: Spring-lo		on: 1.5 mm² 1 (see Appendix A)	

Table 6- 6 Terminal block X132

The common mode range may not be violated. This means that the analog differential voltage signals can have a maximum offset voltage of +/- 15 V with respect to the reference potential. If the range is violated, incorrect results may occur during analog/digital conversion.

NOTICE

An open input is interpreted as "low".

Note

The "fast inputs" DI 8 to DI 11 can be used in conjunction with a measuring system for position sensing.

Note

A 24 V voltage supply must be connected to terminal X124 so that the digital outputs can be used.

If a the 24 V supply is briefly interrupted, then the digital outputs are de-activated during this time.

6.3.4.6 X133 digital inputs, motor temperature sensor input

	Terminal	Designation	Technical specifications
	1	DI 0	Input characteristics in accordance with IEC61131-2,
	2	DI 1	Туре 1
	3	DI 2	All digital inputs are electrically isolated. The reference
	4	DI 3	potential is M2.
		2.0	Typical current consumption at 24 V DC: 6 mA
			Permissible level (including ripple factor)
			High level: 15 V to 30 V
			Low level: -3 V to 5 V
	5	M2	Reference potential M2
	6	M2	
UUU°P	7	+ Temp	Motor temperature measurement KTY84-1C130 (KTY+) Temperature sensor connection KTY84-1C130 / PTC
	8	M (- Temp)	Ground for KTY or PTC
Max. connect	able cross-secti	on: 1.5 mm ²	
Type: Spring-	loaded terminal	1 (see Appendix A)	

NOTICE

An open input is interpreted as "low".

NOTICE

The KTY temperature sensor must be connected with the correct polarity.

Note

There are two ways of connecting the temperature sensor:

1. via X133, terminal 7 and 8

2. via X23, pin 1 and 8

However, only one temperature sensor may be connected as otherwise the parallel circuit will be recorded and incorrect temperature values will be generated.

Risk of electric shock!

Only temperature sensors that meet the safety isolation specifications contained in EN 61800-5-1 may be connected to terminals "+Temp" and "-Temp".

If these instructions are not complied with, there is a risk of electric shock!

6.3.4.7 X23 HTL/TTL/SSI encoder interface

	Pin	Signal name	Technical specifications
	1	+ Temp	KTY or PTC input
	2	SSI_CLK	SSI clock, positive
\bigcirc	3	SSI_XCLK	SSI clock, negative
	4	P_Encoder 5 V / 24 V	Encoder power supply
	5	P_Encoder 5 V/24 V	Encoder power supply
	6	P_Sense	Sense input encoder power supply
	7	Μ	Ground for encoder power supply
	8	M (- Temp)	Ground for KTY or PTC
	9	M_Sense	Ground sense input
	10	RP	R track positive
	11	RN	R track negative
	12	BN	B track negative
	13	BP	B track positive
	14	AN_SSI_XDAT	A track negative / SSI data negative
	15	AP_SSI_DAT	A track positive / SSI data positive
Type: 15-pin sub	D connector		

Table 6-8 Encoder connection X23

NOTICE

The KTY temperature sensor must be connected with the correct polarity.

Note

There are two ways of connecting the temperature sensor:

- 1. via X133, terminal 7 and 8
- 2. via X23, pin 1 and 8

However, only one temperature sensor may be connected as otherwise the parallel circuit will be recorded and incorrect temperature values will be generated.

Note

We recommend that bipolar encoders are used.

When using unipolar encoders the unused negative track signals can either be left unconnected or connected to ground. This results in two different operating points.

CU305 Control Units

6.3 Interface description

Parameters	Designation	Threshold	Min.	Туре	Max.	Unit
Permissible signal level in bipolar mode (parameter p0405.1=1); (TTL, SSI, HTL bipolar at X23) ¹⁾²⁾	Udiff		2.0		Vcc	V
Permissible signal frequency	fs		-		500	kHz
Required edge clearance	t _{min}		100		-	ns
Permissible zero pulse (with $T_s = 1/f_s$)	Length		¼ ∙ Ts		3⁄4 ∙ Ts	
	Center of the pulse position		50	135	220	Degrees
Operating point in unipolar mode (parameter p0405.0=0) and signals	U _(Switch)	High (p0405.4=1)	8.4	10.6	13.1	V
AN_SSI_XDAT, BN, RN at X23 connected to M_Encoder		Low (p0405.4=0)	3.5	4.8	6.3	V
Operating points in unipolar mode (parameter p0405.0=0) and signals	U(Switch)	High (p0405.4=1)	9	11.3	13.8	V
AN_SSI_XDAT, BN, RN not connected to X23		Low (p0405.4=0)	5.9	7.9	10.2	V

Table 6-9 Specification, measuring systems that can be connected

1) Other signal levels according to the RS422 specification

2) The absolute level of the individual signals varies between 0 V and VCC of the measuring system.

NOTICE

Prefabricated cable for 5 V - TTL encoder

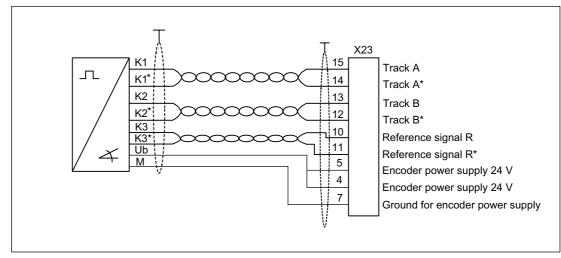

If a 5 V - TTL encoder (6FX encoder) is used, the connecting cable 6FX8002-2CR00-.... has to be used.

Table 6- 10Maximum encoder cable length

Encoder type	Maximum encoder cable length in m
TTL ¹⁾	100
HTL unipolar ²⁾	100
HTL bipolar	300

1) 100 m with remote sense

 Because the physical transmission properties are more robust, the bipolar connection should always be used. The unipolar connection should only be used if the encoder type does not output push-pull signals.

Connection example 1: HTL encoder, bipolar, with reference signal

Figure 6-7 Connection example 1: HTL encoder, bipolar, with reference signal

Signal cables must be twisted in pairs in order to improve noise immunity against induced noise.

Connection example 2: HTL encoder, unipolar, with reference signal

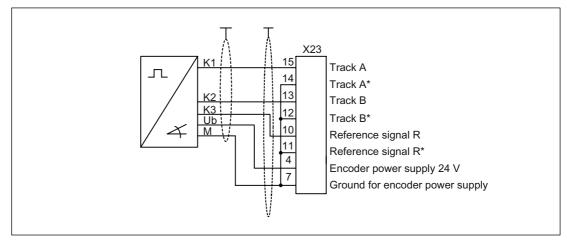


Figure 6-8 Connection example 2: HTL encoder, unipolar, with reference signal ¹⁾

¹⁾ Because the physical transmission media is more robust, the bipolar connection should always be used. The unipolar connection should only be used if the encoder type does not output push-pull signals.

6.3.4.8 Pulse/direction interface

Setpoint value specification with HTL level

Thanks to the pulse/direction interface, SINAMICS S110 can be used for simple positioning tasks on a controller. Connection to the controller is via internal encoder interface X23 of the CU305.

The controller gives the drive two signals: A pulse sequence with a pulse/pause ratio of 50:50 and a directional signal.

Table 6- 11 Setpoint value specification with HTL level

	Pin	Signal name	Technical data
	1 to 6	Not relevant	-
	7	М	Ground
	8 to 12	Not relevant	-
15 O O O	13	BP Pulse/direction interface: Direction	B track positive
	14	Not relevant	-
00000-	15	AP_DAT Pulse/direction interface: Pulse	A track positive
Type: 15-pin S	SUB D connec	tor	

The required settings for the pulse/direction interface need to be made in the STARTER. Please refer to the SINAMICS S110 Function Manual for details.

Connection example

The image below shows an example of how to connect a pulse/direction interface with HTL level to interface X23 of a Control Unit CU305.

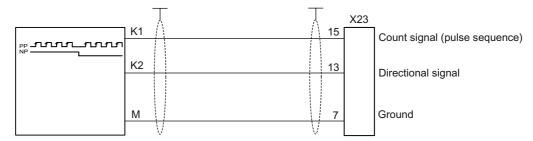


Figure 6-9 Connection of a pulse/direction interface with HTL level to interface X23

Setpoint value specification: Sensor signal with TTL level

This sections shows an example of how to connect bipolar TTL encoders to the pulse/direction interface of Control Unit CU305. Connection to the controller supports setpoint value specification via A track and B track.

	Pin	Signal name	Technical data	
	1 to 6	Not relevant	_	
	7	М	Ground	
15 0	8 to 11	Not relevant	_	
	12	Setpoint value specification, sensor	B track negative	
	13	signal	B track positive	
	14	Setpoint value specification, sensor	A track negative	
	15	signal	A track positive	

Table 6-12 Setpoint value specification: Sensor signal with TTL level

Type: 15-pin SUB D connector

The required settings for the pulse/direction interface need to be made in the STARTER. Please refer to the SINAMICS S110 Function Manual for details.

Connection example

The image below shows an example of how to connect TTL encoders to interface X23 of a Control Unit CU305 for setpoint value specification via A track and B track.

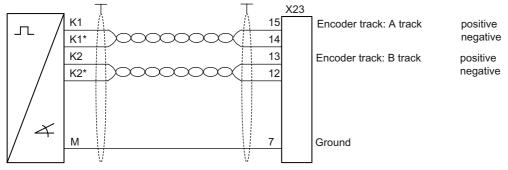


Figure 6-10 Connection of TTL encoders to interface X23 for setpoint value specification via A track and B track

6.3.4.9 X22 serial interface (RS232)

	Pin	Designation	Technical data
	1	Reserved, do not use	
	2	RxD	Receive data
	3	TxD	Transmit data
	4	Reserved, do not use	
	5	Ground	Ground reference
	5	Reserved, do not use	
	6	Reserved, do not use	
	7	Reserved, do not use	
	8	Reserved, do not use	
	9	Reserved, do not use	
Type: 9-pin SUB D conne	ctor	I	I

Table 6-13 Serial interface (RS232)

6.3.4.10 X520/521/522 measuring sockets

Table 6- 14 Measuring sockets X520, X521 and X522

Socket	Function	Technical specifications			
ТО	Measuring socket 0	Voltage: 0 V to 5 V			
T1	Measuring socket 1	Resolution: 8 bits			
M Ground for measuring sockets Load current: max. 3 mA Continued-short-circuit-proof					
The measuring sockets are only suitable for bunch pin plugs with a diameter of 2 mm.					

Note

The test sockets are provided as a support to commissioning and diagnostics; they must not be connected for normal operation.

6.3.4.11 Memory card slot

A memory card is needed in the following cases:

- 1. Saving parameters Parameters are saved on the memory card and can simply be copied onto the new CU305 if the component needs to be replaced.
- 2. Firmware update It is easy to perform a firmware update using a memory card.
- License carrier The license is stored on the memory card.

Note

The CU305 can be operated without the memory card. The memory card only needs to be inserted into the CU305 because it is the license carrier for the Safety functions.

Figure 6-11 Memory card slot

CAUTION

The memory card may only be inserted as shown in the figure (arrow top right).

The memory card should not be removed or inserted while data is being saved.

When returning a defective Control Unit, remove the memory card and keep it for insertion in the replacement unit. This is important otherwise the data on the memory card (parameters, firmware, licenses, and so on) may be lost.

Working with the memory card

For more detailed information on how to use the memory card, please refer to the SINAMICS S110 Function Manual.

6.3.4.12 Description of the LEDs on Control Unit CU305

Description of the LED statuses

The individual statuses during the booting procedure are indicated by means of the LEDs on the Control Unit.

- The duration of the individual statuses varies.
- If an error occurs, booting is aborted and the cause of the error is indicated via the LEDs. Remedy:
 - If booting is cancelled as a result of incorrect data, fault F01018 is output. Once this fault has been output, the module reverts to its factory settings during booting.
 - In all other cases: Exchange the Control Unit.
- Once the unit has been successfully booted, all the LEDs are switched off briefly.
- Once the unit has been booted, the LEDs are driven via the loaded software.

The description of the LEDs after booting applies.

Behavior of the LEDs during booting

Table 6- 15	LEDs during booting
-------------	---------------------

	LED				Remark
RDY	СОМ	OUT>5	MOD		
Orange	Orange	off	Red	Reset	_
Red	Red	Off	Off	BIOS loaded	-
Red 2 Hz	Red	Off	Off	BIOS error	-
Red	Off	Off	Off	Firmware loaded	-
Red 2 Hz	Red 2 Hz	Off	Off	File error	problem with file system
Off	Red	Off	Off	Firmware checked	no CRC errors
Red 0.5 Hz	Red 0.5 Hz	Off	Off	Firmware checked	CRC error
Orange	Off	Off	Off	drive initialization	-

Behavior of the LEDs after booting

LED	Color	State	Description, cause	Remedy
RDY (READY)	-	Off	Electronics power supply is missing or outside permissible tolerance range.	-
	Green Continuou		The component is ready and cyclic DRIVE-CLiQ communication takes place or the Control Unit waits for initial commissioning.	-
		Flashing 0.5 Hz	Commissioning/Reset or Safety commissioning/Reset	-
		Flashing 2 Hz	Writing to the memory card ¹⁾	-
	Red	Flashing 2 Hz	At least one fault is present in this component.	Remedy and acknowledge fault
	Green/ Red	Flashing 0.5 Hz	Control Unit CU305 is ready for operation. However there are no software licenses.	Obtain licenses.
	Orange	Continuous light	DRIVE-CLiQ communication is being established.	-
		Flashing 0.5 Hz	Updating the firmware of the DRIVE-CLiQ components.	-
		Flashing 2 Hz	Firmware update is complete for components. Wait for POWER ON for the components in question.	Turn POWER ON for the components in question
	Green/ orange or red/	Flashing 1 Hz	Component detection via LED is activated (p0124[0]). Note:	-
	orange		Both options depend on the LED status when component recognition is activated via p0124[0] = 1.	
COM PROFIdrive cyclic operation/ CU305 DP	-	Off	Cyclic communication has not (yet) taken place. Note: The PROFIdrive is ready to communicate when the Control Unit is ready to operate (see LED RDY).	-
	Green	Continuous light	Cyclic communication is taking place.	-
		Flashing 0.5 Hz	Cyclic communication is not yet running fully. Possible reasons:	-
			• The controller is not transferring any setpoints.	
			 During isochronous operation, no global control (GC) or a faulty global control (GC) is transferred by the Controller. 	
	Red	Continuous light	Cyclic communication has been interrupted.	Remedy fault

Table 6- 16 LEDs after booting

CU305 Control Units

LED	Color	State	Description, cause	Remedy
	Orange	Flashing 2 Hz	Firmware CRC error.	Make sure that the memory card has been inserted properly. ¹⁾ Replace the memory card. ¹⁾
				Replace Control Unit. Carry-out a POWER ON.
COM/ CU305 CAN	-	Off	Cyclic communication has not (yet) taken place. Note: The CAN is ready to communicate when the Control Unit is ready to operate (see LED RDY).	-
	Green	Continuous light	Cyclic communication is taking place.	-
		Flashing 0.5 Hz	 Cyclic communication is not yet running fully. Possible reasons: The controller is not transferring any setpoints. During isochronous operation, no global control (GC) or a faulty global control (GC) is transferred by the controller. 	-
	Red	Continuous light	Cyclic communication has been interrupted.	Remedy fault
	Orange	Flashing 2 Hz	Firmware CRC error.	Make sure that the memory card has been inserted properly. ¹⁾ Replace the memory card. ¹⁾ Replace Control Unit. Carry out a POWER ON.
OUT>5 V	-	Off	The voltage of the electronics power supply for the measuring system is 5 V.	-
	Orange	Continuous light	The voltage of the electronics power supply for the measuring system is 24 V. Important: Make sure that the connected encoder can be operated with a 24 V power supply. If an encoder that is designed for a 5 V supply is operated with a 24 V supply, this can destroy the encoder electronics.	-
MOD	-	Off	Reserved	-

1) This option only applies if an optional memory card is inserted.

LEDs during a firmware update for the Control Unit

Behavior of the LEDs during a firmware update via the memory card

LED	Color	State	Description, cause	Remedy
RDY (READY)	Red	Continuous light	Firmware update in progress	-
RDY and COM	Red	Flashing 0.5 Hz	Firmware update complete, waiting for POWER ON	Carry out a POWER ON.
RDY and COM	Red	Flashing 2 Hz	Firmware incompatible (with hardware) or wrong memory card	Make sure that the memory card has been inserted properly. Replace the memory card. Replace Control Unit.
RDY COM	Red	Flashing 2 Hz Continuous light	Firmware update error Firmware CRC error	Make sure that the memory card has been inserted properly.
				Replace the memory card.
				Replace Control Unit.

Table 6- 17 LEDs during the firmware update

For more detailed information on how to use the memory card for a firmware update, please refer to the SINAMICS S110 Function Manual.

6.3.5 Interfaces to the CU305 DP

6.3.5.1 PROFIBUS/USS X126

Table 6- 18 PROFIBUS/USS interface X126

	Terminal	Designation	Technical specifications
	1	Reserved, do not use	
	2	Μ	Ground to P24_SERV
	3	1RS_DP	RS485 differential signal
	4	1RTS_DP	Request To Send
00000	5	1M	Ground to 1P5
	6	1P5	5 V power supply for bus terminal, external, short circuit-proof
	7	P24_SERV	24 V for teleservice, short circuit-proof, 150 mA max.
	8	1XRS_DP	RS485 differential signal
Ó	9	Reserved, do not use	
Type: 9-pin SUB	D socket	•	·

No CAN cables may be connected to the X126 interface. If CAN cables are connected, the CU305 DP and other CAN bus nodes could be seriously damaged.

Communication with USS protocol via RS485

Interface X126 can also be used for communication with USS involving up to 32 nodes. The software in the STARTER is used to change the PROFIBUS factory setting to USS. During operation as a USS interface, only terminals 3, 5, and 8 are used. Please refer to the SINAMICS S110 Function Manual for information on configuration.

6.3.5.2 PROFIBUS/USS address switch

With the CU305 DP, the address switch can be used to set both PROFIBUS addresses and USS addresses. Operation via USS is only possible if the factory setting in the STARTER of PROFIBUS is changed to USS.

The factory setting for the address switch is 0 or 127. The address switch is located behind the blanking plate. The blanking plate is part of the scope of supply.

Table 6- 19 PROFIBUS/USS address switch

Technical spe	cifications	Switch	Significance
		S1	2 ⁰ = 1
Significance:	2^0 2^1 2^2 2^3 2^4 2^5 2^6	S2	21 = 2
	1 2 4 8 16 32 64	S3	2 ² = 4
	ON	S4	2 ³ = 8
	OFF	S5	2 ⁴ = 16
	S1 S2 S3 S4 S5 S6 S7	S6	2 ⁵ = 32
Example:	2 + 4 + 8 + 16 = 30	S7	2 ⁶ = 64
	PROFIBUS/USS address = 30		

Setting the PROFIBUS address

- 1. Setting via parameter p0918
 - The STARTER is used to set the bus address for a PROFIBUS node to a value between 1 and 126. This is only possible if the address switch is set to 0 or 127 (factory setting).
- 2. Manual setting
 - The address switch (DIP switch) is used to manually set the bus address to a value between 1 and 126. In this case, p0918 is only used to read the address.

Setting the USS address

- 1. Setting via parameter p2021
 - The STARTER is also used to set the bus address for USS nodes to a value between 0 and 30. This is only possible if the address switch is set to 0 or 127 (factory setting).
- 2. Manual setting
 - The address switch (DIP switch) is used to manually set the address to a value between 0 and 30. If addresses are set manually to values >30, the setting will revert to the value set in parameter p2021 or the default value.

Note

A value of 0 is used as the address for USS if no other address has been saved in parameter p2021.

6.3.6 Interfaces to the CU305 CAN

6.3.6.1 X126 CAN interface

Table 6- 20 X126 CAN interface

	Terminal	Designation	Technical specifications
00000	1	Reserved, do not use	
	2	CAN_L	CAN signal
	3	CAN_GND	CAN ground
	4	Reserved, do not use	
	5	CAN_SHL	Optional shield
	6	CAN_GND	CAN ground
	7	CAN_H	CAN signal
	8	Reserved, do not use	
	9	Reserved, do not use	
Type: 9-pin SUB D soc	ket		

If the CAN interface is connected to the PROFIBUS connector, then this can destroy the CAN interface.

6.3.6.2 S100 DIP switch

Table 6- 21 DIP switch

Switch	Function	Switch setting		Default
2	Bus terminating resistor	Off	Inactive	Off
	120 Ohm	On	Active	
1	Ungrounded, grounded	Off	Ground-free operation	Off
	operation	On	Operation with ground	

6.4 Dimension drawing

6.4 Dimension drawing

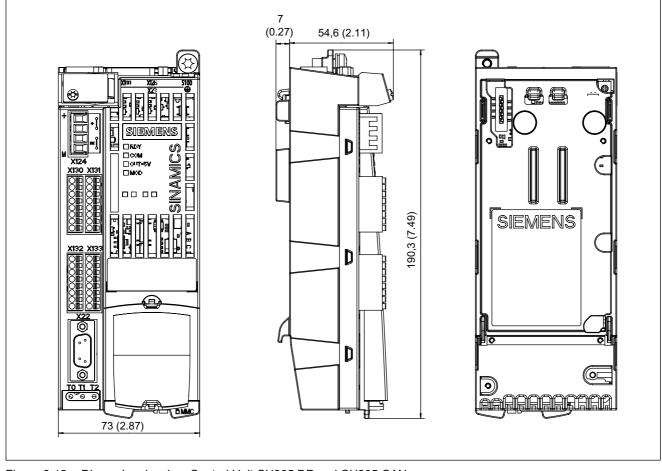
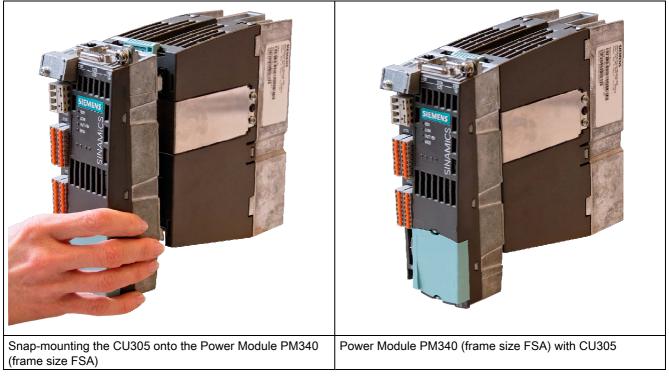
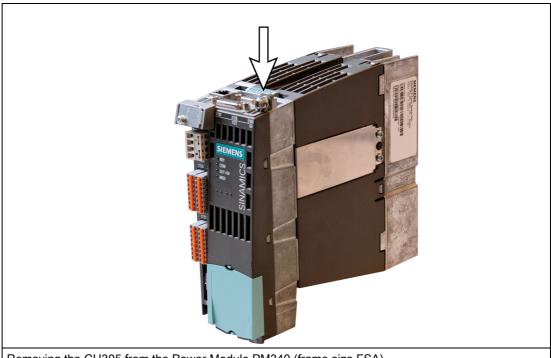



Figure 6-12 Dimension drawing: Control Unit CU305 DP and CU305 CAN


6.5 Mounting

The procedure when mounting the Control Unit on the Power Module is independent of the frame size of the Power Modules.

6.5 Mounting

Removing the Control Unit

Removing the CU305 from the Power Module PM340 (frame size FSA)

In order to remove the Control Unit from the Power Module, the blue release lever, as shown in the diagram, must be pressed downwards and the Control Unit swung out to the front.

6.6 Technical data

Table 6-22 Technical data of the CU305 DP and CU305 CAN

	Unit	Value
Electronics power supply		
Voltage	V _{DC}	24 (20.4 – 28.8)
Current consumption (without DRIVE-CLiQ and digital outputs)	A _{DC}	0.8
Power loss	W	<20
Measuring system power supply		
Voltage	VDC	TTL: 5 V (with or without Remote Sense) HTL: V _{DC} - 1 V
Current	Add	0.35
PE/ground connection	On housing w	vith M4/3 Nm screw
Response time	The response time of digital inputs/outputs depends on the evaluation (to the function diagram).	
	References: /LH1/ SINAMICS S List Manual, Chapter "Function diagra	
Weight	kg	0.95

CU305 Control Units

6.6 Technical data

Supplementary system components and encoder system integration

7.1 Basic Operator Panel BOP20

7.1.1 Description

The Basic Operator Panel BOP20 contains six keys and a backlit display unit. The BOP20 can be plugged onto a SINAMICS Control Unit and operated.

The following functions are possible with the BOP:

- Input of parameters and activation of functions
- · Display of operating modes, parameters, alarms and faults

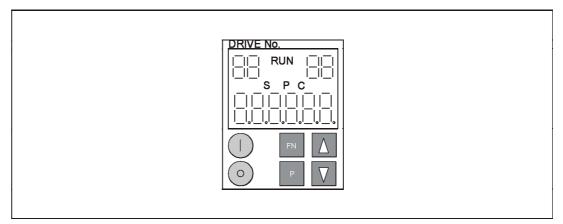

7.1.2 Interface description

Figure 7-1 Basic Operator Panel BOP20

7.1 Basic Operator Panel BOP20

Overview of displays and keys

Figure 7-2 Overview of displays and keys

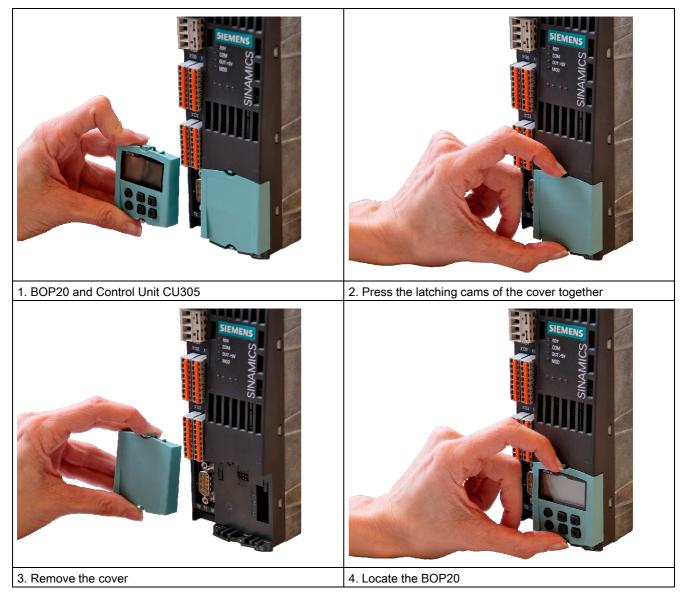
Table 7-1 Displays

Display	Meaning	
top left 2 positions	The active drive object of the BOP is displayed here. The displays and key operations always refer to this drive object.	
RUN	Is lit (bright) if the displayed drive is in the RUN state (in operation).	
top right	The following is displayed in this field:	
2 positions	 More than 6 digits: Characters that are present but cannot be seen (e.g. "r2" —> 2 characters to the right are invisible, "L1" —> 1 character to the left is invisible) 	
	Faults: Selects/displays other drives with faults	
	Designation of BICO inputs (bi, ci)	
	Designation of BICO outputs (bo, co)	
	Source object of a BICO interconnection to a drive object different than the active one.	
S	Is (bright) if at least one parameter was changed and the value was not transferred into the non-volatile memory.	
Р	Is lit (bright) if, for a parameter, the value only becomes effective after pressing the P key.	
С	Is light (bright) if at least one parameter was changed and the calculation for consistent data management has still not been initiated.	
Below, 6 position	Displays, e.g. parameters, indices, faults and alarms.	

7.1 Basic Operator Panel BOP20

BOP20 keyboard

Table 7- 2	Assignment of the BOP20 keyboard


Key	Name	Meaning	
	ON	Powering-up the drives for which the command "ON/OFF1", "OFF2" or "OFF3" should come from the BOP.	
0	OFF	Powering-down the drives for which the commands "ON/OFF1", "OFF2" or "OFF3" should come from the BOP.	
		Note:	
		The effectiveness of these keys can be defined using the appropriate BICO parameterization (e.g. using these keys, it is possible to simultaneously control all of the axes that have been configured).	
		The structure of the BOP control word corresponds to the structure of the PROFIBUS control word.	
	Functions	The meaning of these keys depends on the actual display.	
FN		Note:	
		The effectiveness of this key to acknowledge faults can be defined using the appropriate BiCo parameterization.	
Р	Parameter	The meaning of these keys depends on the actual display.	
\triangle	Raise	The keys are dependent on the actual display and are used to raise or lower values.	
∇	Lower		

Displays and operating the BOP20

Information about the displays and using the BOP20 is provided in the following reference: Reference: /IH1/ SINAMICS S120 Commissioning Manual

7.1.3 Installation

Table 7-3 Mounting

7.2 Sensor Module Cabinet-Mounted SMC10

7.2.1 Description

The Sensor Module Cabinet-Mounted SMC10 evaluates encoder signals and transmits the speed, actual position value, rotor position and, if necessary, the motor temperature via DRIVE-CLiQ to the Control Unit.

The SMC10 is used to evaluate sensor signals from resolvers.

7.2.2 Safety information

The ventilation spaces of 50 mm above and below the component must be observed.

NOTICE

Only one encoder system may be connected per Sensor Module.

Note

There must be no electrical connection between the encoder system housing and the signal cables, or the encoder system electronics. If this is not carefully observed, under certain circumstances the system will not be able to reach the required interference immunity level (there is then a danger of equalization currents flowing through the electronics ground).

Connecting cables to temperature sensors must always be installed with shielding. The cable shield must be connected to the ground potential at both ends over a large surface area. Temperature sensor cables that are routed together with the motor cable must be twisted in pairs and shielded separately.

7.2.3 Interface description

7.2.3.1 Overview

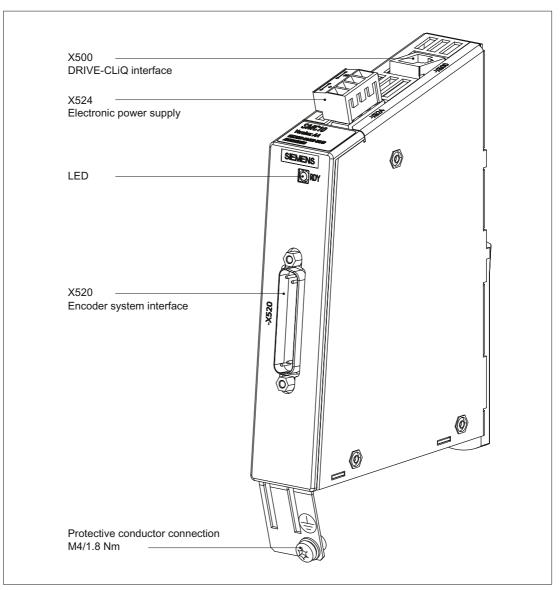


Figure 7-3 Interface description of the SMC10, 30 mm wide, order number: 6SL3055-0AA00-5AA3

7.2 Sensor Module Cabinet-Mounted SMC10

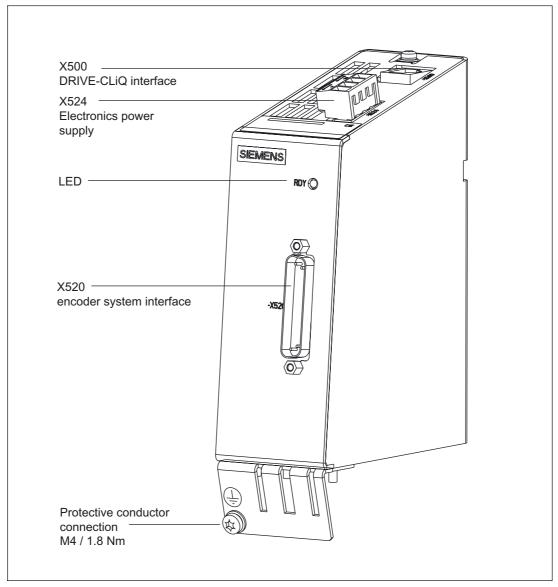


Figure 7-4 Interface description of the SMC10, 50 mm wide, order number: 6SL3055-0AA00-5AA0

7.2.3.2 DRIVE-CLiQ interface X500

Pin	Signal name	Technical specifications
1	ТХР	Transmit data +
2	TXN	Transmit data -
3	RXP	Receive data +
4	Reserved, do not use	
5	Reserved, do not use	
6	RXN	Receive data -
7	Reserved, do not use	
8	Reserved, do not use	
А	Reserved, do not use	
В	GND (0 V)	Electronics ground

Table 7-4 DRIVE-CLiQ interface X500

7.2.3.3 X520 encoder system interface

Table 7-5 X520 encoder system interface

	Pin	Signal name	Technical specifications
	1	Reserved, do not use	
	2	Reserved, do not use	
	3	S2	Resolver signal A (sin+)
• 25	4	S4	Inverse resolver signal A (sin-)
	5	Ground	Ground (for internal shield)
	6	S1	Resolver signal B (cos+)
	7	S3	Inverse resolver signal B (cos-)
	8	Ground	Ground (for internal shield)
	9	R1	Resolver excitation positive
	10	Reserved, do not use	
	11	R2	Resolver excitation negative
	12	Reserved, do not use	
	13	+ Temp	Motor temperature measurement KTY84-1C130 (KTY+) Temperature sensor KTY84-1C130 / PTC
	14	Reserved, do not use	
	15	Reserved, do not use	
	16	Reserved, do not use	
	17	Reserved, do not use	
	18	Reserved, do not use	
	19	Reserved, do not use	
	20	Reserved, do not use	
	21	Reserved, do not use	
	22	Reserved, do not use	
	23	Reserved, do not use	
	24	Ground	Ground (for internal shield)
	25	- Temp	Motor temperature measurement KTY84-1C130 (KTY-) Temperature sensor KTY84-1C130 / PTC

Risk of electric shock!

Only temperature sensors that meet the safety isolation specifications contained in EN 61800-5-1 may be connected to terminals "+Temp" and "-Temp".

If these instructions are not complied with, there is a risk of electric shock!

7.2.3.4 X524 Electronics power supply

Table 7-6 X524 terminal block

	Terminal	Function	Technical specifications
	+	Electronics power supply	Voltage: 24 V (20.4 V – 28.8 V)
	+	Electronics power supply	Current consumption: Max. 0.35 A
+	М	Electronics ground	Maximum current via jumper in connector: 20 A
	Μ	Electronics ground	
	table cross-se terminal 2 (se	ction: 2.5 mm² e Appendix)	· · · · · · · · · · · · · · · · · · ·

Note

The two "+" and "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

7.2.3.5 Meaning of LEDs on the Sensor Module Cabinet-Mounted SMC10

LED	Color	Status	Description, cause	Remedy
RDY READY	-	Off	Electronics power supply is missing or outside permissible tolerance range.	-
	Green	Continuous light	The component is ready for operation and cyclic DRIVE- CLiQ communication is taking place.	-
	Orange	Continuous light	DRIVE-CLiQ communication is being established.	-
	Red	Continuous light	At least one fault is present in this component. Note: The LED is activated regardless of whether the corresponding messages have been reconfigured.	Remedy and acknowledge fault
	Green/red	0.5 Hz flashing light	Firmware is being downloaded.	-
		2 Hz flashing light	Firmware download is complete. Wait for POWER ON	Carry out a POWER ON
	Green/orange or	Flashing light	Component recognition via LED is activated (p0144). Note:	-
	Red/orange		Both options depend on the LED status when component recognition is activated via p0144 = 1.	

 Table 7-7
 Sensor Module Cabinet-Mounted SMC10 – description of the LEDs

Cause and rectification of faults

The following reference contains further information about the cause and rectification of faults:

References: /IH1/ SINAMICS S, Commissioning Manual

7.2 Sensor Module Cabinet-Mounted SMC10

7.2.4 Dimension drawings

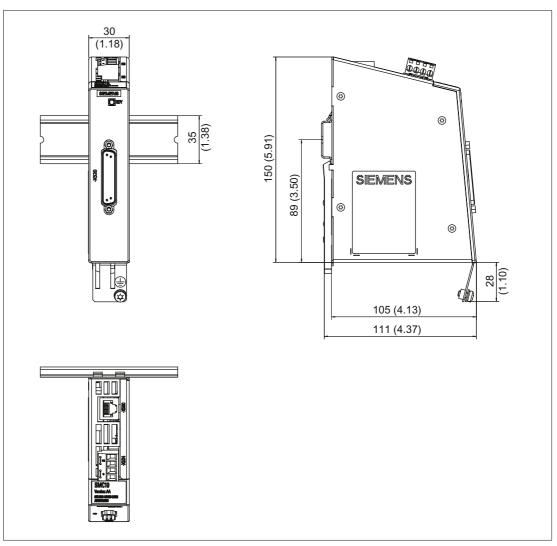


Figure 7-5 Dimension drawing of the Sensor Module Cabinet SMC10, 30 mm wide, all data in mm and (inches); order number: 6SL3055-0AA00-5AA3

7.2 Sensor Module Cabinet-Mounted SMC10

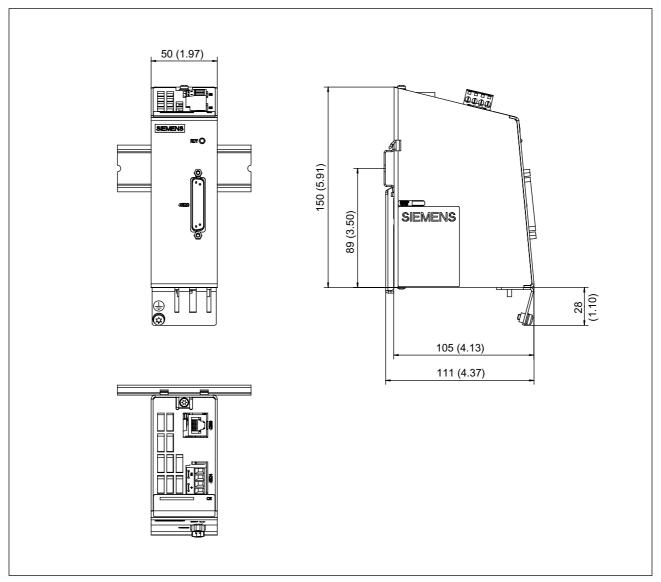


Figure 7-6 Dimension drawing of the Sensor Module Cabinet SMC10, 50 mm wide, all data in mm and (inches); order number: 6SL3055-0AA00-5AA0

7.2.5 Installation

Installation

- 1. Tilt the component backwards slightly and attach it to the DIN rail using the hook.
- 2. Push the component towards the DIN rail until you hear the mounting slide at the rear latch into position.
- 3. You can now move the component to the left or right along the DIN rail, until it reaches its final position.

Removal

- 1. The lug on the mounting slide first needs to be pushed down to unlock the slide from the DIN rail.
- 2. The component can now be tilted forwards and pulled up and off the DIN rail.

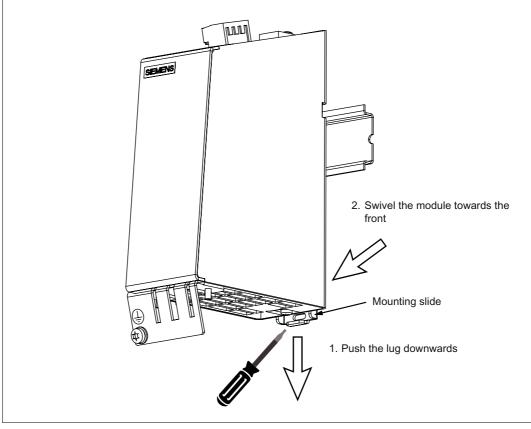
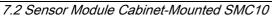


Figure 7-7 Removal of a component from a DIN rail

7.2 Sensor Module Cabinet-Mounted SMC10

7.2.6 Technical data


Table 7-8 Technical data

6SL3055-0AA00-5AAx	Unit	Value
Electronics power supply Voltage Current (without encoder system) Current (with encoder system) Power loss	V _{DC} A _{DC} A _{DC} W	24 DC (20.4 – 28.8) ≤ 0.20 ≤ 0.35 ≤ 10
Specification Transformation ratio of the resolver (ü) Excitation voltage on the SMC10 when ü=0.5 Amplitude monitoring threshold (secondary tracks) of the SMC10	V _{rms} V _{rms}	0.5 4.1 1
Excitation voltage (cannot be parameterized)	Vrms	4.1
Excitation frequency (synchronized to the current controller clock cycle)	kHz	5 to 16 (order number 6SL3055-0AA00-5AA3) 5 to 10 (order number 6SL3055-0AA00-5AA0)
PE/ground connection		On housing with M4/1.8 Nm screw
Max. encoder cable length	m	130
Weight	kg	0.45 (order number 6SL3055-0AA00-5AA3) 0.8 (order number 6SL3055-0AA00-5AA0)
Degree of protection		IP20 or IPXXB

Table 7-9 Max. frequency that can be evaluated (speed)

Resolver		Max. speed resolver / motor		
Number of poles	Number of pole pairs	8kHz/125 µsec	4kHz/250 µsec	2kHz/500 µsec
2-pole	1	120,000 rpm	60,000 rpm	30,000 rpm
4-pole	2	60,000 rpm	30,000 rpm	15,000 rpm
6-pole	3	40,000 rpm	20,000 rpm	10,000 rpm
8-pole	4	30,000 rpm	15,000 rpm	7,500 rpm

The ratio between the ohmic resistance R and the inductance L (the primary winding of the resolver) determines whether the resolver can be evaluated with the SMC10. See the following diagram:

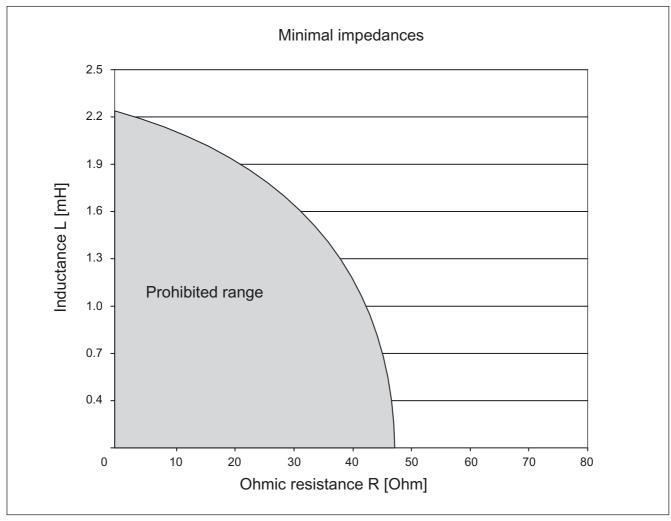


Figure 7-8 Connectable impedances with an excitation frequency f = 5000 Hz

7.3 Sensor Module Cabinet-Mounted SMC20

7.3 Sensor Module Cabinet-Mounted SMC20

7.3.1 Description

The Sensor Module Cabinet-Mounted SMC20 evaluates encoder signals and transmits the speed, actual position value, rotor position and, if necessary, the motor temperature and reference point via DRIVE-CLiQ to the Control Unit.

The SMC20 is used to evaluate encoder signals from incremental encoders with SIN/COS (1 Vpp) or absolute encoders with EnDat 2.1 or SSI.

7.3.2 Safety information

WARNING

The ventilation spaces of 50 mm above and below the component must be observed.

NOTICE

Only one encoder system may be connected per Sensor Module.

Note

There must be no electrical connection between the encoder system housing and the signal cables, or the encoder system electronics. If this is not carefully observed, under certain circumstances the system will not be able to reach the required interference immunity level (there is then a danger of equalization currents flowing through the electronics ground).

CAUTION

Connecting cables to temperature sensors must always be installed with shielding. The cable shield must be connected to the ground potential at both ends over a large surface area. Temperature sensor cables that are routed together with the motor cable must be twisted in pairs and shielded separately.

7.3 Sensor Module Cabinet-Mounted SMC20

7.3.3 Interface description

7.3.3.1 Overview



Figure 7-9 Interface description of the SMC20

7.3.3.2 DRIVE-CLiQ interface X500

Table 7- 10 DRIVE-CLiQ interface X500

	Pin	Signal name	Technical specifications	
	1	ТХР	Transmit data +	
	2	TXN	Transmit data -	
	3	RXP	Receive data +	
	4	Reserved, do not use		
LE BA	5	Reserved, do not use		
	6RXN7Reserved, do not use		Receive data -	
	8	Reserved, do not use		
	А	Reserved, do not use		
	В	GND (0 V)	Electronics ground	

7.3 Sensor Module Cabinet-Mounted SMC20

7.3.3.3 X520 encoder system interface

	Pin	Signal name	Technical specifications
	1	P encoder	Encoder power supply
	2	M encoder	Ground for encoder power supply
	3	А	Incremental signal A
• 25	4	A*	Inverse incremental signal A
	5	Ground	Ground (for internal shield)
	6	В	Incremental signal B
	7	B*	Inverse incremental signal B
	8	Ground	Ground (for internal shield)
	9	Reserved, do not use	
	10	Clock	Clock, EnDat interface, SSI clock
	11	Reserved, do not use	
	12	Clock*	Inverted clock, EnDat interface, inverted SSI clock
	13	+ Temp	Motor temperature measurement KTY84-1C130 (KTY+) Temperature sensor KTY84-1C130 / PTC
	14	P sense	Sense input encoder power supply
	15	Data	Data, EnDat interface, SSI data
	16	M sense	Ground sense input encoder power supply
	17	R	Reference signal R
	18	R*	Inverse reference signal R
	19	С	Absolute track signal C
	20	C*	Inverse absolute track signal C
	21	D	Absolute track signal D
	22	D*	Inverse absolute track signal D
	23	Data*	Inverse data, EnDat interface, Inverse SSI data
	24	Ground	Ground (for internal shield)
	25	- Temp	Motor temperature measurement KTY84-1C130 (KTY-) Temperature sensor KTY84-1C130 / PTC

Table 7-11 X520 encoder system interface

Risk of electric shock!

Only temperature sensors that meet the safety isolation specifications contained in EN 61800-5-1 may be connected to terminals "+Temp" and "-Temp".

If these instructions are not complied with, there is a risk of electric shock!

7.3.3.4 Electronics power supply X524

Table 7-12 X524 terminal block

	Terminal Function Technical specifications				
	+	Electronic power supply	Voltage: 24 V (20.4 V – 28.8 V)		
	+	Electronic power supply	Current consumption: Max. 0.35 A		
+ ≤	М	Electronic ground	Maximum current via jumper in connector: 20 A		
	М	Electronic ground			
Max. connectable cross-section: 2.5 mm ² Type: Screw-type terminal (see Appendix A)					

Note

The two "+" or "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

7.3.3.5 Meaning of LEDs on the Sensor Module Cabinet-Mounted SMC20

LED	Color	Status	Description, cause	Remedy
RDY READY	-	Off	Electronics power supply is missing or outside permissible tolerance range.	_
	Green	Continuous light	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place.	-
	Orange	Continuous light	DRIVE-CLiQ communication is being established.	-
	Red	Continuous light	At least one fault is present in this component. Note: The LED is activated regardless of whether the corresponding messages have been reconfigured.	Remedy and acknowledge fault
	Green/red	0.5 Hz flashing light	Firmware is being downloaded.	-
		2 Hz flashing light	Firmware download is complete. Wait for POWER ON	Carry out a POWER ON
	Green/orange	Flashing light	Component recognition via LED is activated (p0144).	-
	or Red/orange		Note: Both options depend on the LED status when component recognition is activated via p0144 = 1.	

Table 7-13 Sensor Module Cabinet-Mounted SMC20 – description of the LEDs

Cause and rectification of faults

The following reference contains further information about the cause and rectification of faults:

References: /IH1/ SINAMICS S, Commissioning Manual

7.3.4 Dimension drawing

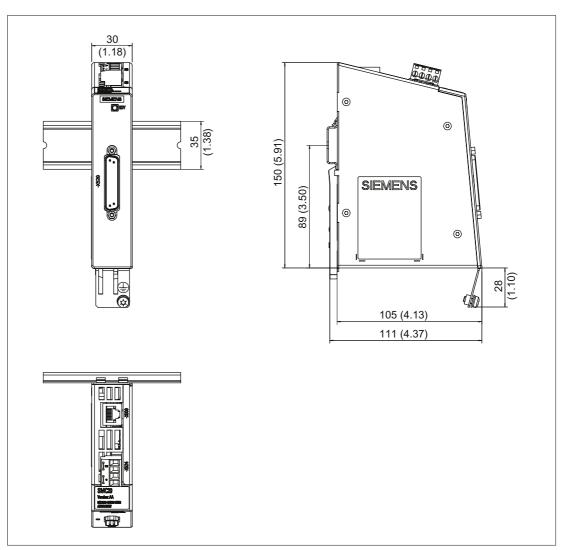


Figure 7-10 Dimension drawing of the Sensor Module Cabinet SMC20, all data in mm and (inches)

7.3.5 Installation

Installation

- 1. Tilt the component backwards slightly and attach it to the DIN rail using the hook.
- 2. Push the component towards the DIN rail until you hear the mounting slide at the rear latch into position.
- 3. You can now move the component to the left or right along the DIN rail, until it reaches its final position.

Removal

- 1. The lug on the mounting slide first needs to be pushed down to unlock the slide from the DIN rail.
- 2. The component can now be tilted forwards and pulled up and off the DIN rail.

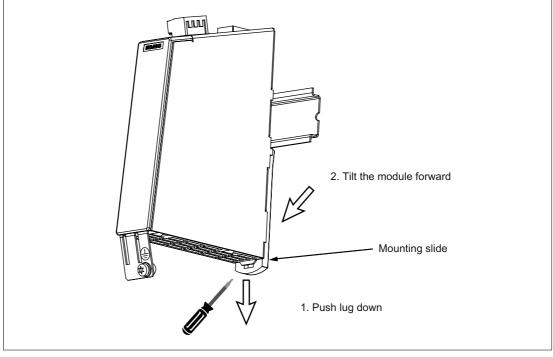


Figure 7-11 Removal of a component from a DIN rail

7.3 Sensor Module Cabinet-Mounted SMC20

7.3.6 Technical data

Table 7-14 Technical data

6SL3055-0AA00-5BAx	Unit	Value
Electronics power supply Voltage Current (without encoder system) Current (with encoder system) Power loss	V _{DC} A _{DC} A _{DC} W	24 DC (20.4 – 28.8) ≤ 0.20 ≤ 0.35 ≤ 10
Encoder system power supply Voltage Current	V _{encoder} A _{encoder}	5 V DC (with Remote Sense) ¹⁾ 0.35
Encoder frequency that can be evaluated $(f_{encoder})$	kHz	≤ 500
SSI baud rate ²⁾	kHz	100 (6SL3055-0AA00-5BA2) 100 - 250 (6SL3055-0AA00-5BA3)
Max. encoder cable length	m	100
PE/ground connection		On housing with M4/1.8 Nm screw
Weight	kg	0.45
Degree of protection		IP20 or IPXXB

 A controller compares the encoder system supply voltage - sensed via the Remote Sense cables - with the reference supply voltage of the encoder system, and adjusts the supply voltage for the encoder system at the output of the drive module until the required supply voltage is obtained directly at the encoder system (only for 5 V encoder system power supply).

2) Only possible for SSI encoders with 5 V supply

7.4 Sensor Module Cabinet-Mounted SMC30

7.4.1 Description

The Sensor Module Cabinet-Mounted SMC30 evaluates encoder signals and transmits the speed, actual position value and, if necessary, the motor temperature and reference point via DRIVE-CLiQ to the Control Unit.

The SMC30 is used to evaluate encoder signals from encoders with TTL, HTL, or SSI interfaces.

A combination of TTL/HTL signal and SSI absolute signal is possible at terminals X521/X531, if both signals are derived from the same measured variable.

7.4.2 Safety information

The ventilation spaces of 50 mm above and below the component must be observed.

NOTICE

Only one encoder system may be connected per Sensor Module.

Note

There must be no electrical connection between the encoder system housing and the signal cables, or the encoder system electronics. If this is not carefully observed, under certain circumstances the system will not be able to reach the required interference immunity level (there is then a danger of equalization currents flowing through the electronics ground).

CAUTION

When the encoder system is connected via terminals, make sure that the cable shield is connected to the component.

Connecting cables to temperature sensors must always be installed with shielding. The cable shield must be connected to the ground potential at both ends over a large surface area. Temperature sensor cables that are routed together with the motor cable must be twisted in pairs and shielded separately.

7.4.3 Interface description

7.4.3.1 Overview

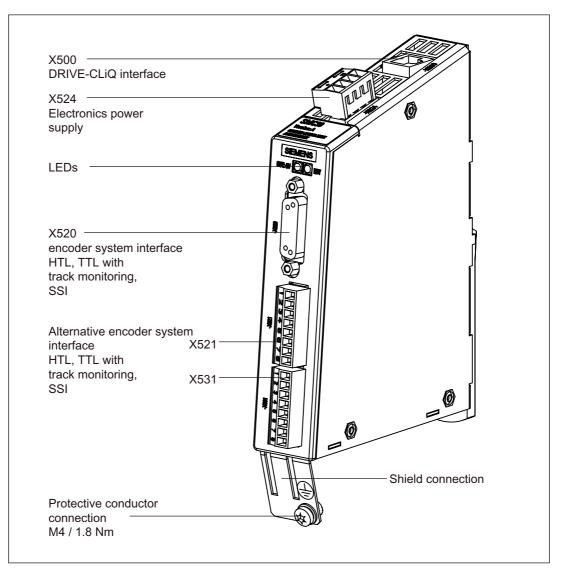
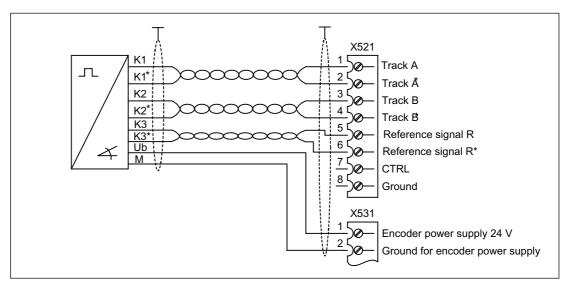



Figure 7-12 Interface description of the SMC30

7.4.3.2 Connection examples

Connection example 1: HTL encoder, bipolar, with reference signal

Figure 7-13 Connection example 1: HTL encoder, bipolar, with reference signal

Signal cables must be twisted in pairs in order to improve noise immunity against induced noise.

Connection example 2: HTL encoder, unipolar, with reference signal

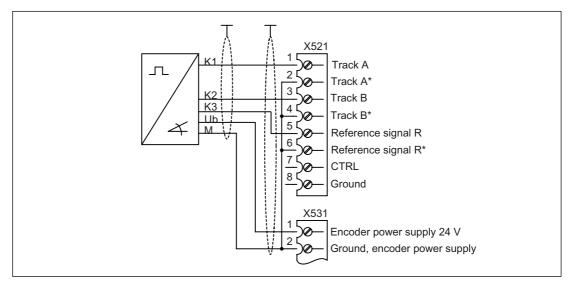


Figure 7-14 Connection example 2: HTL encoder, unipolar, with reference signal¹⁾

¹⁾ Because the physical transmission media is more robust, the bipolar connection should always be used. The unipolar connection should only be used if the encoder type does not output push-pull signals.

Supplementary system components and encoder system integration 7.4 Sensor Module Cabinet-Mounted SMC30

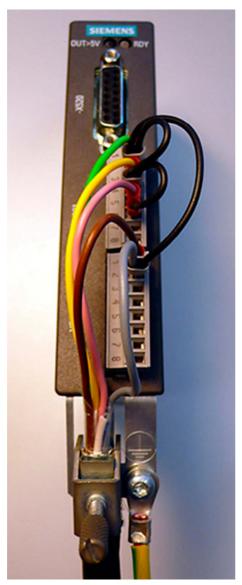


Figure 7-15 Photo of connection example 2: SMC30, 30 mm wide

Note: Diagram of the wire jumpers to connect unipolar HTL encoders with reference signal

7.4.3.3 DRIVE-CLiQ interface X500

	Pin	Signal name	Technical specifications
	1	ТХР	Transmit data +
	2	TXN	Transmit data -
	3	RXP	Receive data +
	4	Reserved, do not use	
	5	Reserved, do not use	
	6	RXN	Receive data -
	7	Reserved, do not use	
	8	Reserved, do not use	
	А	Reserved, do not use	
	В	GND (0 V)	Electronics ground

Table 7-15 DRIVE-CLiQ interface X500

7.4 Sensor Module Cabinet-Mounted SMC30

7.4.3.4 X520 encoder system interface

Table 7-16 X520 encoder system interface	Table 7- 16	X520 encoder system interface
--	-------------	-------------------------------

	Pin	Signal name	Technical specifications	
	1	Reserved, do not use + Temp	Motor temperature sensing KTY84-1C130 (KTY+) Temperature sensor KTY84-1C130/PTC/bimetallic switch with NC contact	
$\begin{pmatrix} 15 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	2	Clock	SSI clock	
00	3	Clock*	Inverse SSI clock	
00	4	P encoder 5 V / 24 V	Encoder power supply	
00	5	P encoder 5 V / 24 V		
	6	P sense	Sense input encoder power supply	
	7	M encoder (M)	Ground for encoder power supply	
	8	Reserved, do not use - Temp	Motor temperature sensing KTY84-1C130 (KTY-) Temperature sensor KTY84-1C130/PTC/bimetallic switch with NC contact	
	9	M sense	Ground sense input	
	10	R	Reference signal R	
	11	R*	Inverse reference signal R	
	12	B*	Inverse incremental signal B	
	13	В	Incremental signal B	
	14	A* / data*	Inverse incremental signal A/inverse SSI data	
	15	A / data	Incremental signal A/SSI data	

Type: 15-pin Sub-D connector

CAUTION

The sensor power supply can be parameterized to 5 V or 24 V. The sensor may be destroyed if you enter the wrong parameters.

Risk of electric shock!

Only temperature sensors that meet the safety isolation specifications contained in EN 61800-5-1 may be connected to terminals "+Temp" and "-Temp".

If these instructions are not complied with, there is a risk of electric shock!

7.4.3.5 X521 / X531 alternative encoder system interface

	Pin	Designation	Technical specifications
X521	1	A	Incremental signal A
	2	A*	Inverse incremental signal A
	3	В	Incremental signal B
ω	4	B*	Inverse incremental signal B
4	5	R	Reference signal R
5	6	R*	Inverse reference signal R
o 🖂	7	CTRL	Control signal
	8	Μ	Ground
8			
	1	P_Encoder 5 V / 24 V	Encoder power supply
	2	M_Encoder	Ground for encoder power supply
(531)	3	- Temp	Motor temperature sensing KTY84-1C130 (KTY-) Temperature sensor KTY84-1C130/PTC/bimetallic switch with NC contact
2 3 4	4	+ Temp	Motor temperature sensing KTY84-1C130 (KTY+) Temperature sensor KTY84-1C130/PTC/bimetallic switch with NC contact
5	5	Clock	SSI clock
o	6	Clock*	Inverse SSI clock
	7	Data	SSI data
8	8	Data*	Inverse SSI data

Table 7-17 X521 / X531 alternative encoder system interface

Max. connectable cross-section: 1.5 mm²

When using unipolar HTL encoders, at the terminal block A*, B*, R* must be connected to (jumper) M_Encoder (X531)¹).

1) Because the physical transmission media is more robust, the bipolar connection should always be used. The unipolar connection should only be used if the encoder type does not output push-pull signals.

CAUTION

When the encoder system is connected via terminals, make sure that the cable shield is connected to the component. Refer to the Chapter "Electrical connection".

Risk of electric shock!

Only temperature sensors that meet the safety isolation specifications contained in EN 61800-5-1 may be connected to terminals "+Temp" and "-Temp".

If these instructions are not complied with, there is a risk of electric shock!

7.4.3.6 X524 Elektronikstromversorgung_GH8

Table 7-18 X524 terminal block

	Terminal Function Technical specifications				
	+	Electronic power supply	Voltage: 24 V (20.4 V – 28.8 V)		
	+	Electronic power supply	Current consumption: Max. 0.35 A		
	М	Electronic ground	Maximum current via jumper in connector: 20 A		
	М	Electronic ground			
Max. connectable cross-section: 2.5 mm ² Type: Screw-type terminal (see Appendix A)					

Note

The two "+" or "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

7.4.3.7 Significance of LEDs on the Sensor Module Cabinet 30 (SMC30)

LED	Color	Status	Description, cause	Remedy
RDY READY	-	Off	Electronics power supply is missing or outside permissible tolerance range.	-
	Green	Continuous light	The component is ready for operation and cyclic DRIVE- CLiQ communication is taking place.	-
	Orange	Continuous light	DRIVE-CLiQ communication is being established.	-
	Red	Continuous light	At least one fault is present in this component. Note: The LED is activated regardless of whether the corresponding messages have been reconfigured.	Remedy and acknowledge fault
	Green/red	0.5 Hz flashing light	Firmware is being downloaded.	-
	Green/red	2 Hz flashing light	Firmware download is complete. Wait for POWER ON.	Carry out a POWER ON
	Green/orange or Red/orange	Flashing light	Component recognition via LED is activated (p0144). Note: Both options depend on the LED status when component recognition is activated via p0144 = 1.	-
OUT > 5 V	-	Off	Electronics power supply is missing or outside permissible tolerance range. Power supply ≤ 5 V.	_
	Orange	Continuous light	Electronics power supply for encoder system available. Power supply > 5 V.	-
			Important: Make sure that the connected encoder can be operated with a 24 V power supply. If an encoder that is designed for a 5 V supply is operated with a 24 V supply, this can destroy the encoder electronics.	

 Table 7- 19
 Sensor Module Cabinet SMC30 – description of the LEDs

7.4 Sensor Module Cabinet-Mounted SMC30

7.4.4 Dimension drawing

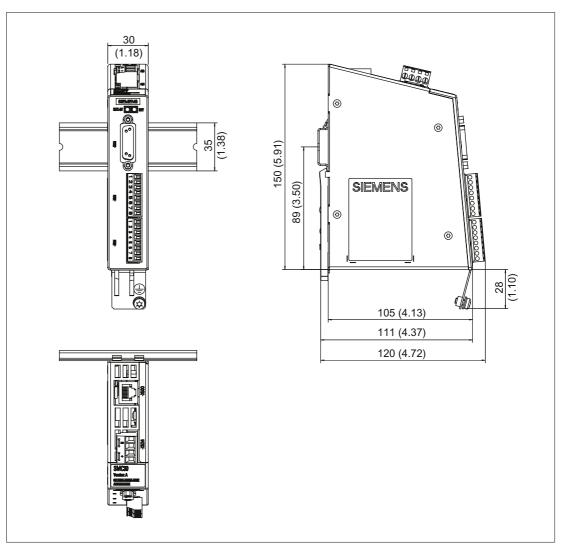


Figure 7-16 Dimension drawing of the Sensor Module Cabinet SMC30, all data in mm and (inches)

7.4.5 Installation

Installation

- 1. Tilt the component backwards slightly and attach it to the DIN rail using the hook.
- 2. Push the component towards the DIN rail until you hear the mounting slide at the rear latch into position.
- 3. You can now move the component to the left or right along the DIN rail, until it reaches its final position.

Removal

- 1. The lug on the mounting slide first needs to be pushed down to unlock the slide from the DIN rail.
- 2. The component can now be tilted forwards and pulled up and off the DIN rail.

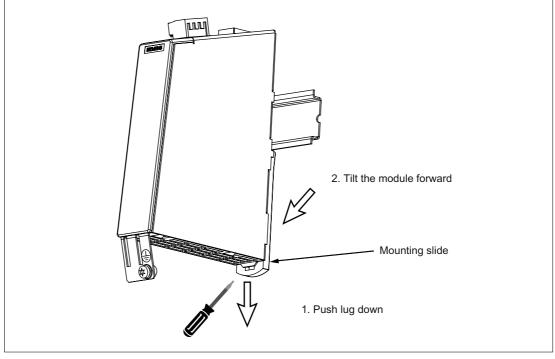


Figure 7-17 Removal of a component from a DIN rail

From Order No. 6SL3055-0AA00-5CA0, 6SL3055-0AA00-5CA1

Supplementary system components and encoder system integration

7.4 Sensor Module Cabinet-Mounted SMC30

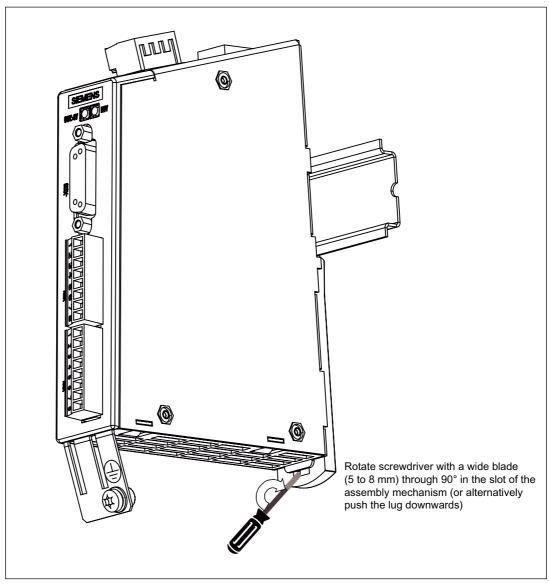


Figure 7-18 Removing: SMC30: 30 mm wide

Only from order no. 6SL3055-0AA00-5CA2 and firmware version 2.5 SP1

7.4.6 Protective conductor connection and shield support

Shield contacts are only required if the system is connected to X521/X531.

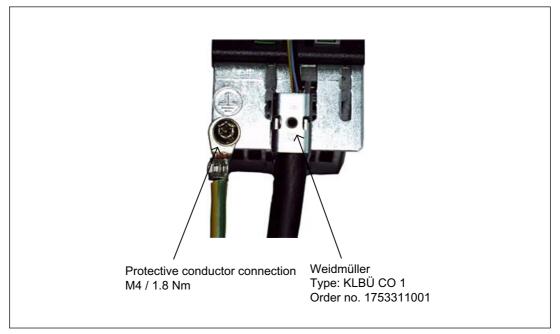


Figure 7-19 Shield contacts for the SMC30

Weidmüller website address: http://www.weidmueller.com

The bending radii of the cables must be taken into account (see MOTION-CONNECT description).

NOTICE

Only use screws with a permissible mounting depth of 4 - 6 mm.

7.4 Sensor Module Cabinet-Mounted SMC30

7.4.7 Technical data

Table 7-20 Technical data

6SL3055-0AA00-5CAx	Unit	Value
Electronics power supply		
Voltage	V _{DC}	24 DC (20.4 – 28.8)
Current (without encoder system)	ADC	≤ 0.20
Current (with encoder system)	ADC	≤ 0.55
Power loss	W	≤ 10
Encoder system power supply		
Voltage	Vencoder	5 VDC (with or without Remote Sense) ¹⁾ or V _{DC} - 1 V
Current	A _{encoder}	0.35
Encoder frequency that can be evaluated	kHz	≤ 300
(f _{encoder})		
SSI baud rate	kHz	100 - 250
PE/ground connection		On housing with M4/1.8 Nm screw
Weight		0.45
Degree of protection		IP20 or IPXXB

 A controller compares the encoder system supply voltage - sensed via the Remote Sense cables - with the reference supply voltage of the encoder system, and adjusts the supply voltage for the encoder system at the output of the drive module until the required supply voltage is obtained directly at the encoder system (only for 5 V encoder system power supply). Remote Sense only to X520. 7.4 Sensor Module Cabinet-Mounted SMC30

Parameter	Designation	Threshold	Min.	Max.	Unit
High signal level (TTL bipolar at X520 or X521/X531) ¹⁾	U _{Hdiff}		2	5	V
Low signal level (TTL bipolar at X520 or X521/X531) ¹⁾	U _{Ldiff}		-5	-2	V
Signal level high	U _H ³⁾	High	17	Vcc	V
(HTL unipolar)		Low	10	Vcc	V
Signal level low	U ²³⁾	High	0	7	V
(HTL unipolar)		Low	0	2	V
High signal level (HTL bipolar) ²⁾	U _{Hdiff}		3	Vcc	V
Low signal level (HTL bipolar) ²⁾	U _{Ldiff}		-Vcc	-3	V
High signal level (SSI bipolar at X520 or X521/X531)¹)	U _{Hdiff}		2	5	V
Low signal level (SSI bipolar at X520 or X521/X531)¹)	U _{Ldiff}		-5	-2	V
Signal frequency	fs		-	300	kHz
Edge clearance	t _{min}		100	-	ns
"Zero pulse inactive time" (before and after A=B=high)	t _{Lo}		640	$(t_{ALo-BHi} - t_{Hi})/2$ 4)	ns
"Zero pulse active time" (while A=B=high and beyond) ⁵⁾	t _{Hi}		640	t _{ALo-BHi} - 2*t _{Lo} ⁴⁾	ns

1) Other signal levels according to the RS 422 standard.

2) The absolute level of the individual signals varies between 0 V and VCC of the encoder system.

3) Only with order number 6SL3055-0AA00-5CA2 and firmware version 2.5 SP1 or higher can this value be configured using software. For older firmware releases and Order Nos. less than 6SL3055-0AA00-5CA2 then the "low" threshold applies.

 t_{ALo-BHi} is not a specified value, but is the time between the falling edge of track A and the next but one rising edge of track B.

5) Further information on setting the "Zero pulse active time" can be found in the following: References: /FH1/ SINAMICS S120, Function Manual, tolerant encoder monitoring for SMC30

	X520 (D-Sub)	X521 (terminal)	X531 (terminal)	Track monitoring	Remote Sense ²⁾
HTL bipolar 24 V	No/yes	Y	es	No/yes	No
HTL unipolar 24 V ¹⁾	No/yes	Yes (however, a bipolar connection is recommended) ¹⁾		No	No
TTL bipolar 24 V	Yes	Yes		Yes	No
TTL bipolar 5 V	Yes	Yes		Yes	To X520
SSI 24 V/5 V	Yes	Yes		No	No
TTL unipolar		No			

Table 7-22 Encoders that can be connected

1) Because the physical transmission media is more robust, the bipolar connection should always be used. The unipolar connection should only be used if the encoder type does not output push-pull signals.

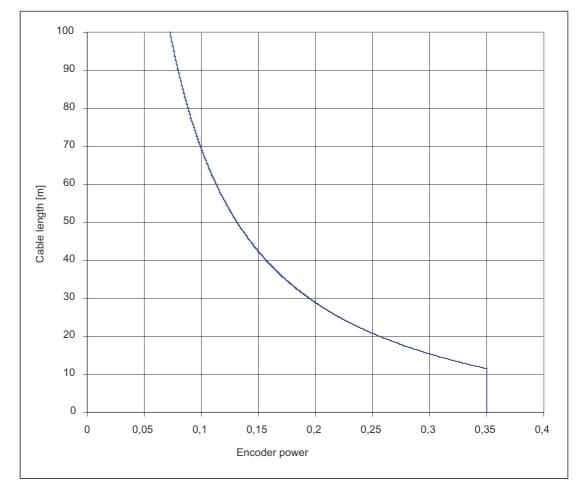

2) A controller compares the encoder system supply voltage - sensed via the Remote Sense cables - with the reference supply voltage of the encoder system, and adjusts the supply voltage for the encoder system at the output of the drive module until the required supply voltage is obtained directly at the encoder system (only for 5 V encoder system power supply).

Table 7-23 Maximum encoder cable length

Encoder type	Maximum encoder cable length in m
TTL ¹⁾	100
HTL unipolar ²⁾	100
HTL bipolar	300
SSI	100

1) For TTL encoders at X520 \rightarrow Remote Sense \rightarrow 100 m

 Because the physical transmission media is more robust, the bipolar connection should always be used. The unipolar connection should only be used if the encoder type does not output push-pull signals. 7.4 Sensor Module Cabinet-Mounted SMC30

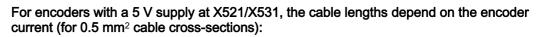


Figure 7-20 Max. cable length as a function of the encoder current drawn

For encoders without Remote Sense the permissible cable length is restricted to 100 m (reason: the voltage drop depends on the cable length and the encoder current).

7.4 Sensor Module Cabinet-Mounted SMC30

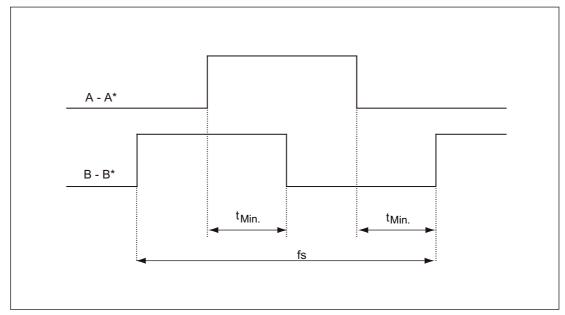


Figure 7-21 Signal characteristic of track A and track B between two edges: Time between two edges with pulse encoders

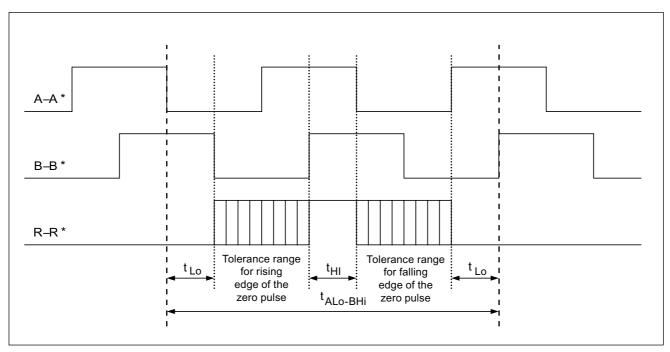


Figure 7-22 Position of the zero pulse to the track signals

7.5.1 Introduction

A brake control option module (Safe Brake Relay) is required for operating motors with holding brakes.

The brake control option module is the electrical interface between the CU/PM340 and the brake of a motor.

This is mounted in the Screening Kit (refer to the Chapter "Screening Kit") or alternatively at the rear cabinet panel.

7.5.2 Safe Brake Relay

The Safe Brake Relay can be used in conjunction with Power Modules in blocksize format to trigger a 24 V DC motor brake.

The brake is electronically controlled. All holding brakes can be used up to 2 A. To operate the brake, it is necessary to connect the supply voltage for the brake separately at the brake control option module. In this case, a regulated power supply is required whose rated value (to equalize and compensate for the voltage drop along the supply cable for the 24 V DC motor brake coil) can be set to 26 V (e.g. SITOP modular).

Table 7-24	Overview of the Safe Brake Relay interfaces

Туре	Number
Connection for the solenoid of the motor brake	1
Connection for 24 V DC supply	1
Connection for the pre-fabricated (CTRL) to the Power Module, Blocksize format	1

The Safe Brake Relay is shipped with the pre-fabricated cable to connect to the Power Module and all of the customer connectors.

7.5.2.1 Safety Information

Note

A regulated DC power supply is required to operate motors with a built-in holding brake. The voltage is supplied via the internal 24 V busbars. The voltage tolerances of the motor holding brakes and the voltage drops of the connection cables must be taken into account.

The DC power supply should be set to 26 V. This ensures that the supply voltage for the brake remains within the permissible range when the following conditions are fulfilled:

- Use of Siemens three-phase motors
- Use of Siemens MOTION-CONNECT power cables
- Motor cable lengths: max. 100 m

7.5.2.2 Interface description

Overview

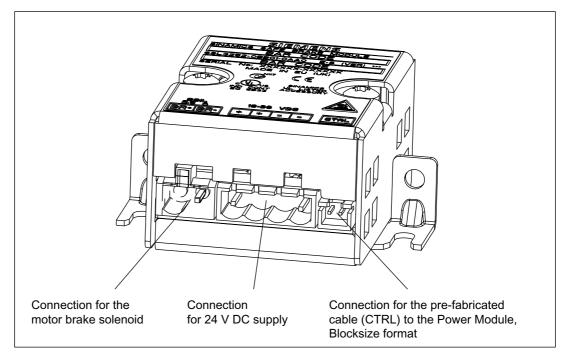


Figure 7-23 Interface description: Safe Brake Relay

Connection example

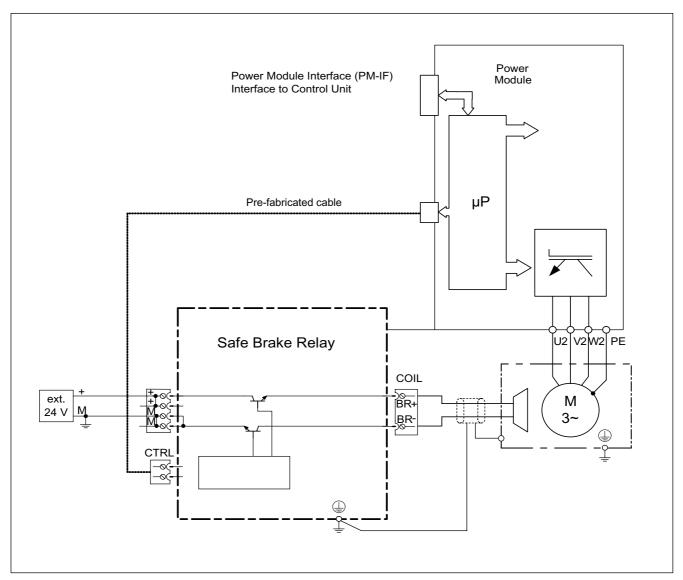


Figure 7-24 Safe Brake Relay connection example

Electronics power supply X524

Table 7-25 Terminal block X524

	Terminal	Function	Technical specifications	
	+	Electronic power supply	Voltage: 24 V (20.4 V – 28.8 V)	
	+	Electronic power supply	Current consumption: max. 0.3 A (without	
+	М	Electronic ground	motor holding brake)	
⋳⋷	М	Electronic ground	Maximum current via jumper in connector: 20 A at 55°C	
Max. connectable cross-section: 2.5 mm ²				
Type: Screw	terminal 2 (see A	ppendix)		

Note

The two "+" or "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

Brake connection

Table 7-26 Connector

Designation	Technical specifications
Brake connection	Relay output (close)
PE connection	M4 / 3 Nm

7.5.2.3 Dimension drawing

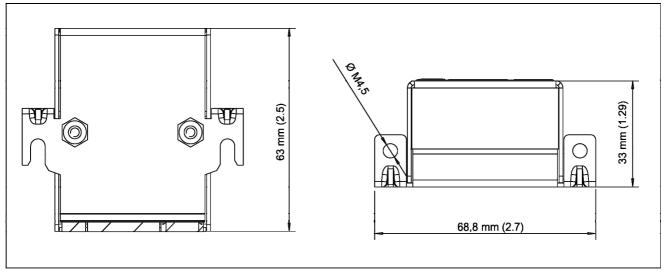


Figure 7-25 Dimension drawing of Safe Brake Relay, all data in mm and (inches)

7.5.2.4 Mounting

The Safe Brake Relay can be mounted below the Power Module on the Screening Kit.

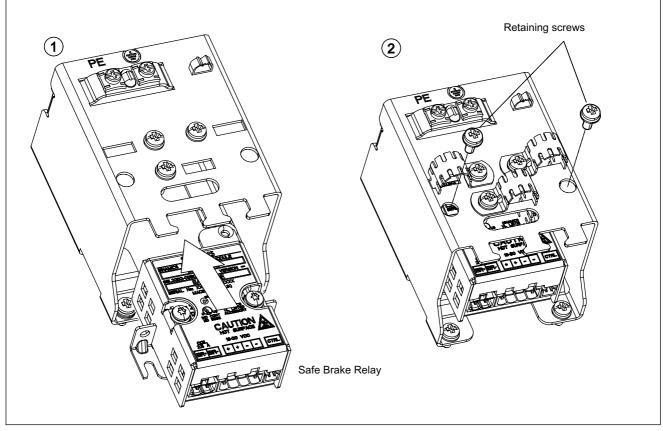


Figure 7-26 Mounting the Safe Brake Relay on the Screening Kit (frame size FSA)

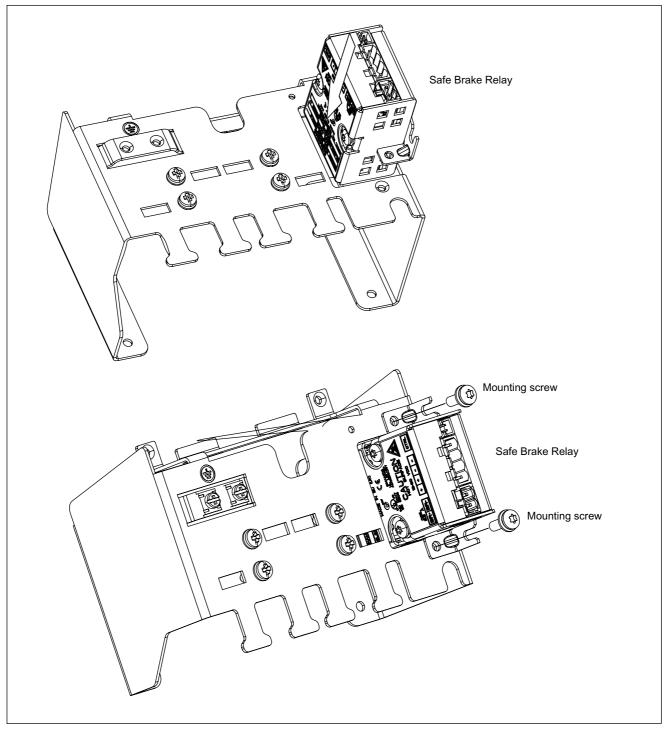


Figure 7-27 Mounting the Safe Brake Relay on the Screening Kit (frame sizes FSB and FSC)

7.5.2.5 Technical data

Safe Brake Relay	
Power supply	20.4 to 28.8 V DC Recommended rated value of the supply voltage 26 V DC (to equalize and compensate for the voltage drop along the supply cable to the 24 V DC motor brake coil)
Max. permissible current drain of the motor brake	2 A
Max. current requirements (at 24 V DC)	0.05 A + the current drain of the motor brake
Max. connectable cross section	2.5 mm ²
Weight, approx.	0.17 kg

Supplementary system components and encoder system integration

7.5 Option modules, braking signal

Accessories

8.1 DRIVE-CLiQ cabinet gland

8.1.1 Description

The DRIVE-CLiQ cabinet bushing is used to connect two DRIVE-CLiQ cables and can be installed in a control cabinet wall.

At the interface outside the control cabinet, a DRIVE-CLiQ connection is established with degree of protection IP67 according to EN 60529; however, inside the control cabinet, a connection is created with degree of protection IP20 or IPXXB according to EN 60529. The interface between the control cabinet wall and the DRIVE-CLiQ cabinet bushing requires degree of protection IP54 according to EN 60529.

In addition to the data lines, the power supply contacts of DRIVE-CLiQ are also routed via the coupling.

8.1.2 Safety Information

Note

Only cables from Siemens may be used for DRIVE-CLiQ connections.

Accessories

8.1 DRIVE-CLiQ cabinet gland

8.1.3 Interface description

8.1.3.1 Overview

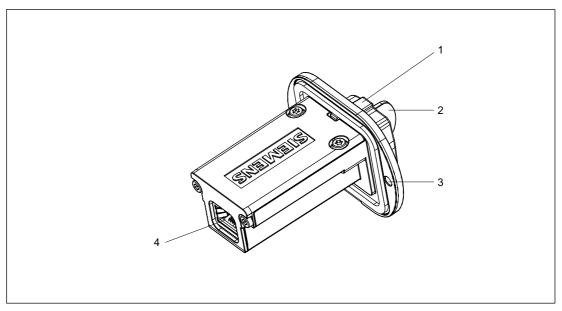


Figure 8-1 DRIVE-CLiQ cabinet bushing

1	Covering cap, Yamaichi, order number: Y-ConAS-24-S
2	IP67 interface according to EN 60529
3	Mounting holes
4	IP20 or IPXXB interface according to EN 60529

8.1.4 Dimension drawing

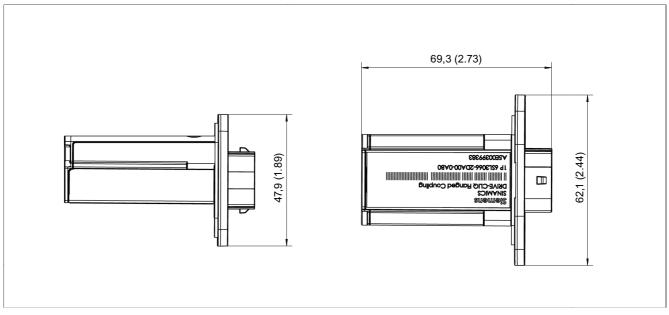


Figure 8-2 Dimension drawing of the DRIVE-CLiQ cabinet bushing, all dimensions in mm and (inches)

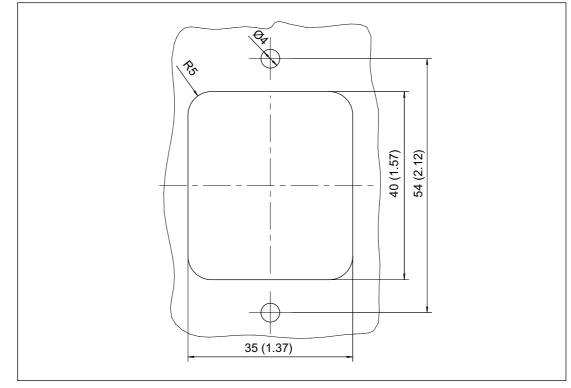


Figure 8-3 Cut-out for the cabinet

Accessories

8.1 DRIVE-CLiQ cabinet gland

8.1.5 Installation

Figure 8-4 DRIVE-CLiQ cabinet bushing

Installation

- 1. Make a cutout in the control cabinet wall for the DRIVE-CLiQ cabinet bushing, as per the chapter titled "Dimension drawing".
- 2. Insert the components from the outer side of the cabinet through the opening in the cabinet.
- 3. Secure the DRIVE-CLiQ cabinet bushing to the outer control cabinet wall using two M3 screws and two nuts. In order to ensure good electromagnetic compatibility, a good electrical connection must be established between the DRIVE-CLiQ cabinet bushing and the cabinet wall over a large surface area.

8.1.6 Technical data

Table 8-1 Technical data

DRIVE-CLiQ cabinet bushing 6SL3066-2DA00-0AA0	Unit	
Weight	kg	0.165
Degree of protection	IP20 or IPXXB acc. to EN 60529 in the electrical cabinet	
	IP54 to EN 60529 outside the electrical cabinet	

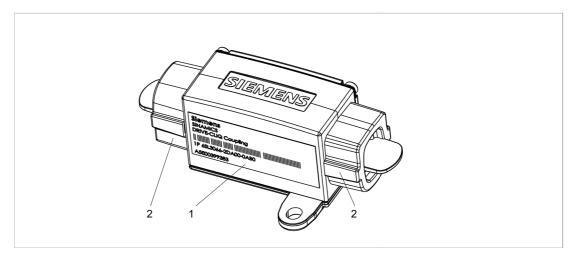
8.2 DRIVE-CLiQ coupling

8.2.1 Description

The DRIVE-CLiQ coupling is used to connect two DRIVE-CLiQ cables in accordance with degree of protection IP67 acc. to EN 60529.

In addition to the data lines, the power supply contacts of DRIVE-CLiQ are also routed via the coupling.

You can find information on the permissible cable length in the chapter "DRIVE-CLiQ cable".


8.2.2 Safety Information

Note

Only cables from Siemens may be used for DRIVE-CLiQ connections.

8.2.3 Interface description

8.2.3.1 Overview

Figure 8-5 DRIVE-CLiQ coupling

1	Rating plate
2	Covering caps, Yamaichi, order number: Y-ConAS-24-S

8.2.4 Dimension drawing

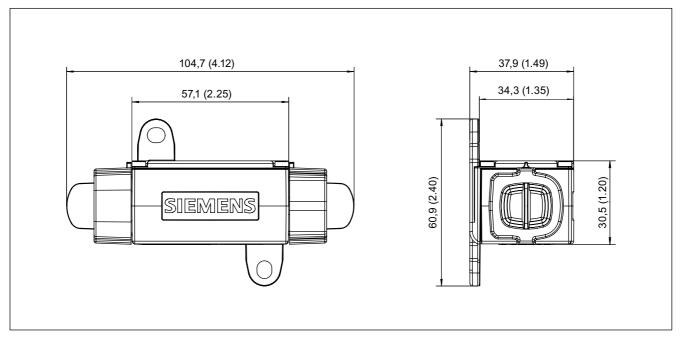


Figure 8-6 Dimension drawing of the DRIVE-CLiQ coupling, all dimensions in mm and (inches)

8.2 DRIVE-CLiQ coupling

8.2.5 Installation

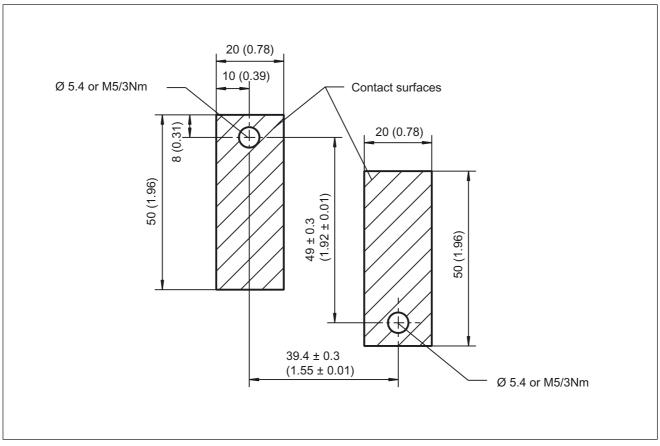


Figure 8-7 Hole drilling pattern for installation

- 1. Fit the DRIVE-CLiQ coupling to the mounting surface in accordance with the drilling pattern.
- 2. Remove the protective caps from the DRIVE-CLiQ coupling.
- 3. Insert the DRIVE-CLiQ plugs at both ends of the DRIVE-CLiQ coupling until they latch into place.

8.2.6 Technical data

Table 8- 2	Technical data

DRIVE-CLiQ coupling 6SL3066- 2DA00-0AB0	Unit	
Weight	kg	0.272
Degree of protection	IP67 acc. to EN 60529	

8.3 Screening Kit

8.3.1 Description

A Screening Kit is offered as an optional shield support for Power Modules in frame sizes FSA to FSF. It provides shield support for the power cables. The Screening Kit is screwed directly onto the wall of the control cabinet for frame sizes FSA to FSC. With frame sizes FSD to FSF, it is attached to the Power Module. For frame sizes FSB and FSC, the Screening Kit accessories pack contains a ferrite core for damping radio cable disturbances.

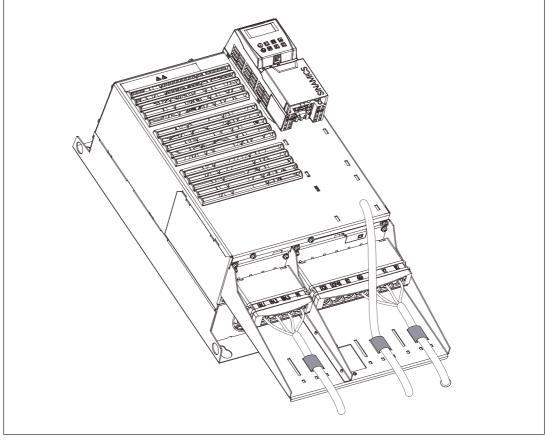


Figure 8-8 Power Module PM340 (frame sizes FSD, FSE) with CUA31 and Screening Kit

Table 8- 3	Overview of Screening Kits
------------	----------------------------

PM340 frame size	FSA	FSB	FSC	FSD	FSE	FSF
Screening Kit 6SL3262-	1AA00-0BA0	1AB00-0DA0 (with ferrite core)	1AC00-0DA0 (with ferrite core)	1AD00-0DA0	1AD00-0DA0	1AF00-0DA0

8.3 Screening Kit

8.3.2 Dimension drawings

8.3.2.1 Screening Kits

Dimension drawings of Screening Kits, frame sizes FSA to FSC

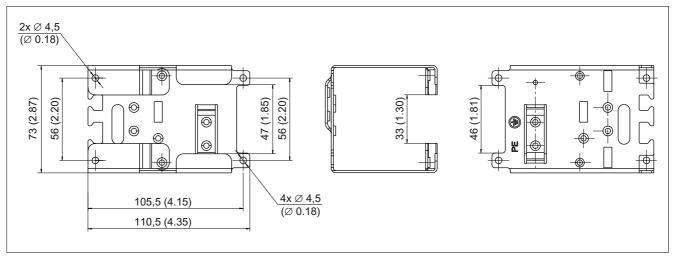


Figure 8-9 Dimension drawing of Screening Kit, frame size FSA, all data in mm and (inches)

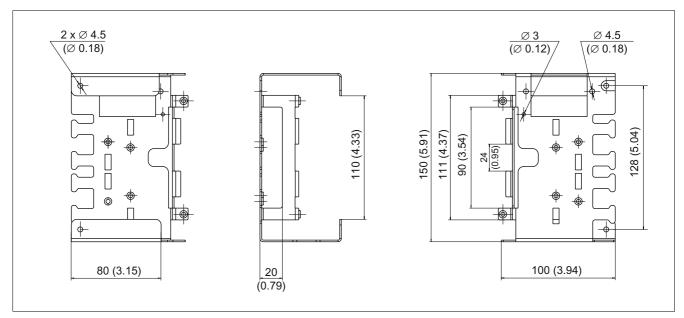


Figure 8-10 Dimension drawing of Screening Kit, frame size FSB, all data in mm and (inches)

Accessories

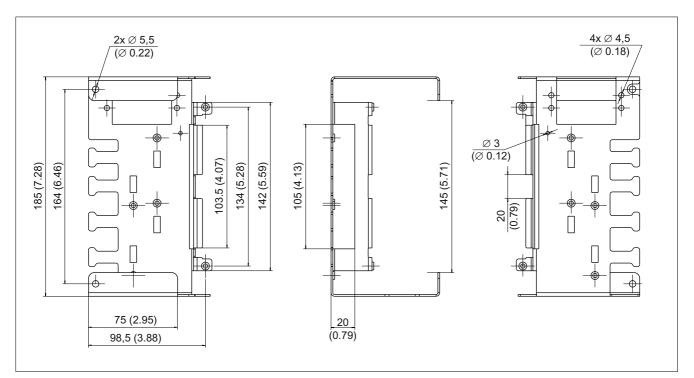


Figure 8-11 Dimension drawing of Screening Kit, frame size FSC, all data in mm and (inches)

8.3 Screening Kit

8.3.2.2 Blocksize Power Modules with Screening Kits

Dimension drawings of Power Modules with Screening Kit, frame sizes FSA to FSF

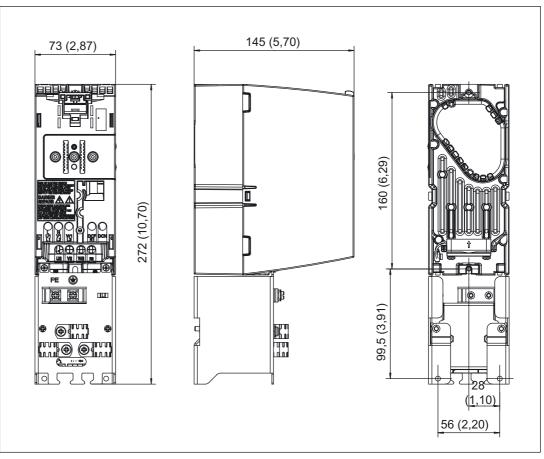


Figure 8-12 Dimension drawing of PM340 Power Module with Screening Kit, frame size FSA, all dimensions in mm and (inches)

Accessories

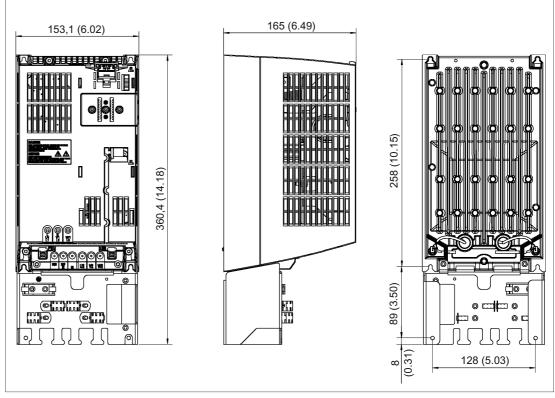


Figure 8-13 Dimension drawing of PM340 Power Module with Screening Kit, frame size FSB, all dimensions in mm and (inches)

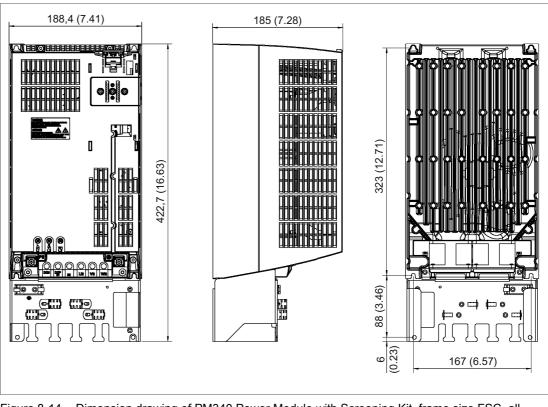


Figure 8-14 Dimension drawing of PM340 Power Module with Screening Kit, frame size FSC, all dimensions in mm and (inches)

Accessories

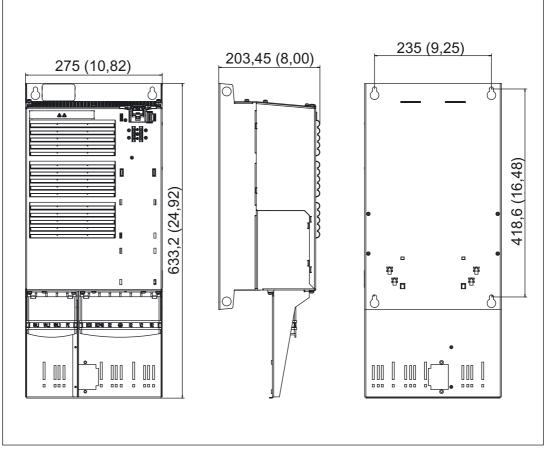


Figure 8-15 Dimension drawing of PM340 Power Module with Screening Kit, frame size FSD, all dimensions in mm and (inches)

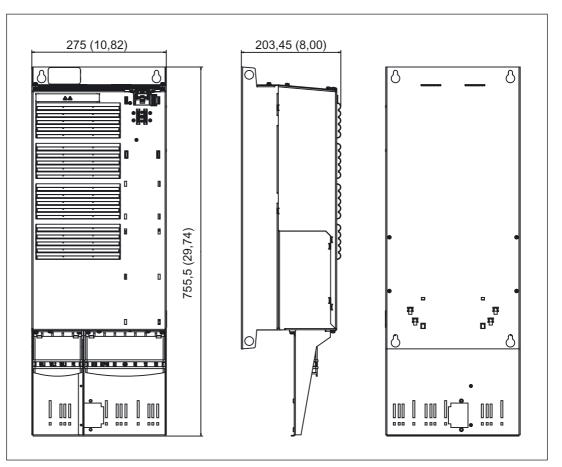


Figure 8-16 Dimension drawing: PM340 Power Module with Screening Kit, frame size FSE, all dimensions in mm and (inches)

Accessories

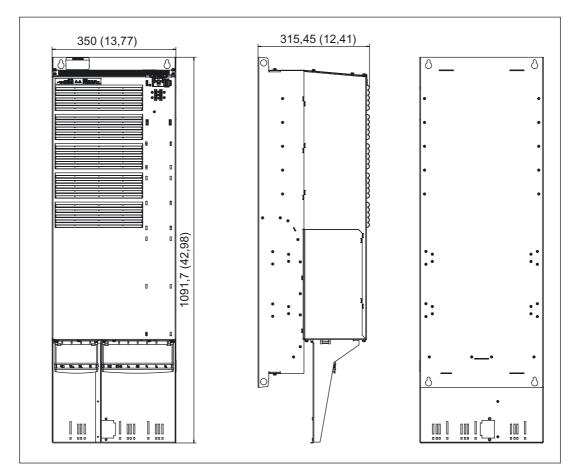


Figure 8-17 Dimension drawing: PM340 Power Module with Screening Kit, frame size FSF, all dimensions in mm and (inches)

8.3 Screening Kit

8.3.3 Mounting

8.3.3.1 Blocksize Power Modules

Frame size FSA

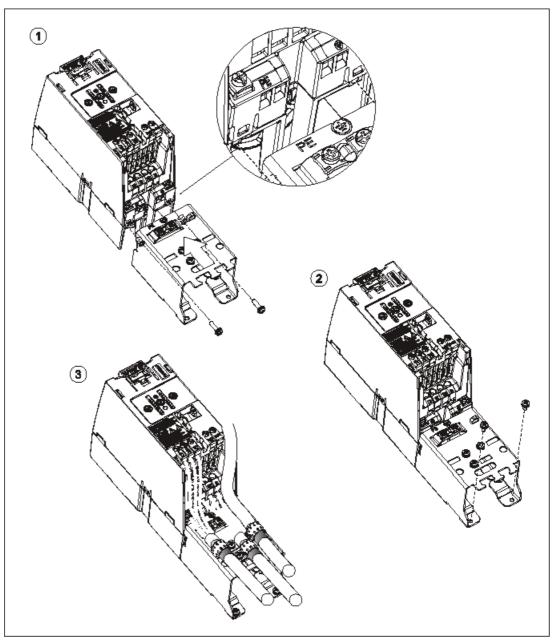


Figure 8-18 Mounting a Screening Kit on a Power Module of frame size FSA

Accessories 8.3 Screening Kit

Frame sizes FSB and FSC

8.3 Screening Kit

Mounting the ferrite core

The ferrite core supplied should be attached to the line cable in order to dampen radio cable disturbances. The open ferrite core shown in the figure below is placed around the cable and snapped together in order to close it. The neck of the core (see the U-shaped collar in the figure below) enables the core to clamp onto the cable automatically, thus fixing it in position.

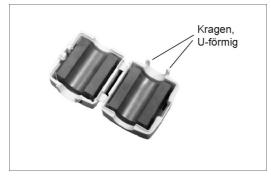


Figure 8-20 Ferrite core, open

If the core does not sit securely in position on the cable (due to the cable having a small diameter), a cable tie can be lashed tightly around the cable next to the closed ferrite core in order to prevent the ferrite from moving along the cable.

Frame sizes FSD and FSE

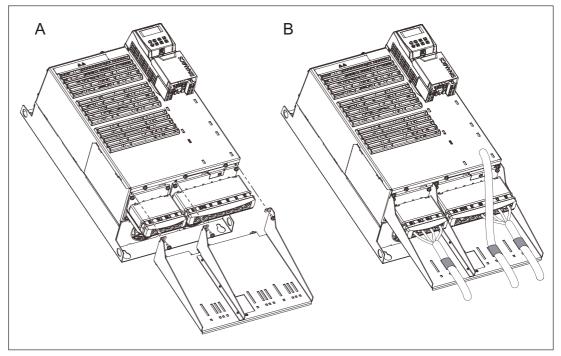


Figure 8-21 Mounting a Screening Kit on a Power Module of frame sizes FSD and FSE

Accessories 8.3 Screening Kit

Frame size FSF

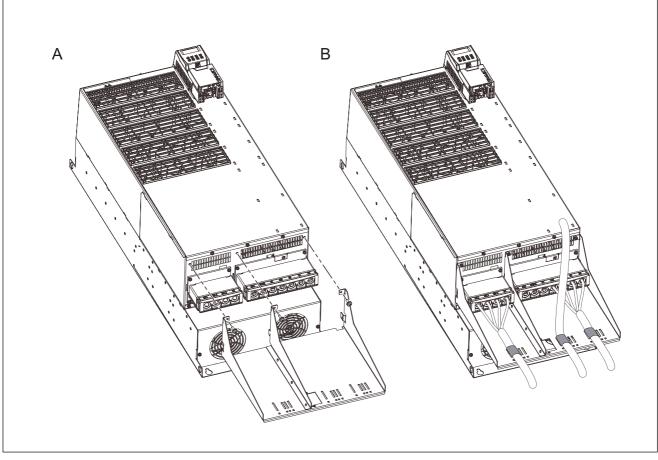


Figure 8-22 Mounting a Screening Kit on a Power Module of frame size FSF

8.3 Screening Kit

8.3.3.2 Blocksize Liquid Cooled Power Modules

Frame sizes FSD and FSE

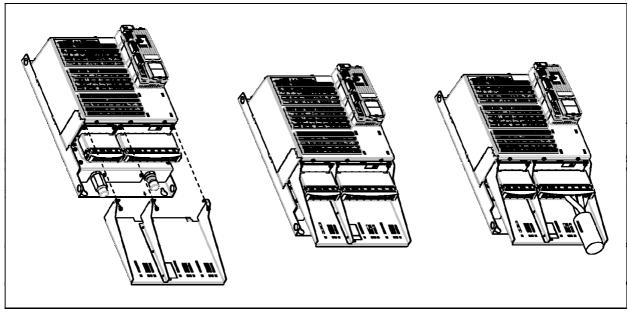


Figure 8-23 Mounting a Screening Kit on a Liquid Cooled Power Module PM340, frame sizes FSD and FSE

Frame size FSF

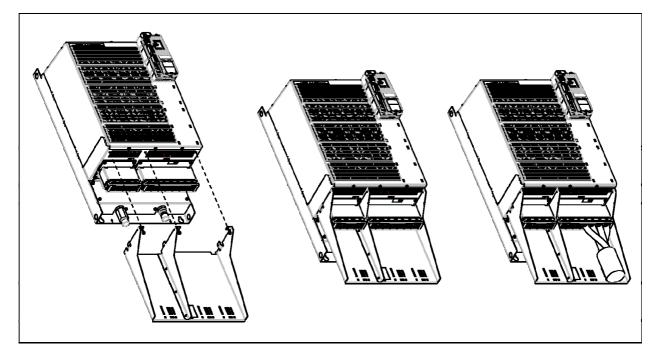


Figure 8-24 Mounting a Screening Kit on a Liquid Cooled Power Module PM340, frame size FSF

Cabinet design and EMC for components, Blocksize format

9.1 Information

9.1.1 General

The SINAMICS S components are designed in accordance with degree of protection IP20 or IPXXB acc. to EN 60529 and as open-type devices to UL 50. This ensures protection against electric shocks. To ensure protection against mechanical stress and climatic conditions too, the components should only be operated in housing/cabinets/rooms that fulfill at least degree of protection IP54 and, as enclosure types, are designed to UL 50.

Prefabricated MOTION-CONNECT cables are recommended.

The Safety Integrated safety function:

The components must be protected against conducted contamination (e.g. by installing them in a cabinet with degree of protection IP54). Provided that conducted interference can be prevented at the installation site, the degree of protection for the cabinet can be decreased accordingly.

Low-voltage switchgear and controlgear assemblies

Part 1: Type-tested and partially type-tested low-voltage switchgear and controlgear assemblies

If the SINAMICS S drive line-up is used for the electrical equipment of machines, the applicable requirements of EN 60204-1 must also be adhered to.

Safety of machinery

Electrical equipment of machines

Part 1: General requirements

All information for device selection in this section applies to

- Operation in a TN system
- Operating voltage range 1-ph. 200 V AC to 3-ph. 440 V AC

If the shielding procedures described and the specified cable lengths are not observed, the machine may not operate properly.

9.1 Information

9.1.2 Safety information

Note

When installing the equipment in cabinets, the ventilation slots must be covered to prevent drill swarf, wire end ferrules, and the like from falling into the housing.

Safety regulations governing shock protection must be observed. See also EN 60204-1.

CAUTION

To ensure that the encoder system works properly, you are advised to use the original Siemens accessories from catalog PM 21.

Only motors with a safe electrically isolated holding brake may be connected. The brake conductors must also be safely electrically isolated.

If the motor power cable is connected to intermediate terminals, the power cables and brake cables must be routed apart (≥ 300 mm).

After an intermediate terminal (caused by a terminal block, for example), it is best to continue routing using the approved MOTION-CONNECT cables.

CAUTION

The conductor pair for the motor holding brake must be themselves shielded (braided shield). For MOTION-CONNECT cables, this is provided by the inner shield.

Cable shields and unused conductors of power cables (e.g. brake conductors) must be connected to PE potential.

Non-observance can cause lethal shock voltages.

To protect against electric shock the components should only be operated in closed electrical operating areas or in cabinets. Furthermore, an internal protective conductor connection of the components is absolutely essential.

The components generate high leakage currents in the protective conductor. In order to ensure protection against electric shocks if the external protective conductor is interrupted, one of the following measures must be implemented for the external connection:

- stationary connection and protective conductor connection by means of ≥ 10 mm² Cu or ≥ 16 mm² Al
- stationary connection and automatic shutdown of the power supply if the protective conductor is interrupted

9.2 Selecting the line-side devices and components required to operate SINAMICS

9.2.1 General

The following components are required to connected to the line supply:

- Disconnector unit
- Overcurrent protection device (line fuse or circuit breaker)
- Line contactor (this is required for electrical isolation)
- Line filter (optional for Power Module PM340, frame size FSA)
- Line reactor (in the chapter titled "Line-side power components")

For information on overvoltage protection, refer to the chapter titled "Overvoltage protection".

9.2.2 Information on the disconnector unit

A disconnector unit is required for disconnecting the drive line-up from the supply system correctly. The disconnector unit of the machine's electrical equipment can be used for this purpose. The disconnector unit must be selected in compliance with the requirements of the internationally binding standard relating to the electrical equipment of machines EN 60204-1, Section 5.3. The relevant technical specifications and any other loads connected to the electrical equipment must be taken into account when making your selection.

The accessories required for the line disconnecting device must be selected from the manufacturer catalogs. Refer also to catalogs PM21 and NC61.

9.2.3 Overcurrent protection by means of line fuses and circuit breakers

Line fuses or, preferably, circuit breakers should be used for line/overcurrent protection in order to limit the damage sustained by the Power Module if a fault occurs. LV HRC, D, and DO-type line fuses with a gL characteristic or suitable circuit breakers can be used for this purpose.

As a general rule, the higher loop impedance of TT systems means they are not suitable for tripping the installed overcurrent protection devices within the prescribed period should an insulation fault occur. If TT systems are used, residual-current-operated circuit breakers (refer to the chapter titled "Residual-current-operated circuit breakers (RCD)") should ideally be used in addition to the overcurrent protection devices.

It is not permissible to overdimension fuses as this can result in significant levels of danger and also faults.

NOTICE

Fuses that can operate across the maximum cable length within a circuit must be rated in accordance with the requirements for:

- 1. Short-circuit protection (IEC 60364-4-43 and -5-52, EN 60204-1, and EN 61800-5-1)
- 2. The maximum permissible break time for protection against electric shock in the event of indirect contact (IEC 60364-4-41 and -4-43, EN 61800-5-1, and EN 60204-1)
- 3. The maximum permissible voltage drop during operation

The maximum cable length depends primarily on the cable cross-section, material, and insulation, as well as the type and size of the upstream overcurrent protection device.

The minimum value, which is derived from the three requirements, usually has to be strictly observed. This means that the fuses must be designed in such a way that, if a fault occurs, the line fuses trip after 0.4 s with mobile equipment and after 5 s with stationary equipment.

Note

The devices can be connected to line supplies up to 480 V_{AC} , which can supply a maximum of 36 kA symmetrical ("uninfluenced current" acc. to EN 60269-1).

For further information: See catalog PM 21.

9.2.4 Using residual-current devices

Selectively tripping, AC/DC-sensitive residual-current devices (type B) can be used in addition to the overcurrent protection devices.

NOTICE

Residual-current devices have to be installed if the power supply conditions in terms of short-circuit power and loop impedance at the infeed point are not such that the installed overcurrent protection devices will trip within the prescribed period if a fault occurs. Since TT systems do not generally meet this requirement, residual-current devices must always be installed for this type of system.

Residual-current-operated circuit breakers (RCD)

Residual-current-operated circuit breakers (RCD) prevent an excessively high touch current being maintained.

Residual-current-operated circuit breakers alone are not permissible to provide protection against direct and indirect contact.

When using residual-current-operated circuit breakers, it should be noted that

- It is only permissible to use a delayed tripping, selective AC/DC-sensitive residualcurrent-operated circuit breaker, type B.
- The max. permitted grounding resistance of the "selective protective device" must be observed (83 Ω max. for residual-current devices with 0.3 A rated differential current).
- Accessible parts of the Power Drive System and the machine must be connected to the system's protective ground conductor.
- The shielded motor cable must not be longer than 50 m.
- A separate residual-current device must be used for each Power Module.
- Only one residual-current device may be connected in series (cascading is not permitted).
- Switching elements (disconnector units, contactors) for connecting and disconnecting the Power Drive System have a max. 35 ms delay time time between the closing/opening of the individual main contacts.

If no residual-current-operated circuit breaker is used, touch protection can be ensured by means of double insulation or by isolating the Power Module from the supply system via a transformer.

9.2.5 Overvoltage protection

To protect the units against line-side surge voltages, you are advised to install an overvoltage protection device directly at the infeed point (upstream of the main switch). To fulfill the requirements of CSA C22.2 no. 14-05, surge protection is essential. For examples of suitable voltage surge arresters, see www.raycap.com (for example)

9.2.6 Line contactors

A line contactor is required if the drive line-up needs to be electrically isolated from the power supply.

When selecting a line contactor, the characteristic values in the technical data apply. The cable routing, the bundling factor and the factor for the ambient temperature according to EN 60204-1 must be taken into account when dimensioning the various cables.

Line contactors must not be switched under load.

Note

To limit the switching overvoltage, the contactor coil must be connected to an overvoltage limiter (e.g. flywheel diode or varistor).

When the digital output is used to control the line contactor, its making/breaking capacity must be taken into account.

9.2.7 Description

In conjunction with a suitably EMC-compliant system configuration, line filters limit the conducted interference emitted by the Power Modules to the limit values of Category C2 acc. to EN 61800-3.

A separate line filter (see catalog) must be used for the SINAMICS S110 drive line-up.

Note

All PM340 Power Modules are available with integrated line filters.

This does not apply, however, to frame size FSA for a 3-ph. 380 to 480 V AC line supply voltage; an external line filter is required here.

NOTICE

An additional line filter must be used to suppress interference in other loads. To prevent mutual interference, this line filter must not be equipped with line-side capacitors with respect to ground. Filter series B84144A*R120 (EPCOS) is recommended.

Note

According to product standard EN 61800-3, RFI suppression commensurate with the relevant rated conditions must be provided and is a legal requirement in the EU (EMC Directive). Line filters and/or line reactors are required for this purpose. The use of filters of other makes can lead to limit value violations, resonances, overvoltages and irreparable damage to motors or other equipment. The machine manufacturer must provide verification that the machinery to be operated with the drive products and the installed suppression elements, e.g. line filters, are CE/EMC-compliant before the machines are approved for delivery.

9.3 24 V DC Supply Voltage

9.3.1 General

The 24 V DC voltage is required for the power supply of:

- The load voltage of the Control Unit digital outputs. The Control Units are supplied with power via the PM-IF. 24 V must also be connected in the following cases:
 - Commissioning / diagnostics when the Power Module power supply is switched-out.
 - Using the digital outputs CU305
- 2. The electronics of the Sensor Module
- 3. The Safe Brake Relay (motor holding brake)

Other loads can be connected to these power supply units if they are separately protected from overcurrent.

Note

The user should provide the electronics power supply as described in Chapter "System data" in this documentation.

When connecting to a "DC power supply" in the sense of EN 60204-1:1997, Chapter 4.3.3, functional faults can occur due to the voltage interruptions that are permitted there.

NOTICE

If other consumers are connected to the power supply, connected inductance devices (contactors, relays) must be fitted with suitable overvoltage protection circuits.

NOTICE

A regulated DC power supply is required to operate motors with a built-in holding brake. The power is supplied via the 24 V connection (Safe Brake Relay). The voltage tolerances of the motor holding brakes (24 V \pm 10%) and the voltage drops of the connection cables must be taken into account.

The DC power supply should be set to 26 V. This ensures that the power supply for the brake remains within the permissible range when the following conditions are fulfilled:

- Using Siemens three-phase motors
- Using Siemens MOTION-CONNECT power cables
- Motor cable lengths: max. 100 m

9.3 24 V DC Supply Voltage

9.3.2 Selecting power supply units

You are advised to use the devices in the following table. These devices meet the applicable requirements of EN 60204-1.

Rated output current [A]	Phases	Rated input voltage [V] Working voltage range [V]	Short-circuit current [A]	Order number
5	1/2	120 - 230/230 - 500 85 - 264/176 - 550 AC	Approx. 5.5 (power up), typ. 15 for 25 ms (operation)	6EP1333-3BA00-8AC0
10	1/2	120 - 230/230 - 500 Approx. 12 (power up), 85 - 264/176 - 550 AC typ. 30 for 25 ms (operation) (operation)		6EP1334-3BA00-8AB0
20	1/2	120/230 85 - 132/176 - 264 AC	Approx. 23 (power up), typ. 60 for 25 ms	6EP1336-3BA00-8AA0
	3	230/400 to 288/500 320 - 550 3 AC	(operation)	6EP1436-3BA00-8AA0
40	1/2	120/230 85 - 132/176 - 264 AC	Approx. 46 (power up), typ. 120 for 25 ms	6EP1337-3BA00-8AA0
	3	230/400 to 288/500 320 - 550 3 AC	(operation)	6EP1437-3BA00-8AA0

Table 9-1 Recommended SITOP Power

Rated output current [A]		Input voltage range [V]	Short-circuit current [A]	Order number
20	3	380 V 3 AC -10% (-15% < 1 min) to 480 V 3 AC+10% DC 300 – 800	< 24	6SL3100-1DE22-0AA0

Refer also to Catalog PM21 or NC61.

When using external power supplies, e.g. SITOP, the following points must be observed:

• The ground potential M must be connected to the protective conductor terminal (DVC A).

• The power supply must be installed close to the drive line-up.

Ideally, they should be installed on a common mounting plate. If different mounting plates are used, their electrical interconnection must comply with the EMC installation guideline.

This installation guideline covers protection against electric shock, protection against fire, and best possible electromagnetic compatibility.

9.3.3 Typical 24 V current consumption of the components

A separate 24 V power supply must be used for the SINAMICS S110 drive line-up.

The following table can be used to calculate the 24 V DC power supply. The values for typical current consumption are used as a basis for configuration.

Table 9-3 Overview of 24 V DC current consumption

Component	Typical current consumption [A _{DC}]		
Control Units			
CU305 DP without load Per digital output	0.8 0.1		
CU305 CAN without load Per digital output	0.8 0.1		
DRIVE-CLiQ and brake			
DRIVE-CLiQ (e.g. motors with DRIVE-CLiQ interface)	Typ. 0.25/Max. 0.45		
Brake (e.g. motor holding brake)	Typ. 0.4 to 1.1/Max. 2		
Sensor Module Cabinet			
SMC10 without/with encoder system	0.20/0.35		
SMC20 without/with encoder system	0.20/0.35		
SMC30 without/with encoder system	0.20/0.55		
Sensor Module External			
SME20 without/with encoder system	0.15/0.25		
SME25 without/with encoder system	0.15/0.25		
SME120 without/with encoder system	0.20/0.30		
SME125 without/with encoder system	0.20/0.30		

9.3.4 Overcurrent protection

Cables on both the primary and the secondary side of the power supply unit must be protected from overcurrent. Primary side protection must be implemented according to the manufacturer's instructions. Secondary side protection must be rated to deal with the actual conditions. In particular:

- Loading due to loads, possibly the simultaneity factor in response to machine operation
- Current carrying capacity of the conductors used and cables in normal and short-circuit conditions
- Ambient temperature
- Cable bundling (e.g. laying in a common duct)
- Cable laying method to EN 60204-1

EN 60204-1, Section 14, can be used to determine the overcurrent protection devices.

Circuit breakers from the Siemens LV 1 and LV 1T catalogs are recommended as overcurrent protection devices on the primary side, and miniature circuit breakers or SITOP select 6EP1961-2BA00 as overcurrent protection devices on the secondary side. The miniature circuit breakers can also be selected from the Siemens LV 1 and LV 1T catalogs.

Miniature circuit breakers are recommended as overcurrent protective device for cables and busbars. The ground potential M must be connected to the protective conductor system (DVC A).

When selecting the circuit breaker, the following standards must be carefully observed:

EN 61800-5-1, EN 60204-1, IEC 60364-5-52, IEC 60287-1 to -3, EN 60228 and UL 508C.

In so doing, the following conditions for the conductors/cables must be carefully taken into consideration:

- Ambient temperature 55 °C
- Limiting conductor temperature ≥ 75 °C for operation with the rated load current
- Maximum cable length:
 - 10 m for the supply supply cables
 - 30 m for signal lines

In addition, the conductors/cables should be routed so that

- Max. 1 conductor pair is bundled, and
- The 24 V conductors/cables must be routed separately from other cables and conductors that can conduct operating currents.

Table 9-4	MCBs by conductor cross-section and temperature
-----------	---

Conductor cross-section	Max. value up to 40 °C	Max. value up to 55 °C
1.5 mm ²	10 A	6 A
2.5 mm ²	16 A	10 A
4 mm ²	25 A	16 A
6 mm ²	32 A	20 A

The tripping characteristic of the MCBs must be selected to match the loads to be protected and the maximum current provided by the supply unit in the event of a short circuit.

9.3.5 Overvoltage protection

Overvoltage protection devices are needed if long cables are used.

- Supply cables > 10 m
- Signal cables > 30 m

The following Weidmüller overvoltage protectors are recommended for protecting the components' 24 V supply and the 24 V signal cables from overvoltage:

DC power supply	24 V signal cables	
Weidmüller Item no.: PU III R 24V Order number: 8860360000	Weidmüller Item no.: MCZ OVP TAZ Order number: 844915 0000	
Weidmüller GmbH & Co. KG An der Talle 89 33102 Paderborn, Germany Phone +49 (0)5252 960 0 Fax +49 (0)5252 960 116 http://www.weidmueller.com		

The overvoltage protectors must always be placed next to the area to be protected, e.g. at the entry point to the control cabinet.

9.4 Arrangement of components and equipment

9.4.1 General

The arrangement of the components and equipment takes account of

- Space requirements
- Cable routing
- Bending radiuses of the connecting cables MOTION-CONNECT cables, refer to catalog PM21
- Heat dissipation
- EMC

Components are usually located centrally in a cabinet.

Always observe the mounting clearances necessary above and below the components.

9.4.2 Mounting

The components should be mounted on a conductive mounting surface to ensure low impedance between the component and the mounting surface. Mounting plates with a galvanized surface are suitable.

Figure 9-1 Mounting the CU305 onto the Power Module PM340 (frame size FSA)

9.4 Arrangement of components and equipment

Mounting Power Modules with sub-chassis components

A large number of system components are designed as sub-chassis components for PM340 Power Modules with frame sizes FSA to FSE. In such cases, the sub-chassis components are mounted on the mounting surface, with the PM340 Power Module mounted in front in order to save space.

Table 9- 6	Available sub-chassis components
------------	----------------------------------

	FSA	FSB	FSC	FSD	FSE
Line filter	х	-	-	-	-
Line reactor	х	х	x	х	х
Braking resistor	х	х			
Motor reactor	х	х	х		

x = can be used as a sub-chassis component

-.. not available as an external component (use a Power Module with an integrated line filter)

Up to two sub-chassis components can be mounted in front of one another. For configurations involving more than two sub-chassis-type components (e.g. line reactor + motor reactor + braking resistor), individual components must be mounted to the side of the Power Module.

The following mounting sequence applies to frame sizes FSA to FSC:

Table 9-7 Mounting sequence for sub-chassis components, starting from the cabinet wall

Frame size	Mounting sequence
FSA	Without an external line filter: Motor reactor - line reactor - PM340
	With an external line filter: Line reactor- line filter - PM340 or motor reactor - line filter - PM340
FSB	Motor reactor - line reactor - PM340
FSC	Motor reactor - line reactor - PM340

NOTICE

The braking resistor must always be mounted to the side of the Power Module, as it can get very hot.

Wiring rules for DRIVE-CLiQ

See References: /FH3/ SINAMICS S110, Function Manual Drive Functions

9.5 Information about electromagnetic compatibility (EMC) and cable routing

9.5 Information about electromagnetic compatibility (EMC) and cable routing

9.5.1 General

Requirements to implement EMC are listed in EN 61000-6-2, EN 61000-6-4, EN 61800-3, EN 60204-1 and in the EMC Design Directives - Order No. 6FC5297-0AD30-0*P2. German, *B: English). Conformance with the EMC Directive of the EC can be secured by following the measures described in the EMC Design Directives.

When mounting components in cabinets, in order to fulfill the EMC directive, the following conditions must be additionally observed:

- Connected to TN line supply systems with grounded neutral point
- SINAMICS line filter (optional for frame size FSA)
- Observance of information about cable shielding and equipotential bonding
- Only the recommended Siemens power and signal cables are used
- Only cables from Siemens may be used for DRIVE-CLiQ connections.

For MOTION-CONNECT cables, refer to catalog PM21

CAUTION

If couplings or cabinet glands are needed for the DRIVE-CLiQ connections, only the DRIVE-CLiQ coupling and DRIVE-CLiQ cabinet gland, described in the Chapter Accessories, may be used.

If the shielding procedures described and the specified cable lengths are not observed, the machine may not operate properly.

9.5.2 Cable Shielding and Routing

In order to comply with the EMC requirements, certain cables must be routed apart from other cables and from certain components. To full EMC requirements, the following cables must be used with shields:

- Power supply cables from line filter via line reactor to Power Module
- All motor cables (if necessary, including cables for motor holding brake)
- Cables for "fast inputs" of the Control Unit
- Cables for analog direct voltage/current signals
- Signal cables for sensors
- Cables for temperature sensors

A suitable PE conductor must be connected to all devices in protection class I.

The PE conductor connection of the individual components must have at least 4 mm².

Alternative measures (e.g. routing behind mounting plates, suitable clearances) can also be used provided they have similar results. This excludes measures that relate to the design, installation, and routing of motor power cables and signal cables. If unshielded cables are used between the line supply connection point and the line filter, make sure that no interfering cables are routed in parallel.

The cable shields must be connected as close to the conductor terminal connections as possible to ensure a low-impedance connection with cabinet ground.

9.5 Information about electromagnetic compatibility (EMC) and cable routing

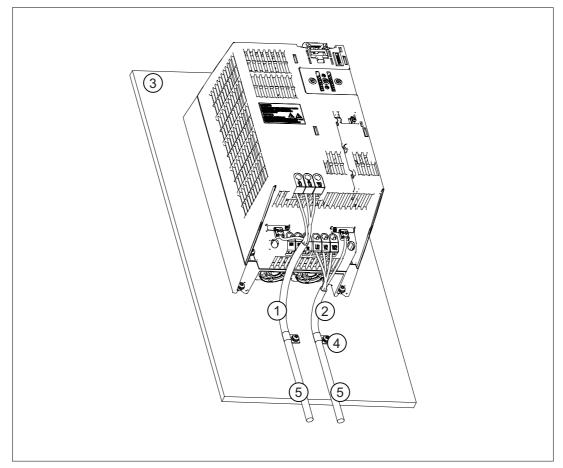


Figure 9-2 Shielding of a Power Module PM340

- 1. Line supply input
- 2. Motor cable
- 3. Rear metal panel
- 4. Use suitable clamps/clips to reliably connect the shield of the motor and field cable to the rear metal panel.
- 5. Shielded cable

Alternatively, the cable shields can be connected to them metal mounting plate using pipe clamps and serrated rails. The cable length between the shield contact point and the terminals for cable conductors must be kept as short as possible.

Shield connection plates with pre-prepared clip contacts are available for connecting the shields for power cables of Power Modules.

All cables inside the cabinet must be connected as closely as possible to parts connected with cabinet ground, such as a mounting plate or cabinet wall. Ducts made of sheet steel or routing cables between between steel sheets (e.g. between the mounting plate and back wall) should provide adequate shielding.

Avoid, where possible, routing non-shielded cables, connected to the drive line-up, in the immediate vicinity of noise sources, e.g. transformers. Signal cables (shielded and unshielded) connected to the drive line-up must be laid at a great distance from strong external magnetic sources (e.g. transformers, line reactors). In both cases, a distance of \geq 300 mm is usually sufficient.

9.5.3 Signal cables and 24 V supply cables

If you are using unshielded signal cables and 24 V supply cables (e.g. 24 V infeed with external supply), the following cable lengths are permissible:

- 24 V supply cables: max. length 10 m
- Signal cables: max. length 30 m without supplementary RC circuit

For longer lengths, the user must connect a suitable protective circuit up in order to provide overvoltage protection (refer to the chapter titled "Protection against overvoltage").

CAUTION

The connected signal and power cables must be routed in such a way that they do not cover the ventilation slots.

CAUTION

Non-shielded signal cables must not be routed parallel to power cables.

9.5 Information about electromagnetic compatibility (EMC) and cable routing

9.5.4 Equipotential bonding

The SINAMICS S drive system is designed for use in cabinets with a PE conductor connection.

The machinery construction OEM must carefully ensure that all of the conditions regarding the assignment of the ground cable, ground connecting cables, protective conductor and potential bonding cable connections and terminals are clearly specified in his Technical User/Manufacturer Documentation, are clearly specified (this is especially important if there are several protective conductor/potential bonding conductor connections/terminals in the unit). It is especially important to note that the connections for potential bonding cables that exist in parallel to connections for protective connecting cables may not be used to loop-through the protective connecting cable.

If the drive line-up is arranged on a common unpainted metal-surfaced mounting plate, e.g. with a galvanized surface, no additional equipotential bonding is needed within the drive line-up as

- All parts of the switchgear assembly are connected to the protective conductor system.
- The mounting plate is connected with the external PE conductor by means of a finelystranded copper conductor with a cross-section of 16 mm², including the outer conductor. From a cross-section of 25 mm² copper, the outer cross-section of the finely-stranded conductor is halved.

For other installation methods, equipotential bonding must be implemented using conductor cross-sections as stated in the second item in the list or at least equal to the conductance.

If components are mounted on DIN rails, the data listed in the second item applies for equipotential bonding. If only smaller connection cross-sections are permissible on components, the largest must be used (e.g. 6 mm² for TM31 and SMC). These requirements also apply to distributed components located outside the cabinet.

CAUTION

An equipotential bonding conductor with a cross-section of at least 25 mm² must be used between components in a system that are located a considerable distance from each other. If an equipotential bonding conductor is not used, leakage currents that could destroy the Control Unit or other PROFIBUS nodes can be conducted via the PROFIBUS cable.

Create a low-impedance ground connection for additional control cabinets, system components, and distributed units with the largest possible cross-section (at least 16 mm²). Other system and machine components must also be integrated in the concept for equipotential bonding conductors. The protective ground conductor for the motors used must be connected via a protective ground conductor within the motor cable.

NOTICE

If the above information about equipotential bonding is not taken into account, this can cause fieldbus interfaces or other units to malfunction.

9.6.1 General

Electrical cabinets can be cooled, using among other things the following:

- filtered fans
- heat exchangers or
- cooling units.

The decision in favor of one of these methods will depend on the prevailing ambient conditions and the cooling power required.

The air routing within the electrical cabinet and the cooling clearances specified here must be observed. No other components or cables must be located in these areas.

CAUTION

If you do not observe the guidelines for installing SINAMICS equipment in the cabinet, this can reduce the service life of the equipment and result in premature component failure.

You must take into account the following specifications when mounting/installing SINAMICS components:

- Cooling clearance
- Cable routing
- Air guidance, air-conditioner

Table 9-8	Cooling clearances around the components
-----------	--

Component	Clearance above and below in mm and (inches)	Lateral clearance in mm and (inches)
CU305 DP	50 (1.97)	0
CU305 CAN	50 (1.97)	0
SMCxx	50 (1.97)	0
line filter	100 (3.93)	
Line reactor	100 (3.93)	0
PM340 blocksize, frame size FSA	100 (3.93)	30 (1.18) ¹⁾
PM340 blocksize, frame size FSB	100 (3.93)	40 (1.57) ¹⁾
PM340 blocksize, frame size FSC	125 (4.92)	50 (1.97) ¹⁾
PM340 blocksize, frame sizes FSD and FSE	300 (11.81)	0
PM340 blocksize, frame size FSF	350 (13.77)	0

¹⁾ Only applies at ambient temperatures >40° C or where sub-chassis components are being used (e.g. line reactors) below the PM340. Otherwise, the clearance is 0 mm.

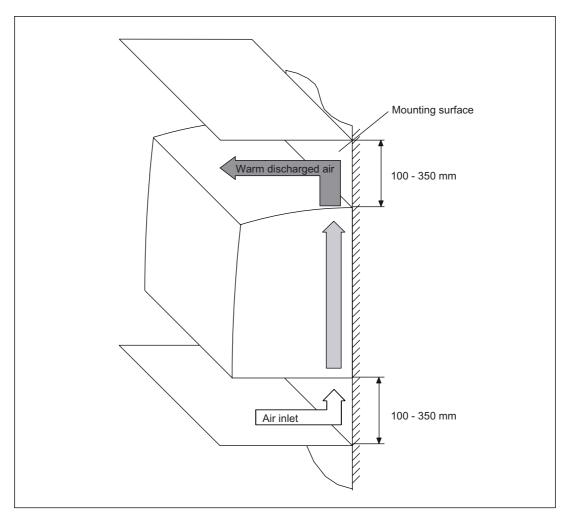


Figure 9-3 Cooling clearances

9.6.2 Ventilation

The SINAMICS equipment is ventilated separately by means of integrated fans and is in some cases cooled by means of natural convection.

The cooling air must flow through the components vertically from bottom (cooler region) to top (region heated by operation).

If filtered fans, heat exchangers, or air conditioners are used, you must ensure that the air is flowing in the right direction. You must also ensure that the warm air can escape at the top. The cooling clearance above and below must be observed.

Note

Cables must not be routed on the components; the ventilation meshes must not be covered.

Cold air must not be allowed to blow directly onto electronic equipment.

Note

The distance between the blow-out aperture of the air conditioner and the electronic equipment must be at least 200 mm.

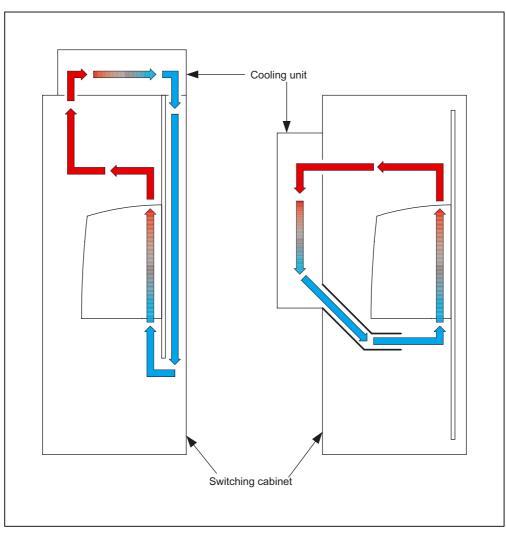


Figure 9-4 Examples of cabinet ventilation

CAUTION

The air guidance and arrangement of the cooling equipment must be chosen in such a way as to prevent condensation from forming.

If necessary, cabinet enclosure heating may have to be installed.

If air conditioners are used, the relative air humidity of the expelled air increases as the air in the air conditioner cools and may exceed the dew point. If the relative humidity of the air entering the SINAMICS equipment is over 80% for an extended period of time, the insulation in the equipment may fail to function properly due to electrochemical reactions (refer to System Overview). Using air baffle plates, for example, you must ensure that the cold air expelled from the air conditioner mixes with warm air in the cabinet before it enters the unit. This reduces the relative air humidity to uncritical values.

9.6.3 Power loss of components during rated operation

9.6.3.1 General information

The tables below give details of power loss for components during rated operation. The characteristic values apply for the following conditions:

- Line supply voltage for Power Modules 1-ph. 200 V AC to 3-ph. 380 V to 480 V AC ±10 %.
- Rated pulse frequency of the Power Modules 4 kHz
- Operating components at their rated power

9.6.3.2 Power loss for Control Units and Sensor Modules

 Table 9-9
 Overview of power loss during rated operation for Control Units and Sensor Modules

Component	Unit	Power loss			
Control Units					
CU305 DP	W	< 20			
CU305 CAN	W	< 20			
Sensor Modules					
SMC10	W	< 10			
SMC20 W < 10		< 10			
SMC30 W >10		>10			

9.6.3.3 Power loss for line reactors and line filters

Table 9-10 Overview of power loss during rated operation for line reactors and line filters

Rated output current In	Frame size	Line supply voltage	Unit	Power loss 50/60 Hz
Line reactors for Blocksize PM340				
0.9 A/2.3 A	FSA	1-ph. 200 to 240 V AC	W	12.5/15
3.9 A	FSA	1-ph. 200 to 240 V AC	W	11.5/14.5
1.3 A/1.7 A	FSA	3-ph. 380 to 480 V AC	W	6 / 7
2.2 A/3.1 A	FSA	3-ph. 380 to 480 V AC	W	12.5/15
4.1 A	FSA	3-ph. 380 to 480 V AC	W	7.5/9
5.9 A/7.7 A	FSB	3-ph. 380 to 480 V AC	W	9 / 11
10.2 A	FSB	3-ph. 380 to 480 V AC	W	27 / 32
18 A/25 A	FSC	3-ph. 380 to 480 V AC	W	98 / 118
32 A	FSC	3-ph. 380 to 480 V AC	W	37 / 44
38 A/45 A/60 A	FSD	3-ph. 380 to 480 V AC	W	90 / 115
75 A/90 A	FSE	3-ph. 380 to 480 V AC	W	170 / 215
110 A/145 A/178 A	FSF	3-ph. 380 to 480 V AC	W	280 / 360
Line filters for Blocksize PM340	FSA	3-ph. 380 to 480 V AC	W	< 5

9.6.3.4 Power loss for Power Modules

Rated output current In/Rated power based on In	Frame size	Line supply voltage	Unit	Power loss
Blocksize PM340				
0.9 A/0.12 kW	FSA	1-ph. 200 to 240 V AC	W	60
2.3 A/0.37 kW	FSA	FSA 1-ph. 200 to 240 V AC		75
3.9 A/0.75 kW	FSA	1-ph. 200 to 240 V AC	W	110
1.3 A/0.37 kW	FSA	3-ph. 380 to 480 V AC	W	100
1.7 A/0.55 kW	FSA	3-ph. 380 to 480 V AC	W	100
2.2 A/0.75 kW	FSA	3-ph. 380 to 480 V AC	W	100
3.1 A/1.1 kW	FSA	3-ph. 380 to 480 V AC	W	110
4.1 A/1.5 kW	FSA	3-ph. 380 to 480 V AC	W	110
5.9 A/2.2 kW	FSB	3-ph. 380 to 480 V AC	W	140
7.7 A/3 kW	FSB	3-ph. 380 to 480 V AC	W	160
10.2 A/4 kW	FSB	3-ph. 380 to 480 V AC	W	180
18 A/7.5 kW	FSC	3-ph. 380 to 480 V AC	W	240
25 A/11 kW	FSC	3-ph. 380 to 480 V AC	W	300
32 A/15 kW	FSC	3-ph. 380 to 480 V AC	W	400
38 A/18.5 kW	FSD	3-ph. 380 to 480 V AC	W	380
45 A/22 kW	FSD	3-ph. 380 to 480 V AC	W	510
60 A/30 kW	FSD	3-ph. 380 to 480 V AC	W	690
75 A/37 kW	FSE	3-ph. 380 to 480 V AC	W	990
90 A/45 kW	FSE	3-ph. 380 to 480 V AC	W	1210
110 A/55 kW	FSF	3-ph. 380 to 480 V AC	W	1420
145 A/75 kW	FSF	3-ph. 380 to 480 V AC	W	1930
178 A/90 kW	FSF	3-ph. 380 to 480 V AC	W	2310
Blocksize Liquid Cooled PM340	-	-		
38 A/18.5 kW	FSD	3-ph. 380 to 480 V AC	W	90 1)
60 A/30 kW	FSD	3-ph. 380 to 480 V AC	W	130 ¹⁾
75 A/37 kW	FSE	3-ph. 380 to 480 V AC	W	160 ¹⁾
90 A/45 kW	FSE	3-ph. 380 to 480 V AC	W	190 ¹⁾
110 A/55 kW	FSF	3-ph. 380 to 480 V AC	W	210 ¹⁾
178 A/90 kW	FSF	3-ph. 380 to 480 V AC	W	350 ¹⁾

1) Power loss to ambient air

Cooling circuit and coolant properties

10

10.1 Cooling circuit requirements

10.1.1 Technical cooling circuits

Technical cooling circuits can be divided into three systems:

1. Closed cooling circuits (recommended)

In closed systems, the circuit coolant is separated from the surrounding atmosphere, which prevents the ingress of oxygen. The coolant is only routed through the SINAMICS devices, the components required for cooling and, if necessary, a motor. The heat is dissipated to the atmosphere indirectly by means of heat exchangers. The system should ideally function without losing any coolant and, once filled, should not need any water to be added. The composition of the coolant can be adjusted as required (e.g. by using desalinated water and adding anti-corrosion agents). It either does not change at all during operation, or changes only in a defined manner.

The closed cooling circuit is recommended as a standard solution.

2. Open cooling circuit

The coolant is routed not only through the SINAMICS devices and components required for cooling, but also through external devices.

The heat transferred to the circuit coolant evaporates via a cooling tower. This evaporation causes the coolant to become more concentrated (densification) because water molecules escape, while dissolved substances remain in the coolant. During operation, therefore, the composition of the coolant changes significantly, which means that it must be monitored and topped up continuously.

3. Semi-open cooling circuit

Oxygen can only enter the coolant via the pressure compensator. Otherwise, see 1. Semi-open cooling circuits are permitted.

10.1 Cooling circuit requirements

10.1.2 Cooling system requirements

Open cooling systems must never be used for liquid-cooled Power Modules. A closed cooling circuit with a membrane expansion tank (MET), safety valve (SV), and heat exchanger (HE) is recommended, which connects the cooling circuit to an external cooler (refer also to the chapter titled "Using heat exchangers").

Requirements

- A particle filter (particle size < 100 μm) must be installed in the cooling circuit's supply line to prevent foreign particles from being washed in.
- Mixed installations should be avoided wherever possible.
- The permissible pressures in the cooling system must be observed.
- Cavitation must be prevented in the cooling system.
- Equipotential bonding must be provided between the components in the cooling system.
- The customer must take measures to protect the devices against condensation
- An anti-corrosion agent and, if necessary, a biocide should be mixed into the coolant.
- If there is a risk of frost, preventive measures must be taken during operation, storage, and transportation (e.g. emptying and blowing out with air, additional heating).
- The requirements of the coolant in terms of its properties (temperature, chemical characteristics, etc.) must be observed.

Recommendations

- To ensure mechanical decoupling, the devices should be connected by means of hoses.
- To prevent blockages and corrosion, you are advised to install a flushback filter in the circuit (so that residues can be rinsed out when the system is running).
- The power units should be connected to the cooling circuit by means of shut-off fittings so that they can be disconnected from the cooling circuit for servicing or repair without having to empty the entire cooling system. A cooling water hose (EPDM) can be used to connect the shut-off fitting to the power unit. The coolant connections must never be closed if cooling liquid is still present in the device. Reason: If the cooling fluid expands due to heat, the pressure can build up beyond permissible levels and cause the heat sink to burst.

10.1.3 Cooling circuit configuration

The liquid-cooled Power Modules are designed to be connected in parallel to the cooling circuit. The pressure drop in the joint supply and return lines is to be kept at negligible levels by choosing a sufficiently large pipe diameter.

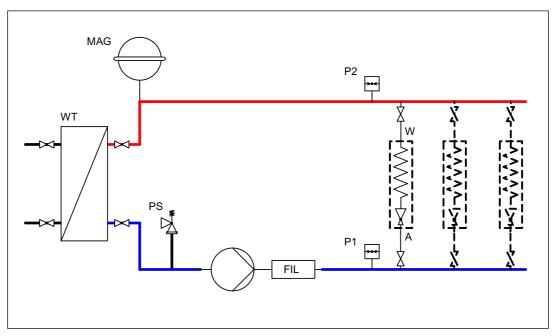


Figure 10-1 Example of a closed cooling circuit

The supply line (P1) has a differential pressure p compared to the return line (P2); this pressure must be in the range 70 kPa to 200 kPa. This ensures that every connected unit has the required volume of cooling liquid flowing through it. Pressure P1 and P2 with respect to the atmosphere must not exceed 600 kPa.

A pump's pressure depends on the volumetric flow, so the pressure created will depend on the number of components which are connected. At the minimum differential pressure p1 (measured between the supply and return lines of the individual component), the volume of coolant required to enable the component to achieve its rated power or rated current is to flow through each component. At the maximum differential pressure p2 (measured between the supply and return lines of the individual component), the volumetric flow must not result in damage to the component, for example by means of cavitation. If necessary, pressure reducing valves such as baffle plates will have to be installed in the piping; these must be easy to access, clean, and/or replace.

When the pump is switched off, static pressure occurs in the system. The static pressure can be influenced by the primary pressure of the membrane expansion tank (MET) and should be at least 30 kPa on the pump's suction side. If the static pressure is too low, the pump may be damaged due to cavitation during operation. If necessary, note any differing minimum pressure values from the pump manufacturer. When components are installed at different heights, the geodesic pressure caused by the height difference must be taken into account (1 m height difference corresponds to 10 kPa).

10.1 Cooling circuit requirements

When the pump is switched on, a (location-dependent) flow pressure is present in the cooling circuit, which must be determined from the pump characteristic curve and the volume-flow-dependent pressure drop. Characteristics have been specified for the pressure drop of the Power Modules. The pressure drop in the filter and, if applicable, an additional pressure drop in the connection pipes must be added to this pressure drop (70 kPa for H₂O). Up to 50 kPa must be added for the pressure drop in a (contaminated) filter and in connection pipes. The intersection of the pump characteristic curve and the pressure drop of the whole cooling system yields the volumetric flow V_{rated} of the coolant at this operating point.

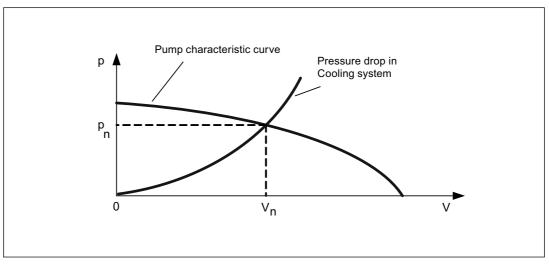


Figure 10-2 Pump characteristic curve

Permissible system pressure

The maximum permissible system pressure is 600 kPa.

If a pump that is capable of exceeding this maximum permissible system pressure is used, the customer must take steps (e.g. safety valve $p \le 600$ kPa, pressure control, or similar) to ensure that the maximum pressure limit is not exceeded.

Permissible pressure difference

The maximum permissible pressure difference for a heat sink is 200 kPa. Higher pressure differences significantly increase the risk of cavitation and abrasion. The lowest possible differential pressure between the coolant in the supply and return lines should be selected to allow pumps with a flat characteristic to be used.

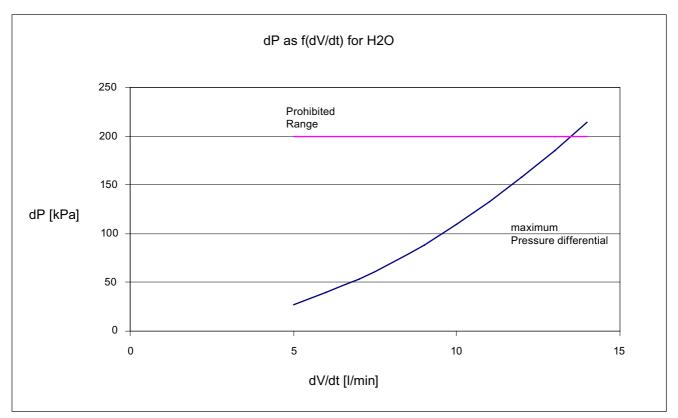
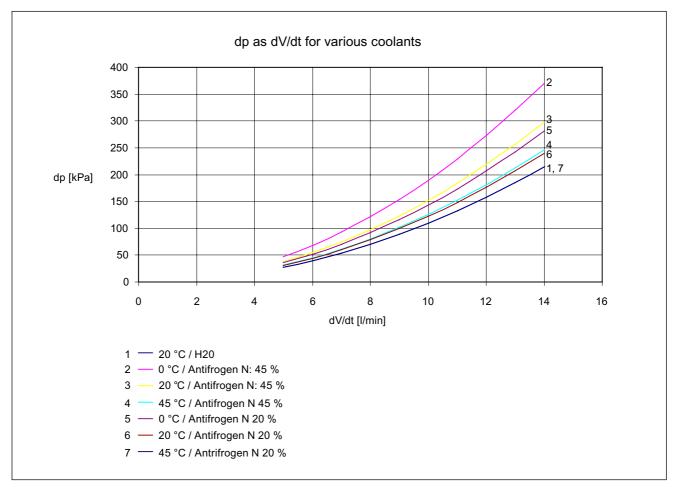
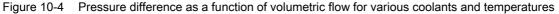


Figure 10-3 Pressure difference as a function of volumetric flow

Pressure difference and pressure drop when using coolant mixtures

If a mixture of Antifrogen N and H_2O is used as a coolant, the rated pressure must be calculated according to the mixing ratio. The following table specifies the pressure drop across components at different coolant temperatures for a coolant with mixing ratio 45 % Antifrogen N.


Table 10-1 Pressure drop at different coolant temperatures for Antifrogen N/H ₂ O: 45 %
--


dV/dt H₂O [I/min]	dP H ₂ O [kPa]	dP Antifrogen N 0 ℃ [kPa]	dP Antifrogen N 20 °C [kPa]	dP Antifrogen N 45 °C [kPa]	dP Antifrogen N 50 °C [kPa]
8	70	121	97	81	78

The characteristic curves for the pressure drop across the heatsinks as a function of volumetric flow vary depending on the temperature and the Antifrogen N / water coolant mix.

Cooling circuit and coolant properties

10.1 Cooling circuit requirements

Operating pressure

The **operating pressure** must be set according to the flow conditions in the supply and return lines of the cooling circuit. The required coolant flow rate per time unit must be set according to the technical data of the components. The components are normalized to a rated pressure of 70 kPa (for coolant type H_2O) via a baffle plate.

Layout of the components

The components should be laid out in the system in such a way that the overall length of the supply and drain lines is the same for every SINAMICS component.

Water cooling systems with series-connected SINAMICS devices are not permitted.

Dimensioning the cooling circuit

Recommendation for dimensioning the cooling circuit:

The differential pressure between the supply and return lines should be selected so that:

 $\Sigma dPi < dP_{Syst} < \Sigma dPi + 30 kPa$

The individual pressure drops Pi represent the pressure drops of components (heat exchanger, piping, 70 kPa for the SINAMICS devices connected in parallel, valves, dirt traps, pipe bends, etc.).

Coolant pipes must be routed with extreme care. The pipes must never come into contact with electrically live components. An insulation clearance of > 13 mm must always be maintained between pipes and live parts. The pipes must be securely mounted and checked for leaks.

10.1.4 Installation

A closed stainless-steel cooling circuit, preferably combined with monitoring of the coolant quality, is strongly recommended to ensure the longest possible service life for the heat sink.

CAUTION

Coolant pipes must be routed with extreme care. The pipes must be securely mounted and checked for leaks. They must never come into contact with live components.

Materials and connections

To minimize the electrochemical processes taking place in the cooling system, the materials must be coordinated with one another accordingly. For this reason, mixed installations (i.e. a combination of different materials, such as copper, brass, iron, zinc, or halogenated plastic (PVC hoses and seals)) should not be used or should be limited to an absolute minimum.

The valves and connections required in the cooling system must be made of stainless steel (V2A or V4A steel; NIROSTA austenite).

The following materials can be used for the cooling system piping:

- Pipes and corrugated piping made of stainless steel (V2A or V4A steel; NIROSTA austenite)
- Hoses made of EPDM/EPDM with an electrical resistance <10⁹ ohms (e.g. Semperflex FKD by Semperit; http://www.semperit.at)
- DEMITEL® hoses made of PE/EPDM (Telle; http://www.telle.de)
- Secure with clips that comply with DIN2871, available from Telle, for example.

All control cabinets must be designed with a PE bar and a good electrical connection must be established between them.

10.1 Cooling circuit requirements

NOTICE

The sealing materials must be free of chlorides, graphite, and carbon (Viton® or EPDM).

Teflon-based seals are not permitted.

Note

When non-conductive hoses are used, particular attention must be paid to the equipotential bonding of all components. (Refer to the chapter titled "Equipotential bonding".)

Note

Once installed, the cooling system must be checked to ensure that it is properly sealed.

10.1.5 Preventing cavitation

The following applies to all cooling circuits:

- The cooling circuit must always be designed in such a way that the pressure compensator is located on the suction side of the pump (if possible, directly on the pump).
- The minimum pressure on the suction side of the pump must be approximately 30 kPa, or the geodesic height from the reservoir to the pump suction side must be > 3 m.
- The pressure drop across a SINAMICS device must not exceed 200 kPa in continuous operation, otherwise the high volumetric flow can increase the risk of cavitation and/or abrasion damage.
- The guidelines provided in "Information about configuring cooling circuits" below regarding series connections and maximum pressure must also be followed.

10.1.6 Commissioning

When commissioning the cooling water circuit, the following sequence must be observed:

- Ventilate the heat sink the first time the devices are filled.
- Remove the fixing glands located in front of the vent valve.
- Perform ventilation.
- Close the vent valve.
- Screw the fixing glands tight again.
- Check the seals.
- Set the operating pressure according to the flow conditions of the cooling water system in the supply and return lines.
- Set the required cooling water flow rate per time unit.

CAUTION

Ventilation must only be performed when the system is at zero voltage.

10.2 Coolant requirements

10.2 Coolant requirements

10.2.1 Coolant properties

Water or a water/anti-freeze mixture that meets the relevant requirements can be used as a cooling medium. The cooling medium must be chemically neutral, clean, and not contain any solids.

The cooling water must fulfill the following requirements over the long term:

- Chemically neutral, clean, and free of solids
- Max. inlet temperature: 50 °C
- Max. outlet temperature: 55 °C
- System pressure 600 kPa
- Max. size of any particles transported: 100 μm
- pH value: 6.0 to 8.0
- Chlorides < 200 ppm
- Sulfates < 600 ppm
- Loose materials < 340 ppm
- Total hardness < 170 ppm
- Electrical conductivity < 500 µS/cm

NOTICE

Condensation must not be allowed to form on the SINAMICS S120 equipment as a result of supercooling. The temperature of the cooling water may have to be regulated.

NOTICE

The heat sink is made of non-seawater-proof material, which means that it must not be cooled directly with seawater.

Note

Tap water is not generally suitable for use in the cooling circuit, although it can be mixed with de-ionized water. Losses must always be replenished with de-ionized water.

The cooling water should be checked 3 months after the cooling circuit is filled for the first time and, subsequently, once a year. If the cooling water becomes cloudy, is colored, or becomes contaminated by mould spores, the cooling circuit must be cleaned and refilled.

An inspection glass should be provided in the cooling circuit to make it easier to check the cooling water.

10.2.2 Anti-corrosion additives (inhibitors)

Inhibitor without anti-freeze effect

Nalco 00GE056 (ONDEO Nalco; http://www.ondeonalco.com) must be used as an anticorrosion agent. The concentration of anti-corrosion agent in the cooling water should be between 2,000 ppm and 2,500 ppm (200 to 250 ml/100 liters of cooling water).

A prerequisite for the inhibitor is the specified coolant, which must not contain any magnesium carbonate. Control kits can be ordered from Nalco to check the inhibitor concentration.

10.2.3 Anti-freeze additives

Antifrogen N (Clariant; http://www.clariant.com) is recommended as an antifreeze. The proportion of antifreeze must be between 20% and 30%. This ensures frost protection in temperatures down to -10 °C.

NOTICE

If the proportion of antifreeze added is greater than 30%, this can inhibit the transfer of heat and prevent the units from functioning correctly.

NOTICE

Cooling water mixtures with Antifrogen N are highly conductive. In the event of leakage, the insulating systems must be cleaned.

NOTICE

When EPDM hoses are used, oily anti-corrosion-agent additives must not be used because such additives can corrode and destroy EPDM.

Note

You must always bear in mind that the kinematic viscosity of the cooling water changes when antifreeze is added, which means that the pump power must be adjusted accordingly.

Antifrogen N contains corrosion inhibitors which permanently protect the metal in the cooling system against corrosion. The proportion of Antifrogen N should always be >20%, otherwise the mixture becomes corrosive.

Inhibitors and Antifrogen N must not be mixed.

10.2 Coolant requirements

10.2.4 Biocide additives (only if required)

Closed cooling circuits with soft water (°DH>4) are susceptible to microbes. The risk of corrosion caused by microbes is virtually non-existent in chlorinated drinking water systems.

If Antifrogen N antifreeze is used with a concentration of 20% or higher, it can be assumed that there is an adequate biocide effect.

The following types of bacteria are encountered in practice:

- Slime-forming bacteria
- Corrosive bacteria
- Iron-depositing bacteria

The type of bacteria determines the suitability of a biocide. At least one water analysis per year (to determine the number of bacterial colonies) is recommended. Suitable biocides are available, for example, from Nalco (Manufacturer: Nalco).

 We recommend adding partial doses of Nalco N 77352 (ONDEO Nalco; http://www.ondeonalco.com) twice a month, rather than adding an entire dose all at once (i.e. to introduce pauses in the dosing process).
 Dosage: 5 – 15 mg/100 liters of cooling water. This product has no adverse effect on Nalco 00GE056 corrosion inhibitor.

Note

The type of bacteria determines the biocide.

The manufacturer's recommendations must be followed as regards the dosage and compatibility with any inhibitor used.

Biocides and Antifrogen N must not be mixed.

10.3 Anti-condensation measures

The customer must take measures to protect the devices against condensation.

Condensation occurs when the inlet temperature of the coolant is significantly lower than room temperature (ambient temperature). The permissible temperature difference between coolant and air varies as a function of the relative humidity ϕ of the ambient air. The air temperature at which the aqueous phase precipitates is referred to as the "dew point".

The table below shows the dew points (in °C) for an atmospheric pressure of 100 kPa (\approx installation altitude: 0 to 500 m). If the temperature of the coolant is below the specified value, condensation may occur (i.e. the coolant temperature must always be \geq the dew point temperature).

Table 10-2 Dew point temperature as a function of relative air humidity ϕ and room temperature at an installation altitude of 0 m.

T room [°C]	Ф=20%	Φ=30%	Φ=40%	Φ=50%	Φ=60%	Φ=70%	Φ=80%	Φ=85%	Φ=90%	Φ=95%	Φ=100%
10	<0	<0	<0	0.2	2.7	4.8	6.7	7.6	8.4	9.2	10
20	<0	2	6	9.3	12	14.3	16.4	17.4	18.3	19.1	20
25	0.6	6.3	10.5	13.8	16.7	19.1	21.2	22.2	23.2	24.1	24.9
30	4.7	10.5	14.9	18.4	21.3	23.8	26.1	27.1	28.1	29	29.9
35	8.7	14.8	19.3	22.9	26	28.6	30.9	32	33	34	34.9
38	11.1	17.4	22	25.7	28.8	31.5	33.8	34.9	36	36.9	37.9
40	12.8	19.1	23.7	27.5	30.6	33.4	35.8	36.9	37.9	38.9	39.9
45	16.8	23.3	28.2	32	35.3	38.1	40.6	41.8	42.9	43.9	44.9
50	20.8	27.5	32.6	36.6	40	42.9	45.5	46.6	47.8	48.9	49.9

The dew point also depends on the absolute pressure (i.e. the installation altitude).

The dew points for low atmospheric pressure are lower than those at an altitude of 0 m (i.e. it is always acceptable to calculate the coolant supply temperature for an altitude of 0 m).

For short periods of condensation in Power Modules PM340 Liquid Cooled, framed size FSF, the condensate may be collected inside the components and removed by a hose (see dimensional drawing).

10.4 Equipotential bonding

10.4 Equipotential bonding

All components in the cooling system (SINAMICS units, heat exchanger, piping system, pump, pressure compensator, etc.) must be connected to an equipotential bonding system. A copper bar or stranded copper with the appropriate conductor cross-sections must be used for this purpose to eliminate electrochemical processes.

If the installation comprises more than one control cabinet, they must be bolted together with good conductivity (e.g. bolt cabinet cross-beams together directly at several points to establish a conductive connection). This eliminates potential differences and, in turn, the risk of electrochemical corrosion. A PE bar must be installed in every cabinet (including the recooling system) and the individual bars interconnected.

Service and maintenance

11.1 Safety information

Only Siemens customer service, repair centers that have been authorized by Siemens or authorized personnel may repair drive equipment. Al of the persons involved must have indepth knowledge of all of the warnings and operating instructions as listed in this Manual.

All damaged parts or components must be replaced. Spare parts are available on the Internet at: http://support.automation.siemens.com/WW/view/de/16612315

Before starting any work, after the specified waiting time has elapsed, carefully measure the voltage! The voltage can be measured between the DC link terminals DCP and DCN and must be below 42.2 V DC.

If the auxiliary 230 V AC supplies are present, then a hazardous voltage is present at the components even when the main switch is in the open state.

11.2 Service and maintenance for components, Blocksize format

11.2.1 Replacing hardware components

NOTICE

Hardware components may only be replaced when in the no-voltage state!

The following components can be replaced with replacement/exchange components with the same Order No.:

- Power Modules
- DRIVE-CLiQ components
- Control Units

11.2.2 Replacing the fan on the PM340

For all frame sizes of PM340, the fans are accessible from the outside. For frame sizes FSA to FSC, a Phillips screwdriver is required for replacing fans. The fan can be ordered as a spare part.

NOTICE

Only trained personnel may replace the fan on a PM340, observing ESD guidelines.

The component must be in a de-energized state.

The component must have been removed from the drive line-up in order to replace the fan.

Replacing the fan on a PM340, frame sizes FSA, FSB, and FSC

- 1. Remove the fan's fixing screws underneath the Power Module.
- 2. Remove the cable connector.
- 3. Take out the faulty fan.
- 4. Insert the new fan.
- 5. Reattach the cable connector.
- 6. Screw the fixing screws in.

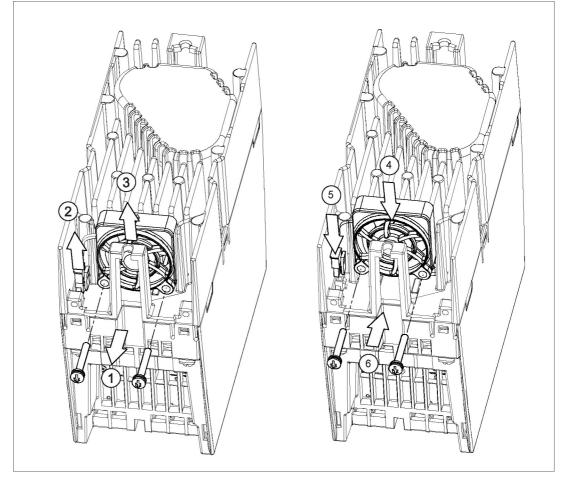


Figure 11-1 Replacing the fan on a Power Module PM340, frame size FSA (tightening torque 0.4 Nm)

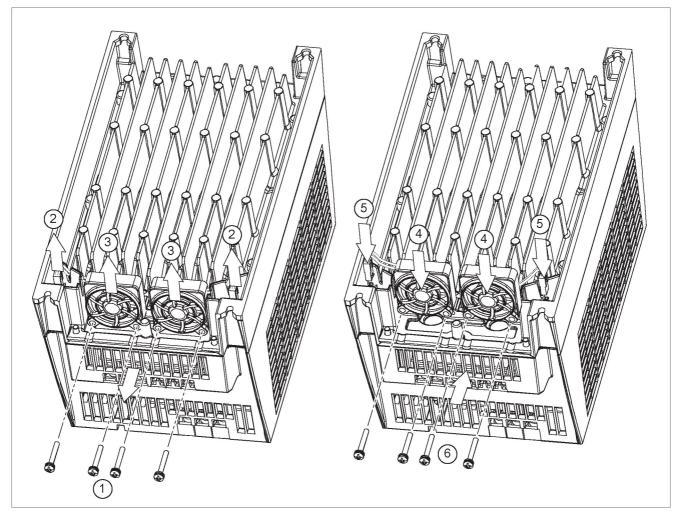


Figure 11-2 Replacing the fan on a Power Module PM340, frame sizes FSB and FSC (tightening torque 0.4 Nm)

Service and maintenance

11.2 Service and maintenance for components, Blocksize format

Replacing the fan on a PM340, frame sizes FSD and FSE

- 1. Removing the cover using a suitable tool.
- 2. Withdraw the two connectors shown and lift-out the fan.
- 3. Use the new fan and insert both connectors.
- 4. Close the protective cover.

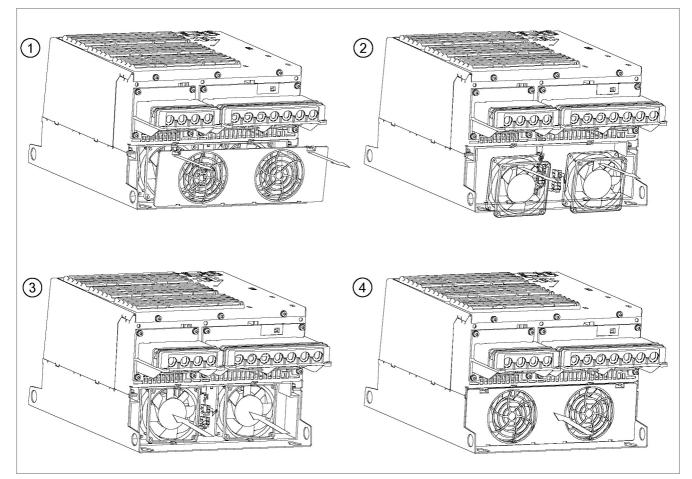


Figure 11-3 Replacing a fan for a Power Module PM340, frame sizes FSD and FSE

Replacing the fan on a PM340 of frame size FSF

- 1. Release the screws and remove the cover.
- 2. Withdraw the two connectors shown and lift-out the fan.
- 3. Insert the new fan, locate both connectors, close the cover and tighten the screws (tightening torque, 3.0 Nm).

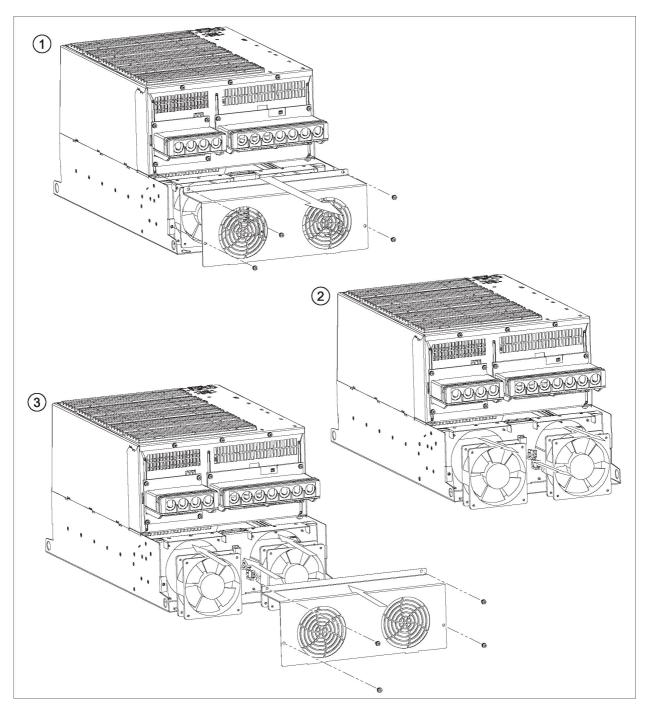


Figure 11-4 Replacing the fan for a Power Module PM340, frame size FSF

11.3 Spare parts

Spare parts are available on the Internet at:

http://support.automation.siemens.com/WW/view/de/16612315

11.4 Disposal

The relevant national environmental regulations must be respected when disposing of devices!

Service and maintenance

11.4 Disposal

Appendix A

A.1 Spring-loaded terminals/screw terminal

Connectable conductor cross-sections of spring-loaded terminals

Spring-loaded terminal type				
1	Connectable conductor cross- sections	Flexible With wire end ferrule, without plastic sleeve With wire end ferrule, with plastic sleeve	$\begin{array}{c} 0.14 \ mm^2 \ to \ 1.5 \ mm^2 \\ 0.25 \ mm^2 \ to \ 1.5 \ mm^2 \\ 0.25 \ mm^2 \ to \ 0.5 \ mm^2 \end{array}$	
	Insulation stripping length	7 mm		
	Tool Screwdriver 0.4 x 2.0 mm			
2	Connectable conductor cross- sections	Flexible	0.08 mm ² to 2.5 mm ²	
	Insulation stripping length	8 to 9 mm		
	Tool	Screwdriver 0.4 x 2.0 mm		

Connectable conductor cross-sections of the screw terminal

Table A- 2 Screw terminal

Screw terminal				
Connectable conductor cross-sections	Rigid, flexible With wire end ferrule, without plastic sleeve With wire end ferrule, with plastic sleeve	$\begin{array}{c} 0.08 \mbox{ mm}^2 \mbox{ to } 2.5 \mbox{ mm}^2 \\ 0.5 \mbox{ mm}^2 \mbox{ to } 2.5 \mbox{ mm}^2 \\ 0.5 \mbox{ mm}^2 \mbox{ to } 1.5 \mbox{ mm}^2 \end{array}$		
Insulation stripping length	7 mm			
Tool	Screwdriver 0.6 x 3.5 mm			
Tightening torque 0.5 to 0.6 Nm				

Appendix A

A.1 Spring-loaded terminals/screw terminal

Appendix B

B

B.1 List of abbreviations

Note:

The following list of abbreviations includes all abbreviations and their meanings used in the entire SINAMICS user documentation.

Abbreviation	Source of abbreviation	Meaning
Α		
A	Alarm	Alarm
AC	Alternating Current	Alternating current
ADC	Analog Digital Converter	Analog digital converter
AI	Analog Input	Analog input
AIM	Active Interface Module	Active Interface Module
ALM	Active Line Module	Active Line Module
AO	Analog Output	Analog output
AOP	Advanced Operator Panel	Advanced Operator Panel
APC	Advanced Positioning Control	Advanced Positioning Control
AR	Automatic Restart	Automatic restart
ASC	Armature Short Circuit	Armature short circuit
ASCII	American Standard Code for Information Interchange	American standard code for information interchange
ASM	Induction motor	Induction motor
В		
OC	Operating Condition	Operating condition
BERO	-	Contactless proximity switch
BI	Binector Input	Binector input
BIA	Germany's Institute for Occupational Safety and Health	Germany's Institute for Occupational Safety and Health
BICO	Binector Connector Technology	Binector connector technology
BLM	Basic Line Module	Basic Line Module
во	Binector Output	Binector output
BOP	Basic Operator Panel	Basic Operator Panel

Abbreviation	Source of abbreviation	Meaning
С		
С	Capacitance	Capacitance
C	-	Safety message
CAN	Controller Area Network	Serial bus system
CBC	Communication Board CAN	Communication board CAN
CD	Compact Disc	Compact Disc
CDS	Command Data Set	Command data set
CF Card	CompactFlash Card	CompactFlash Card
CI	Connector Input	Connector input
CLC	Clearance Control	Clearance control
CNC	Computer Numerical Control	Computer numerical control
CO	Connector Output	Connector output
CO/BO	Connector Output/Binector Output	Connector/binector output
COB ID	CAN Object Identification	CAN Object identification
СОМ	Common contact of a changeover relay	Center contact of a changeover contact
COMM	Commissioning	Commissioning
СР	Communication Processor	Communication processor
CPU	Central Processing Unit	Central processing unit
CRC	Cyclic Redundancy Check	Cyclic redundancy check
CSM	Control Supply Module	Control Supply Module
CU	Control Unit	Control Unit
CUA	Control Unit Adapter	Control Unit Adapter
CUD	Control Unit DC MASTER	Control Unit DC MASTER
D		
DAC	Digital Analog Converter	Digital analog converter
DC	Direct Current	DC current
DCB	Drive Control Block	Drive Control Block
DCC	Drive Control Chart	Drive Control Chart
DCC	Data Cross Check	Crosswise data comparison
DCN	Direct Current Negative	DC current negative
DCP	Direct Current Positive	DC current positive
DDS	Drive Data Set	Drive data set
DI	Digital Input	Digital input
DI/DO	Digital Input/Digital Output	Digital input/output bidirectional
DMC	DRIVE-CLiQ Hub Module Cabinet	DRIVE-CLiQ Hub Module Cabinet
DME	DRIVE-CLiQ Hub Module External	DRIVE-CLiQ Hub Module External
DO	Digital Output	Digital output
DO	Drive Object	Drive object
DP	Decentralized Peripherals	Distributed IOs
DPRAM	Dual Ported Random Access Memory	Memory with dual access ports
2		

Appendix B

B.1 List of abbreviations

Abbreviation Source of abbreviation Meaning DRAM Dynamic Random Access Memory Dynamic memory DRIVE-CLiQ Drive Component Link with IQ DSC **Dynamic Servo Control** Е EASC **External Armature Short Circuit** EDS Encoder Data Set Encoder data set ESD **Electrostatic Sensitive Devices** ELCB Earth Leakage Circuit Breaker ELP Earth Leakage Protection EMC **Electromagnetic Compatibility** EMF **Electromagnetic Force** EMF Electromagnetic force EMC Electromagnetic compatibility ΕN European standard EnDat Encoder Data Interface Encoder interface EΡ Enable Pulses Pulse enable **Basic positioner** EPOS **Basic** positioner ES **Engineering System** ESB Equivalent circuit diagram ESD **Electrostatic Sensitive Devices** ESR Extended Stop and Retract Extended stop and retract F F... Fault Fault FAQs **Frequently Asked Questions** FBL Free Blocks FCC **Function Control Chart** FCC Flux Current Control FD **Function Diagram** Function diagram F-DI Failsafe Digital Input F-DO Failsafe Digital Output FEM Separately excited synchronous motor FEPROM Flash EPROM FG **Function Generator** FΙ Fault current FOC Fiber-Optic Cable Fiber-optic cable FΡ Function diagram Function diagram FPGA Field Programmable Gate Array

G GB Gigabyte

Firmware

Drive Component Link with IQ **Dynamic Servo Control**

External armature short circuit Electrostatic sensitive devices Earth leakage circuit breaker Earth leakage protection Electromagnetic compatibility Electromagnetic force Electromagnetic force Electromagnetic compatibility European standard **Engineering System** Equivalent circuit diagram Electrostatic sensitive devices

Frequently asked questions Free function blocks **Function Control Chart** Flux current control Fail-safe digital input Fail-safe digital output Separately excited synchronous motor Non volatile read and write memory Function generator Field Programmable Gate Array Firmware

Gigabyte

FW

Abbreviation	Source of abbreviation	Meaning	
GC	Global Control	Global Control Telegram (Broadcast Tele- gramm)	
GND	Ground	Reference potential for all signal and operat- ing voltages, usually defined as 0 V (also referred to as G)	
GSD	Generic Station Description	Generic station description: Describes the characteristics of a PROFIBUS slave	
GSV	Gate Supply Voltage	Gate Supply Voltage	
GUID	Globally Unique Identifier	Globally unique identifier	
Н			
HF	High Frequency	High frequency	
HFD	High-frequency reactor	High-frequency reactor	
RFG	Ramp-Function Generator	Ramp-function generator	
HMI	Human Machine Interface	Human machine interface	
HTL	High-Threshold Logic	Logic with a high fault threshold	
HW	Hardware	Hardware	
I			
u.d.	under development	Under development: This feature is not cur- rently available	
I/O	Input/Output	Input/output	
I2C	Inter-Integrated Circuit	Internal serial data bus	
IASC	Internal Armature Short Circuit	Internal armature short circuit	
IBN	Commissioning	Commissioning	
ID	Identifier	Identification	
IE	Industrial Ethernet	Industrial Ethernet	
IEC	International Electrotechnical Commission	International Electrotechnical Commission	
IF	Interface	Interface	
IGBT	Insulated Gate Bipolar Transistor	Insulated gate bipolar transistor	
IGCT	Integrated Gate-Controlled Thyristor	Semiconductor power switch with integrated control electrode	
IL	Pulse cancelation	Pulse cancelation	
IP	Internet Protocol	Internet Protocol	
IPO	Interpolator	Interpolator	
IT	Isolé Terré	Non-grounded three-phase power supply	
IVP	Internal Voltage Protection	Internal voltage protection	
J			
JOG	Jogging	Jogging	
к			
CDC	Crosswise data comparison	Crosswise data comparison	
KIP	Kinetic buffering	Kinetic buffering	
Кр	-	Proportional gain	
KTY	-	Special temperature sensor	

Appendix B

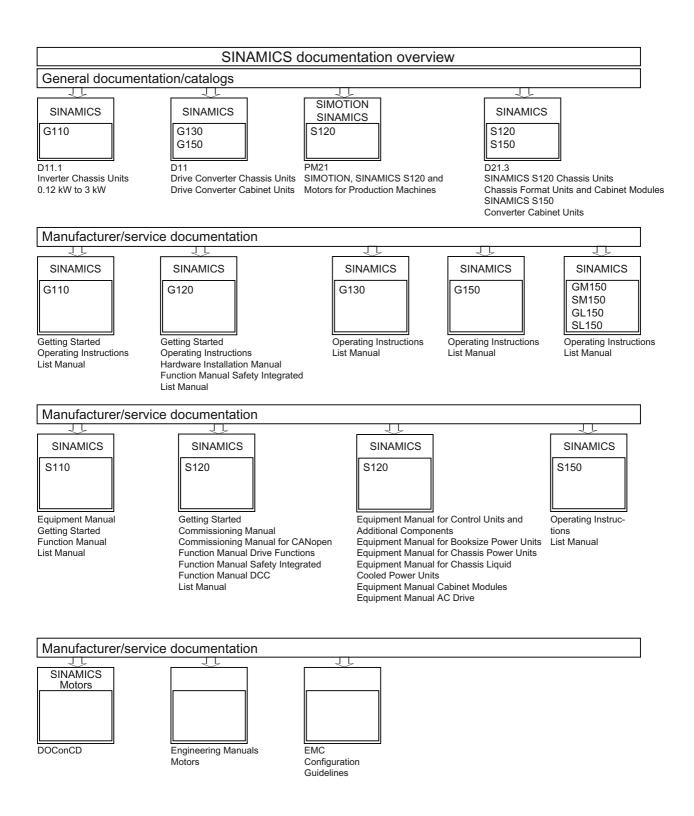
B.1 List of abbreviations

Abbreviation	Source of abbreviation	Meaning
L		
L	-	Formula symbol for inductance
LED	Light Emitting Diode	Light Emitting Diode
LIN	Linear motor	Linear motor
PC	Position Controller	Position Controller
LSB	Least Significant Bit	Least significant bit
LSC	Line-Side Converter	Line-side converter
LSS	Line Side Switch	Line side switch
LU	Length Unit	Length unit
FOC	Fiber-Optic Cable	Fiber-optic cable
М		
Μ	-	Formula symbol for torque
Μ	Ground	Reference potential for all signal and operat- ing voltages, usually defined as 0 V (also referred to as GND)
MB	Megabyte	Megabyte
MCC	Motion Control Chart	Motion Control Chart
MDS	Motor Data Set	Motor data set
MLFB	Machine-Readable Product Code	Machine-Readable Product Code
MMC	Man-Machine Communication	Man-machine communication
MMC	Micro Memory Card	Micro memory card
MSB	Most Significant Bit	Most significant bit
MSC	Motor-Side Converter	Motor-side converter
MSCY_C1	Master Slave Cycle Class 1	Cyclic communication between master (Class 1) and slave
MSR	Motor-side converter	Motor-side converter
MT	Probe	Probe
Ν		
N. C.	Not Connected	Not connected
N	No Report	No message or internal message
NAMUR	Standardization association for measure- ment and control in the chemical industry	Standardization association for measure- ment and control in the chemical industry
NC	Normally Closed (contact)	NC contact
NC	Numerical Control	Numerical control
NEMA	National Electrical Manufacturers Associa- tion	Standardization body in the US
NM	Zero mark	Zero mark
NO	Normally Open (contact)	NO contact
NSR	Line-side converter	Line-side converter
NVRAM	Non-Volatile Random Access Memory	Non-volatile read/write memory

Abbreviation	Source of abbreviation	Meaning
0		
OA	Open Architecture	Open Architecture
OC	Operating Condition	Operating condition
OEM	Original Equipment Manufacturer	Original Equipment Manufacturer
OLP	Optical Link Plug	Fiber-optic bus connector
OMI	Option Module Interface	Option module interface
Р		
р	-	Adjustable parameters
РВ	PROFIBUS	PROFIBUS
PcCtrl	PC Control	Control for master
PD	PROFIdrive	PROFIdrive
PDS	Power unit Data Set	Power unit data set
PE	Protective Earth	Protective earth
PELV	Protective Extra Low Voltage	Protective extra low voltage
PEM	Permanent-magnet synchronous motor	Permanent-magnet synchronous motor
PG	Programming device	Programming device
PI	Proportional Integral	Proportional integral
PID	Proportional Integral Differential	Proportional integral differential
PLC	Programmable Logic Controller	Programmable logic controller
PLL	Phase-Locked Loop	Phase-locked loop
PN	PROFINET	PROFINET
PNO	PROFIBUS user organization	PROFIBUS user organization
PPI	Point-to-Point Interface	Point-to-point interface
PRBS	Pseudo Random Binary Signal	White noise
PROFIBUS	Process Field Bus	Serial data bus
PS	Power Supply	Power supply
PSA	Power Stack Adapter	Power Stack Adapter
PTC	Positive Temperature Coefficient	Positive temperature coefficient
PTP	Point-To-Point	Point-to-Point
PWM	Pulse Width Modulation	Pulse width modulation
PZD	Process data	Process data
R		
r	-	Display parameters (read-only)
RAM	Random Access Memory	Read/write memory
RCCB	Residual Current Circuit Breaker	Residual current operated circuit breaker
RCD	Residual Current Device	Residual current operated circuit breaker
RCM	Residual Current Monitor	Residual current monitor
RFG	Ramp-Function Generator	Ramp-function generator
RJ45	Registered Jack 45	Term for an 8-pin socket system for data transmission with shielded or non-shielded

multi-wire copper cables

Appendix B


B.1 List of abbreviations

Abbreviation	Source of abbreviation	Meaning
RKA	Cooling unit	Cooling unit
RO	Read Only	Read only
RPDO	Receive Process Data Object	Receive process data object
RS232	Recommended Standard 232	Interface standard for cable-connected serial data transmission between a sender and receiver (also known under EIA232)
RS485	Recommended Standard 485	Interface standard for a cable-connected differential, parallel, and/or serial bus system (data transmission between a number of senders and receivers, also known under EIA485)
RTC	Real Time Clock	Real time clock
RZA	Space vector approximation	Space vector approximation
S		
S1	-	Uninterrupted duty
S3	-	Intermittent duty
SBC	Safe Brake Control	Safe brake control
SBH	Safe operating stop	Safe operating stop
SBR	-	Safe acceleration monitoring
SCA	Safe Cam	Safe cam
SD Card	SecureDigital Card	Secure digital memory card
SE	Safe software limit switch	Safe software limit switch
SG	Safely reduced speed	Safely reduced speed
SGA	Safety-related output	Safety-related output
SGE	Safety-related input	Safety-related input
SH	Safe standstill	Safe standstill
SI	Safety Integrated	Safety Integrated
SIL	Safety Integrity Level	Safety Integrity Level
SLM	Smart Line Module	Smart Line Module
SLP	Safely-Limited Position	Safely-limited position
SLS	Safely Limited Speed	Safely limited speed
SLVC	Sensorless Vector Control	Vector control without encoder
SM	Sensor Module	Sensor Module
SMC	Sensor Module Cabinet	Sensor Module Cabinet
SME	Sensor Module External	Sensor Module External
SN	Safe software cam	Safe software cam
SOS	Safe Operating Stop	Safe operating stop
SP	Service Pack	Service pack
SPC	Setpoint Channel	Setpoint channel
SPI	Serial Peripheral Interface	Serial interface for connecting peripherals
PLC	Programmable Logic Controller	Programmable logic control

Abbreviation	Source of abbreviation	Meaning
SS1	Safe Stop 1	Safe stop 1 (monitored for time and ramping up)
SS2	Safe Stop 2	Safe stop 2
SSI	Synchronous Serial Interface	Synchronous serial interface
SSM	Safe Speed Monitor	Safe feedback for speed monitoring (n < nx)
SSP	SINAMICS Support Package	SINAMICS support package
STO	Safe Torque Off	Safe torque off
STW	Control word	Control word
т		
ТВ	Terminal Board	Terminal Board
TIA	Totally Integrated Automation	Totally Integrated Automation
ТМ	Terminal Module	Terminal module
TN	Terre Neutre	Grounded three-phase supply network
Tn	-	Integral time
TPDO	Transmit Process Data Object	Transmit process data object
ТТ	Terre Terre	Grounded three-phase supply network
TTL	Transistor-Transistor Logic	Transistor-transistor logic
Tv	-	Rate time
U		
UL	Underwriters Laboratories Inc.	Underwriters Laboratories Inc.
UPS	Uninterruptible Power Supply	Uninterruptible power supply
UPS	Uninterruptible Power Supply	Uninterruptible power supply
UTC	Universal Time Coordinated	Universal time coordinated
V		
VC	Vector Control	Vector control
Vdc	-	DC link voltage
VdcN	-	Partial DC link voltage negative
VdcP	-	Partial DC link voltage positive
VDE	Verband Deutscher Elektrotechniker	Association of German electrical engineers
VDI	Verein Deutscher Ingenieure	Association of German Engineers
VPM	Voltage Protection Module	Voltage Protection Module
Vpp	Volt peak-to-peak	Volt peak-to-peak
VSM	Voltage Sensing Module	Voltage Sensing Module
W		
AR	Automatic restart	Automatic restart
МТ	Machine Tool	Machine tool
x		
XML	Extensible Markup Language	Standard language for Web publishing and document management

Appendix B B.1 List of abbreviations

Abbreviation	Source of abbreviation	Meaning
Z		
DC link	DC link	DC link
ZM	Zero Mark	Zero mark
ZSW	Status word	Status word

Suggested improvements

If you come across any misprints in this document, please let us know using this form. We would also be grateful for any suggestions and recommendations for improvement.

То:	From
SIEMENS AG	Name:
I DT MC MS1 P.O. Box 3180	Address of your Company/Dept.
D-91050 Erlangen, Federal Repub-	Street:
lic of Germany	Postal code: Location:
Fax: +49 (0) 9131 / 98 - 2176 (documentation)	Phone: /
mailto:docu.motioncontrol@siemens.com http://www.siemens.com/automation/service&support	Fax: /

Suggestions and/or corrections

Index

Α

Anti-condensation measures, 295 Anti-corrosion agent, 293 Autotransformer, 36

В

Basic Operator Panel BOP20, 183 Blocksize Liquid Cooled Power Modules, 101 Braking resistors in blocksize format, 125

С

Cable Installation, 272 CAN, 177 Cavitation, 290 Communication with USS protocol, 175 Component overview, 24 Components Basic Operator Panel BOP20, 183 Braking resistors in blocksize format, 125 CU305 CAN Control Unit, 149 CU305 DP Control Unit, 149 DRIVE-CLiQ cabinet bushing, 235 DRIVE-CLiQ coupling, 240 Line reactors, 44 Motor reactors, Blocksize, 133 Power Modules PM340 blocksize, 59 Safe Brake Relay, 226 Screening Kit, 243 Control cabinet design, 257 Control Unit CU305 LEDs during power up, 171 Coolant, 292 Coolant connection, 115 Coolant mix, 287 Coolant temperatures, 287 Cooling circuit, 293 Addition of biocide, 294 Antifreeze, 293 Configuring, 286 Dimensioning, 289 General requirements, 284 Materials and connections, 289 Pressure, 286

Pressure drop, 287 Cooling circuits, 283 Cooling clearances, 63, 104, 276 CU305 CAN Control Unit, 149 CU305 DP Control Unit, 149

D

Dew point, 295 Diagnostics using LEDs on Sensor Module Cabinet SMC10, 193 using LEDs on Sensor Module Cabinet SMC20, 204 using LEDs on Sensor Module Cabinet SMC30, 216 Via LEDs on Control Unit CU305, 171 **Dimension drawings** Blocksize line filter, 41 Blocksize line reactors, 45 Braking resistors, 127 CU305 CAN Control Unit, 178 CU305 DP Control Unit, 178 DRIVE-CLiQ cabinet bushing, 237 DRIVE-CLiQ coupling, 241 Liquid Cooled Power Module PM340, 109 Motor reactors, blocksize, 134 Power Modules PM340 blocksize, 75 Power Modules with Screening Kit, frame sizes FSA to FSF, 246 Screening Kit, frame sizes FSA to FSC, 244 Sensor Module Cabinet SMC10, 194 Sensor Module Cabinet SMC20, 205 Sensor Module Cabinet SMC30, DRIVE-CLiQ cabinet bushing, 235 DRIVE-CLiQ coupling, 240

Ε

Electrical cabinet cooling, 276 Electronics power supply, 26 EMC Directive, 271 Encoder cable length, 165 Equipotential bonding, 296 Equipotential Bonding, 275 ESD information, 9

Η

Heat dissipation, 276

Hotline, 7

I

Installation DRIVE-CLiQ cabinet bushing, 238 Sensor Modules Cabinet-Mounted, 206, 218 Terminal Modules, 196 Interface descriptions Basic Operator Panel BOP20, 183 Sensor Module Cabinet SMC10, 188 Sensor Module Cabinet SMC20, 200 Sensor Module Cabinet SMC30, 209 Isolating transformer, 37

L

Layout of the components, 269 LEDs For Control Unit CU305, 174 For Control Unit CU305 CAN, 174 For Control Unit CU305 DP, 174 for Sensor Module Cabinet SMC10, 193 for Sensor Module Cabinet SMC20, 204 for Sensor Module Cabinet SMC30, 216 on CU305 CAN Control Unit, 172 on CU305 DP Control Unit, 172 Line connection voltage, 26 Line contactor, 262 Line filter versions, 31 Line frequency, 26 Line reactor versions, 31 Line reactors, 44

Μ

Maintenance, 297 Memory card, 170 Motor reactors, Blocksize, 133 Mounting Basic Operator Panel BOP20, 186 CU305 CAN Control Unit, 179 CU305 DP Control Unit, 179 Ferrite core for frame sizes FSB and FSC, 254 Power Modules PM340 blocksize, 82 Screening Kit, frame size FSA, 252 Screening Kit, frame size FSF, 255 Screening Kit, frame sizes FSB and FSC, 253 Screening Kit, frame sizes FSB and FSC, 253 Screening Kit, frame sizes FSB and FSC, 253 Screening Kit, frame sizes FSD and FSE, Liquid Cooled, 256 Sub-chassis components, 270

0

Option module, brake control, 226 Overcurrent, 267 Overcurrent protection, 260

Ρ

Power loss, 280 Control Units, Sensor Modules, 280 Line reactors and line filters, 280 Power Modules, 281 Power Modules PM340 blocksize, 59 Power Supply Units, 265 Pulse/direction interface, 167

R

Rated pulse frequency, 26 Rated short-circuit current, 26 Repairs, 297 Replacing components, 298 Replacing the fan on the PM340, 299 Residual risks, 13 Residual-current-operated circuit breaker, 261

S

Safe Brake Relay, 226 Safety information Blocksize Liquid Cooled Power Modules, 102 CU305 Control Unit, 150 DRIVE-CLiQ cabinet bushing, 235, 240 Line filter. 40 Line reactors, 44 Motor reactors, 133 Power Modules PM340 blocksize, 61 Sensor Module Cabinet SMC10, 187 Sensor Module Cabinet SMC20, 199 Sensor Module Cabinet SMC30, 208 Screening Kit, 243 Screw terminal, 305 Service and maintenance, 298 Setting the PROFIBUS address, 176 Setting the USS address, 176 Shielding, 243

Index

Spare parts, 303 Specification of encoder systems and encoders Sensor Module Cabinet SMC30, 222 Spring-loaded terminals, 305 Standards, 28 Storage, 26 Support, 7 System data, 26

Т

Technical data Blocksize line filter, 43 CU305 Control Unit, 181 DRIVE-CLiQ cabinet bushing, 239 DRIVE-CLiQ coupling, 242 Sensor Module Cabinet SMC10, 197 Sensor Module Cabinet SMC20, 207 Sensor Module Cabinet SMC30, 221 Technical specifications Blocksize line reactors, 56 Blocksize Power Modules, 86 Braking resistors Blocksize, 131 Motor reactors, blocksize, 146 Transport, 27 Typical 24 V current consumption, 266

V

Ventilation, 278

Siemens AG Industry Sector Drive Technologies Motion Control Systems Postfach 3180 91050 ERLANGEN GERMANY

Subject to change without prior notice © Siemens AG 2009

www.siemens.com/motioncontrol